The origin and development of nonlymphoid tissue CD103+ DCs

CD103+ dendritic cells (DCs) in nonlymphoid tissues are specialized in the cross-presentation of cell-associated antigens. However, little is known about the mechanisms that regulate the development of these cells. We show that two populations of CD11c+MHCII+ cells separated on the basis of CD103 an...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of experimental medicine Vol. 206; no. 13; pp. 3115 - 3130
Main Authors Ginhoux, Florent, Liu, Kang, Helft, Julie, Bogunovic, Milena, Greter, Melanie, Hashimoto, Daigo, Price, Jeremy, Yin, Na, Bromberg, Jonathan, Lira, Sergio A., Stanley, E. Richard, Nussenzweig, Michel, Merad, Miriam
Format Journal Article
LanguageEnglish
Published United States The Rockefeller University Press 21.12.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract CD103+ dendritic cells (DCs) in nonlymphoid tissues are specialized in the cross-presentation of cell-associated antigens. However, little is known about the mechanisms that regulate the development of these cells. We show that two populations of CD11c+MHCII+ cells separated on the basis of CD103 and CD11b expression coexist in most nonlymphoid tissues with the exception of the lamina propria. CD103+ DCs are related to lymphoid organ CD8+ DCs in that they are derived exclusively from pre-DCs under the control of fms-like tyrosine kinase 3 (Flt3) ligand, inhibitor of DNA protein 2 (Id2), and IFN regulatory protein 8 (IRF8). In contrast, lamina propria CD103+ DCs express CD11b and develop independently of Id2 and IRF8. The other population of CD11c+MHCII+ cells in tissues, which is CD103−CD11b+, is heterogenous and depends on both Flt3 and MCSF-R. Our results reveal that nonlymphoid tissue CD103+ DCs and lymphoid organ CD8+ DCs derive from the same precursor and follow a related differentiation program.
AbstractList CD103+ dendritic cells (DCs) in nonlymphoid tissues are specialized in the cross-presentation of cell-associated antigens. However, little is known about the mechanisms that regulate the development of these cells. We show that two populations of CD11c+MHCII+ cells separated on the basis of CD103 and CD11b expression coexist in most nonlymphoid tissues with the exception of the lamina propria. CD103+ DCs are related to lymphoid organ CD8+ DCs in that they are derived exclusively from pre-DCs under the control of fms-like tyrosine kinase 3 (Flt3) ligand, inhibitor of DNA protein 2 (Id2), and IFN regulatory protein 8 (IRF8). In contrast, lamina propria CD103+ DCs express CD11b and develop independently of Id2 and IRF8. The other population of CD11c+MHCII+ cells in tissues, which is CD103−CD11b+, is heterogenous and depends on both Flt3 and MCSF-R. Our results reveal that nonlymphoid tissue CD103+ DCs and lymphoid organ CD8+ DCs derive from the same precursor and follow a related differentiation program.
CD103 + dendritic cells (DCs) in nonlymphoid tissues are specialized in the cross-presentation of cell-associated antigens. However, little is known about the mechanisms that regulate the development of these cells. We show that two populations of CD11c + MHCII + cells separated on the basis of CD103 and CD11b expression coexist in most nonlymphoid tissues with the exception of the lamina propria. CD103 + DCs are related to lymphoid organ CD8 + DCs in that they are derived exclusively from pre-DCs under the control of fms-like tyrosine kinase 3 (Flt3) ligand, inhibitor of DNA protein 2 (Id2), and IFN regulatory protein 8 (IRF8). In contrast, lamina propria CD103 + DCs express CD11b and develop independently of Id2 and IRF8. The other population of CD11c + MHCII + cells in tissues, which is CD103 − CD11b + , is heterogenous and depends on both Flt3 and MCSF-R. Our results reveal that nonlymphoid tissue CD103 + DCs and lymphoid organ CD8 + DCs derive from the same precursor and follow a related differentiation program.
CD103(+) dendritic cells (DCs) in nonlymphoid tissues are specialized in the cross-presentation of cell-associated antigens. However, little is known about the mechanisms that regulate the development of these cells. We show that two populations of CD11c(+)MHCII(+) cells separated on the basis of CD103 and CD11b expression coexist in most nonlymphoid tissues with the exception of the lamina propria. CD103(+) DCs are related to lymphoid organ CD8(+) DCs in that they are derived exclusively from pre-DCs under the control of fms-like tyrosine kinase 3 (Flt3) ligand, inhibitor of DNA protein 2 (Id2), and IFN regulatory protein 8 (IRF8). In contrast, lamina propria CD103(+) DCs express CD11b and develop independently of Id2 and IRF8. The other population of CD11c(+)MHCII(+) cells in tissues, which is CD103(-)CD11b(+), is heterogenous and depends on both Flt3 and MCSF-R. Our results reveal that nonlymphoid tissue CD103(+) DCs and lymphoid organ CD8(+) DCs derive from the same precursor and follow a related differentiation program.
CD103(+) dendritic cells (DCs) in nonlymphoid tissues are specialized in the cross-presentation of cell-associated antigens. However, little is known about the mechanisms that regulate the development of these cells. We show that two populations of CD11c(+)MHCII(+) cells separated on the basis of CD103 and CD11b expression coexist in most nonlymphoid tissues with the exception of the lamina propria. CD103(+) DCs are related to lymphoid organ CD8(+) DCs in that they are derived exclusively from pre-DCs under the control of fms-like tyrosine kinase 3 (Flt3) ligand, inhibitor of DNA protein 2 (Id2), and IFN regulatory protein 8 (IRF8). In contrast, lamina propria CD103(+) DCs express CD11b and develop independently of Id2 and IRF8. The other population of CD11c(+)MHCII(+) cells in tissues, which is CD103(-)CD11b(+), is heterogenous and depends on both Flt3 and MCSF-R. Our results reveal that nonlymphoid tissue CD103(+) DCs and lymphoid organ CD8(+) DCs derive from the same precursor and follow a related differentiation program.CD103(+) dendritic cells (DCs) in nonlymphoid tissues are specialized in the cross-presentation of cell-associated antigens. However, little is known about the mechanisms that regulate the development of these cells. We show that two populations of CD11c(+)MHCII(+) cells separated on the basis of CD103 and CD11b expression coexist in most nonlymphoid tissues with the exception of the lamina propria. CD103(+) DCs are related to lymphoid organ CD8(+) DCs in that they are derived exclusively from pre-DCs under the control of fms-like tyrosine kinase 3 (Flt3) ligand, inhibitor of DNA protein 2 (Id2), and IFN regulatory protein 8 (IRF8). In contrast, lamina propria CD103(+) DCs express CD11b and develop independently of Id2 and IRF8. The other population of CD11c(+)MHCII(+) cells in tissues, which is CD103(-)CD11b(+), is heterogenous and depends on both Flt3 and MCSF-R. Our results reveal that nonlymphoid tissue CD103(+) DCs and lymphoid organ CD8(+) DCs derive from the same precursor and follow a related differentiation program.
Author Lira, Sergio A.
Stanley, E. Richard
Bromberg, Jonathan
Bogunovic, Milena
Hashimoto, Daigo
Price, Jeremy
Merad, Miriam
Ginhoux, Florent
Nussenzweig, Michel
Liu, Kang
Helft, Julie
Greter, Melanie
Yin, Na
AuthorAffiliation 4 Laboratory of Molecular Immunology and 5 Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
3 Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
6 Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461
1 Department of Gene and Cell Medicine and 2 the Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029
AuthorAffiliation_xml – name: 6 Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461
– name: 4 Laboratory of Molecular Immunology and 5 Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
– name: 1 Department of Gene and Cell Medicine and 2 the Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029
– name: 3 Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
Author_xml – sequence: 1
  givenname: Florent
  surname: Ginhoux
  fullname: Ginhoux, Florent
– sequence: 2
  givenname: Kang
  surname: Liu
  fullname: Liu, Kang
– sequence: 3
  givenname: Julie
  surname: Helft
  fullname: Helft, Julie
– sequence: 4
  givenname: Milena
  surname: Bogunovic
  fullname: Bogunovic, Milena
– sequence: 5
  givenname: Melanie
  surname: Greter
  fullname: Greter, Melanie
– sequence: 6
  givenname: Daigo
  surname: Hashimoto
  fullname: Hashimoto, Daigo
– sequence: 7
  givenname: Jeremy
  surname: Price
  fullname: Price, Jeremy
– sequence: 8
  givenname: Na
  surname: Yin
  fullname: Yin, Na
– sequence: 9
  givenname: Jonathan
  surname: Bromberg
  fullname: Bromberg, Jonathan
– sequence: 10
  givenname: Sergio A.
  surname: Lira
  fullname: Lira, Sergio A.
– sequence: 11
  givenname: E. Richard
  surname: Stanley
  fullname: Stanley, E. Richard
– sequence: 12
  givenname: Michel
  surname: Nussenzweig
  fullname: Nussenzweig, Michel
– sequence: 13
  givenname: Miriam
  surname: Merad
  fullname: Merad, Miriam
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20008528$$D View this record in MEDLINE/PubMed
BookMark eNptkc1Lw0AQxRdRtFZvniU3D5o6-5VsEASpn1DwUs_LJpm1K0m2ZhPB_96UtqLiZeYwb95vmHdIdhvfICEnFCYUlLh8w3rCADKaymSHjKgUEGeSq10yAmAspgDpATkM4Q2ACiGTfXIw6EFJpkbkar7AyLfu1TWRacqoxA-s_LLGpou8jQZW9VkvF96VUedC6DGa3lLg59HtNByRPWuqgMebPiYv93fz6WM8e354mt7M4kKIrIspS5KcUpCWpsICM7awIufS8hI4MyxPLWQsVxYlYq5KZElaWA4cFC8ls3xMrte-yz6vsSyG21pT6WXratN-am-c_j1p3EK_-g_NFCRCpIPB2cag9e89hk7XLhRYVaZB3wedcs6VUkMdk9OfqG_G9mGDgK0FRetDaNHqwnWmc35FdpWmoFep6CEVvU1lWLr4s7T1_Vf-BcM1jSw
CitedBy_id crossref_primary_10_1016_j_immuni_2015_05_018
crossref_primary_10_1038_nm_3197
crossref_primary_10_1016_j_semcdb_2015_05_004
crossref_primary_10_3389_fimmu_2017_00447
crossref_primary_10_1038_s41423_020_0465_0
crossref_primary_10_1182_blood_2011_11_392894
crossref_primary_10_1038_nri3470
crossref_primary_10_1530_REP_10_0493
crossref_primary_10_1111_imcb_12028
crossref_primary_10_1126_sciimmunol_aal1713
crossref_primary_10_3389_fimmu_2018_03123
crossref_primary_10_1126_science_aag3009
crossref_primary_10_1128_IAI_00533_16
crossref_primary_10_1016_j_immuni_2012_07_019
crossref_primary_10_1002_eji_201444450
crossref_primary_10_1016_j_cell_2024_04_009
crossref_primary_10_1007_s12026_012_8269_7
crossref_primary_10_1038_mi_2014_70
crossref_primary_10_1038_ni_3052
crossref_primary_10_4049_jimmunol_1300342
crossref_primary_10_1128_IAI_00854_12
crossref_primary_10_1371_journal_pone_0052341
crossref_primary_10_4049_jimmunol_1300237
crossref_primary_10_2215_CJN_07100714
crossref_primary_10_1016_j_cytogfr_2020_03_003
crossref_primary_10_1186_s12860_019_0199_y
crossref_primary_10_1165_rcmb_2011_0070OC
crossref_primary_10_1038_s41385_018_0060_1
crossref_primary_10_3389_fimmu_2015_00035
crossref_primary_10_1371_journal_ppat_1003801
crossref_primary_10_3389_fimmu_2020_582658
crossref_primary_10_1016_j_jaci_2011_07_051
crossref_primary_10_1002_adhm_202401480
crossref_primary_10_1007_s00281_016_0602_0
crossref_primary_10_1016_j_celrep_2024_114296
crossref_primary_10_1038_s41392_021_00658_5
crossref_primary_10_1002_1873_3468_14982
crossref_primary_10_1186_s12974_023_02924_5
crossref_primary_10_3389_fimmu_2022_1041010
crossref_primary_10_1371_journal_ppat_1007154
crossref_primary_10_1016_j_coi_2011_11_005
crossref_primary_10_1016_j_imbio_2012_07_011
crossref_primary_10_1038_nri3007
crossref_primary_10_1128_IAI_00109_18
crossref_primary_10_1084_jem_20122508
crossref_primary_10_1182_blood_2012_06_437863
crossref_primary_10_1038_nri3254
crossref_primary_10_1016_j_vetmic_2016_09_007
crossref_primary_10_1016_j_semcdb_2014_04_020
crossref_primary_10_1146_annurev_immunol_101320_011829
crossref_primary_10_1016_j_immuni_2022_04_013
crossref_primary_10_1172_JCI70143
crossref_primary_10_4049_jimmunol_1002683
crossref_primary_10_3389_fcell_2021_635221
crossref_primary_10_1016_j_lfs_2023_122310
crossref_primary_10_1182_blood_2012_01_406967
crossref_primary_10_1242_dev_200162
crossref_primary_10_1038_jid_2011_164
crossref_primary_10_1038_s41590_024_01745_9
crossref_primary_10_1084_jem_20120340
crossref_primary_10_1182_blood_2012_07_445650
crossref_primary_10_1038_s41467_018_03600_6
crossref_primary_10_1111_imcb_12186
crossref_primary_10_1681_ASN_2013121336
crossref_primary_10_1002_eji_201847797
crossref_primary_10_1111_j_1530_0277_2010_01397_x
crossref_primary_10_1038_nri3150
crossref_primary_10_1084_jem_20101709
crossref_primary_10_1371_journal_pone_0088452
crossref_primary_10_1002_advs_202405490
crossref_primary_10_1038_nri3149
crossref_primary_10_1051_medsci_20112711022
crossref_primary_10_3389_fimmu_2018_00059
crossref_primary_10_1016_j_immuni_2014_04_016
crossref_primary_10_1084_jem_20110538
crossref_primary_10_11005_jbm_2023_30_2_127
crossref_primary_10_1038_mi_2017_22
crossref_primary_10_1073_pnas_1818907116
crossref_primary_10_4049_jimmunol_2100502
crossref_primary_10_3390_pathogens10091074
crossref_primary_10_1038_s41577_018_0002_x
crossref_primary_10_3389_fcell_2022_932472
crossref_primary_10_1126_scisignal_aaf3957
crossref_primary_10_1038_mi_2017_28
crossref_primary_10_4049_jimmunol_1001205
crossref_primary_10_1016_j_imbio_2010_05_013
crossref_primary_10_1080_2162402X_2019_1608106
crossref_primary_10_1042_CS20120576
crossref_primary_10_1038_nri3166
crossref_primary_10_1016_j_immuni_2015_06_017
crossref_primary_10_1016_j_semcdb_2014_02_001
crossref_primary_10_1111_j_1440_1797_2012_01581_x
crossref_primary_10_1016_j_imlet_2013_12_001
crossref_primary_10_1084_jem_20141442
crossref_primary_10_1007_s00281_016_0583_z
crossref_primary_10_1002_embj_201488027
crossref_primary_10_1016_j_bbi_2015_02_027
crossref_primary_10_1016_j_semcdb_2014_02_009
crossref_primary_10_1084_jem_20141441
crossref_primary_10_1371_journal_ppat_1007360
crossref_primary_10_4049_jimmunol_1601438
crossref_primary_10_4049_jimmunol_1900604
crossref_primary_10_1038_s41385_019_0173_1
crossref_primary_10_1002_glia_22889
crossref_primary_10_1111_pim_12566
crossref_primary_10_1038_s41598_017_05740_z
crossref_primary_10_4161_onci_22660
crossref_primary_10_1038_nri3046
crossref_primary_10_1111_ajt_13627
crossref_primary_10_3389_fimmu_2018_01046
crossref_primary_10_1080_2162402X_2015_1019198
crossref_primary_10_1182_blood_2010_12_326678
crossref_primary_10_1038_mi_2015_64
crossref_primary_10_1016_j_celrep_2015_07_040
crossref_primary_10_1038_s41586_020_2134_y
crossref_primary_10_1016_j_molmed_2010_04_006
crossref_primary_10_1016_j_mucimm_2023_02_004
crossref_primary_10_1111_pim_12458
crossref_primary_10_1128_jvi_00999_22
crossref_primary_10_1111_j_0105_2896_2009_00879_x
crossref_primary_10_1002_eji_201343740
crossref_primary_10_1186_s40425_018_0381_3
crossref_primary_10_2139_ssrn_4013911
crossref_primary_10_1038_emboj_2011_163
crossref_primary_10_1007_s00401_012_1018_0
crossref_primary_10_1084_jem_20110866
crossref_primary_10_3389_fimmu_2022_805420
crossref_primary_10_1016_j_immuni_2013_03_009
crossref_primary_10_3389_fimmu_2021_699128
crossref_primary_10_1016_j_cell_2010_09_039
crossref_primary_10_1038_mi_2012_106
crossref_primary_10_1146_annurev_immunol_020711_075021
crossref_primary_10_1038_icb_2015_16
crossref_primary_10_1084_jem_20160600
crossref_primary_10_1016_j_coi_2021_02_003
crossref_primary_10_1016_j_immuni_2013_03_004
crossref_primary_10_1002_eji_201847910
crossref_primary_10_1038_nri2778
crossref_primary_10_1038_jid_2011_437
crossref_primary_10_1016_j_ejphar_2017_08_016
crossref_primary_10_3389_fimmu_2018_00495
crossref_primary_10_1084_jem_20121003
crossref_primary_10_1111_j_1600_065X_2010_00949_x
crossref_primary_10_3389_fimmu_2019_02418
crossref_primary_10_1016_j_imbio_2018_09_006
crossref_primary_10_1016_j_immuni_2016_01_004
crossref_primary_10_1038_mt_2012_168
crossref_primary_10_4049_jimmunol_1600244
crossref_primary_10_1016_j_cell_2018_01_004
crossref_primary_10_1158_2326_6066_CIR_16_0060
crossref_primary_10_1007_s15007_015_0911_y
crossref_primary_10_1016_j_imbio_2014_10_025
crossref_primary_10_1084_jem_20120030
crossref_primary_10_1016_j_autrev_2013_09_010
crossref_primary_10_1038_ni_2467
crossref_primary_10_1096_fj_202400338RR
crossref_primary_10_1111_all_12871
crossref_primary_10_1161_ATVBAHA_116_304054
crossref_primary_10_3389_fimmu_2015_00435
crossref_primary_10_1016_j_cellimm_2014_08_006
crossref_primary_10_3389_fimmu_2018_02542
crossref_primary_10_1016_j_ymthe_2016_11_001
crossref_primary_10_3390_ijms23094885
crossref_primary_10_3390_cancers12010128
crossref_primary_10_1038_ni_3200
crossref_primary_10_1016_j_jhep_2017_01_008
crossref_primary_10_1084_jem_20171508
crossref_primary_10_1016_j_it_2011_06_003
crossref_primary_10_1096_fj_201900796R
crossref_primary_10_3389_fimmu_2022_897462
crossref_primary_10_4049_jimmunol_1601448
crossref_primary_10_1016_j_immuni_2016_02_024
crossref_primary_10_3389_fmicb_2016_00272
crossref_primary_10_4049_jimmunol_1402195
crossref_primary_10_1146_annurev_pathol_020712_163959
crossref_primary_10_1016_j_semcdb_2015_03_011
crossref_primary_10_1146_annurev_immunol_020711_075049
crossref_primary_10_1002_eji_201040562
crossref_primary_10_1016_j_biopha_2022_113875
crossref_primary_10_1016_j_cellimm_2018_04_009
crossref_primary_10_1126_sciimmunol_adc9081
crossref_primary_10_1016_j_fsi_2019_04_001
crossref_primary_10_1016_j_immuni_2010_09_012
crossref_primary_10_1007_s12026_014_8530_3
crossref_primary_10_1038_s41565_018_0271_3
crossref_primary_10_3389_fimmu_2023_1116675
crossref_primary_10_1016_j_celrep_2023_112881
crossref_primary_10_1016_j_immuni_2016_08_013
crossref_primary_10_1111_j_1365_2141_2011_08915_x
crossref_primary_10_3389_fimmu_2020_590893
crossref_primary_10_4049_jimmunol_2000405
crossref_primary_10_1038_icb_2012_79
crossref_primary_10_1038_icb_2012_73
crossref_primary_10_4049_jimmunol_1003920
crossref_primary_10_1002_eji_202250242
crossref_primary_10_1016_j_immuni_2014_05_020
crossref_primary_10_1093_ndt_gfy385
crossref_primary_10_1016_j_immuni_2012_10_016
crossref_primary_10_1155_2013_949513
crossref_primary_10_1126_sciimmunol_aai7677
crossref_primary_10_1038_ni_2370
crossref_primary_10_1111_1348_0421_12228
crossref_primary_10_1002_art_38410
crossref_primary_10_1016_j_metabol_2017_09_002
crossref_primary_10_1002_cpim_11
crossref_primary_10_1038_ni_3006
crossref_primary_10_1172_JCI62139
crossref_primary_10_1038_s41420_022_00953_2
crossref_primary_10_3389_fimmu_2018_00699
crossref_primary_10_1146_annurev_immunol_032713_120204
crossref_primary_10_1038_nri3671
crossref_primary_10_1189_jlb_1HI0714_351R
crossref_primary_10_1371_journal_pone_0105429
crossref_primary_10_1097_BOR_0000000000000887
crossref_primary_10_1152_ajpcell_00017_2013
crossref_primary_10_1038_ki_2015_292
crossref_primary_10_2217_imt_11_2
crossref_primary_10_3389_fimmu_2019_01529
crossref_primary_10_1016_j_immuni_2013_04_011
crossref_primary_10_1371_journal_pone_0025660
crossref_primary_10_1084_jem_20180660
crossref_primary_10_4110_in_2015_15_6_278
crossref_primary_10_1084_jem_20112675
crossref_primary_10_1136_jitc_2020_002054
crossref_primary_10_1002_eji_201040498
crossref_primary_10_1002_eji_201041224
crossref_primary_10_1371_journal_pone_0064193
crossref_primary_10_1016_j_semcdb_2017_12_009
crossref_primary_10_1016_j_intimp_2016_02_007
crossref_primary_10_3389_fendo_2021_666795
crossref_primary_10_1189_jlb_0312168
crossref_primary_10_4049_jimmunol_2000742
crossref_primary_10_1155_2015_351732
crossref_primary_10_1016_j_molimm_2018_04_016
crossref_primary_10_4049_jimmunol_1501870
crossref_primary_10_1016_j_molmed_2010_07_007
crossref_primary_10_1042_ETLS20170066
crossref_primary_10_7554_eLife_12414
crossref_primary_10_1016_j_biomaterials_2015_12_017
crossref_primary_10_1182_blood_2012_07_441311
crossref_primary_10_4049_jimmunol_2000835
crossref_primary_10_1016_j_immuni_2012_03_027
crossref_primary_10_1016_j_phrs_2016_02_023
crossref_primary_10_1007_s00018_016_2317_8
crossref_primary_10_3389_fimmu_2017_00108
crossref_primary_10_3390_cancers13071525
crossref_primary_10_3390_ijms21249508
crossref_primary_10_3389_fimmu_2015_00243
crossref_primary_10_1186_s12974_022_02609_5
crossref_primary_10_1016_j_immuni_2020_07_018
crossref_primary_10_1038_ni_3270
crossref_primary_10_1084_jem_20132121
crossref_primary_10_1016_j_annonc_2022_05_010
crossref_primary_10_1016_j_semnephrol_2010_03_002
crossref_primary_10_4049_jimmunol_1500889
crossref_primary_10_3389_fimmu_2019_01891
crossref_primary_10_1084_jem_20131397
crossref_primary_10_1016_j_vaccine_2013_03_022
crossref_primary_10_3389_fimmu_2015_00254
crossref_primary_10_1016_j_immuni_2013_04_006
crossref_primary_10_1016_j_immuni_2013_04_004
crossref_primary_10_1038_s41598_022_24126_4
crossref_primary_10_1371_journal_pone_0198608
crossref_primary_10_1016_j_jim_2015_02_013
crossref_primary_10_1165_rcmb_2010_0279OC
crossref_primary_10_1016_j_cytogfr_2010_05_002
crossref_primary_10_1111_imm_13143
crossref_primary_10_1016_j_celrep_2024_114847
crossref_primary_10_1002_eji_201040501
crossref_primary_10_1038_s41409_019_0733_8
crossref_primary_10_1038_s41556_020_0505_0
crossref_primary_10_3390_vaccines9111294
crossref_primary_10_3727_096368910X528094
crossref_primary_10_1016_j_immuni_2012_11_001
crossref_primary_10_1038_s41467_018_07685_x
crossref_primary_10_1002_hep_25795
crossref_primary_10_1016_j_immuni_2016_11_006
crossref_primary_10_1038_ni_2517
crossref_primary_10_1084_jem_20130903
crossref_primary_10_1016_j_immuni_2016_03_012
crossref_primary_10_1038_ki_2011_129
crossref_primary_10_3389_fimmu_2022_860915
crossref_primary_10_1038_nature11531
crossref_primary_10_4049_jimmunol_1103725
crossref_primary_10_1073_pnas_1115635109
crossref_primary_10_3390_cells8101291
crossref_primary_10_1111_imm_13497
crossref_primary_10_1002_eji_201040733
crossref_primary_10_1146_annurev_immunol_061020_053707
crossref_primary_10_3390_v10040146
crossref_primary_10_7554_eLife_54493
crossref_primary_10_1016_j_coi_2014_04_006
crossref_primary_10_3389_fimmu_2018_01619
crossref_primary_10_1016_j_coi_2014_04_004
crossref_primary_10_3389_fmicb_2015_00557
crossref_primary_10_1038_nn_3599
crossref_primary_10_1182_blood_2012_10_463448
crossref_primary_10_1371_journal_pone_0032067
crossref_primary_10_1002_eji_201243106
crossref_primary_10_1007_s10059_012_0058_6
crossref_primary_10_3389_fimmu_2016_00107
crossref_primary_10_1111_imm_13002
crossref_primary_10_1038_mi_2017_105
crossref_primary_10_1136_annrheumdis_2013_203371
crossref_primary_10_4049_jimmunol_1000824
crossref_primary_10_4049_jimmunol_1900363
crossref_primary_10_1016_j_immuni_2011_09_007
crossref_primary_10_1681_ASN_2015080873
crossref_primary_10_1016_j_clim_2023_109295
crossref_primary_10_1016_j_immuni_2011_09_014
crossref_primary_10_1016_j_cell_2018_12_036
crossref_primary_10_1016_j_celrep_2022_110949
crossref_primary_10_1073_pnas_1203941109
crossref_primary_10_1084_jem_20101459
crossref_primary_10_1111_imr_12167
crossref_primary_10_1371_journal_ppat_1003115
crossref_primary_10_1681_ASN_2019040419
crossref_primary_10_4049_jimmunol_1203541
crossref_primary_10_1016_j_smim_2023_101710
crossref_primary_10_1038_nrgastro_2015_200
crossref_primary_10_1371_journal_pone_0273075
crossref_primary_10_1053_j_ajkd_2016_10_027
crossref_primary_10_1111_imm_12145
crossref_primary_10_1189_jlb_1A0616_285R
crossref_primary_10_1189_jlb_0810472
crossref_primary_10_1016_j_vaccine_2015_05_012
crossref_primary_10_4049_jimmunol_1800322
crossref_primary_10_1371_journal_pone_0091126
crossref_primary_10_1016_j_imlet_2016_05_012
crossref_primary_10_1084_jem_20102657
crossref_primary_10_1084_jem_20150642
crossref_primary_10_4049_jimmunol_1601062
crossref_primary_10_4049_jimmunol_1401835
crossref_primary_10_1084_jem_20130930
crossref_primary_10_4049_jimmunol_1500322
crossref_primary_10_1182_blood_2011_03_344960
crossref_primary_10_1016_j_it_2014_06_006
crossref_primary_10_1152_ajplung_00319_2014
crossref_primary_10_1371_journal_pone_0141927
crossref_primary_10_1016_j_tube_2012_10_008
crossref_primary_10_1038_embor_2013_129
crossref_primary_10_1038_s41556_021_00636_7
crossref_primary_10_1016_j_mucimm_2022_12_002
crossref_primary_10_1016_j_molimm_2012_04_009
crossref_primary_10_1182_blood_2012_03_418400
crossref_primary_10_1002_eji_201344242
crossref_primary_10_1038_s41467_019_12319_x
crossref_primary_10_1073_pnas_2111234118
crossref_primary_10_1038_s41467_020_15937_y
crossref_primary_10_1084_jem_20101158
crossref_primary_10_1165_rcmb_2016_0058OC
crossref_primary_10_1371_journal_ppat_1004541
crossref_primary_10_1038_ni_2680
crossref_primary_10_1186_s13045_018_0637_x
crossref_primary_10_3390_ijms22158044
crossref_primary_10_1016_j_immuni_2012_04_012
crossref_primary_10_1007_s13238_017_0398_2
crossref_primary_10_1084_jem_20220867
crossref_primary_10_1038_mi_2011_47
crossref_primary_10_1038_s41467_020_19833_3
crossref_primary_10_1016_j_immuni_2015_09_006
crossref_primary_10_1016_j_jare_2025_02_036
crossref_primary_10_1038_nri_2016_36
crossref_primary_10_1002_eji_201344254
crossref_primary_10_1084_jem_20171784
crossref_primary_10_1016_j_mucimm_2024_08_003
crossref_primary_10_1038_ki_2011_458
crossref_primary_10_1111_imcb_12757
crossref_primary_10_1681_ASN_2015030229
crossref_primary_10_1038_ncomms11988
crossref_primary_10_1038_nri3712
crossref_primary_10_3389_fimmu_2022_841065
crossref_primary_10_1136_jitc_2024_010547
crossref_primary_10_1111_imm_13320
crossref_primary_10_1016_j_imlet_2022_12_002
crossref_primary_10_4110_in_2014_14_3_128
crossref_primary_10_3389_fimmu_2021_732612
crossref_primary_10_1002_eji_201545530
crossref_primary_10_4049_jimmunol_1101880
crossref_primary_10_1007_s11883_012_0274_8
crossref_primary_10_1007_s40629_015_0065_1
crossref_primary_10_1016_j_coi_2013_11_002
crossref_primary_10_3390_cancers11040521
crossref_primary_10_4049_jimmunol_1301939
crossref_primary_10_1016_j_it_2011_10_001
crossref_primary_10_1002_eji_202149513
crossref_primary_10_1016_j_immuni_2011_07_002
crossref_primary_10_1042_CS20170238
crossref_primary_10_1084_jem_20122037
crossref_primary_10_1111_imm_12228
crossref_primary_10_1172_JCI65260
crossref_primary_10_1016_j_celrep_2015_03_067
crossref_primary_10_1016_j_jim_2016_02_023
crossref_primary_10_1371_journal_ppat_1002345
crossref_primary_10_3389_fimmu_2015_00406
crossref_primary_10_3389_fimmu_2024_1397590
crossref_primary_10_1182_blood_2014_08_595298
crossref_primary_10_4161_hv_22487
crossref_primary_10_4049_jimmunol_1102613
crossref_primary_10_1016_j_immuni_2011_08_013
crossref_primary_10_1111_imr_13050
crossref_primary_10_1038_jid_2013_515
crossref_primary_10_1016_j_molimm_2020_04_019
crossref_primary_10_1182_blood_2013_12_545772
crossref_primary_10_1111_j_1365_2613_2010_00728_x
crossref_primary_10_3389_fimmu_2015_00535
crossref_primary_10_3389_fimmu_2015_00534
crossref_primary_10_1371_journal_pone_0062621
crossref_primary_10_3389_fimmu_2015_00533
crossref_primary_10_3390_biomedicines9030306
crossref_primary_10_1111_j_1365_2567_2011_03457_x
crossref_primary_10_4049_jimmunol_1500369
crossref_primary_10_1111_imm_13426
crossref_primary_10_1111_imr_12198
crossref_primary_10_1038_nrneph_2014_170
crossref_primary_10_1016_j_celrep_2023_112156
crossref_primary_10_1111_imr_12194
crossref_primary_10_1016_j_it_2013_06_001
crossref_primary_10_1038_s41467_024_49820_x
crossref_primary_10_1038_s43018_020_0075_x
crossref_primary_10_1038_nri3070
crossref_primary_10_1155_2016_2926436
crossref_primary_10_3389_fimmu_2023_1273661
crossref_primary_10_1007_s12026_012_8359_6
crossref_primary_10_1016_j_canlet_2018_04_010
crossref_primary_10_1002_adma_202005637
crossref_primary_10_1016_j_it_2010_08_006
crossref_primary_10_1016_j_molimm_2011_11_008
crossref_primary_10_1016_j_immuni_2022_06_006
crossref_primary_10_1038_nature11012
crossref_primary_10_4049_jimmunol_1004125
crossref_primary_10_1038_mi_2012_53
crossref_primary_10_3389_fimmu_2024_1434804
crossref_primary_10_1002_pbc_26104
crossref_primary_10_1016_j_tem_2016_08_007
crossref_primary_10_4049_jimmunol_1701056
crossref_primary_10_1002_eji_202149548
crossref_primary_10_1038_nri3087
crossref_primary_10_1136_jitc_2020_001204
crossref_primary_10_4049_jimmunol_1200220
crossref_primary_10_1111_cas_15044
crossref_primary_10_1111_febs_15436
crossref_primary_10_1038_mi_2017_8
crossref_primary_10_1007_s00430_020_00680_4
crossref_primary_10_1016_j_imbio_2012_06_010
crossref_primary_10_1073_pnas_1611408114
crossref_primary_10_1084_jem_20091844
crossref_primary_10_1016_j_jtos_2013_10_007
crossref_primary_10_1146_annurev_immunol_051116_052215
crossref_primary_10_1016_j_bbadis_2013_01_005
crossref_primary_10_1111_j_0105_2896_2009_00885_x
crossref_primary_10_1016_j_immuni_2014_09_012
crossref_primary_10_1016_j_celrep_2017_06_075
crossref_primary_10_1089_ars_2013_5673
crossref_primary_10_1080_21645515_2015_1066050
crossref_primary_10_1681_ASN_2017030270
crossref_primary_10_1146_annurev_immunol_090122_041105
crossref_primary_10_1111_imm_13758
crossref_primary_10_3109_02656736_2014_993339
crossref_primary_10_1007_s12026_012_8323_5
crossref_primary_10_1165_rcmb_2016_0361OC
crossref_primary_10_3389_fimmu_2017_00941
crossref_primary_10_1016_j_humimm_2020_07_006
crossref_primary_10_1016_j_smim_2011_01_001
crossref_primary_10_4049_jimmunol_1003010
crossref_primary_10_1038_srep29712
crossref_primary_10_1371_journal_pbio_3000859
crossref_primary_10_1016_j_regen_2018_03_003
crossref_primary_10_4161_jkst_25112
crossref_primary_10_1016_j_semcdb_2018_02_020
crossref_primary_10_1002_eji_202249819
crossref_primary_10_1038_s41581_020_0272_y
crossref_primary_10_1189_jlb_3RU0316_144R
crossref_primary_10_1016_j_smim_2011_08_009
crossref_primary_10_1016_j_trre_2015_04_001
crossref_primary_10_1371_journal_pone_0103404
crossref_primary_10_3390_cells10050968
crossref_primary_10_4049_jimmunol_1101717
crossref_primary_10_1002_eji_201141728
crossref_primary_10_4049_jimmunol_2000087
crossref_primary_10_1038_mi_2015_118
crossref_primary_10_1016_j_jphs_2023_03_003
crossref_primary_10_1586_14760584_2014_893196
crossref_primary_10_4049_jimmunol_1303243
crossref_primary_10_1084_jem_20091627
crossref_primary_10_1172_JCI87081
crossref_primary_10_1016_j_celrep_2013_04_007
crossref_primary_10_1002_ibd_21247
crossref_primary_10_1172_JCI124829
crossref_primary_10_1111_j_0105_2896_2009_00886_x
crossref_primary_10_3389_fimmu_2021_685559
crossref_primary_10_4049_jimmunol_1202798
crossref_primary_10_1182_blood_2012_02_410241
crossref_primary_10_1016_j_immuni_2015_04_017
crossref_primary_10_1089_jir_2015_0138
crossref_primary_10_3390_medsci6040088
crossref_primary_10_3390_ijms22147554
crossref_primary_10_1007_s40257_019_00452_8
crossref_primary_10_1172_JCI57582
crossref_primary_10_4049_jimmunol_1303138
crossref_primary_10_1111_j_1365_2567_2010_03396_x
crossref_primary_10_1146_annurev_animal_022114_111009
crossref_primary_10_1681_ASN_2011070680
crossref_primary_10_1172_JCI60644
crossref_primary_10_3390_ijms23137325
crossref_primary_10_1038_ncomms6283
crossref_primary_10_3389_fcimb_2021_617481
crossref_primary_10_3390_cells9030565
crossref_primary_10_4049_jimmunol_1402622
crossref_primary_10_1038_icb_2010_34
crossref_primary_10_1053_j_gastro_2016_08_024
crossref_primary_10_1111_imcb_12484
crossref_primary_10_1038_icb_2010_38
crossref_primary_10_1371_journal_ppat_1004812
crossref_primary_10_1016_j_celrep_2024_114490
crossref_primary_10_1182_blood_2011_04_345330
crossref_primary_10_1146_annurev_immunol_032712_095941
crossref_primary_10_1084_jem_20092618
crossref_primary_10_3390_cells6040048
crossref_primary_10_1016_j_coi_2013_10_011
crossref_primary_10_1016_j_immuni_2011_06_012
crossref_primary_10_1084_jem_20182037
crossref_primary_10_1007_s12026_015_8693_6
crossref_primary_10_1016_j_jim_2015_06_004
crossref_primary_10_1096_fj_201801489R
crossref_primary_10_1172_JCI60659
crossref_primary_10_1146_annurev_immunol_020711_074950
crossref_primary_10_1186_s12977_015_0204_2
crossref_primary_10_1016_j_coi_2014_11_001
crossref_primary_10_3389_fimmu_2020_536326
crossref_primary_10_4049_jimmunol_1701488
crossref_primary_10_1002_lt_24833
crossref_primary_10_1016_j_cell_2013_07_014
crossref_primary_10_1084_jem_20130728
crossref_primary_10_1007_s13238_011_1088_0
crossref_primary_10_1016_j_devcel_2015_07_015
crossref_primary_10_1016_j_bbmt_2014_08_005
crossref_primary_10_1016_j_atherosclerosis_2018_01_018
crossref_primary_10_3390_ijms25042450
crossref_primary_10_1016_j_vaccine_2017_06_041
crossref_primary_10_1016_j_it_2012_04_009
crossref_primary_10_1016_j_jnutbio_2018_08_017
crossref_primary_10_1172_JCI60660
crossref_primary_10_1189_jlb_0212052
crossref_primary_10_1126_sciimmunol_aaw1941
crossref_primary_10_1371_journal_ppat_1003934
crossref_primary_10_14814_phy2_13021
crossref_primary_10_1038_ni_2967
crossref_primary_10_1016_j_molimm_2020_02_021
crossref_primary_10_1084_jem_20150567
crossref_primary_10_1155_2016_3104727
crossref_primary_10_3390_jof8080792
crossref_primary_10_3390_vaccines12090981
crossref_primary_10_1007_s12539_021_00445_4
crossref_primary_10_1016_j_cellimm_2018_01_019
Cites_doi 10.1002/eji.1830111013
10.4049/jimmunol.176.4.2161
10.1084/jem.20040662
10.1128/MCB.20.11.4106-4114.2000
10.1038/ni1522
10.1084/jem.20030323
10.1146/annurev.immunol.18.1.767
10.1016/j.immuni.2009.08.010
10.1016/j.jaci.2004.08.046
10.1084/jem.20071365
10.1182/blood-2009-02-206318
10.1084/jem.20071724
10.1182/blood-2002-04-1088
10.1073/pnas.261562798
10.1016/j.immuni.2005.04.004
10.1126/science.1164206
10.1126/science.1117729
10.1182/blood.V95.11.3489
10.1084/jem.20071733
10.1084/jem.20061011
10.1182/blood-2007-07-100750
10.1038/nri746
10.4049/jimmunol.180.5.3019
10.1242/jcs.104.4.1021
10.1016/1074-7613(95)90167-1
10.1111/j.0105-2896.2004.00142.x
10.1016/j.tcb.2004.09.016
10.1016/j.cytogfr.2007.06.008
10.1084/jem.194.6.733
10.1038/ni1307
10.1126/science.1170540
10.1084/jem.20042170
10.1084/jem.20071966
10.1126/science.1136080
10.1038/17812
10.1046/j.1600-6143.2003.00215.x
10.1189/jlb.0903442
10.1038/ni.1724
10.1073/pnas.0807126106
10.1038/ni.1615
10.1038/ni1518
10.4049/jimmunol.175.12.7781
10.4049/jimmunol.178.4.2000
10.1038/ni1462
10.1038/nri2455
10.1038/ni903
10.1196/annals.1392.015
10.1038/372190a0
10.1182/blood.V99.1.111
10.4049/jimmunol.176.7.4155
10.1016/S1074-7613(03)00174-2
ContentType Journal Article
Copyright 2009 Ginhoux et al. 2009
Copyright_xml – notice: 2009 Ginhoux et al. 2009
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1084/jem.20091756
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Origin and development of CD103+ DCs
EISSN 1540-9538
EndPage 3130
ExternalDocumentID PMC2806447
20008528
10_1084_jem_20091756
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA026504
– fundername: NCI NIH HHS
  grantid: CA26504
– fundername: Howard Hughes Medical Institute
– fundername: NCI NIH HHS
  grantid: CA086899
– fundername: NCI NIH HHS
  grantid: CA32551
– fundername: NCI NIH HHS
  grantid: CA112100
– fundername: NCI NIH HHS
  grantid: R01 CA032551
– fundername: NCI NIH HHS
  grantid: R01 CA112100
– fundername: NCI NIH HHS
  grantid: R37 CA026504
GroupedDBID ---
-~X
0VX
18M
29K
2WC
36B
4.4
53G
5GY
5RE
5VS
AAYXX
ABOCM
ABZEH
ACGFO
ACNCT
ACPRK
ADBBV
AENEX
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C45
CITATION
CS3
D-I
DIK
DU5
E3Z
EBS
EJD
EMB
EMOBN
F5P
F9R
GX1
H13
HYE
H~9
IH2
K-O
KQ8
L7B
MK0
N9A
O5R
O5S
OHT
OK1
P2P
P6G
R.V
RHI
SJN
SV3
TR2
TRP
UHB
W8F
WOQ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c449t-1266b1105f174f02afcf4b35f3d032a2b7f092b8fe5eeb8de267cf303083d52f3
ISSN 0022-1007
1540-9538
IngestDate Thu Aug 21 13:58:09 EDT 2025
Fri Jul 11 03:37:24 EDT 2025
Mon Jul 21 05:37:32 EDT 2025
Tue Jul 01 03:30:32 EDT 2025
Thu Apr 24 22:59:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.jem.org/misc/terms.shtml). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c449t-1266b1105f174f02afcf4b35f3d032a2b7f092b8fe5eeb8de267cf303083d52f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
F. Ginhoux and K. Liu contributed equally to this paper.
M. Nussenzweig and M. Merad contributed equally to this paper.
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC2806447
PMID 20008528
PQID 733388833
PQPubID 23479
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2806447
proquest_miscellaneous_733388833
pubmed_primary_20008528
crossref_citationtrail_10_1084_jem_20091756
crossref_primary_10_1084_jem_20091756
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-12-21
PublicationDateYYYYMMDD 2009-12-21
PublicationDate_xml – month: 12
  year: 2009
  text: 2009-12-21
  day: 21
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of experimental medicine
PublicationTitleAlternate J Exp Med
PublicationYear 2009
Publisher The Rockefeller University Press
Publisher_xml – name: The Rockefeller University Press
References McKenna (2023072922515976100_bib32) 2000; 95
GeurtsvanKessel (2023072922515976100_bib17) 2008; 205
Austyn (2023072922515976100_bib3) 1981; 11
Aliberti (2023072922515976100_bib1) 2003; 101
Mackarehtschian (2023072922515976100_bib31) 1995; 3
Bedoui (2023072922515976100_bib5) 2009; 10
Naik (2023072922515976100_bib35) 2007; 8
Witmer-Pack (2023072922515976100_bib48) 1993; 104
Burnett (2023072922515976100_bib7) 2004; 75
Karsunky (2023072922515976100_bib25) 2003; 198
Yrlid (2023072922515976100_bib50) 2006; 176
Hacker (2023072922515976100_bib20) 2003; 4
Merad (2023072922515976100_bib33) 2008; 8
Nagao (2023072922515976100_bib34) 2009; 106
Tailor (2023072922515976100_bib42) 2008; 111
Ginhoux (2023072922515976100_bib19) 2007; 204
Varol (2023072922515976100_bib45) 2007; 204
Annacker (2023072922515976100_bib2) 2005; 202
Sung (2023072922515976100_bib41) 2006; 176
Christensen (2023072922515976100_bib10) 2001; 98
Fogg (2023072922515976100_bib14) 2006; 311
Onai (2023072922515976100_bib37) 2007; 8
Kingston (2023072922515976100_bib26) 2009; 114
Geissmann (2023072922515976100_bib16) 2003; 19
van Beek (2023072922515976100_bib44) 2005; 175
Landsman (2023072922515976100_bib28) 2007; 178
Shortman (2023072922515976100_bib40) 2002; 2
Ginhoux (2023072922515976100_bib18) 2006; 7
Dai (2023072922515976100_bib11) 2002; 99
Walzer (2023072922515976100_bib46) 2005; 115
Kissenpfennig (2023072922515976100_bib27) 2005; 22
Jung (2023072922515976100_bib24) 2000; 20
Poulin (2023072922515976100_bib39) 2007; 204
Yokota (2023072922515976100_bib49) 1999; 397
Cepek (2023072922515976100_bib9) 1994; 372
Heath (2023072922515976100_bib21) 2004; 199
Onai (2023072922515976100_bib36) 2007; 1106
Bursch (2023072922515976100_bib8) 2007; 204
Banchereau (2023072922515976100_bib4) 2000; 18
Hildner (2023072922515976100_bib22) 2008; 322
Engel (2023072922515976100_bib13) 2001; 194
Pixley (2023072922515976100_bib38) 2004; 14
Waskow (2023072922515976100_bib47) 2008; 9
Jakubzick (2023072922515976100_bib23) 2008; 180
Liu (2023072922515976100_bib29) 2007; 8
Bogunovic (2023072922515976100_bib6) 2009; 31
Zhang (2023072922515976100_bib51) 2003; 3
Gabriele (2023072922515976100_bib15) 2007; 18
Dudziak (2023072922515976100_bib12) 2007; 315
Turcotte (2023072922515976100_bib43) 2005; 201
Liu (2023072922515976100_bib30) 2009; 324
11560990 - J Exp Med. 2001 Sep 17;194(6):733-45
19286519 - Science. 2009 Apr 17;324(5925):392-7
17922015 - Nat Immunol. 2007 Nov;8(11):1217-26
10067894 - Nature. 1999 Feb 25;397(6721):702-6
19029989 - Nat Rev Immunol. 2008 Dec;8(12):935-47
19465690 - Blood. 2009 Jul 23;114(4):835-43
18086861 - J Exp Med. 2007 Dec 24;204(13):3119-31
7308288 - Eur J Immunol. 1981 Oct;11(10):805-15
18086862 - J Exp Med. 2007 Dec 24;204(13):3133-46
10805752 - Mol Cell Biol. 2000 Jun;20(11):4106-14
16339510 - J Immunol. 2005 Dec 15;175(12):7781-7
18591406 - J Exp Med. 2008 Jul 7;205(7):1621-34
11724967 - Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14541-6
12598895 - Nat Immunol. 2003 Apr;4(4):380-6
15781580 - J Exp Med. 2005 Mar 21;201(6):881-90
16322423 - Science. 2006 Jan 6;311(5757):83-7
11913066 - Nat Rev Immunol. 2002 Mar;2(3):151-61
7969453 - Nature. 1994 Nov 10;372(6502):190-3
15233723 - Immunol Rev. 2004 Jun;199:9-26
19218433 - Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3312-7
8314887 - J Cell Sci. 1993 Apr;104 ( Pt 4):1021-9
16547252 - J Immunol. 2006 Apr 1;176(7):4155-62
17204652 - Science. 2007 Jan 5;315(5808):107-11
18292524 - J Immunol. 2008 Mar 1;180(5):3019-27
15894281 - Immunity. 2005 May;22(5):643-54
15519852 - Trends Cell Biol. 2004 Nov;14(11):628-38
18086865 - J Exp Med. 2007 Dec 24;204(13):3147-56
14726498 - J Leukoc Biol. 2004 Apr;75(4):612-23
7621074 - Immunity. 1995 Jul;3(1):147-61
15637568 - J Allergy Clin Immunol. 2005 Jan;115(1):192-9
12871640 - Immunity. 2003 Jul;19(1):71-82
14510696 - Am J Transplant. 2003 Oct;3(10):1230-41
12874263 - J Exp Med. 2003 Jul 21;198(2):305-13
19733489 - Immunity. 2009 Sep 18;31(3):513-25
17450143 - Nat Immunol. 2007 Jun;8(6):578-83
18055870 - Blood. 2008 Feb 15;111(4):1942-5
10828034 - Blood. 2000 Jun 1;95(11):3489-97
17190836 - J Exp Med. 2007 Jan 22;204(1):171-80
10837075 - Annu Rev Immunol. 2000;18:767-811
17922016 - Nat Immunol. 2007 Nov;8(11):1207-16
18469816 - Nat Immunol. 2008 Jun;9(6):676-83
19008445 - Science. 2008 Nov 14;322(5904):1097-100
16216886 - J Exp Med. 2005 Oct 17;202(8):1051-61
16444257 - Nat Immunol. 2006 Mar;7(3):265-73
19349986 - Nat Immunol. 2009 May;10(5):488-95
17360795 - Ann N Y Acad Sci. 2007 Jun;1106:253-61
12393690 - Blood. 2003 Jan 1;101(1):305-10
11756160 - Blood. 2002 Jan 1;99(1):111-20
17277103 - J Immunol. 2007 Feb 15;178(4):2000-7
17702640 - Cytokine Growth Factor Rev. 2007 Oct-Dec;18(5-6):503-10
16455972 - J Immunol. 2006 Feb 15;176(4):2161-72
References_xml – volume: 11
  start-page: 805
  year: 1981
  ident: 2023072922515976100_bib3
  article-title: F4/80, a monoclonal antibody directed specifically against the mouse macrophage
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.1830111013
– volume: 176
  start-page: 2161
  year: 2006
  ident: 2023072922515976100_bib41
  article-title: A major lung CD103 (alphaE)-beta7 integrin-positive epithelial dendritic cell population expressing Langerin and tight junction proteins
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.176.4.2161
– volume: 202
  start-page: 1051
  year: 2005
  ident: 2023072922515976100_bib2
  article-title: Essential role for CD103 in the T cell–mediated regulation of experimental colitis
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20040662
– volume: 20
  start-page: 4106
  year: 2000
  ident: 2023072922515976100_bib24
  article-title: Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.20.11.4106-4114.2000
– volume: 8
  start-page: 1217
  year: 2007
  ident: 2023072922515976100_bib35
  article-title: Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1522
– volume: 198
  start-page: 305
  year: 2003
  ident: 2023072922515976100_bib25
  article-title: Flt3 ligand regulates dendritic cell development from Flt3+ lymphoid and myeloid-committed progenitors to Flt3+ dendritic cells in vivo
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20030323
– volume: 18
  start-page: 767
  year: 2000
  ident: 2023072922515976100_bib4
  article-title: Immunobiology of dendritic cells
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev.immunol.18.1.767
– volume: 31
  start-page: 513
  year: 2009
  ident: 2023072922515976100_bib6
  article-title: Origin of the lamina propria dendritic cell network
  publication-title: Immunity.
  doi: 10.1016/j.immuni.2009.08.010
– volume: 115
  start-page: 192
  year: 2005
  ident: 2023072922515976100_bib46
  article-title: No defect in T-cell priming, secondary response, or tolerance induction in response to inhaled antigens in Fms-like tyrosine kinase 3 ligand-deficient mice
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2004.08.046
– volume: 205
  start-page: 1621
  year: 2008
  ident: 2023072922515976100_bib17
  article-title: Clearance of influenza virus from the lung depends on migratory langerin+CD11b− but not plasmacytoid dendritic cells
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20071365
– volume: 114
  start-page: 835
  year: 2009
  ident: 2023072922515976100_bib26
  article-title: The concerted action of GM-CSF and Flt3-ligand on in vivo dendritic cell homeostasis
  publication-title: Blood.
  doi: 10.1182/blood-2009-02-206318
– volume: 204
  start-page: 3119
  year: 2007
  ident: 2023072922515976100_bib39
  article-title: The dermis contains langerin+ dendritic cells that develop and function independently of epidermal Langerhans cells
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20071724
– volume: 101
  start-page: 305
  year: 2003
  ident: 2023072922515976100_bib1
  article-title: Essential role for ICSBP in the in vivo development of murine CD8alpha + dendritic cells
  publication-title: Blood.
  doi: 10.1182/blood-2002-04-1088
– volume: 98
  start-page: 14541
  year: 2001
  ident: 2023072922515976100_bib10
  article-title: Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.261562798
– volume: 22
  start-page: 643
  year: 2005
  ident: 2023072922515976100_bib27
  article-title: Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells
  publication-title: Immunity.
  doi: 10.1016/j.immuni.2005.04.004
– volume: 322
  start-page: 1097
  year: 2008
  ident: 2023072922515976100_bib22
  article-title: Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity
  publication-title: Science.
  doi: 10.1126/science.1164206
– volume: 311
  start-page: 83
  year: 2006
  ident: 2023072922515976100_bib14
  article-title: A clonogenic bone marrow progenitor specific for macrophages and dendritic cells
  publication-title: Science.
  doi: 10.1126/science.1117729
– volume: 95
  start-page: 3489
  year: 2000
  ident: 2023072922515976100_bib32
  article-title: Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells
  publication-title: Blood.
  doi: 10.1182/blood.V95.11.3489
– volume: 204
  start-page: 3133
  year: 2007
  ident: 2023072922515976100_bib19
  article-title: Blood-derived dermal langerin+ dendritic cells survey the skin in the steady state
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20071733
– volume: 204
  start-page: 171
  year: 2007
  ident: 2023072922515976100_bib45
  article-title: Monocytes give rise to mucosal, but not splenic, conventional dendritic cells
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20061011
– volume: 111
  start-page: 1942
  year: 2008
  ident: 2023072922515976100_bib42
  article-title: The BXH2 mutation in IRF8 differentially impairs dendritic cell subset development in the mouse
  publication-title: Blood.
  doi: 10.1182/blood-2007-07-100750
– volume: 2
  start-page: 151
  year: 2002
  ident: 2023072922515976100_bib40
  article-title: Mouse and human dendritic cell subtypes
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri746
– volume: 180
  start-page: 3019
  year: 2008
  ident: 2023072922515976100_bib23
  article-title: Blood monocyte subsets differentially give rise to CD103+ and CD103- pulmonary dendritic cell populations
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.180.5.3019
– volume: 104
  start-page: 1021
  year: 1993
  ident: 2023072922515976100_bib48
  article-title: Identification of macrophages and dendritic cells in the osteopetrotic (op/op) mouse
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.104.4.1021
– volume: 3
  start-page: 147
  year: 1995
  ident: 2023072922515976100_bib31
  article-title: Targeted disruption of the flk2/flt3 gene leads to deficiencies in primitive hematopoietic progenitors
  publication-title: Immunity.
  doi: 10.1016/1074-7613(95)90167-1
– volume: 199
  start-page: 9
  year: 2004
  ident: 2023072922515976100_bib21
  article-title: Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens
  publication-title: Immunol. Rev.
  doi: 10.1111/j.0105-2896.2004.00142.x
– volume: 14
  start-page: 628
  year: 2004
  ident: 2023072922515976100_bib38
  article-title: CSF-1 regulation of the wandering macrophage: complexity in action
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2004.09.016
– volume: 18
  start-page: 503
  year: 2007
  ident: 2023072922515976100_bib15
  article-title: The role of the interferon regulatory factor (IRF) family in dendritic cell development and function
  publication-title: Cytokine Growth Factor Rev.
  doi: 10.1016/j.cytogfr.2007.06.008
– volume: 194
  start-page: 733
  year: 2001
  ident: 2023072922515976100_bib13
  article-title: Early thymocyte development is regulated by modulation of E2A protein activity
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.194.6.733
– volume: 7
  start-page: 265
  year: 2006
  ident: 2023072922515976100_bib18
  article-title: Langerhans cells arise from monocytes in vivo
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1307
– volume: 324
  start-page: 392
  year: 2009
  ident: 2023072922515976100_bib30
  article-title: In vivo analysis of dendritic cell development and homeostasis
  publication-title: Science.
  doi: 10.1126/science.1170540
– volume: 201
  start-page: 881
  year: 2005
  ident: 2023072922515976100_bib43
  article-title: A mutation in the Icsbp1 gene causes susceptibility to infection and a chronic myeloid leukemia–like syndrome in BXH-2 mice
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20042170
– volume: 204
  start-page: 3147
  year: 2007
  ident: 2023072922515976100_bib8
  article-title: Identification of a novel population of Langerin+ dendritic cells
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20071966
– volume: 315
  start-page: 107
  year: 2007
  ident: 2023072922515976100_bib12
  article-title: Differential antigen processing by dendritic cell subsets in vivo
  publication-title: Science.
  doi: 10.1126/science.1136080
– volume: 397
  start-page: 702
  year: 1999
  ident: 2023072922515976100_bib49
  article-title: Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2
  publication-title: Nature.
  doi: 10.1038/17812
– volume: 3
  start-page: 1230
  year: 2003
  ident: 2023072922515976100_bib51
  article-title: Adenovirus transduction induces expression of multiple chemokines and chemokine receptors in murine beta cells and pancreatic islets
  publication-title: Am. J. Transplant.
  doi: 10.1046/j.1600-6143.2003.00215.x
– volume: 75
  start-page: 612
  year: 2004
  ident: 2023072922515976100_bib7
  article-title: Conditional macrophage ablation in transgenic mice expressing a Fas-based suicide gene
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.0903442
– volume: 10
  start-page: 488
  year: 2009
  ident: 2023072922515976100_bib5
  article-title: Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1724
– volume: 106
  start-page: 3312
  year: 2009
  ident: 2023072922515976100_bib34
  article-title: Murine epidermal Langerhans cells and langerin-expressing dermal dendritic cells are unrelated and exhibit distinct functions
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.0807126106
– volume: 9
  start-page: 676
  year: 2008
  ident: 2023072922515976100_bib47
  article-title: The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1615
– volume: 8
  start-page: 1207
  year: 2007
  ident: 2023072922515976100_bib37
  article-title: Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1518
– volume: 175
  start-page: 7781
  year: 2005
  ident: 2023072922515976100_bib44
  article-title: Signal regulatory proteins in the immune system
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.175.12.7781
– volume: 178
  start-page: 2000
  year: 2007
  ident: 2023072922515976100_bib28
  article-title: Distinct differentiation potential of blood monocyte subsets in the lung
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.178.4.2000
– volume: 8
  start-page: 578
  year: 2007
  ident: 2023072922515976100_bib29
  article-title: Origin of dendritic cells in peripheral lymphoid organs of mice
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1462
– volume: 8
  start-page: 935
  year: 2008
  ident: 2023072922515976100_bib33
  article-title: Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2455
– volume: 4
  start-page: 380
  year: 2003
  ident: 2023072922515976100_bib20
  article-title: Transcriptional profiling identifies Id2 function in dendritic cell development
  publication-title: Nat. Immunol.
  doi: 10.1038/ni903
– volume: 1106
  start-page: 253
  year: 2007
  ident: 2023072922515976100_bib36
  article-title: Flt3 in regulation of type I interferon-producing cell and dendritic cell development
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1196/annals.1392.015
– volume: 372
  start-page: 190
  year: 1994
  ident: 2023072922515976100_bib9
  article-title: Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the alpha E beta 7 integrin
  publication-title: Nature.
  doi: 10.1038/372190a0
– volume: 99
  start-page: 111
  year: 2002
  ident: 2023072922515976100_bib11
  article-title: Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects
  publication-title: Blood.
  doi: 10.1182/blood.V99.1.111
– volume: 176
  start-page: 4155
  year: 2006
  ident: 2023072922515976100_bib50
  article-title: Relationships between distinct blood monocyte subsets and migrating intestinal lymph dendritic cells in vivo under steady-state conditions
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.176.7.4155
– volume: 19
  start-page: 71
  year: 2003
  ident: 2023072922515976100_bib16
  article-title: Blood monocytes consist of two principal subsets with distinct migratory properties
  publication-title: Immunity.
  doi: 10.1016/S1074-7613(03)00174-2
– reference: 11756160 - Blood. 2002 Jan 1;99(1):111-20
– reference: 16216886 - J Exp Med. 2005 Oct 17;202(8):1051-61
– reference: 11724967 - Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14541-6
– reference: 19733489 - Immunity. 2009 Sep 18;31(3):513-25
– reference: 11913066 - Nat Rev Immunol. 2002 Mar;2(3):151-61
– reference: 12871640 - Immunity. 2003 Jul;19(1):71-82
– reference: 18292524 - J Immunol. 2008 Mar 1;180(5):3019-27
– reference: 11560990 - J Exp Med. 2001 Sep 17;194(6):733-45
– reference: 17922016 - Nat Immunol. 2007 Nov;8(11):1207-16
– reference: 16322423 - Science. 2006 Jan 6;311(5757):83-7
– reference: 14726498 - J Leukoc Biol. 2004 Apr;75(4):612-23
– reference: 19286519 - Science. 2009 Apr 17;324(5925):392-7
– reference: 15894281 - Immunity. 2005 May;22(5):643-54
– reference: 19349986 - Nat Immunol. 2009 May;10(5):488-95
– reference: 17702640 - Cytokine Growth Factor Rev. 2007 Oct-Dec;18(5-6):503-10
– reference: 18055870 - Blood. 2008 Feb 15;111(4):1942-5
– reference: 17204652 - Science. 2007 Jan 5;315(5808):107-11
– reference: 18591406 - J Exp Med. 2008 Jul 7;205(7):1621-34
– reference: 18086862 - J Exp Med. 2007 Dec 24;204(13):3133-46
– reference: 15637568 - J Allergy Clin Immunol. 2005 Jan;115(1):192-9
– reference: 10828034 - Blood. 2000 Jun 1;95(11):3489-97
– reference: 18086865 - J Exp Med. 2007 Dec 24;204(13):3147-56
– reference: 17360795 - Ann N Y Acad Sci. 2007 Jun;1106:253-61
– reference: 15781580 - J Exp Med. 2005 Mar 21;201(6):881-90
– reference: 18086861 - J Exp Med. 2007 Dec 24;204(13):3119-31
– reference: 10805752 - Mol Cell Biol. 2000 Jun;20(11):4106-14
– reference: 12393690 - Blood. 2003 Jan 1;101(1):305-10
– reference: 17277103 - J Immunol. 2007 Feb 15;178(4):2000-7
– reference: 16444257 - Nat Immunol. 2006 Mar;7(3):265-73
– reference: 7308288 - Eur J Immunol. 1981 Oct;11(10):805-15
– reference: 16455972 - J Immunol. 2006 Feb 15;176(4):2161-72
– reference: 15233723 - Immunol Rev. 2004 Jun;199:9-26
– reference: 15519852 - Trends Cell Biol. 2004 Nov;14(11):628-38
– reference: 17190836 - J Exp Med. 2007 Jan 22;204(1):171-80
– reference: 19218433 - Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3312-7
– reference: 10837075 - Annu Rev Immunol. 2000;18:767-811
– reference: 19465690 - Blood. 2009 Jul 23;114(4):835-43
– reference: 16547252 - J Immunol. 2006 Apr 1;176(7):4155-62
– reference: 7969453 - Nature. 1994 Nov 10;372(6502):190-3
– reference: 12874263 - J Exp Med. 2003 Jul 21;198(2):305-13
– reference: 12598895 - Nat Immunol. 2003 Apr;4(4):380-6
– reference: 17450143 - Nat Immunol. 2007 Jun;8(6):578-83
– reference: 7621074 - Immunity. 1995 Jul;3(1):147-61
– reference: 14510696 - Am J Transplant. 2003 Oct;3(10):1230-41
– reference: 19008445 - Science. 2008 Nov 14;322(5904):1097-100
– reference: 17922015 - Nat Immunol. 2007 Nov;8(11):1217-26
– reference: 16339510 - J Immunol. 2005 Dec 15;175(12):7781-7
– reference: 8314887 - J Cell Sci. 1993 Apr;104 ( Pt 4):1021-9
– reference: 10067894 - Nature. 1999 Feb 25;397(6721):702-6
– reference: 18469816 - Nat Immunol. 2008 Jun;9(6):676-83
– reference: 19029989 - Nat Rev Immunol. 2008 Dec;8(12):935-47
SSID ssj0014456
Score 2.527758
Snippet CD103+ dendritic cells (DCs) in nonlymphoid tissues are specialized in the cross-presentation of cell-associated antigens. However, little is known about the...
CD103(+) dendritic cells (DCs) in nonlymphoid tissues are specialized in the cross-presentation of cell-associated antigens. However, little is known about the...
CD103 + dendritic cells (DCs) in nonlymphoid tissues are specialized in the cross-presentation of cell-associated antigens. However, little is known about the...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3115
SubjectTerms Animals
Antigens, CD - analysis
CD11b Antigen - analysis
CD8 Antigens - analysis
Cell Differentiation
Dendritic Cells - cytology
Dendritic Cells - immunology
Dendritic Cells - physiology
fms-Like Tyrosine Kinase 3 - analysis
fms-Like Tyrosine Kinase 3 - physiology
Homeostasis
Inhibitor of Differentiation Protein 2 - physiology
Integrin alpha Chains - analysis
Interferon Regulatory Factors - physiology
Male
Mice
Mice, Inbred C57BL
Receptor, Macrophage Colony-Stimulating Factor - analysis
Receptor, Macrophage Colony-Stimulating Factor - physiology
Stem Cells - physiology
Title The origin and development of nonlymphoid tissue CD103+ DCs
URI https://www.ncbi.nlm.nih.gov/pubmed/20008528
https://www.proquest.com/docview/733388833
https://pubmed.ncbi.nlm.nih.gov/PMC2806447
Volume 206
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZaKqFeqpbSdulDPsApWvDazmPVU7sUECqcQNpbFDt2WWlJUEkO5dd3_EjiUJDaXqIocWxpvtF4Jp75BqFd2NGFUuC5zZQmUy4h3IEwSE0lo2qmVTFTlmf27Dw5ueSny3g5tLey1SWN2Jd3D9aV_A-q8AxwNVWy_4BsPyk8gHvAF66AMFz_GmPX2cqeAZRDApDNz6ir9S8Aq16VUWPlGy0OZ4Tt0a_R4eI2dEuHAjHrmo5o_--fvh-vqqu6tXvWEQT7QeLM91XrEjT8bmh_sa6dmTd12MMBfv2jrWqwUS5xHza-YvT3wbZOcCXN-8pbTE7MGXAWmlRKklB3WGAhDbvPg6abZNyYbmXpASCIdHzjAYo31xZGat1EX1E-psruXj1FzyhEDbb2e9ln_EDoGCe-9gEWOwiXMpzQ_uOxg_JH1HE_eTbwRi5eohceK_zF6cQr9ERVW2jzzEP1Gn0GRLFTDQyqgQPVwLXGgWpgpxrYqkaEQTG20eXRt4vFydT3yZhKzucNQJIkAty4WEN4qQkttNRcsFizkjBaUJFqMqci0ypWSmSlokkqNTNMRayMqWZv0Aasq94hzEiZghS4zIRhjpRzWpjiZZlB1Jnogk1Q1Aknl55E3vQyWec2mSHjOUg176Q6QXv96BtHnvLIONzJOQfrZo6sikrV7W2eMsYy0w97gt46sfcTdXhNUDoCpB9giNPHb6rVlSVQN9kEnKc7j875Hj0flP0D2mh-tuojOJ-N-GRV6jc2ooK6
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+origin+and+development+of+nonlymphoid+tissue+CD103%2B+DCs&rft.jtitle=The+Journal+of+experimental+medicine&rft.au=Ginhoux%2C+Florent&rft.au=Liu%2C+Kang&rft.au=Helft%2C+Julie&rft.au=Bogunovic%2C+Milena&rft.date=2009-12-21&rft.eissn=1540-9538&rft.volume=206&rft.issue=13&rft.spage=3115&rft_id=info:doi/10.1084%2Fjem.20091756&rft_id=info%3Apmid%2F20008528&rft.externalDocID=20008528
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1007&client=summon