The origin and development of nonlymphoid tissue CD103+ DCs
CD103+ dendritic cells (DCs) in nonlymphoid tissues are specialized in the cross-presentation of cell-associated antigens. However, little is known about the mechanisms that regulate the development of these cells. We show that two populations of CD11c+MHCII+ cells separated on the basis of CD103 an...
Saved in:
Published in | The Journal of experimental medicine Vol. 206; no. 13; pp. 3115 - 3130 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The Rockefeller University Press
21.12.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | CD103+ dendritic cells (DCs) in nonlymphoid tissues are specialized in the cross-presentation of cell-associated antigens. However, little is known about the mechanisms that regulate the development of these cells. We show that two populations of CD11c+MHCII+ cells separated on the basis of CD103 and CD11b expression coexist in most nonlymphoid tissues with the exception of the lamina propria. CD103+ DCs are related to lymphoid organ CD8+ DCs in that they are derived exclusively from pre-DCs under the control of fms-like tyrosine kinase 3 (Flt3) ligand, inhibitor of DNA protein 2 (Id2), and IFN regulatory protein 8 (IRF8). In contrast, lamina propria CD103+ DCs express CD11b and develop independently of Id2 and IRF8. The other population of CD11c+MHCII+ cells in tissues, which is CD103−CD11b+, is heterogenous and depends on both Flt3 and MCSF-R. Our results reveal that nonlymphoid tissue CD103+ DCs and lymphoid organ CD8+ DCs derive from the same precursor and follow a related differentiation program. |
---|---|
AbstractList | CD103+ dendritic cells (DCs) in nonlymphoid tissues are specialized in the cross-presentation of cell-associated antigens. However, little is known about the mechanisms that regulate the development of these cells. We show that two populations of CD11c+MHCII+ cells separated on the basis of CD103 and CD11b expression coexist in most nonlymphoid tissues with the exception of the lamina propria. CD103+ DCs are related to lymphoid organ CD8+ DCs in that they are derived exclusively from pre-DCs under the control of fms-like tyrosine kinase 3 (Flt3) ligand, inhibitor of DNA protein 2 (Id2), and IFN regulatory protein 8 (IRF8). In contrast, lamina propria CD103+ DCs express CD11b and develop independently of Id2 and IRF8. The other population of CD11c+MHCII+ cells in tissues, which is CD103−CD11b+, is heterogenous and depends on both Flt3 and MCSF-R. Our results reveal that nonlymphoid tissue CD103+ DCs and lymphoid organ CD8+ DCs derive from the same precursor and follow a related differentiation program. CD103 + dendritic cells (DCs) in nonlymphoid tissues are specialized in the cross-presentation of cell-associated antigens. However, little is known about the mechanisms that regulate the development of these cells. We show that two populations of CD11c + MHCII + cells separated on the basis of CD103 and CD11b expression coexist in most nonlymphoid tissues with the exception of the lamina propria. CD103 + DCs are related to lymphoid organ CD8 + DCs in that they are derived exclusively from pre-DCs under the control of fms-like tyrosine kinase 3 (Flt3) ligand, inhibitor of DNA protein 2 (Id2), and IFN regulatory protein 8 (IRF8). In contrast, lamina propria CD103 + DCs express CD11b and develop independently of Id2 and IRF8. The other population of CD11c + MHCII + cells in tissues, which is CD103 − CD11b + , is heterogenous and depends on both Flt3 and MCSF-R. Our results reveal that nonlymphoid tissue CD103 + DCs and lymphoid organ CD8 + DCs derive from the same precursor and follow a related differentiation program. CD103(+) dendritic cells (DCs) in nonlymphoid tissues are specialized in the cross-presentation of cell-associated antigens. However, little is known about the mechanisms that regulate the development of these cells. We show that two populations of CD11c(+)MHCII(+) cells separated on the basis of CD103 and CD11b expression coexist in most nonlymphoid tissues with the exception of the lamina propria. CD103(+) DCs are related to lymphoid organ CD8(+) DCs in that they are derived exclusively from pre-DCs under the control of fms-like tyrosine kinase 3 (Flt3) ligand, inhibitor of DNA protein 2 (Id2), and IFN regulatory protein 8 (IRF8). In contrast, lamina propria CD103(+) DCs express CD11b and develop independently of Id2 and IRF8. The other population of CD11c(+)MHCII(+) cells in tissues, which is CD103(-)CD11b(+), is heterogenous and depends on both Flt3 and MCSF-R. Our results reveal that nonlymphoid tissue CD103(+) DCs and lymphoid organ CD8(+) DCs derive from the same precursor and follow a related differentiation program. CD103(+) dendritic cells (DCs) in nonlymphoid tissues are specialized in the cross-presentation of cell-associated antigens. However, little is known about the mechanisms that regulate the development of these cells. We show that two populations of CD11c(+)MHCII(+) cells separated on the basis of CD103 and CD11b expression coexist in most nonlymphoid tissues with the exception of the lamina propria. CD103(+) DCs are related to lymphoid organ CD8(+) DCs in that they are derived exclusively from pre-DCs under the control of fms-like tyrosine kinase 3 (Flt3) ligand, inhibitor of DNA protein 2 (Id2), and IFN regulatory protein 8 (IRF8). In contrast, lamina propria CD103(+) DCs express CD11b and develop independently of Id2 and IRF8. The other population of CD11c(+)MHCII(+) cells in tissues, which is CD103(-)CD11b(+), is heterogenous and depends on both Flt3 and MCSF-R. Our results reveal that nonlymphoid tissue CD103(+) DCs and lymphoid organ CD8(+) DCs derive from the same precursor and follow a related differentiation program.CD103(+) dendritic cells (DCs) in nonlymphoid tissues are specialized in the cross-presentation of cell-associated antigens. However, little is known about the mechanisms that regulate the development of these cells. We show that two populations of CD11c(+)MHCII(+) cells separated on the basis of CD103 and CD11b expression coexist in most nonlymphoid tissues with the exception of the lamina propria. CD103(+) DCs are related to lymphoid organ CD8(+) DCs in that they are derived exclusively from pre-DCs under the control of fms-like tyrosine kinase 3 (Flt3) ligand, inhibitor of DNA protein 2 (Id2), and IFN regulatory protein 8 (IRF8). In contrast, lamina propria CD103(+) DCs express CD11b and develop independently of Id2 and IRF8. The other population of CD11c(+)MHCII(+) cells in tissues, which is CD103(-)CD11b(+), is heterogenous and depends on both Flt3 and MCSF-R. Our results reveal that nonlymphoid tissue CD103(+) DCs and lymphoid organ CD8(+) DCs derive from the same precursor and follow a related differentiation program. |
Author | Lira, Sergio A. Stanley, E. Richard Bromberg, Jonathan Bogunovic, Milena Hashimoto, Daigo Price, Jeremy Merad, Miriam Ginhoux, Florent Nussenzweig, Michel Liu, Kang Helft, Julie Greter, Melanie Yin, Na |
AuthorAffiliation | 4 Laboratory of Molecular Immunology and 5 Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065 3 Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore 6 Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461 1 Department of Gene and Cell Medicine and 2 the Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029 |
AuthorAffiliation_xml | – name: 6 Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461 – name: 4 Laboratory of Molecular Immunology and 5 Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065 – name: 1 Department of Gene and Cell Medicine and 2 the Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029 – name: 3 Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore |
Author_xml | – sequence: 1 givenname: Florent surname: Ginhoux fullname: Ginhoux, Florent – sequence: 2 givenname: Kang surname: Liu fullname: Liu, Kang – sequence: 3 givenname: Julie surname: Helft fullname: Helft, Julie – sequence: 4 givenname: Milena surname: Bogunovic fullname: Bogunovic, Milena – sequence: 5 givenname: Melanie surname: Greter fullname: Greter, Melanie – sequence: 6 givenname: Daigo surname: Hashimoto fullname: Hashimoto, Daigo – sequence: 7 givenname: Jeremy surname: Price fullname: Price, Jeremy – sequence: 8 givenname: Na surname: Yin fullname: Yin, Na – sequence: 9 givenname: Jonathan surname: Bromberg fullname: Bromberg, Jonathan – sequence: 10 givenname: Sergio A. surname: Lira fullname: Lira, Sergio A. – sequence: 11 givenname: E. Richard surname: Stanley fullname: Stanley, E. Richard – sequence: 12 givenname: Michel surname: Nussenzweig fullname: Nussenzweig, Michel – sequence: 13 givenname: Miriam surname: Merad fullname: Merad, Miriam |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20008528$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1Lw0AQxRdRtFZvniU3D5o6-5VsEASpn1DwUs_LJpm1K0m2ZhPB_96UtqLiZeYwb95vmHdIdhvfICEnFCYUlLh8w3rCADKaymSHjKgUEGeSq10yAmAspgDpATkM4Q2ACiGTfXIw6EFJpkbkar7AyLfu1TWRacqoxA-s_LLGpou8jQZW9VkvF96VUedC6DGa3lLg59HtNByRPWuqgMebPiYv93fz6WM8e354mt7M4kKIrIspS5KcUpCWpsICM7awIufS8hI4MyxPLWQsVxYlYq5KZElaWA4cFC8ls3xMrte-yz6vsSyG21pT6WXratN-am-c_j1p3EK_-g_NFCRCpIPB2cag9e89hk7XLhRYVaZB3wedcs6VUkMdk9OfqG_G9mGDgK0FRetDaNHqwnWmc35FdpWmoFep6CEVvU1lWLr4s7T1_Vf-BcM1jSw |
CitedBy_id | crossref_primary_10_1016_j_immuni_2015_05_018 crossref_primary_10_1038_nm_3197 crossref_primary_10_1016_j_semcdb_2015_05_004 crossref_primary_10_3389_fimmu_2017_00447 crossref_primary_10_1038_s41423_020_0465_0 crossref_primary_10_1182_blood_2011_11_392894 crossref_primary_10_1038_nri3470 crossref_primary_10_1530_REP_10_0493 crossref_primary_10_1111_imcb_12028 crossref_primary_10_1126_sciimmunol_aal1713 crossref_primary_10_3389_fimmu_2018_03123 crossref_primary_10_1126_science_aag3009 crossref_primary_10_1128_IAI_00533_16 crossref_primary_10_1016_j_immuni_2012_07_019 crossref_primary_10_1002_eji_201444450 crossref_primary_10_1016_j_cell_2024_04_009 crossref_primary_10_1007_s12026_012_8269_7 crossref_primary_10_1038_mi_2014_70 crossref_primary_10_1038_ni_3052 crossref_primary_10_4049_jimmunol_1300342 crossref_primary_10_1128_IAI_00854_12 crossref_primary_10_1371_journal_pone_0052341 crossref_primary_10_4049_jimmunol_1300237 crossref_primary_10_2215_CJN_07100714 crossref_primary_10_1016_j_cytogfr_2020_03_003 crossref_primary_10_1186_s12860_019_0199_y crossref_primary_10_1165_rcmb_2011_0070OC crossref_primary_10_1038_s41385_018_0060_1 crossref_primary_10_3389_fimmu_2015_00035 crossref_primary_10_1371_journal_ppat_1003801 crossref_primary_10_3389_fimmu_2020_582658 crossref_primary_10_1016_j_jaci_2011_07_051 crossref_primary_10_1002_adhm_202401480 crossref_primary_10_1007_s00281_016_0602_0 crossref_primary_10_1016_j_celrep_2024_114296 crossref_primary_10_1038_s41392_021_00658_5 crossref_primary_10_1002_1873_3468_14982 crossref_primary_10_1186_s12974_023_02924_5 crossref_primary_10_3389_fimmu_2022_1041010 crossref_primary_10_1371_journal_ppat_1007154 crossref_primary_10_1016_j_coi_2011_11_005 crossref_primary_10_1016_j_imbio_2012_07_011 crossref_primary_10_1038_nri3007 crossref_primary_10_1128_IAI_00109_18 crossref_primary_10_1084_jem_20122508 crossref_primary_10_1182_blood_2012_06_437863 crossref_primary_10_1038_nri3254 crossref_primary_10_1016_j_vetmic_2016_09_007 crossref_primary_10_1016_j_semcdb_2014_04_020 crossref_primary_10_1146_annurev_immunol_101320_011829 crossref_primary_10_1016_j_immuni_2022_04_013 crossref_primary_10_1172_JCI70143 crossref_primary_10_4049_jimmunol_1002683 crossref_primary_10_3389_fcell_2021_635221 crossref_primary_10_1016_j_lfs_2023_122310 crossref_primary_10_1182_blood_2012_01_406967 crossref_primary_10_1242_dev_200162 crossref_primary_10_1038_jid_2011_164 crossref_primary_10_1038_s41590_024_01745_9 crossref_primary_10_1084_jem_20120340 crossref_primary_10_1182_blood_2012_07_445650 crossref_primary_10_1038_s41467_018_03600_6 crossref_primary_10_1111_imcb_12186 crossref_primary_10_1681_ASN_2013121336 crossref_primary_10_1002_eji_201847797 crossref_primary_10_1111_j_1530_0277_2010_01397_x crossref_primary_10_1038_nri3150 crossref_primary_10_1084_jem_20101709 crossref_primary_10_1371_journal_pone_0088452 crossref_primary_10_1002_advs_202405490 crossref_primary_10_1038_nri3149 crossref_primary_10_1051_medsci_20112711022 crossref_primary_10_3389_fimmu_2018_00059 crossref_primary_10_1016_j_immuni_2014_04_016 crossref_primary_10_1084_jem_20110538 crossref_primary_10_11005_jbm_2023_30_2_127 crossref_primary_10_1038_mi_2017_22 crossref_primary_10_1073_pnas_1818907116 crossref_primary_10_4049_jimmunol_2100502 crossref_primary_10_3390_pathogens10091074 crossref_primary_10_1038_s41577_018_0002_x crossref_primary_10_3389_fcell_2022_932472 crossref_primary_10_1126_scisignal_aaf3957 crossref_primary_10_1038_mi_2017_28 crossref_primary_10_4049_jimmunol_1001205 crossref_primary_10_1016_j_imbio_2010_05_013 crossref_primary_10_1080_2162402X_2019_1608106 crossref_primary_10_1042_CS20120576 crossref_primary_10_1038_nri3166 crossref_primary_10_1016_j_immuni_2015_06_017 crossref_primary_10_1016_j_semcdb_2014_02_001 crossref_primary_10_1111_j_1440_1797_2012_01581_x crossref_primary_10_1016_j_imlet_2013_12_001 crossref_primary_10_1084_jem_20141442 crossref_primary_10_1007_s00281_016_0583_z crossref_primary_10_1002_embj_201488027 crossref_primary_10_1016_j_bbi_2015_02_027 crossref_primary_10_1016_j_semcdb_2014_02_009 crossref_primary_10_1084_jem_20141441 crossref_primary_10_1371_journal_ppat_1007360 crossref_primary_10_4049_jimmunol_1601438 crossref_primary_10_4049_jimmunol_1900604 crossref_primary_10_1038_s41385_019_0173_1 crossref_primary_10_1002_glia_22889 crossref_primary_10_1111_pim_12566 crossref_primary_10_1038_s41598_017_05740_z crossref_primary_10_4161_onci_22660 crossref_primary_10_1038_nri3046 crossref_primary_10_1111_ajt_13627 crossref_primary_10_3389_fimmu_2018_01046 crossref_primary_10_1080_2162402X_2015_1019198 crossref_primary_10_1182_blood_2010_12_326678 crossref_primary_10_1038_mi_2015_64 crossref_primary_10_1016_j_celrep_2015_07_040 crossref_primary_10_1038_s41586_020_2134_y crossref_primary_10_1016_j_molmed_2010_04_006 crossref_primary_10_1016_j_mucimm_2023_02_004 crossref_primary_10_1111_pim_12458 crossref_primary_10_1128_jvi_00999_22 crossref_primary_10_1111_j_0105_2896_2009_00879_x crossref_primary_10_1002_eji_201343740 crossref_primary_10_1186_s40425_018_0381_3 crossref_primary_10_2139_ssrn_4013911 crossref_primary_10_1038_emboj_2011_163 crossref_primary_10_1007_s00401_012_1018_0 crossref_primary_10_1084_jem_20110866 crossref_primary_10_3389_fimmu_2022_805420 crossref_primary_10_1016_j_immuni_2013_03_009 crossref_primary_10_3389_fimmu_2021_699128 crossref_primary_10_1016_j_cell_2010_09_039 crossref_primary_10_1038_mi_2012_106 crossref_primary_10_1146_annurev_immunol_020711_075021 crossref_primary_10_1038_icb_2015_16 crossref_primary_10_1084_jem_20160600 crossref_primary_10_1016_j_coi_2021_02_003 crossref_primary_10_1016_j_immuni_2013_03_004 crossref_primary_10_1002_eji_201847910 crossref_primary_10_1038_nri2778 crossref_primary_10_1038_jid_2011_437 crossref_primary_10_1016_j_ejphar_2017_08_016 crossref_primary_10_3389_fimmu_2018_00495 crossref_primary_10_1084_jem_20121003 crossref_primary_10_1111_j_1600_065X_2010_00949_x crossref_primary_10_3389_fimmu_2019_02418 crossref_primary_10_1016_j_imbio_2018_09_006 crossref_primary_10_1016_j_immuni_2016_01_004 crossref_primary_10_1038_mt_2012_168 crossref_primary_10_4049_jimmunol_1600244 crossref_primary_10_1016_j_cell_2018_01_004 crossref_primary_10_1158_2326_6066_CIR_16_0060 crossref_primary_10_1007_s15007_015_0911_y crossref_primary_10_1016_j_imbio_2014_10_025 crossref_primary_10_1084_jem_20120030 crossref_primary_10_1016_j_autrev_2013_09_010 crossref_primary_10_1038_ni_2467 crossref_primary_10_1096_fj_202400338RR crossref_primary_10_1111_all_12871 crossref_primary_10_1161_ATVBAHA_116_304054 crossref_primary_10_3389_fimmu_2015_00435 crossref_primary_10_1016_j_cellimm_2014_08_006 crossref_primary_10_3389_fimmu_2018_02542 crossref_primary_10_1016_j_ymthe_2016_11_001 crossref_primary_10_3390_ijms23094885 crossref_primary_10_3390_cancers12010128 crossref_primary_10_1038_ni_3200 crossref_primary_10_1016_j_jhep_2017_01_008 crossref_primary_10_1084_jem_20171508 crossref_primary_10_1016_j_it_2011_06_003 crossref_primary_10_1096_fj_201900796R crossref_primary_10_3389_fimmu_2022_897462 crossref_primary_10_4049_jimmunol_1601448 crossref_primary_10_1016_j_immuni_2016_02_024 crossref_primary_10_3389_fmicb_2016_00272 crossref_primary_10_4049_jimmunol_1402195 crossref_primary_10_1146_annurev_pathol_020712_163959 crossref_primary_10_1016_j_semcdb_2015_03_011 crossref_primary_10_1146_annurev_immunol_020711_075049 crossref_primary_10_1002_eji_201040562 crossref_primary_10_1016_j_biopha_2022_113875 crossref_primary_10_1016_j_cellimm_2018_04_009 crossref_primary_10_1126_sciimmunol_adc9081 crossref_primary_10_1016_j_fsi_2019_04_001 crossref_primary_10_1016_j_immuni_2010_09_012 crossref_primary_10_1007_s12026_014_8530_3 crossref_primary_10_1038_s41565_018_0271_3 crossref_primary_10_3389_fimmu_2023_1116675 crossref_primary_10_1016_j_celrep_2023_112881 crossref_primary_10_1016_j_immuni_2016_08_013 crossref_primary_10_1111_j_1365_2141_2011_08915_x crossref_primary_10_3389_fimmu_2020_590893 crossref_primary_10_4049_jimmunol_2000405 crossref_primary_10_1038_icb_2012_79 crossref_primary_10_1038_icb_2012_73 crossref_primary_10_4049_jimmunol_1003920 crossref_primary_10_1002_eji_202250242 crossref_primary_10_1016_j_immuni_2014_05_020 crossref_primary_10_1093_ndt_gfy385 crossref_primary_10_1016_j_immuni_2012_10_016 crossref_primary_10_1155_2013_949513 crossref_primary_10_1126_sciimmunol_aai7677 crossref_primary_10_1038_ni_2370 crossref_primary_10_1111_1348_0421_12228 crossref_primary_10_1002_art_38410 crossref_primary_10_1016_j_metabol_2017_09_002 crossref_primary_10_1002_cpim_11 crossref_primary_10_1038_ni_3006 crossref_primary_10_1172_JCI62139 crossref_primary_10_1038_s41420_022_00953_2 crossref_primary_10_3389_fimmu_2018_00699 crossref_primary_10_1146_annurev_immunol_032713_120204 crossref_primary_10_1038_nri3671 crossref_primary_10_1189_jlb_1HI0714_351R crossref_primary_10_1371_journal_pone_0105429 crossref_primary_10_1097_BOR_0000000000000887 crossref_primary_10_1152_ajpcell_00017_2013 crossref_primary_10_1038_ki_2015_292 crossref_primary_10_2217_imt_11_2 crossref_primary_10_3389_fimmu_2019_01529 crossref_primary_10_1016_j_immuni_2013_04_011 crossref_primary_10_1371_journal_pone_0025660 crossref_primary_10_1084_jem_20180660 crossref_primary_10_4110_in_2015_15_6_278 crossref_primary_10_1084_jem_20112675 crossref_primary_10_1136_jitc_2020_002054 crossref_primary_10_1002_eji_201040498 crossref_primary_10_1002_eji_201041224 crossref_primary_10_1371_journal_pone_0064193 crossref_primary_10_1016_j_semcdb_2017_12_009 crossref_primary_10_1016_j_intimp_2016_02_007 crossref_primary_10_3389_fendo_2021_666795 crossref_primary_10_1189_jlb_0312168 crossref_primary_10_4049_jimmunol_2000742 crossref_primary_10_1155_2015_351732 crossref_primary_10_1016_j_molimm_2018_04_016 crossref_primary_10_4049_jimmunol_1501870 crossref_primary_10_1016_j_molmed_2010_07_007 crossref_primary_10_1042_ETLS20170066 crossref_primary_10_7554_eLife_12414 crossref_primary_10_1016_j_biomaterials_2015_12_017 crossref_primary_10_1182_blood_2012_07_441311 crossref_primary_10_4049_jimmunol_2000835 crossref_primary_10_1016_j_immuni_2012_03_027 crossref_primary_10_1016_j_phrs_2016_02_023 crossref_primary_10_1007_s00018_016_2317_8 crossref_primary_10_3389_fimmu_2017_00108 crossref_primary_10_3390_cancers13071525 crossref_primary_10_3390_ijms21249508 crossref_primary_10_3389_fimmu_2015_00243 crossref_primary_10_1186_s12974_022_02609_5 crossref_primary_10_1016_j_immuni_2020_07_018 crossref_primary_10_1038_ni_3270 crossref_primary_10_1084_jem_20132121 crossref_primary_10_1016_j_annonc_2022_05_010 crossref_primary_10_1016_j_semnephrol_2010_03_002 crossref_primary_10_4049_jimmunol_1500889 crossref_primary_10_3389_fimmu_2019_01891 crossref_primary_10_1084_jem_20131397 crossref_primary_10_1016_j_vaccine_2013_03_022 crossref_primary_10_3389_fimmu_2015_00254 crossref_primary_10_1016_j_immuni_2013_04_006 crossref_primary_10_1016_j_immuni_2013_04_004 crossref_primary_10_1038_s41598_022_24126_4 crossref_primary_10_1371_journal_pone_0198608 crossref_primary_10_1016_j_jim_2015_02_013 crossref_primary_10_1165_rcmb_2010_0279OC crossref_primary_10_1016_j_cytogfr_2010_05_002 crossref_primary_10_1111_imm_13143 crossref_primary_10_1016_j_celrep_2024_114847 crossref_primary_10_1002_eji_201040501 crossref_primary_10_1038_s41409_019_0733_8 crossref_primary_10_1038_s41556_020_0505_0 crossref_primary_10_3390_vaccines9111294 crossref_primary_10_3727_096368910X528094 crossref_primary_10_1016_j_immuni_2012_11_001 crossref_primary_10_1038_s41467_018_07685_x crossref_primary_10_1002_hep_25795 crossref_primary_10_1016_j_immuni_2016_11_006 crossref_primary_10_1038_ni_2517 crossref_primary_10_1084_jem_20130903 crossref_primary_10_1016_j_immuni_2016_03_012 crossref_primary_10_1038_ki_2011_129 crossref_primary_10_3389_fimmu_2022_860915 crossref_primary_10_1038_nature11531 crossref_primary_10_4049_jimmunol_1103725 crossref_primary_10_1073_pnas_1115635109 crossref_primary_10_3390_cells8101291 crossref_primary_10_1111_imm_13497 crossref_primary_10_1002_eji_201040733 crossref_primary_10_1146_annurev_immunol_061020_053707 crossref_primary_10_3390_v10040146 crossref_primary_10_7554_eLife_54493 crossref_primary_10_1016_j_coi_2014_04_006 crossref_primary_10_3389_fimmu_2018_01619 crossref_primary_10_1016_j_coi_2014_04_004 crossref_primary_10_3389_fmicb_2015_00557 crossref_primary_10_1038_nn_3599 crossref_primary_10_1182_blood_2012_10_463448 crossref_primary_10_1371_journal_pone_0032067 crossref_primary_10_1002_eji_201243106 crossref_primary_10_1007_s10059_012_0058_6 crossref_primary_10_3389_fimmu_2016_00107 crossref_primary_10_1111_imm_13002 crossref_primary_10_1038_mi_2017_105 crossref_primary_10_1136_annrheumdis_2013_203371 crossref_primary_10_4049_jimmunol_1000824 crossref_primary_10_4049_jimmunol_1900363 crossref_primary_10_1016_j_immuni_2011_09_007 crossref_primary_10_1681_ASN_2015080873 crossref_primary_10_1016_j_clim_2023_109295 crossref_primary_10_1016_j_immuni_2011_09_014 crossref_primary_10_1016_j_cell_2018_12_036 crossref_primary_10_1016_j_celrep_2022_110949 crossref_primary_10_1073_pnas_1203941109 crossref_primary_10_1084_jem_20101459 crossref_primary_10_1111_imr_12167 crossref_primary_10_1371_journal_ppat_1003115 crossref_primary_10_1681_ASN_2019040419 crossref_primary_10_4049_jimmunol_1203541 crossref_primary_10_1016_j_smim_2023_101710 crossref_primary_10_1038_nrgastro_2015_200 crossref_primary_10_1371_journal_pone_0273075 crossref_primary_10_1053_j_ajkd_2016_10_027 crossref_primary_10_1111_imm_12145 crossref_primary_10_1189_jlb_1A0616_285R crossref_primary_10_1189_jlb_0810472 crossref_primary_10_1016_j_vaccine_2015_05_012 crossref_primary_10_4049_jimmunol_1800322 crossref_primary_10_1371_journal_pone_0091126 crossref_primary_10_1016_j_imlet_2016_05_012 crossref_primary_10_1084_jem_20102657 crossref_primary_10_1084_jem_20150642 crossref_primary_10_4049_jimmunol_1601062 crossref_primary_10_4049_jimmunol_1401835 crossref_primary_10_1084_jem_20130930 crossref_primary_10_4049_jimmunol_1500322 crossref_primary_10_1182_blood_2011_03_344960 crossref_primary_10_1016_j_it_2014_06_006 crossref_primary_10_1152_ajplung_00319_2014 crossref_primary_10_1371_journal_pone_0141927 crossref_primary_10_1016_j_tube_2012_10_008 crossref_primary_10_1038_embor_2013_129 crossref_primary_10_1038_s41556_021_00636_7 crossref_primary_10_1016_j_mucimm_2022_12_002 crossref_primary_10_1016_j_molimm_2012_04_009 crossref_primary_10_1182_blood_2012_03_418400 crossref_primary_10_1002_eji_201344242 crossref_primary_10_1038_s41467_019_12319_x crossref_primary_10_1073_pnas_2111234118 crossref_primary_10_1038_s41467_020_15937_y crossref_primary_10_1084_jem_20101158 crossref_primary_10_1165_rcmb_2016_0058OC crossref_primary_10_1371_journal_ppat_1004541 crossref_primary_10_1038_ni_2680 crossref_primary_10_1186_s13045_018_0637_x crossref_primary_10_3390_ijms22158044 crossref_primary_10_1016_j_immuni_2012_04_012 crossref_primary_10_1007_s13238_017_0398_2 crossref_primary_10_1084_jem_20220867 crossref_primary_10_1038_mi_2011_47 crossref_primary_10_1038_s41467_020_19833_3 crossref_primary_10_1016_j_immuni_2015_09_006 crossref_primary_10_1016_j_jare_2025_02_036 crossref_primary_10_1038_nri_2016_36 crossref_primary_10_1002_eji_201344254 crossref_primary_10_1084_jem_20171784 crossref_primary_10_1016_j_mucimm_2024_08_003 crossref_primary_10_1038_ki_2011_458 crossref_primary_10_1111_imcb_12757 crossref_primary_10_1681_ASN_2015030229 crossref_primary_10_1038_ncomms11988 crossref_primary_10_1038_nri3712 crossref_primary_10_3389_fimmu_2022_841065 crossref_primary_10_1136_jitc_2024_010547 crossref_primary_10_1111_imm_13320 crossref_primary_10_1016_j_imlet_2022_12_002 crossref_primary_10_4110_in_2014_14_3_128 crossref_primary_10_3389_fimmu_2021_732612 crossref_primary_10_1002_eji_201545530 crossref_primary_10_4049_jimmunol_1101880 crossref_primary_10_1007_s11883_012_0274_8 crossref_primary_10_1007_s40629_015_0065_1 crossref_primary_10_1016_j_coi_2013_11_002 crossref_primary_10_3390_cancers11040521 crossref_primary_10_4049_jimmunol_1301939 crossref_primary_10_1016_j_it_2011_10_001 crossref_primary_10_1002_eji_202149513 crossref_primary_10_1016_j_immuni_2011_07_002 crossref_primary_10_1042_CS20170238 crossref_primary_10_1084_jem_20122037 crossref_primary_10_1111_imm_12228 crossref_primary_10_1172_JCI65260 crossref_primary_10_1016_j_celrep_2015_03_067 crossref_primary_10_1016_j_jim_2016_02_023 crossref_primary_10_1371_journal_ppat_1002345 crossref_primary_10_3389_fimmu_2015_00406 crossref_primary_10_3389_fimmu_2024_1397590 crossref_primary_10_1182_blood_2014_08_595298 crossref_primary_10_4161_hv_22487 crossref_primary_10_4049_jimmunol_1102613 crossref_primary_10_1016_j_immuni_2011_08_013 crossref_primary_10_1111_imr_13050 crossref_primary_10_1038_jid_2013_515 crossref_primary_10_1016_j_molimm_2020_04_019 crossref_primary_10_1182_blood_2013_12_545772 crossref_primary_10_1111_j_1365_2613_2010_00728_x crossref_primary_10_3389_fimmu_2015_00535 crossref_primary_10_3389_fimmu_2015_00534 crossref_primary_10_1371_journal_pone_0062621 crossref_primary_10_3389_fimmu_2015_00533 crossref_primary_10_3390_biomedicines9030306 crossref_primary_10_1111_j_1365_2567_2011_03457_x crossref_primary_10_4049_jimmunol_1500369 crossref_primary_10_1111_imm_13426 crossref_primary_10_1111_imr_12198 crossref_primary_10_1038_nrneph_2014_170 crossref_primary_10_1016_j_celrep_2023_112156 crossref_primary_10_1111_imr_12194 crossref_primary_10_1016_j_it_2013_06_001 crossref_primary_10_1038_s41467_024_49820_x crossref_primary_10_1038_s43018_020_0075_x crossref_primary_10_1038_nri3070 crossref_primary_10_1155_2016_2926436 crossref_primary_10_3389_fimmu_2023_1273661 crossref_primary_10_1007_s12026_012_8359_6 crossref_primary_10_1016_j_canlet_2018_04_010 crossref_primary_10_1002_adma_202005637 crossref_primary_10_1016_j_it_2010_08_006 crossref_primary_10_1016_j_molimm_2011_11_008 crossref_primary_10_1016_j_immuni_2022_06_006 crossref_primary_10_1038_nature11012 crossref_primary_10_4049_jimmunol_1004125 crossref_primary_10_1038_mi_2012_53 crossref_primary_10_3389_fimmu_2024_1434804 crossref_primary_10_1002_pbc_26104 crossref_primary_10_1016_j_tem_2016_08_007 crossref_primary_10_4049_jimmunol_1701056 crossref_primary_10_1002_eji_202149548 crossref_primary_10_1038_nri3087 crossref_primary_10_1136_jitc_2020_001204 crossref_primary_10_4049_jimmunol_1200220 crossref_primary_10_1111_cas_15044 crossref_primary_10_1111_febs_15436 crossref_primary_10_1038_mi_2017_8 crossref_primary_10_1007_s00430_020_00680_4 crossref_primary_10_1016_j_imbio_2012_06_010 crossref_primary_10_1073_pnas_1611408114 crossref_primary_10_1084_jem_20091844 crossref_primary_10_1016_j_jtos_2013_10_007 crossref_primary_10_1146_annurev_immunol_051116_052215 crossref_primary_10_1016_j_bbadis_2013_01_005 crossref_primary_10_1111_j_0105_2896_2009_00885_x crossref_primary_10_1016_j_immuni_2014_09_012 crossref_primary_10_1016_j_celrep_2017_06_075 crossref_primary_10_1089_ars_2013_5673 crossref_primary_10_1080_21645515_2015_1066050 crossref_primary_10_1681_ASN_2017030270 crossref_primary_10_1146_annurev_immunol_090122_041105 crossref_primary_10_1111_imm_13758 crossref_primary_10_3109_02656736_2014_993339 crossref_primary_10_1007_s12026_012_8323_5 crossref_primary_10_1165_rcmb_2016_0361OC crossref_primary_10_3389_fimmu_2017_00941 crossref_primary_10_1016_j_humimm_2020_07_006 crossref_primary_10_1016_j_smim_2011_01_001 crossref_primary_10_4049_jimmunol_1003010 crossref_primary_10_1038_srep29712 crossref_primary_10_1371_journal_pbio_3000859 crossref_primary_10_1016_j_regen_2018_03_003 crossref_primary_10_4161_jkst_25112 crossref_primary_10_1016_j_semcdb_2018_02_020 crossref_primary_10_1002_eji_202249819 crossref_primary_10_1038_s41581_020_0272_y crossref_primary_10_1189_jlb_3RU0316_144R crossref_primary_10_1016_j_smim_2011_08_009 crossref_primary_10_1016_j_trre_2015_04_001 crossref_primary_10_1371_journal_pone_0103404 crossref_primary_10_3390_cells10050968 crossref_primary_10_4049_jimmunol_1101717 crossref_primary_10_1002_eji_201141728 crossref_primary_10_4049_jimmunol_2000087 crossref_primary_10_1038_mi_2015_118 crossref_primary_10_1016_j_jphs_2023_03_003 crossref_primary_10_1586_14760584_2014_893196 crossref_primary_10_4049_jimmunol_1303243 crossref_primary_10_1084_jem_20091627 crossref_primary_10_1172_JCI87081 crossref_primary_10_1016_j_celrep_2013_04_007 crossref_primary_10_1002_ibd_21247 crossref_primary_10_1172_JCI124829 crossref_primary_10_1111_j_0105_2896_2009_00886_x crossref_primary_10_3389_fimmu_2021_685559 crossref_primary_10_4049_jimmunol_1202798 crossref_primary_10_1182_blood_2012_02_410241 crossref_primary_10_1016_j_immuni_2015_04_017 crossref_primary_10_1089_jir_2015_0138 crossref_primary_10_3390_medsci6040088 crossref_primary_10_3390_ijms22147554 crossref_primary_10_1007_s40257_019_00452_8 crossref_primary_10_1172_JCI57582 crossref_primary_10_4049_jimmunol_1303138 crossref_primary_10_1111_j_1365_2567_2010_03396_x crossref_primary_10_1146_annurev_animal_022114_111009 crossref_primary_10_1681_ASN_2011070680 crossref_primary_10_1172_JCI60644 crossref_primary_10_3390_ijms23137325 crossref_primary_10_1038_ncomms6283 crossref_primary_10_3389_fcimb_2021_617481 crossref_primary_10_3390_cells9030565 crossref_primary_10_4049_jimmunol_1402622 crossref_primary_10_1038_icb_2010_34 crossref_primary_10_1053_j_gastro_2016_08_024 crossref_primary_10_1111_imcb_12484 crossref_primary_10_1038_icb_2010_38 crossref_primary_10_1371_journal_ppat_1004812 crossref_primary_10_1016_j_celrep_2024_114490 crossref_primary_10_1182_blood_2011_04_345330 crossref_primary_10_1146_annurev_immunol_032712_095941 crossref_primary_10_1084_jem_20092618 crossref_primary_10_3390_cells6040048 crossref_primary_10_1016_j_coi_2013_10_011 crossref_primary_10_1016_j_immuni_2011_06_012 crossref_primary_10_1084_jem_20182037 crossref_primary_10_1007_s12026_015_8693_6 crossref_primary_10_1016_j_jim_2015_06_004 crossref_primary_10_1096_fj_201801489R crossref_primary_10_1172_JCI60659 crossref_primary_10_1146_annurev_immunol_020711_074950 crossref_primary_10_1186_s12977_015_0204_2 crossref_primary_10_1016_j_coi_2014_11_001 crossref_primary_10_3389_fimmu_2020_536326 crossref_primary_10_4049_jimmunol_1701488 crossref_primary_10_1002_lt_24833 crossref_primary_10_1016_j_cell_2013_07_014 crossref_primary_10_1084_jem_20130728 crossref_primary_10_1007_s13238_011_1088_0 crossref_primary_10_1016_j_devcel_2015_07_015 crossref_primary_10_1016_j_bbmt_2014_08_005 crossref_primary_10_1016_j_atherosclerosis_2018_01_018 crossref_primary_10_3390_ijms25042450 crossref_primary_10_1016_j_vaccine_2017_06_041 crossref_primary_10_1016_j_it_2012_04_009 crossref_primary_10_1016_j_jnutbio_2018_08_017 crossref_primary_10_1172_JCI60660 crossref_primary_10_1189_jlb_0212052 crossref_primary_10_1126_sciimmunol_aaw1941 crossref_primary_10_1371_journal_ppat_1003934 crossref_primary_10_14814_phy2_13021 crossref_primary_10_1038_ni_2967 crossref_primary_10_1016_j_molimm_2020_02_021 crossref_primary_10_1084_jem_20150567 crossref_primary_10_1155_2016_3104727 crossref_primary_10_3390_jof8080792 crossref_primary_10_3390_vaccines12090981 crossref_primary_10_1007_s12539_021_00445_4 crossref_primary_10_1016_j_cellimm_2018_01_019 |
Cites_doi | 10.1002/eji.1830111013 10.4049/jimmunol.176.4.2161 10.1084/jem.20040662 10.1128/MCB.20.11.4106-4114.2000 10.1038/ni1522 10.1084/jem.20030323 10.1146/annurev.immunol.18.1.767 10.1016/j.immuni.2009.08.010 10.1016/j.jaci.2004.08.046 10.1084/jem.20071365 10.1182/blood-2009-02-206318 10.1084/jem.20071724 10.1182/blood-2002-04-1088 10.1073/pnas.261562798 10.1016/j.immuni.2005.04.004 10.1126/science.1164206 10.1126/science.1117729 10.1182/blood.V95.11.3489 10.1084/jem.20071733 10.1084/jem.20061011 10.1182/blood-2007-07-100750 10.1038/nri746 10.4049/jimmunol.180.5.3019 10.1242/jcs.104.4.1021 10.1016/1074-7613(95)90167-1 10.1111/j.0105-2896.2004.00142.x 10.1016/j.tcb.2004.09.016 10.1016/j.cytogfr.2007.06.008 10.1084/jem.194.6.733 10.1038/ni1307 10.1126/science.1170540 10.1084/jem.20042170 10.1084/jem.20071966 10.1126/science.1136080 10.1038/17812 10.1046/j.1600-6143.2003.00215.x 10.1189/jlb.0903442 10.1038/ni.1724 10.1073/pnas.0807126106 10.1038/ni.1615 10.1038/ni1518 10.4049/jimmunol.175.12.7781 10.4049/jimmunol.178.4.2000 10.1038/ni1462 10.1038/nri2455 10.1038/ni903 10.1196/annals.1392.015 10.1038/372190a0 10.1182/blood.V99.1.111 10.4049/jimmunol.176.7.4155 10.1016/S1074-7613(03)00174-2 |
ContentType | Journal Article |
Copyright | 2009 Ginhoux et al. 2009 |
Copyright_xml | – notice: 2009 Ginhoux et al. 2009 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1084/jem.20091756 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | Origin and development of CD103+ DCs |
EISSN | 1540-9538 |
EndPage | 3130 |
ExternalDocumentID | PMC2806447 20008528 10_1084_jem_20091756 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA026504 – fundername: NCI NIH HHS grantid: CA26504 – fundername: Howard Hughes Medical Institute – fundername: NCI NIH HHS grantid: CA086899 – fundername: NCI NIH HHS grantid: CA32551 – fundername: NCI NIH HHS grantid: CA112100 – fundername: NCI NIH HHS grantid: R01 CA032551 – fundername: NCI NIH HHS grantid: R01 CA112100 – fundername: NCI NIH HHS grantid: R37 CA026504 |
GroupedDBID | --- -~X 0VX 18M 29K 2WC 36B 4.4 53G 5GY 5RE 5VS AAYXX ABOCM ABZEH ACGFO ACNCT ACPRK ADBBV AENEX AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C45 CITATION CS3 D-I DIK DU5 E3Z EBS EJD EMB EMOBN F5P F9R GX1 H13 HYE H~9 IH2 K-O KQ8 L7B MK0 N9A O5R O5S OHT OK1 P2P P6G R.V RHI SJN SV3 TR2 TRP UHB W8F WOQ CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c449t-1266b1105f174f02afcf4b35f3d032a2b7f092b8fe5eeb8de267cf303083d52f3 |
ISSN | 0022-1007 1540-9538 |
IngestDate | Thu Aug 21 13:58:09 EDT 2025 Fri Jul 11 03:37:24 EDT 2025 Mon Jul 21 05:37:32 EDT 2025 Tue Jul 01 03:30:32 EDT 2025 Thu Apr 24 22:59:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
License | This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.jem.org/misc/terms.shtml). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c449t-1266b1105f174f02afcf4b35f3d032a2b7f092b8fe5eeb8de267cf303083d52f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 F. Ginhoux and K. Liu contributed equally to this paper. M. Nussenzweig and M. Merad contributed equally to this paper. |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC2806447 |
PMID | 20008528 |
PQID | 733388833 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2806447 proquest_miscellaneous_733388833 pubmed_primary_20008528 crossref_citationtrail_10_1084_jem_20091756 crossref_primary_10_1084_jem_20091756 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-12-21 |
PublicationDateYYYYMMDD | 2009-12-21 |
PublicationDate_xml | – month: 12 year: 2009 text: 2009-12-21 day: 21 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of experimental medicine |
PublicationTitleAlternate | J Exp Med |
PublicationYear | 2009 |
Publisher | The Rockefeller University Press |
Publisher_xml | – name: The Rockefeller University Press |
References | McKenna (2023072922515976100_bib32) 2000; 95 GeurtsvanKessel (2023072922515976100_bib17) 2008; 205 Austyn (2023072922515976100_bib3) 1981; 11 Aliberti (2023072922515976100_bib1) 2003; 101 Mackarehtschian (2023072922515976100_bib31) 1995; 3 Bedoui (2023072922515976100_bib5) 2009; 10 Naik (2023072922515976100_bib35) 2007; 8 Witmer-Pack (2023072922515976100_bib48) 1993; 104 Burnett (2023072922515976100_bib7) 2004; 75 Karsunky (2023072922515976100_bib25) 2003; 198 Yrlid (2023072922515976100_bib50) 2006; 176 Hacker (2023072922515976100_bib20) 2003; 4 Merad (2023072922515976100_bib33) 2008; 8 Nagao (2023072922515976100_bib34) 2009; 106 Tailor (2023072922515976100_bib42) 2008; 111 Ginhoux (2023072922515976100_bib19) 2007; 204 Varol (2023072922515976100_bib45) 2007; 204 Annacker (2023072922515976100_bib2) 2005; 202 Sung (2023072922515976100_bib41) 2006; 176 Christensen (2023072922515976100_bib10) 2001; 98 Fogg (2023072922515976100_bib14) 2006; 311 Onai (2023072922515976100_bib37) 2007; 8 Kingston (2023072922515976100_bib26) 2009; 114 Geissmann (2023072922515976100_bib16) 2003; 19 van Beek (2023072922515976100_bib44) 2005; 175 Landsman (2023072922515976100_bib28) 2007; 178 Shortman (2023072922515976100_bib40) 2002; 2 Ginhoux (2023072922515976100_bib18) 2006; 7 Dai (2023072922515976100_bib11) 2002; 99 Walzer (2023072922515976100_bib46) 2005; 115 Kissenpfennig (2023072922515976100_bib27) 2005; 22 Jung (2023072922515976100_bib24) 2000; 20 Poulin (2023072922515976100_bib39) 2007; 204 Yokota (2023072922515976100_bib49) 1999; 397 Cepek (2023072922515976100_bib9) 1994; 372 Heath (2023072922515976100_bib21) 2004; 199 Onai (2023072922515976100_bib36) 2007; 1106 Bursch (2023072922515976100_bib8) 2007; 204 Banchereau (2023072922515976100_bib4) 2000; 18 Hildner (2023072922515976100_bib22) 2008; 322 Engel (2023072922515976100_bib13) 2001; 194 Pixley (2023072922515976100_bib38) 2004; 14 Waskow (2023072922515976100_bib47) 2008; 9 Jakubzick (2023072922515976100_bib23) 2008; 180 Liu (2023072922515976100_bib29) 2007; 8 Bogunovic (2023072922515976100_bib6) 2009; 31 Zhang (2023072922515976100_bib51) 2003; 3 Gabriele (2023072922515976100_bib15) 2007; 18 Dudziak (2023072922515976100_bib12) 2007; 315 Turcotte (2023072922515976100_bib43) 2005; 201 Liu (2023072922515976100_bib30) 2009; 324 11560990 - J Exp Med. 2001 Sep 17;194(6):733-45 19286519 - Science. 2009 Apr 17;324(5925):392-7 17922015 - Nat Immunol. 2007 Nov;8(11):1217-26 10067894 - Nature. 1999 Feb 25;397(6721):702-6 19029989 - Nat Rev Immunol. 2008 Dec;8(12):935-47 19465690 - Blood. 2009 Jul 23;114(4):835-43 18086861 - J Exp Med. 2007 Dec 24;204(13):3119-31 7308288 - Eur J Immunol. 1981 Oct;11(10):805-15 18086862 - J Exp Med. 2007 Dec 24;204(13):3133-46 10805752 - Mol Cell Biol. 2000 Jun;20(11):4106-14 16339510 - J Immunol. 2005 Dec 15;175(12):7781-7 18591406 - J Exp Med. 2008 Jul 7;205(7):1621-34 11724967 - Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14541-6 12598895 - Nat Immunol. 2003 Apr;4(4):380-6 15781580 - J Exp Med. 2005 Mar 21;201(6):881-90 16322423 - Science. 2006 Jan 6;311(5757):83-7 11913066 - Nat Rev Immunol. 2002 Mar;2(3):151-61 7969453 - Nature. 1994 Nov 10;372(6502):190-3 15233723 - Immunol Rev. 2004 Jun;199:9-26 19218433 - Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3312-7 8314887 - J Cell Sci. 1993 Apr;104 ( Pt 4):1021-9 16547252 - J Immunol. 2006 Apr 1;176(7):4155-62 17204652 - Science. 2007 Jan 5;315(5808):107-11 18292524 - J Immunol. 2008 Mar 1;180(5):3019-27 15894281 - Immunity. 2005 May;22(5):643-54 15519852 - Trends Cell Biol. 2004 Nov;14(11):628-38 18086865 - J Exp Med. 2007 Dec 24;204(13):3147-56 14726498 - J Leukoc Biol. 2004 Apr;75(4):612-23 7621074 - Immunity. 1995 Jul;3(1):147-61 15637568 - J Allergy Clin Immunol. 2005 Jan;115(1):192-9 12871640 - Immunity. 2003 Jul;19(1):71-82 14510696 - Am J Transplant. 2003 Oct;3(10):1230-41 12874263 - J Exp Med. 2003 Jul 21;198(2):305-13 19733489 - Immunity. 2009 Sep 18;31(3):513-25 17450143 - Nat Immunol. 2007 Jun;8(6):578-83 18055870 - Blood. 2008 Feb 15;111(4):1942-5 10828034 - Blood. 2000 Jun 1;95(11):3489-97 17190836 - J Exp Med. 2007 Jan 22;204(1):171-80 10837075 - Annu Rev Immunol. 2000;18:767-811 17922016 - Nat Immunol. 2007 Nov;8(11):1207-16 18469816 - Nat Immunol. 2008 Jun;9(6):676-83 19008445 - Science. 2008 Nov 14;322(5904):1097-100 16216886 - J Exp Med. 2005 Oct 17;202(8):1051-61 16444257 - Nat Immunol. 2006 Mar;7(3):265-73 19349986 - Nat Immunol. 2009 May;10(5):488-95 17360795 - Ann N Y Acad Sci. 2007 Jun;1106:253-61 12393690 - Blood. 2003 Jan 1;101(1):305-10 11756160 - Blood. 2002 Jan 1;99(1):111-20 17277103 - J Immunol. 2007 Feb 15;178(4):2000-7 17702640 - Cytokine Growth Factor Rev. 2007 Oct-Dec;18(5-6):503-10 16455972 - J Immunol. 2006 Feb 15;176(4):2161-72 |
References_xml | – volume: 11 start-page: 805 year: 1981 ident: 2023072922515976100_bib3 article-title: F4/80, a monoclonal antibody directed specifically against the mouse macrophage publication-title: Eur. J. Immunol. doi: 10.1002/eji.1830111013 – volume: 176 start-page: 2161 year: 2006 ident: 2023072922515976100_bib41 article-title: A major lung CD103 (alphaE)-beta7 integrin-positive epithelial dendritic cell population expressing Langerin and tight junction proteins publication-title: J. Immunol. doi: 10.4049/jimmunol.176.4.2161 – volume: 202 start-page: 1051 year: 2005 ident: 2023072922515976100_bib2 article-title: Essential role for CD103 in the T cell–mediated regulation of experimental colitis publication-title: J. Exp. Med. doi: 10.1084/jem.20040662 – volume: 20 start-page: 4106 year: 2000 ident: 2023072922515976100_bib24 article-title: Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.20.11.4106-4114.2000 – volume: 8 start-page: 1217 year: 2007 ident: 2023072922515976100_bib35 article-title: Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo publication-title: Nat. Immunol. doi: 10.1038/ni1522 – volume: 198 start-page: 305 year: 2003 ident: 2023072922515976100_bib25 article-title: Flt3 ligand regulates dendritic cell development from Flt3+ lymphoid and myeloid-committed progenitors to Flt3+ dendritic cells in vivo publication-title: J. Exp. Med. doi: 10.1084/jem.20030323 – volume: 18 start-page: 767 year: 2000 ident: 2023072922515976100_bib4 article-title: Immunobiology of dendritic cells publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.18.1.767 – volume: 31 start-page: 513 year: 2009 ident: 2023072922515976100_bib6 article-title: Origin of the lamina propria dendritic cell network publication-title: Immunity. doi: 10.1016/j.immuni.2009.08.010 – volume: 115 start-page: 192 year: 2005 ident: 2023072922515976100_bib46 article-title: No defect in T-cell priming, secondary response, or tolerance induction in response to inhaled antigens in Fms-like tyrosine kinase 3 ligand-deficient mice publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2004.08.046 – volume: 205 start-page: 1621 year: 2008 ident: 2023072922515976100_bib17 article-title: Clearance of influenza virus from the lung depends on migratory langerin+CD11b− but not plasmacytoid dendritic cells publication-title: J. Exp. Med. doi: 10.1084/jem.20071365 – volume: 114 start-page: 835 year: 2009 ident: 2023072922515976100_bib26 article-title: The concerted action of GM-CSF and Flt3-ligand on in vivo dendritic cell homeostasis publication-title: Blood. doi: 10.1182/blood-2009-02-206318 – volume: 204 start-page: 3119 year: 2007 ident: 2023072922515976100_bib39 article-title: The dermis contains langerin+ dendritic cells that develop and function independently of epidermal Langerhans cells publication-title: J. Exp. Med. doi: 10.1084/jem.20071724 – volume: 101 start-page: 305 year: 2003 ident: 2023072922515976100_bib1 article-title: Essential role for ICSBP in the in vivo development of murine CD8alpha + dendritic cells publication-title: Blood. doi: 10.1182/blood-2002-04-1088 – volume: 98 start-page: 14541 year: 2001 ident: 2023072922515976100_bib10 article-title: Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.261562798 – volume: 22 start-page: 643 year: 2005 ident: 2023072922515976100_bib27 article-title: Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells publication-title: Immunity. doi: 10.1016/j.immuni.2005.04.004 – volume: 322 start-page: 1097 year: 2008 ident: 2023072922515976100_bib22 article-title: Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity publication-title: Science. doi: 10.1126/science.1164206 – volume: 311 start-page: 83 year: 2006 ident: 2023072922515976100_bib14 article-title: A clonogenic bone marrow progenitor specific for macrophages and dendritic cells publication-title: Science. doi: 10.1126/science.1117729 – volume: 95 start-page: 3489 year: 2000 ident: 2023072922515976100_bib32 article-title: Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells publication-title: Blood. doi: 10.1182/blood.V95.11.3489 – volume: 204 start-page: 3133 year: 2007 ident: 2023072922515976100_bib19 article-title: Blood-derived dermal langerin+ dendritic cells survey the skin in the steady state publication-title: J. Exp. Med. doi: 10.1084/jem.20071733 – volume: 204 start-page: 171 year: 2007 ident: 2023072922515976100_bib45 article-title: Monocytes give rise to mucosal, but not splenic, conventional dendritic cells publication-title: J. Exp. Med. doi: 10.1084/jem.20061011 – volume: 111 start-page: 1942 year: 2008 ident: 2023072922515976100_bib42 article-title: The BXH2 mutation in IRF8 differentially impairs dendritic cell subset development in the mouse publication-title: Blood. doi: 10.1182/blood-2007-07-100750 – volume: 2 start-page: 151 year: 2002 ident: 2023072922515976100_bib40 article-title: Mouse and human dendritic cell subtypes publication-title: Nat. Rev. Immunol. doi: 10.1038/nri746 – volume: 180 start-page: 3019 year: 2008 ident: 2023072922515976100_bib23 article-title: Blood monocyte subsets differentially give rise to CD103+ and CD103- pulmonary dendritic cell populations publication-title: J. Immunol. doi: 10.4049/jimmunol.180.5.3019 – volume: 104 start-page: 1021 year: 1993 ident: 2023072922515976100_bib48 article-title: Identification of macrophages and dendritic cells in the osteopetrotic (op/op) mouse publication-title: J. Cell Sci. doi: 10.1242/jcs.104.4.1021 – volume: 3 start-page: 147 year: 1995 ident: 2023072922515976100_bib31 article-title: Targeted disruption of the flk2/flt3 gene leads to deficiencies in primitive hematopoietic progenitors publication-title: Immunity. doi: 10.1016/1074-7613(95)90167-1 – volume: 199 start-page: 9 year: 2004 ident: 2023072922515976100_bib21 article-title: Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens publication-title: Immunol. Rev. doi: 10.1111/j.0105-2896.2004.00142.x – volume: 14 start-page: 628 year: 2004 ident: 2023072922515976100_bib38 article-title: CSF-1 regulation of the wandering macrophage: complexity in action publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2004.09.016 – volume: 18 start-page: 503 year: 2007 ident: 2023072922515976100_bib15 article-title: The role of the interferon regulatory factor (IRF) family in dendritic cell development and function publication-title: Cytokine Growth Factor Rev. doi: 10.1016/j.cytogfr.2007.06.008 – volume: 194 start-page: 733 year: 2001 ident: 2023072922515976100_bib13 article-title: Early thymocyte development is regulated by modulation of E2A protein activity publication-title: J. Exp. Med. doi: 10.1084/jem.194.6.733 – volume: 7 start-page: 265 year: 2006 ident: 2023072922515976100_bib18 article-title: Langerhans cells arise from monocytes in vivo publication-title: Nat. Immunol. doi: 10.1038/ni1307 – volume: 324 start-page: 392 year: 2009 ident: 2023072922515976100_bib30 article-title: In vivo analysis of dendritic cell development and homeostasis publication-title: Science. doi: 10.1126/science.1170540 – volume: 201 start-page: 881 year: 2005 ident: 2023072922515976100_bib43 article-title: A mutation in the Icsbp1 gene causes susceptibility to infection and a chronic myeloid leukemia–like syndrome in BXH-2 mice publication-title: J. Exp. Med. doi: 10.1084/jem.20042170 – volume: 204 start-page: 3147 year: 2007 ident: 2023072922515976100_bib8 article-title: Identification of a novel population of Langerin+ dendritic cells publication-title: J. Exp. Med. doi: 10.1084/jem.20071966 – volume: 315 start-page: 107 year: 2007 ident: 2023072922515976100_bib12 article-title: Differential antigen processing by dendritic cell subsets in vivo publication-title: Science. doi: 10.1126/science.1136080 – volume: 397 start-page: 702 year: 1999 ident: 2023072922515976100_bib49 article-title: Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2 publication-title: Nature. doi: 10.1038/17812 – volume: 3 start-page: 1230 year: 2003 ident: 2023072922515976100_bib51 article-title: Adenovirus transduction induces expression of multiple chemokines and chemokine receptors in murine beta cells and pancreatic islets publication-title: Am. J. Transplant. doi: 10.1046/j.1600-6143.2003.00215.x – volume: 75 start-page: 612 year: 2004 ident: 2023072922515976100_bib7 article-title: Conditional macrophage ablation in transgenic mice expressing a Fas-based suicide gene publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.0903442 – volume: 10 start-page: 488 year: 2009 ident: 2023072922515976100_bib5 article-title: Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells publication-title: Nat. Immunol. doi: 10.1038/ni.1724 – volume: 106 start-page: 3312 year: 2009 ident: 2023072922515976100_bib34 article-title: Murine epidermal Langerhans cells and langerin-expressing dermal dendritic cells are unrelated and exhibit distinct functions publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.0807126106 – volume: 9 start-page: 676 year: 2008 ident: 2023072922515976100_bib47 article-title: The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues publication-title: Nat. Immunol. doi: 10.1038/ni.1615 – volume: 8 start-page: 1207 year: 2007 ident: 2023072922515976100_bib37 article-title: Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow publication-title: Nat. Immunol. doi: 10.1038/ni1518 – volume: 175 start-page: 7781 year: 2005 ident: 2023072922515976100_bib44 article-title: Signal regulatory proteins in the immune system publication-title: J. Immunol. doi: 10.4049/jimmunol.175.12.7781 – volume: 178 start-page: 2000 year: 2007 ident: 2023072922515976100_bib28 article-title: Distinct differentiation potential of blood monocyte subsets in the lung publication-title: J. Immunol. doi: 10.4049/jimmunol.178.4.2000 – volume: 8 start-page: 578 year: 2007 ident: 2023072922515976100_bib29 article-title: Origin of dendritic cells in peripheral lymphoid organs of mice publication-title: Nat. Immunol. doi: 10.1038/ni1462 – volume: 8 start-page: 935 year: 2008 ident: 2023072922515976100_bib33 article-title: Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2455 – volume: 4 start-page: 380 year: 2003 ident: 2023072922515976100_bib20 article-title: Transcriptional profiling identifies Id2 function in dendritic cell development publication-title: Nat. Immunol. doi: 10.1038/ni903 – volume: 1106 start-page: 253 year: 2007 ident: 2023072922515976100_bib36 article-title: Flt3 in regulation of type I interferon-producing cell and dendritic cell development publication-title: Ann. N. Y. Acad. Sci. doi: 10.1196/annals.1392.015 – volume: 372 start-page: 190 year: 1994 ident: 2023072922515976100_bib9 article-title: Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the alpha E beta 7 integrin publication-title: Nature. doi: 10.1038/372190a0 – volume: 99 start-page: 111 year: 2002 ident: 2023072922515976100_bib11 article-title: Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects publication-title: Blood. doi: 10.1182/blood.V99.1.111 – volume: 176 start-page: 4155 year: 2006 ident: 2023072922515976100_bib50 article-title: Relationships between distinct blood monocyte subsets and migrating intestinal lymph dendritic cells in vivo under steady-state conditions publication-title: J. Immunol. doi: 10.4049/jimmunol.176.7.4155 – volume: 19 start-page: 71 year: 2003 ident: 2023072922515976100_bib16 article-title: Blood monocytes consist of two principal subsets with distinct migratory properties publication-title: Immunity. doi: 10.1016/S1074-7613(03)00174-2 – reference: 11756160 - Blood. 2002 Jan 1;99(1):111-20 – reference: 16216886 - J Exp Med. 2005 Oct 17;202(8):1051-61 – reference: 11724967 - Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14541-6 – reference: 19733489 - Immunity. 2009 Sep 18;31(3):513-25 – reference: 11913066 - Nat Rev Immunol. 2002 Mar;2(3):151-61 – reference: 12871640 - Immunity. 2003 Jul;19(1):71-82 – reference: 18292524 - J Immunol. 2008 Mar 1;180(5):3019-27 – reference: 11560990 - J Exp Med. 2001 Sep 17;194(6):733-45 – reference: 17922016 - Nat Immunol. 2007 Nov;8(11):1207-16 – reference: 16322423 - Science. 2006 Jan 6;311(5757):83-7 – reference: 14726498 - J Leukoc Biol. 2004 Apr;75(4):612-23 – reference: 19286519 - Science. 2009 Apr 17;324(5925):392-7 – reference: 15894281 - Immunity. 2005 May;22(5):643-54 – reference: 19349986 - Nat Immunol. 2009 May;10(5):488-95 – reference: 17702640 - Cytokine Growth Factor Rev. 2007 Oct-Dec;18(5-6):503-10 – reference: 18055870 - Blood. 2008 Feb 15;111(4):1942-5 – reference: 17204652 - Science. 2007 Jan 5;315(5808):107-11 – reference: 18591406 - J Exp Med. 2008 Jul 7;205(7):1621-34 – reference: 18086862 - J Exp Med. 2007 Dec 24;204(13):3133-46 – reference: 15637568 - J Allergy Clin Immunol. 2005 Jan;115(1):192-9 – reference: 10828034 - Blood. 2000 Jun 1;95(11):3489-97 – reference: 18086865 - J Exp Med. 2007 Dec 24;204(13):3147-56 – reference: 17360795 - Ann N Y Acad Sci. 2007 Jun;1106:253-61 – reference: 15781580 - J Exp Med. 2005 Mar 21;201(6):881-90 – reference: 18086861 - J Exp Med. 2007 Dec 24;204(13):3119-31 – reference: 10805752 - Mol Cell Biol. 2000 Jun;20(11):4106-14 – reference: 12393690 - Blood. 2003 Jan 1;101(1):305-10 – reference: 17277103 - J Immunol. 2007 Feb 15;178(4):2000-7 – reference: 16444257 - Nat Immunol. 2006 Mar;7(3):265-73 – reference: 7308288 - Eur J Immunol. 1981 Oct;11(10):805-15 – reference: 16455972 - J Immunol. 2006 Feb 15;176(4):2161-72 – reference: 15233723 - Immunol Rev. 2004 Jun;199:9-26 – reference: 15519852 - Trends Cell Biol. 2004 Nov;14(11):628-38 – reference: 17190836 - J Exp Med. 2007 Jan 22;204(1):171-80 – reference: 19218433 - Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3312-7 – reference: 10837075 - Annu Rev Immunol. 2000;18:767-811 – reference: 19465690 - Blood. 2009 Jul 23;114(4):835-43 – reference: 16547252 - J Immunol. 2006 Apr 1;176(7):4155-62 – reference: 7969453 - Nature. 1994 Nov 10;372(6502):190-3 – reference: 12874263 - J Exp Med. 2003 Jul 21;198(2):305-13 – reference: 12598895 - Nat Immunol. 2003 Apr;4(4):380-6 – reference: 17450143 - Nat Immunol. 2007 Jun;8(6):578-83 – reference: 7621074 - Immunity. 1995 Jul;3(1):147-61 – reference: 14510696 - Am J Transplant. 2003 Oct;3(10):1230-41 – reference: 19008445 - Science. 2008 Nov 14;322(5904):1097-100 – reference: 17922015 - Nat Immunol. 2007 Nov;8(11):1217-26 – reference: 16339510 - J Immunol. 2005 Dec 15;175(12):7781-7 – reference: 8314887 - J Cell Sci. 1993 Apr;104 ( Pt 4):1021-9 – reference: 10067894 - Nature. 1999 Feb 25;397(6721):702-6 – reference: 18469816 - Nat Immunol. 2008 Jun;9(6):676-83 – reference: 19029989 - Nat Rev Immunol. 2008 Dec;8(12):935-47 |
SSID | ssj0014456 |
Score | 2.527758 |
Snippet | CD103+ dendritic cells (DCs) in nonlymphoid tissues are specialized in the cross-presentation of cell-associated antigens. However, little is known about the... CD103(+) dendritic cells (DCs) in nonlymphoid tissues are specialized in the cross-presentation of cell-associated antigens. However, little is known about the... CD103 + dendritic cells (DCs) in nonlymphoid tissues are specialized in the cross-presentation of cell-associated antigens. However, little is known about the... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 3115 |
SubjectTerms | Animals Antigens, CD - analysis CD11b Antigen - analysis CD8 Antigens - analysis Cell Differentiation Dendritic Cells - cytology Dendritic Cells - immunology Dendritic Cells - physiology fms-Like Tyrosine Kinase 3 - analysis fms-Like Tyrosine Kinase 3 - physiology Homeostasis Inhibitor of Differentiation Protein 2 - physiology Integrin alpha Chains - analysis Interferon Regulatory Factors - physiology Male Mice Mice, Inbred C57BL Receptor, Macrophage Colony-Stimulating Factor - analysis Receptor, Macrophage Colony-Stimulating Factor - physiology Stem Cells - physiology |
Title | The origin and development of nonlymphoid tissue CD103+ DCs |
URI | https://www.ncbi.nlm.nih.gov/pubmed/20008528 https://www.proquest.com/docview/733388833 https://pubmed.ncbi.nlm.nih.gov/PMC2806447 |
Volume | 206 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZaKqFeqpbSdulDPsApWvDazmPVU7sUECqcQNpbFDt2WWlJUEkO5dd3_EjiUJDaXqIocWxpvtF4Jp75BqFd2NGFUuC5zZQmUy4h3IEwSE0lo2qmVTFTlmf27Dw5ueSny3g5tLey1SWN2Jd3D9aV_A-q8AxwNVWy_4BsPyk8gHvAF66AMFz_GmPX2cqeAZRDApDNz6ir9S8Aq16VUWPlGy0OZ4Tt0a_R4eI2dEuHAjHrmo5o_--fvh-vqqu6tXvWEQT7QeLM91XrEjT8bmh_sa6dmTd12MMBfv2jrWqwUS5xHza-YvT3wbZOcCXN-8pbTE7MGXAWmlRKklB3WGAhDbvPg6abZNyYbmXpASCIdHzjAYo31xZGat1EX1E-psruXj1FzyhEDbb2e9ln_EDoGCe-9gEWOwiXMpzQ_uOxg_JH1HE_eTbwRi5eohceK_zF6cQr9ERVW2jzzEP1Gn0GRLFTDQyqgQPVwLXGgWpgpxrYqkaEQTG20eXRt4vFydT3yZhKzucNQJIkAty4WEN4qQkttNRcsFizkjBaUJFqMqci0ypWSmSlokkqNTNMRayMqWZv0Aasq94hzEiZghS4zIRhjpRzWpjiZZlB1Jnogk1Q1Aknl55E3vQyWec2mSHjOUg176Q6QXv96BtHnvLIONzJOQfrZo6sikrV7W2eMsYy0w97gt46sfcTdXhNUDoCpB9giNPHb6rVlSVQN9kEnKc7j875Hj0flP0D2mh-tuojOJ-N-GRV6jc2ooK6 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+origin+and+development+of+nonlymphoid+tissue+CD103%2B+DCs&rft.jtitle=The+Journal+of+experimental+medicine&rft.au=Ginhoux%2C+Florent&rft.au=Liu%2C+Kang&rft.au=Helft%2C+Julie&rft.au=Bogunovic%2C+Milena&rft.date=2009-12-21&rft.eissn=1540-9538&rft.volume=206&rft.issue=13&rft.spage=3115&rft_id=info:doi/10.1084%2Fjem.20091756&rft_id=info%3Apmid%2F20008528&rft.externalDocID=20008528 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1007&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1007&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1007&client=summon |