Association of biological age with health outcomes and its modifiable factors
Identifying the clinical implications and modifiable and unmodifiable factors of aging requires the measurement of biological age (BA) and age gap. Leveraging the biomedical traits involved with physical measures, biochemical assays, genomic data, and cognitive functions from the healthy participant...
Saved in:
Published in | Aging cell Vol. 22; no. 12; pp. e13995 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley & Sons, Inc
01.12.2023
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Identifying the clinical implications and modifiable and unmodifiable factors of aging requires the measurement of biological age (BA) and age gap. Leveraging the biomedical traits involved with physical measures, biochemical assays, genomic data, and cognitive functions from the healthy participants in the UK Biobank, we establish an integrative BA model consisting of multi‐dimensional indicators. Accelerated aging (age gap >3.2 years) at baseline is associated incident circulatory diseases, related chronic disorders, all‐cause, and cause‐specific mortality. We identify 35 modifiable factors for age gap (p < 4.81 × 10−4), where pulmonary functions, body mass, hand grip strength, basal metabolic rate, estimated glomerular filtration rate, and C‐reactive protein show the most significant associations. Genetic analyses replicate the possible associations between age gap and health‐related outcomes and further identify CST3 as an essential gene for biological aging, which is highly expressed in the brain and is associated with immune and metabolic traits. Our study profiles the landscape of biological aging and provides insights into the preventive strategies and therapeutic targets for aging.
The study included 59,316 healthy participants in the UK Biobank and considered 8276 phenotypes for developing biological age model. LightGBM algorithm was conducted to identify the most important predictors for biological age and build the model and the top 20 predictors were selected. We tested the longitudinal associations of age gap with 70 common health‐related outcomes, all‐cause mortality and cause‐specific mortality, and the genetic correlations of age gap with common health‐related outcomes. We identified 34 modifiable factors and 9 genomic risk loci for age gap and profiled the pleiotropy of rs3761280 in the UK Biobank. |
---|---|
AbstractList | Identifying the clinical implications and modifiable and unmodifiable factors of aging requires the measurement of biological age (BA) and age gap. Leveraging the biomedical traits involved with physical measures, biochemical assays, genomic data, and cognitive functions from the healthy participants in the UK Biobank, we establish an integrative BA model consisting of multi-dimensional indicators. Accelerated aging (age gap >3.2 years) at baseline is associated incident circulatory diseases, related chronic disorders, all-cause, and cause-specific mortality. We identify 35 modifiable factors for age gap (p < 4.81 × 10-4 ), where pulmonary functions, body mass, hand grip strength, basal metabolic rate, estimated glomerular filtration rate, and C-reactive protein show the most significant associations. Genetic analyses replicate the possible associations between age gap and health-related outcomes and further identify CST3 as an essential gene for biological aging, which is highly expressed in the brain and is associated with immune and metabolic traits. Our study profiles the landscape of biological aging and provides insights into the preventive strategies and therapeutic targets for aging.Identifying the clinical implications and modifiable and unmodifiable factors of aging requires the measurement of biological age (BA) and age gap. Leveraging the biomedical traits involved with physical measures, biochemical assays, genomic data, and cognitive functions from the healthy participants in the UK Biobank, we establish an integrative BA model consisting of multi-dimensional indicators. Accelerated aging (age gap >3.2 years) at baseline is associated incident circulatory diseases, related chronic disorders, all-cause, and cause-specific mortality. We identify 35 modifiable factors for age gap (p < 4.81 × 10-4 ), where pulmonary functions, body mass, hand grip strength, basal metabolic rate, estimated glomerular filtration rate, and C-reactive protein show the most significant associations. Genetic analyses replicate the possible associations between age gap and health-related outcomes and further identify CST3 as an essential gene for biological aging, which is highly expressed in the brain and is associated with immune and metabolic traits. Our study profiles the landscape of biological aging and provides insights into the preventive strategies and therapeutic targets for aging. Identifying the clinical implications and modifiable and unmodifiable factors of aging requires the measurement of biological age (BA) and age gap. Leveraging the biomedical traits involved with physical measures, biochemical assays, genomic data, and cognitive functions from the healthy participants in the UK Biobank, we establish an integrative BA model consisting of multi-dimensional indicators. Accelerated aging (age gap >3.2 years) at baseline is associated incident circulatory diseases, related chronic disorders, all-cause, and cause-specific mortality. We identify 35 modifiable factors for age gap (p < 4.81 × 10 ), where pulmonary functions, body mass, hand grip strength, basal metabolic rate, estimated glomerular filtration rate, and C-reactive protein show the most significant associations. Genetic analyses replicate the possible associations between age gap and health-related outcomes and further identify CST3 as an essential gene for biological aging, which is highly expressed in the brain and is associated with immune and metabolic traits. Our study profiles the landscape of biological aging and provides insights into the preventive strategies and therapeutic targets for aging. Identifying the clinical implications and modifiable and unmodifiable factors of aging requires the measurement of biological age (BA) and age gap. Leveraging the biomedical traits involved with physical measures, biochemical assays, genomic data, and cognitive functions from the healthy participants in the UK Biobank, we establish an integrative BA model consisting of multi‐dimensional indicators. Accelerated aging (age gap >3.2 years) at baseline is associated incident circulatory diseases, related chronic disorders, all‐cause, and cause‐specific mortality. We identify 35 modifiable factors for age gap ( p < 4.81 × 10 −4 ), where pulmonary functions, body mass, hand grip strength, basal metabolic rate, estimated glomerular filtration rate, and C‐reactive protein show the most significant associations. Genetic analyses replicate the possible associations between age gap and health‐related outcomes and further identify CST3 as an essential gene for biological aging, which is highly expressed in the brain and is associated with immune and metabolic traits. Our study profiles the landscape of biological aging and provides insights into the preventive strategies and therapeutic targets for aging. The study included 59,316 healthy participants in the UK Biobank and considered 8276 phenotypes for developing biological age model. LightGBM algorithm was conducted to identify the most important predictors for biological age and build the model and the top 20 predictors were selected. We tested the longitudinal associations of age gap with 70 common health‐related outcomes, all‐cause mortality and cause‐specific mortality, and the genetic correlations of age gap with common health‐related outcomes. We identified 34 modifiable factors and 9 genomic risk loci for age gap and profiled the pleiotropy of rs3761280 in the UK Biobank. Identifying the clinical implications and modifiable and unmodifiable factors of aging requires the measurement of biological age (BA) and age gap. Leveraging the biomedical traits involved with physical measures, biochemical assays, genomic data, and cognitive functions from the healthy participants in the UK Biobank, we establish an integrative BA model consisting of multi‐dimensional indicators. Accelerated aging (age gap >3.2 years) at baseline is associated incident circulatory diseases, related chronic disorders, all‐cause, and cause‐specific mortality. We identify 35 modifiable factors for age gap ( p < 4.81 × 10 −4 ), where pulmonary functions, body mass, hand grip strength, basal metabolic rate, estimated glomerular filtration rate, and C‐reactive protein show the most significant associations. Genetic analyses replicate the possible associations between age gap and health‐related outcomes and further identify CST3 as an essential gene for biological aging, which is highly expressed in the brain and is associated with immune and metabolic traits. Our study profiles the landscape of biological aging and provides insights into the preventive strategies and therapeutic targets for aging. Identifying the clinical implications and modifiable and unmodifiable factors of aging requires the measurement of biological age (BA) and age gap. Leveraging the biomedical traits involved with physical measures, biochemical assays, genomic data, and cognitive functions from the healthy participants in the UK Biobank, we establish an integrative BA model consisting of multi‐dimensional indicators. Accelerated aging (age gap >3.2 years) at baseline is associated incident circulatory diseases, related chronic disorders, all‐cause, and cause‐specific mortality. We identify 35 modifiable factors for age gap (p < 4.81 × 10−4), where pulmonary functions, body mass, hand grip strength, basal metabolic rate, estimated glomerular filtration rate, and C‐reactive protein show the most significant associations. Genetic analyses replicate the possible associations between age gap and health‐related outcomes and further identify CST3 as an essential gene for biological aging, which is highly expressed in the brain and is associated with immune and metabolic traits. Our study profiles the landscape of biological aging and provides insights into the preventive strategies and therapeutic targets for aging. Identifying the clinical implications and modifiable and unmodifiable factors of aging requires the measurement of biological age (BA) and age gap. Leveraging the biomedical traits involved with physical measures, biochemical assays, genomic data, and cognitive functions from the healthy participants in the UK Biobank, we establish an integrative BA model consisting of multi‐dimensional indicators. Accelerated aging (age gap >3.2 years) at baseline is associated incident circulatory diseases, related chronic disorders, all‐cause, and cause‐specific mortality. We identify 35 modifiable factors for age gap (p < 4.81 × 10−4), where pulmonary functions, body mass, hand grip strength, basal metabolic rate, estimated glomerular filtration rate, and C‐reactive protein show the most significant associations. Genetic analyses replicate the possible associations between age gap and health‐related outcomes and further identify CST3 as an essential gene for biological aging, which is highly expressed in the brain and is associated with immune and metabolic traits. Our study profiles the landscape of biological aging and provides insights into the preventive strategies and therapeutic targets for aging. The study included 59,316 healthy participants in the UK Biobank and considered 8276 phenotypes for developing biological age model. LightGBM algorithm was conducted to identify the most important predictors for biological age and build the model and the top 20 predictors were selected. We tested the longitudinal associations of age gap with 70 common health‐related outcomes, all‐cause mortality and cause‐specific mortality, and the genetic correlations of age gap with common health‐related outcomes. We identified 34 modifiable factors and 9 genomic risk loci for age gap and profiled the pleiotropy of rs3761280 in the UK Biobank. |
Author | You, Jia Ge, Yi‐Jun Zhang, Ya‐Ru Yu, Jin‐Tai Liu, Wei‐Shi Chen, Shi‐Dong Cheng, Wei Wu, Bang‐Sheng Ma, Ling‐Zhi Zhang, Yi Feng, Jian‐Feng Huang, Shu‐Yi |
AuthorAffiliation | 1 Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science Shanghai Medical College, Fudan University Shanghai China 3 Key Laboratory of Computational Neuroscience and Brain‐Inspired Intelligence (Fudan University), Ministry of Education Shanghai China 5 Department of Computer Science University of Warwick Coventry UK 4 Department of Neurology, Qingdao Municipal Hospital Qingdao University Qingdao China 6 Fudan ISTBI—ZJNU Algorithm Centre for Brain‐Inspired Intelligence Zhejiang Normal University Jinhua China 2 Institute of Science and Technology for Brain‐Inspired Intelligence, Fudan University Shanghai China 7 Shanghai Medical College and Zhongshan Hosptital Immunotherapy Technology Transfer Center Shanghai China |
AuthorAffiliation_xml | – name: 2 Institute of Science and Technology for Brain‐Inspired Intelligence, Fudan University Shanghai China – name: 1 Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science Shanghai Medical College, Fudan University Shanghai China – name: 5 Department of Computer Science University of Warwick Coventry UK – name: 6 Fudan ISTBI—ZJNU Algorithm Centre for Brain‐Inspired Intelligence Zhejiang Normal University Jinhua China – name: 7 Shanghai Medical College and Zhongshan Hosptital Immunotherapy Technology Transfer Center Shanghai China – name: 4 Department of Neurology, Qingdao Municipal Hospital Qingdao University Qingdao China – name: 3 Key Laboratory of Computational Neuroscience and Brain‐Inspired Intelligence (Fudan University), Ministry of Education Shanghai China |
Author_xml | – sequence: 1 givenname: Wei‐Shi surname: Liu fullname: Liu, Wei‐Shi organization: Shanghai Medical College, Fudan University – sequence: 2 givenname: Jia surname: You fullname: You, Jia organization: Key Laboratory of Computational Neuroscience and Brain‐Inspired Intelligence (Fudan University), Ministry of Education – sequence: 3 givenname: Yi‐Jun surname: Ge fullname: Ge, Yi‐Jun organization: Shanghai Medical College, Fudan University – sequence: 4 givenname: Bang‐Sheng surname: Wu fullname: Wu, Bang‐Sheng organization: Shanghai Medical College, Fudan University – sequence: 5 givenname: Yi surname: Zhang fullname: Zhang, Yi organization: Shanghai Medical College, Fudan University – sequence: 6 givenname: Shi‐Dong surname: Chen fullname: Chen, Shi‐Dong organization: Shanghai Medical College, Fudan University – sequence: 7 givenname: Ya‐Ru surname: Zhang fullname: Zhang, Ya‐Ru organization: Shanghai Medical College, Fudan University – sequence: 8 givenname: Shu‐Yi surname: Huang fullname: Huang, Shu‐Yi organization: Shanghai Medical College, Fudan University – sequence: 9 givenname: Ling‐Zhi surname: Ma fullname: Ma, Ling‐Zhi organization: Qingdao University – sequence: 10 givenname: Jian‐Feng surname: Feng fullname: Feng, Jian‐Feng organization: University of Warwick – sequence: 11 givenname: Wei surname: Cheng fullname: Cheng, Wei email: wcheng@fudan.edu.cn organization: Shanghai Medical College and Zhongshan Hosptital Immunotherapy Technology Transfer Center – sequence: 12 givenname: Jin‐Tai orcidid: 0000-0002-2532-383X surname: Yu fullname: Yu, Jin‐Tai email: jintai_yu@fudan.edu.cn organization: Shanghai Medical College, Fudan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37723992$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kVtrGzEQhUVxaS7tS39AEeQlBJxK2oukp2JMLgWHvLTPYlY7aytoV-5qN8b_PnKcmDaU6GUk9M1hzpwTMulCh4R85eySp_MdLPpLnmldfCDHPJf5VEtRTg53ro7ISYwPjHGpWfaJHGVSisSLY3I3izFYB4MLHQ0NrVzwYekseApLpBs3rOgKwacSxsGGFiOFrqZuiLQNtWscVB5pA3YIffxMPjbgI355qafk9_XVr_ntdHF_83M-W0xtnutiqjJQglWs0MgZ8KosKp3rWiJYpuv0birAjKkSkFvOuEguFbK6ELoQSmF2Sn7sdddj1WJtsRt68Gbduxb6rQngzL8_nVuZZXg0nKXNqFImhfMXhT78GTEOpnUx7dFDh2GMRqiyzKRSJU_o2Rv0IYx9l_wZoVmaR-oyT9S3v0c6zPK66gRc7AHbhxh7bA4IZ2aXo9nlaJ5zTDB7A1s3PIeU7Dj__xa-b9k4j9t3xM1sfrXY9zwBTcmvdA |
CitedBy_id | crossref_primary_10_1016_j_xops_2025_100708 crossref_primary_10_1038_s41514_024_00178_w crossref_primary_10_1016_j_jocn_2025_111142 crossref_primary_10_3390_cells13141192 crossref_primary_10_1016_j_jad_2024_12_023 crossref_primary_10_1002_advs_202406670 crossref_primary_10_1111_jcpe_14040 crossref_primary_10_1016_j_ypmed_2024_108091 crossref_primary_10_1186_s12916_023_03239_1 crossref_primary_10_1186_s12889_025_22114_7 crossref_primary_10_1016_j_jnha_2024_100405 crossref_primary_10_3390_jcm13185441 crossref_primary_10_1039_D4FO04230A crossref_primary_10_1016_j_arr_2024_102293 |
Cites_doi | 10.1016/j.arr.2021.101348 10.1038/s41588-021-00944-6 10.1371/journal.pgen.1004383 10.1086/519795 10.1371/journal.pmed.1003830 10.1101/gr.092619.109 10.1093/gerona/glz146 10.1038/ng.2007.29 10.1080/01621459.2018.1554485 10.1007/s10654-021-00797-7 10.1126/science.adc9020 10.1111/j.1750-3639.2006.tb00562.x 10.1016/j.cell.2022.11.001 10.1056/NEJMoa043161 10.1016/j.eclinm.2022.101665 10.1007/s11427-023-2305-0 10.1136/jnnp-2019-321913 10.1016/j.eclinm.2021.101060 10.1093/nar/28.1.27 10.1016/S2666-7568(22)00072-1 10.1016/j.ajhg.2010.11.011 10.1038/ng1934 10.1038/s41582-019-0244-7 10.1038/s41588-022-01178-w 10.1126/science.1262110 10.7554/eLife.81869 10.1038/s41586-018-0579-z 10.1016/S0140-6736(18)33067-8 10.1016/j.tcb.2018.02.001 10.1016/j.mad.2013.11.009 10.1111/acel.12601 10.1038/s41419-018-0530-0 10.4161/fly.19695 10.1016/j.cmet.2015.05.011 10.1001/archinternmed.2007.40 10.1038/nprot.2015.123 10.1038/nrcardio.2017.155 10.1038/s41573-020-0067-7 10.1161/CIRCRESAHA.120.315936 10.18632/aging.101414 10.1016/S2213-8587(22)00033-X 10.1038/s41467-023-38013-7 10.1038/ng.3680 10.1016/j.jacc.2021.12.017 10.1038/s41591-023-02296-6 10.1136/svn-2023-002332 10.1111/j.1532-5415.2001.49272.x 10.1016/j.cell.2015.02.020 10.1016/j.xinn.2021.100141 10.1038/s41588-020-0676-4 10.1038/nmeth0810-575 10.1681/ASN.2015121308 10.1038/s41574-018-0062-9 10.1001/jamacardio.2019.5306 10.1038/s41467-017-01261-5 10.1007/s00439-015-1552-7 10.1016/j.neurobiolaging.2022.03.015 10.1158/1541-7786.183.2.3 10.1016/j.jamda.2018.10.011 10.1002/sim.4067 10.1016/j.cger.2017.06.001 10.1038/s41588-020-0621-6 10.1016/j.ebiom.2021.103600 10.1093/nar/gku1179 10.1093/ageing/aft160 10.1161/JAHA.121.022257 10.1016/j.cmet.2014.02.006 10.1016/j.biopsych.2006.02.004 10.1016/j.ebiom.2023.104458 10.1016/j.mad.2005.10.004 10.1038/s41398-022-01923-z 10.1016/j.jacc.2016.05.092 10.3389/fnut.2023.1052281 10.1161/01.RES.0000155964.34150.F7 10.1093/gerona/glab251 10.1183/13993003.00347-2016 10.1016/S0140-6736(18)32279-7 10.1016/j.jacc.2019.11.062 10.1161/01.ATV.0000168416.74206.62 10.1038/nbt.4096 10.1093/ageing/afs091 10.1038/s41576-019-0183-6 10.1039/D0FO02921A 10.1002/hbm.25316 10.1038/ng.3406 10.1373/clinchem.2004.041889 10.1038/s41586-022-05473-8 10.1093/ageing/afx086 10.14336/AD.2017.0103 10.1038/s41586-022-04521-7 10.1038/s41576-022-00511-7 10.1186/s12916-022-02403-3 10.1038/s41392-022-01251-0 10.1016/S2468-2667(21)00066-9 10.1016/j.cmet.2022.11.001 |
ContentType | Journal Article |
Copyright | 2023 The Authors. published by Anatomical Society and John Wiley & Sons Ltd. 2023 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd. 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. published by Anatomical Society and John Wiley & Sons Ltd. – notice: 2023 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd. – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7TK 7X8 5PM |
DOI | 10.1111/acel.13995 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Calcium & Calcified Tissue Abstracts Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Calcium & Calcified Tissue Abstracts |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Liu et al |
EISSN | 1474-9726 |
EndPage | n/a |
ExternalDocumentID | PMC10726867 37723992 10_1111_acel_13995 ACEL13995 |
Genre | researchArticle Journal Article |
GeographicLocations | United Kingdom--UK |
GeographicLocations_xml | – name: United Kingdom--UK |
GrantInformation_xml | – fundername: Shanghai Municipal Science and Technology Major Project funderid: 2018SHZDZX01 – fundername: Science and Technology Innovation 2030 Major Projects funderid: 2022ZD0211600 – fundername: National Natural Science Foundation of China funderid: 82071201; 82071997; 82271471; 92249305 – fundername: Science and Technology Innovation 2030 Major Projects grantid: 2022ZD0211600 – fundername: National Natural Science Foundation of China grantid: 82071201 – fundername: National Natural Science Foundation of China grantid: 82271471 – fundername: Shanghai Municipal Science and Technology Major Project grantid: 2018SHZDZX01 – fundername: National Natural Science Foundation of China grantid: 82071997 – fundername: National Natural Science Foundation of China grantid: 92249305 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 23M 24P 2WC 31~ 36B 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FH 8UM 930 A01 A03 AAHHS AAZKR ABCQN ABDBF ABEML ABJNI ACCFJ ACCMX ACGFO ACGFS ACPRK ACSCC ACUHS ACXQS ADBBV ADKYN ADRAZ ADZMN ADZOD AEEZP AEGXH AENEX AEQDE AFBPY AFEBI AFKRA AFZJQ AIAGR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BAWUL BBNVY BCNDV BENPR BFHJK BHPHI BY8 CAG CCPQU COF CS3 D-6 D-7 D-E D-F DIK DR2 E3Z EAD EAP EBD EBS EJD EMB EMK EMOBN EST ESX F00 F01 F04 F5P FIJ GODZA GROUPED_DOAJ GX1 HCIFZ HF~ HOLLA HZ~ IAO IHE IHR IPNFZ ITC IX1 J0M K.9 KQ8 LC2 LC3 LH4 LK8 LP6 LP7 LW6 M48 M7P MK4 N04 N05 N9A O9- OBS OIG OK1 OVD P2P P2X P2Z P4B P4D PIMPY Q11 ROL RPM RX1 SUPJJ SV3 TEORI TR2 TUS UB1 V8K W8V WIN WQJ WRC WXI XG1 YFH YUY ~IA ~WT AAYXX CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM PQGLB 7QP 7TK 7X8 5PM |
ID | FETCH-LOGICAL-c4495-83a820b059e10a1b65b949d7eac09d1b6fbae3086ae1c10121118e0d5295288e3 |
IEDL.DBID | M48 |
ISSN | 1474-9718 1474-9726 |
IngestDate | Thu Aug 21 18:37:39 EDT 2025 Thu Jul 10 22:13:10 EDT 2025 Wed Aug 13 04:45:28 EDT 2025 Mon Jul 21 06:06:34 EDT 2025 Tue Jul 01 01:49:20 EDT 2025 Thu Apr 24 23:12:59 EDT 2025 Wed Jan 22 16:19:06 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Aging mortality disease biological age modifiable factor unmodifiable factor |
Language | English |
License | Attribution 2023 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4495-83a820b059e10a1b65b949d7eac09d1b6fbae3086ae1c10121118e0d5295288e3 |
Notes | Wei‐Shi Liu, Jia You, and Yi‐Jun Ge these authors contributed equally. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2532-383X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1111/acel.13995 |
PMID | 37723992 |
PQID | 2902887964 |
PQPubID | 1036381 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10726867 proquest_miscellaneous_2866378861 proquest_journals_2902887964 pubmed_primary_37723992 crossref_primary_10_1111_acel_13995 crossref_citationtrail_10_1111_acel_13995 wiley_primary_10_1111_acel_13995_ACEL13995 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2023 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: December 2023 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London – name: Hoboken |
PublicationTitle | Aging cell |
PublicationTitleAlternate | Aging Cell |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | 2007; 39 2021; 69 2018; 562 2017; 8 2023; 35 2023; 186 2019; 15 2022; 23 2020; 126 2022; 20 2001; 49 2004; 2 2015; 348 2013; 7 2021; 72 2018; 47 2020; 19 2022; 378 2005; 25 2006; 60 2018; 9 2015; 47 2020; 5 2023; 66 2019; 20 2020; 52 2023; 29 2017; 33 2015; 134 2021; 39 2020; 91 2015; 43 2022; 79 2022; 37 2014; 19 2023; 613 2022; 77 2022; 603 2019; 393 2006; 127 2009; 19 2014; 136–137 2016; 48 2010; 7 2018; 36 2014; 10 2023; 10 2015; 161 2018; 28 2021; 6 2021; 42 2023; 14 2000; 28 2023; 12 2021; 2 2005; 352 2017; 28 2006; 16 2013; 42 2011; 30 2008; 168 2022; 115 2014; 43 2016; 11 2021; 53 2021; 12 2023; 89 2018; 392 2022; 3 2020; 75 2023 2017; 16 2022; 7 2021; 18 2015; 22 2022; 12 2005; 51 2020; 115 2005; 96 2011; 88 2007; 81 2022; 53 2022; 10 2022; 54 2020; 21 2022; 11 2012; 6 2018; 10 2018; 15 2016; 68 2018; 14 e_1_2_11_70_1 e_1_2_11_93_1 e_1_2_11_72_1 e_1_2_11_91_1 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_78_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_74_1 e_1_2_11_97_1 e_1_2_11_13_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_76_1 e_1_2_11_95_1 e_1_2_11_11_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_48_1 e_1_2_11_83_1 e_1_2_11_60_1 e_1_2_11_81_1 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_66_1 e_1_2_11_47_1 e_1_2_11_68_1 e_1_2_11_89_1 Adzhubei I. (e_1_2_11_2_1) 2013; 7 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_62_1 e_1_2_11_87_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_64_1 e_1_2_11_85_1 e_1_2_11_17_1 e_1_2_11_15_1 e_1_2_11_59_1 e_1_2_11_38_1 e_1_2_11_19_1 e_1_2_11_94_1 e_1_2_11_50_1 e_1_2_11_71_1 e_1_2_11_92_1 e_1_2_11_90_1 e_1_2_11_10_1 e_1_2_11_31_1 e_1_2_11_56_1 e_1_2_11_77_1 e_1_2_11_58_1 e_1_2_11_79_1 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_52_1 e_1_2_11_73_1 e_1_2_11_12_1 e_1_2_11_33_1 e_1_2_11_54_1 e_1_2_11_75_1 e_1_2_11_96_1 e_1_2_11_7_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_82_1 e_1_2_11_61_1 e_1_2_11_80_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_67_1 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_88_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_86_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_84_1 e_1_2_11_18_1 e_1_2_11_16_1 e_1_2_11_37_1 e_1_2_11_39_1 |
References_xml | – volume: 43 start-page: D1049 year: 2015 end-page: D1056 article-title: Gene ontology consortium: Going forward publication-title: Nucleic Acids Research – volume: 10 year: 2014 article-title: Bayesian test for colocalisation between pairs of genetic association studies using summary statistics publication-title: PLoS Genetics – volume: 79 start-page: 837 year: 2022 end-page: 847 article-title: Inflammation, aging, and cardiovascular disease: JACC review topic of the week publication-title: Journal of the American College of Cardiology – volume: 115 start-page: 393 year: 2020 end-page: 402 article-title: Cauchy combination test: A powerful test with analytic ‐value calculation under arbitrary dependency structures publication-title: Journal of the American Statistical Association – volume: 18 year: 2021 article-title: Consumption of coffee and tea and risk of developing stroke, dementia, and poststroke dementia: A cohort study in the UK Biobank publication-title: PLoS Medicine – volume: 91 start-page: 1201 year: 2020 end-page: 1209 article-title: Evidence‐based prevention of Alzheimer's disease: Systematic review and meta‐analysis of 243 observational prospective studies and 153 randomised controlled trials publication-title: Journal of Neurology, Neurosurgery, and Psychiatry – volume: 392 start-page: 1789 year: 2018 end-page: 1858 article-title: Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the global burden of disease study 2017 publication-title: Lancet – volume: 7 start-page: 391 year: 2022 article-title: Aging and aging‐related diseases: From molecular mechanisms to interventions and treatments publication-title: Signal Transduction and Targeted Therapy – volume: 393 start-page: 1297 year: 2019 article-title: UK Biobank, big data, and the consequences of non‐representativeness publication-title: Lancet – volume: 77 start-page: 1189 year: 2022 end-page: 1198 article-title: Lifestyle factors and genetic variants on 2 biological age measures: Evidence from 94 443 Taiwan biobank participants publication-title: The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences – volume: 7 start-page: 575 year: 2010 end-page: 576 article-title: MutationTaster evaluates disease‐causing potential of sequence alterations publication-title: Nature Methods – volume: 21 start-page: 88 year: 2020 end-page: 101 article-title: The genetics of human ageing publication-title: Nature Reviews. Genetics – volume: 12 year: 2023 article-title: Multimodal brain age estimates relate to Alzheimer disease biomarkers and cognition in early stages: A cross‐sectional observational study publication-title: eLife – volume: 39 year: 2021 article-title: A cross‐sectional analysis of racial differences in accelerated aging and cognitive function among patients with atrial fibrillation: The SAGE‐AF study: Forrester, accelerated aging and cognitive function publication-title: EClinicalMedicine – volume: 75 start-page: 1913 year: 2020 end-page: 1920 article-title: Estimating biological age in the Singapore longitudinal aging study publication-title: The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences – volume: 75 start-page: 919 year: 2020 end-page: 930 article-title: Biological versus chronological aging: JACC focus seminar publication-title: Journal of the American College of Cardiology – volume: 127 start-page: 240 year: 2006 end-page: 248 article-title: A new approach to the concept and computation of biological age publication-title: Mechanisms of Ageing and Development – volume: 20 start-page: 207 year: 2022 article-title: Biological aging mediates the associations between urinary metals and osteoarthritis among U.S. adults publication-title: BMC Medicine – volume: 15 start-page: 565 year: 2019 end-page: 581 article-title: Ageing as a risk factor for neurodegenerative disease publication-title: Nature Reviews. Neurology – volume: 11 start-page: 1 year: 2016 end-page: 9 article-title: SIFT missense predictions for genomes publication-title: Nature Protocols – volume: 28 start-page: 407 year: 2017 end-page: 420 article-title: Renal aging: Causes and consequences publication-title: Journal of the American Society of Nephrology – volume: 378 start-page: eadc9020 year: 2022 article-title: Molecular basis of astrocyte diversity and morphology across the CNS in health and disease publication-title: Science – volume: 60 start-page: 432 year: 2006 end-page: 435 article-title: Telomere shortening and mood disorders: Preliminary support for a chronic stress model of accelerated aging publication-title: Biological Psychiatry – volume: 14 start-page: 2277 year: 2023 article-title: Accelerated biological aging and risk of depression and anxiety: Evidence from 424,299 UK Biobank participants publication-title: Nature Communications – volume: 603 start-page: 893 year: 2022 end-page: 899 article-title: Single‐cell dissection of the human brain vasculature publication-title: Nature – volume: 68 start-page: 934 year: 2016 end-page: 945 article-title: Cystatin C and cardiovascular disease: A mendelian randomization study publication-title: Journal of the American College of Cardiology – volume: 348 start-page: 648 year: 2015 end-page: 660 article-title: Human genomics. The genotype‐tissue expression (GTEx) pilot analysis: Multitissue gene regulation in humans publication-title: Science – volume: 35 start-page: 12 year: 2023 end-page: 35 article-title: Meta‐hallmarks of aging and cancer publication-title: Cell Metabolism – volume: 43 start-page: 10 year: 2014 end-page: 12 article-title: The frailty phenotype and the frailty index: Different instruments for different purposes publication-title: Age and Ageing – volume: 2 start-page: 183 year: 2004 end-page: 195 article-title: Cystatin C antagonizes transforming growth factor beta signaling in normal and cancer cells publication-title: Molecular Cancer Research – volume: 42 start-page: 1626 year: 2021 end-page: 1640 article-title: Prediction of brain age and cognitive age: Quantifying brain and cognitive maintenance in aging publication-title: Human Brain Mapping – volume: 9 start-page: 506 year: 2018 article-title: Epithelial cell‐derived cytokines CST3 and GDF15 as potential therapeutics for pulmonary fibrosis publication-title: Cell Death & Disease – volume: 11 year: 2022 article-title: Associations between blood pressure and accelerated DNA methylation aging publication-title: Journal of the American Heart Association – volume: 10 start-page: 253 year: 2022 end-page: 263 article-title: Body‐mass index and risk of obesity‐related complex multimorbidity: An observational multicohort study publication-title: The Lancet Diabetes and Endocrinology – volume: 186 start-page: 243 year: 2023 end-page: 278 article-title: Hallmarks of aging: An expanding universe publication-title: Cell – volume: 7 year: 2013 article-title: Predicting functional effect of human missense mutations using PolyPhen‐2 publication-title: Current Protocols in Human Genetics Chapter – volume: 134 start-page: 705 year: 2015 end-page: 715 article-title: A missense variant in CST3 exerts a recessive effect on susceptibility to age‐related macular degeneration resembling its association with Alzheimer's disease publication-title: Human Genetics – volume: 2 year: 2021 article-title: clusterProfiler 4.0: A universal enrichment tool for interpreting omics data publication-title: Innovation (Camb) – volume: 53 start-page: 1425 year: 2021 end-page: 1433 article-title: Polygenic basis and biomedical consequences of telomere length variation publication-title: Nature Genetics – volume: 136–137 start-page: 50 year: 2014 end-page: 58 article-title: Water‐loss dehydration and aging publication-title: Mechanisms of Ageing and Development – volume: 168 start-page: 147 year: 2008 end-page: 153 article-title: Cystatin C and aging success publication-title: Archives of Internal Medicine – volume: 30 start-page: 377 year: 2011 end-page: 399 article-title: Multiple imputation using chained equations: Issues and guidance for practice publication-title: Statistics in Medicine – volume: 39 start-page: 1440 year: 2007 end-page: 1442 article-title: Cystatin C inhibits amyloid‐beta deposition in Alzheimer's disease mouse models publication-title: Nature Genetics – volume: 16 start-page: 624 year: 2017 end-page: 633 article-title: Molecular and physiological manifestations and measurement of aging in humans publication-title: Aging Cell – volume: 19 start-page: 513 year: 2020 end-page: 532 article-title: The quest to slow ageing through drug discovery publication-title: Nature Reviews. Drug Discovery – volume: 20 start-page: 725 year: 2019 end-page: 729 article-title: Alcohol consumption and risk of incident frailty: The English longitudinal study of aging publication-title: Journal of the American Medical Directors Association – volume: 25 start-page: 1470 year: 2005 end-page: 1474 article-title: Genotype and plasma concentration of cystatin C in patients with coronary heart disease and risk for secondary cardiovascular events publication-title: Arteriosclerosis, Thrombosis, and Vascular Biology – volume: 47 start-page: 26 year: 2018 end-page: 34 article-title: A systematic review and meta‐analysis of prospective associations between alcohol consumption and incident frailty publication-title: Age and Ageing – volume: 69 year: 2021 article-title: A systematic review of biological, social and environmental factors associated with epigenetic clock acceleration publication-title: Ageing Research Reviews – volume: 126 start-page: 1242 year: 2020 end-page: 1259 article-title: Modifiable cardiovascular risk, hematopoiesis, and innate immunity publication-title: Circulation Research – volume: 54 start-page: 1466 year: 2022 end-page: 1469 article-title: SAIGE‐GENE+ improves the efficiency and accuracy of set‐based rare variant association tests publication-title: Nature Genetics – volume: 10 start-page: 573 year: 2018 end-page: 591 article-title: An epigenetic biomarker of aging for lifespan and healthspan publication-title: Aging (Albany NY) – volume: 42 start-page: 33 year: 2013 end-page: 39 article-title: Low fat‐free mass as a marker of mortality in community‐dwelling healthy elderly subjects publication-title: Age and Ageing – volume: 562 start-page: 203 year: 2018 end-page: 209 article-title: The UK biobank resource with deep phenotyping and genomic data publication-title: Nature – volume: 53 year: 2022 article-title: Development of a novel dementia risk prediction model in the general population: A large, longitudinal, population‐based machine‐learning study publication-title: EClinicalMedicine – volume: 47 start-page: 1236 year: 2015 end-page: 1241 article-title: An atlas of genetic correlations across human diseases and traits publication-title: Nature Genetics – volume: 16 start-page: 60 year: 2006 end-page: 70 article-title: The role of cystatin C in cerebral amyloid angiopathy and stroke: Cell biology and animal models publication-title: Brain Pathology – volume: 96 start-page: 368 year: 2005 end-page: 375 article-title: Cystatin C deficiency increases elastic lamina degradation and aortic dilatation in apolipoprotein E‐null mice publication-title: Circulation Research – volume: 49 start-page: 1633 year: 2001 end-page: 1640 article-title: Total body mass, fat mass, fat‐free mass, and skeletal muscle in older people: Cross‐sectional differences in 60‐year‐old persons publication-title: Journal of the American Geriatrics Society – volume: 22 start-page: 4 year: 2015 end-page: 11 article-title: Understanding the cellular and molecular mechanisms of physical activity‐induced health benefits publication-title: Cell Metabolism – volume: 115 start-page: 60 year: 2022 end-page: 69 article-title: Differences between multimodal brain‐age and chronological‐age are linked to telomere shortening publication-title: Neurobiology of Aging – volume: 29 start-page: 1221 year: 2023 end-page: 1231 article-title: Heterogeneous aging across multiple organ systems and prediction of chronic disease and mortality publication-title: Nature Medicine – volume: 6 start-page: 80 year: 2012 end-page: 92 article-title: A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso‐2; iso‐3 publication-title: Fly (Austin) – volume: 37 start-page: 35 year: 2022 end-page: 48 article-title: Exploring domains, clinical implications and environmental associations of a deep learning marker of biological ageing publication-title: European Journal of Epidemiology – volume: 6 start-page: e396 year: 2021 end-page: e407 article-title: Modifications to residential neighbourhood characteristics and risk of 79 common health conditions: A prospective cohort study publication-title: The Lancet Public Health – year: 2023 article-title: Development of machine learning‐based models to predict 10‐year risk of cardiovascular disease: A prospective cohort study publication-title: Stroke and Vascular Neurology – volume: 66 start-page: 893 year: 2023 end-page: 1066 article-title: Biomarkers of aging publication-title: Science China. Life Sciences – volume: 39 start-page: 17 year: 2007 end-page: 23 article-title: Systematic meta‐analyses of Alzheimer disease genetic association studies: The AlzGene database publication-title: Nature Genetics – volume: 89 year: 2023 article-title: Modeling biological age using blood biomarkers and physical measurements in Chinese adults publication-title: eBioMedicine – volume: 12 start-page: 171 year: 2022 article-title: Tea consumption and risk of incident dementia: A prospective cohort study of 377 592 UK Biobank participants publication-title: Translational Psychiatry – volume: 81 start-page: 559 year: 2007 end-page: 575 article-title: PLINK: A tool set for whole‐genome association and population‐based linkage analyses publication-title: American Journal of Human Genetics – volume: 48 start-page: 1471 year: 2016 end-page: 1486 article-title: Exercise, ageing and the lung publication-title: The European Respiratory Journal – volume: 14 start-page: 513 year: 2018 end-page: 537 article-title: Sarcopenic obesity in older adults: Aetiology, epidemiology and treatment strategies publication-title: Nature Reviews. Endocrinology – volume: 161 start-page: 106 year: 2015 end-page: 118 article-title: Promoting health and longevity through diet: From model organisms to humans publication-title: Cell – volume: 352 start-page: 2049 year: 2005 end-page: 2060 article-title: Cystatin C and the risk of death and cardiovascular events among elderly persons publication-title: The New England Journal of Medicine – volume: 33 start-page: 447 year: 2017 end-page: 457 article-title: The effects of aging on lung structure and function publication-title: Clinics in Geriatric Medicine – volume: 48 start-page: 1418 year: 2016 end-page: 1424 article-title: Genome‐wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants publication-title: Nature Genetics – volume: 5 start-page: 19 year: 2020 end-page: 26 article-title: Sex differences in blood pressure trajectories over the life course publication-title: JAMA Cardiology – volume: 28 start-page: 27 year: 2000 end-page: 30 article-title: KEGG: Kyoto encyclopedia of genes and genomes publication-title: Nucleic Acids Research – volume: 36 start-page: 411 year: 2018 end-page: 420 article-title: Integrating single‐cell transcriptomic data across different conditions, technologies, and species publication-title: Nature Biotechnology – volume: 28 start-page: 436 year: 2018 end-page: 453 article-title: Hallmarks of cellular senescence publication-title: Trends in Cell Biology – volume: 52 start-page: 969 year: 2020 end-page: 983 article-title: Dynamic incorporation of multiple in silico functional annotations empowers rare variant association analysis of large whole‐genome sequencing studies at scale publication-title: Nature Genetics – volume: 8 start-page: 628 year: 2017 end-page: 642 article-title: The biology of aging and cancer: A brief overview of shared and divergent molecular hallmarks publication-title: Aging and Disease – volume: 51 start-page: 321 year: 2005 end-page: 327 article-title: Plasma concentrations of cystatin C in patients with coronary heart disease and risk for secondary cardiovascular events: More than simply a marker of glomerular filtration rate publication-title: Clinical Chemistry – volume: 23 start-page: 715 year: 2022 end-page: 727 article-title: Measuring biological age using omics data publication-title: Nature Reviews. Genetics – volume: 12 start-page: 2814 year: 2021 end-page: 2828 article-title: Research progress on the potential delaying skin aging effect and mechanism of tea for oral and external use publication-title: Food & Function – volume: 88 start-page: 76 year: 2011 end-page: 82 article-title: GCTA: A tool for genome‐wide complex trait analysis publication-title: American Journal of Human Genetics – volume: 10 year: 2023 article-title: Extra cup of tea intake associated with increased risk of Alzheimer's disease: Genetic insights from Mendelian randomization publication-title: Frontiers in Nutrition – volume: 613 start-page: 508 year: 2023 end-page: 518 article-title: FinnGen provides genetic insights from a well‐phenotyped isolated population publication-title: Nature – volume: 3 start-page: e321 year: 2022 end-page: e331 article-title: Modifiable traits, healthy behaviours, and leukocyte telomere length: A population‐based study in UK biobank publication-title: The Lancet Healthy Longevity – volume: 19 start-page: 1553 year: 2009 end-page: 1561 article-title: Identification of deleterious mutations within three human genomes publication-title: Genome Research – volume: 15 start-page: 97 year: 2018 end-page: 105 article-title: Arterial stiffness as a risk factor for clinical hypertension publication-title: Nature Reviews. Cardiology – volume: 19 start-page: 407 year: 2014 end-page: 417 article-title: Low protein intake is associated with a major reduction in IGF‐1, cancer, and overall mortality in the 65 and younger but not older population publication-title: Cell Metabolism – volume: 52 start-page: 634 year: 2020 end-page: 639 article-title: Scalable generalized linear mixed model for region‐based association tests in large biobanks and cohorts publication-title: Nature Genetics – volume: 72 year: 2021 article-title: Machine learning for brain age prediction: Introduction to methods and clinical applications publication-title: eBioMedicine – volume: 8 start-page: 1826 year: 2017 article-title: Functional mapping and annotation of genetic associations with FUMA publication-title: Nature Communications – ident: e_1_2_11_66_1 doi: 10.1016/j.arr.2021.101348 – ident: e_1_2_11_19_1 doi: 10.1038/s41588-021-00944-6 – ident: e_1_2_11_30_1 doi: 10.1371/journal.pgen.1004383 – ident: e_1_2_11_69_1 doi: 10.1086/519795 – ident: e_1_2_11_94_1 doi: 10.1371/journal.pmed.1003830 – ident: e_1_2_11_17_1 doi: 10.1101/gr.092619.109 – ident: e_1_2_11_95_1 doi: 10.1093/gerona/glz146 – ident: e_1_2_11_63_1 doi: 10.1038/ng.2007.29 – ident: e_1_2_11_58_1 doi: 10.1080/01621459.2018.1554485 – ident: e_1_2_11_29_1 doi: 10.1007/s10654-021-00797-7 – ident: e_1_2_11_20_1 doi: 10.1126/science.adc9020 – ident: e_1_2_11_54_1 doi: 10.1111/j.1750-3639.2006.tb00562.x – ident: e_1_2_11_60_1 doi: 10.1016/j.cell.2022.11.001 – ident: e_1_2_11_76_1 doi: 10.1056/NEJMoa043161 – ident: e_1_2_11_91_1 doi: 10.1016/j.eclinm.2022.101665 – ident: e_1_2_11_3_1 doi: 10.1007/s11427-023-2305-0 – ident: e_1_2_11_93_1 doi: 10.1136/jnnp-2019-321913 – ident: e_1_2_11_23_1 doi: 10.1016/j.eclinm.2021.101060 – ident: e_1_2_11_40_1 doi: 10.1093/nar/28.1.27 – ident: e_1_2_11_9_1 doi: 10.1016/S2666-7568(22)00072-1 – ident: e_1_2_11_89_1 doi: 10.1016/j.ajhg.2010.11.011 – ident: e_1_2_11_8_1 doi: 10.1038/ng1934 – ident: e_1_2_11_36_1 doi: 10.1038/s41582-019-0244-7 – ident: e_1_2_11_96_1 doi: 10.1038/s41588-022-01178-w – ident: e_1_2_11_31_1 doi: 10.1126/science.1262110 – ident: e_1_2_11_64_1 doi: 10.7554/eLife.81869 – ident: e_1_2_11_13_1 doi: 10.1038/s41586-018-0579-z – ident: e_1_2_11_41_1 doi: 10.1016/S0140-6736(18)33067-8 – ident: e_1_2_11_34_1 doi: 10.1016/j.tcb.2018.02.001 – ident: e_1_2_11_35_1 doi: 10.1016/j.mad.2013.11.009 – ident: e_1_2_11_42_1 doi: 10.1111/acel.12601 – ident: e_1_2_11_43_1 doi: 10.1038/s41419-018-0530-0 – volume: 7 year: 2013 ident: e_1_2_11_2_1 article-title: Predicting functional effect of human missense mutations using PolyPhen‐2 publication-title: Current Protocols in Human Genetics Chapter – ident: e_1_2_11_18_1 doi: 10.4161/fly.19695 – ident: e_1_2_11_65_1 doi: 10.1016/j.cmet.2015.05.011 – ident: e_1_2_11_73_1 doi: 10.1001/archinternmed.2007.40 – ident: e_1_2_11_84_1 doi: 10.1038/nprot.2015.123 – ident: e_1_2_11_72_1 doi: 10.1038/nrcardio.2017.155 – ident: e_1_2_11_68_1 doi: 10.1038/s41573-020-0067-7 – ident: e_1_2_11_74_1 doi: 10.1161/CIRCRESAHA.120.315936 – ident: e_1_2_11_52_1 doi: 10.18632/aging.101414 – ident: e_1_2_11_45_1 doi: 10.1016/S2213-8587(22)00033-X – ident: e_1_2_11_24_1 doi: 10.1038/s41467-023-38013-7 – ident: e_1_2_11_39_1 doi: 10.1038/ng.3680 – ident: e_1_2_11_56_1 doi: 10.1016/j.jacc.2021.12.017 – ident: e_1_2_11_82_1 doi: 10.1038/s41591-023-02296-6 – ident: e_1_2_11_90_1 doi: 10.1136/svn-2023-002332 – ident: e_1_2_11_51_1 doi: 10.1111/j.1532-5415.2001.49272.x – ident: e_1_2_11_22_1 doi: 10.1016/j.cell.2015.02.020 – ident: e_1_2_11_87_1 doi: 10.1016/j.xinn.2021.100141 – ident: e_1_2_11_55_1 doi: 10.1038/s41588-020-0676-4 – ident: e_1_2_11_75_1 doi: 10.1038/nmeth0810-575 – ident: e_1_2_11_67_1 doi: 10.1681/ASN.2015121308 – ident: e_1_2_11_7_1 doi: 10.1038/s41574-018-0062-9 – ident: e_1_2_11_38_1 doi: 10.1001/jamacardio.2019.5306 – ident: e_1_2_11_85_1 doi: 10.1038/s41467-017-01261-5 – ident: e_1_2_11_12_1 doi: 10.1007/s00439-015-1552-7 – ident: e_1_2_11_92_1 doi: 10.1016/j.neurobiolaging.2022.03.015 – ident: e_1_2_11_79_1 doi: 10.1158/1541-7786.183.2.3 – ident: e_1_2_11_48_1 doi: 10.1016/j.jamda.2018.10.011 – ident: e_1_2_11_86_1 doi: 10.1002/sim.4067 – ident: e_1_2_11_78_1 doi: 10.1016/j.cger.2017.06.001 – ident: e_1_2_11_97_1 doi: 10.1038/s41588-020-0621-6 – ident: e_1_2_11_6_1 doi: 10.1016/j.ebiom.2021.103600 – ident: e_1_2_11_27_1 doi: 10.1093/nar/gku1179 – ident: e_1_2_11_14_1 doi: 10.1093/ageing/aft160 – ident: e_1_2_11_88_1 doi: 10.1161/JAHA.121.022257 – ident: e_1_2_11_53_1 doi: 10.1016/j.cmet.2014.02.006 – ident: e_1_2_11_77_1 doi: 10.1016/j.biopsych.2006.02.004 – ident: e_1_2_11_15_1 doi: 10.1016/j.ebiom.2023.104458 – ident: e_1_2_11_46_1 doi: 10.1016/j.mad.2005.10.004 – ident: e_1_2_11_37_1 doi: 10.1038/s41398-022-01923-z – ident: e_1_2_11_83_1 doi: 10.1016/j.jacc.2016.05.092 – ident: e_1_2_11_81_1 doi: 10.3389/fnut.2023.1052281 – ident: e_1_2_11_80_1 doi: 10.1161/01.RES.0000155964.34150.F7 – ident: e_1_2_11_57_1 doi: 10.1093/gerona/glab251 – ident: e_1_2_11_70_1 doi: 10.1183/13993003.00347-2016 – ident: e_1_2_11_26_1 doi: 10.1016/S0140-6736(18)32279-7 – ident: e_1_2_11_33_1 doi: 10.1016/j.jacc.2019.11.062 – ident: e_1_2_11_59_1 doi: 10.1161/01.ATV.0000168416.74206.62 – ident: e_1_2_11_11_1 doi: 10.1038/nbt.4096 – ident: e_1_2_11_28_1 doi: 10.1093/ageing/afs091 – ident: e_1_2_11_62_1 doi: 10.1038/s41576-019-0183-6 – ident: e_1_2_11_21_1 doi: 10.1039/D0FO02921A – ident: e_1_2_11_4_1 doi: 10.1002/hbm.25316 – ident: e_1_2_11_10_1 doi: 10.1038/ng.3406 – ident: e_1_2_11_47_1 doi: 10.1373/clinchem.2004.041889 – ident: e_1_2_11_50_1 doi: 10.1038/s41586-022-05473-8 – ident: e_1_2_11_49_1 doi: 10.1093/ageing/afx086 – ident: e_1_2_11_5_1 doi: 10.14336/AD.2017.0103 – ident: e_1_2_11_25_1 doi: 10.1038/s41586-022-04521-7 – ident: e_1_2_11_71_1 doi: 10.1038/s41576-022-00511-7 – ident: e_1_2_11_16_1 doi: 10.1186/s12916-022-02403-3 – ident: e_1_2_11_32_1 doi: 10.1038/s41392-022-01251-0 – ident: e_1_2_11_44_1 doi: 10.1016/S2468-2667(21)00066-9 – ident: e_1_2_11_61_1 doi: 10.1016/j.cmet.2022.11.001 |
SSID | ssj0017903 |
Score | 2.5327318 |
Snippet | Identifying the clinical implications and modifiable and unmodifiable factors of aging requires the measurement of biological age (BA) and age gap. Leveraging... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e13995 |
SubjectTerms | Age differences Aging Aging - genetics Algorithms Biobanks biological age Blood pressure Body mass Brain C-reactive protein Cardiovascular Diseases Child, Preschool Chronic obstructive pulmonary disease Cognitive ability disease Ethnicity Genetic analysis Glomerular filtration rate Growth factors Hand Strength Humans Metabolic rate modifiable factor Mortality Outcome Assessment, Health Care Physiology Regression analysis Therapeutic targets unmodifiable factor |
SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na90wDBelMNil7T7apu2Gx3ZpIY_nxEkc2KWUljLWHUoLvZRgJwp9rEvGXt5h--sr2Un23joG6y3BCnYsyZZs6SeADyqplURMQowRQ6WrPDTKRGGeZ1IaNDp10e4XX9Lza_XpJrlZg49DLozHhxgP3Fgz3HrNCm7sfEnJTYn3E8mZmbQAc7AWW0SXI3YUI0-56HqVqZA61j02KYfx_P50dTd6ZGI-jpRctmDdFnS2CbfD4H3kydfJorOT8tcfuI5P_bst2OhtU3HshekFrGHzEp75apU_X8HFEitFWwuP38RMFrQoCT7RFT6tUrSLjjrEuTBNJWbdXHxrq1k94zQt0Vf4eQ3XZ6dXJ-dhX40hLBV5UaGODVkLlswxlFMjbZrYXOVVRiv3NK_ovbYGY_KQDMpSOug4qXFa8U1ipDXG27DetA3ugqjJqzSKwf8Mqjqp8jrLy2mpbBShVjYJ4HDgSlH2UOVcMeO-GFwWnp7CTU8A70fa7x6g469UBwNzi15J50XEyDWac3EDeDc2k3rxnYlpsF0QDQkrQ-6nMoAdLwtjNzF5JozrG4BekZKRgKG7V1ua2Z2D8CanO0p1mgVw5KTgH0Mvjk9OP7unvf8h3ofnEdljPvLmANa7Hwt8Q_ZTZ986PXkAbCsW0w priority: 102 providerName: Wiley-Blackwell |
Title | Association of biological age with health outcomes and its modifiable factors |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Facel.13995 https://www.ncbi.nlm.nih.gov/pubmed/37723992 https://www.proquest.com/docview/2902887964 https://www.proquest.com/docview/2866378861 https://pubmed.ncbi.nlm.nih.gov/PMC10726867 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9wwDBf9YLCX0q3bmn4cHtvLBilnx0nsh1JKaSllN8rYQd-Ckyj04JpsvTtY__tJTnLt0TL2EhKsECPJkWRLPwF81nGlJWIcYoQYalPa0GmnQmtTKR06k_hs99H35HKsr27imzXo-3d2DJy9GNpxP6nx_fToz--HE1rwx31WjitweiS5RnMdNskipbxAR_rxNCG1vkOy1KkObaqSDqZ09d1Vw_TM23yeNPnUmfXW6GIbtjo3Upy2cn8Da1i_hVdtY8mHHRg94bpoKtFCLbE8BP0_BG--irYCUjSLOSkdzoSrSzGZz8RdU06qCVdUia4ZzzsYX5z_PLsMu8YJYaEp4AlN5Miw5-Q5oRw6mSdxbrUtU_rJDm1Jz1XuMKJgxqEspEd5kwaHJR_6KWMweg8bdVPjLoiKAkCnGafPoa7i0lapLYaFzpVCo_M4gC8917KiQxXn5hbTrI8umMOZ53AAn5a0v1osjRepDnrmZ706ZIpBZgyXzQbwcTlMK4GPN1yNzYJoSK8YHT-RAXxoZbX8TERBBEPwBmBWpLgkYJTt1ZF6cuvRtik-VolJ0gC-eoH_Y-rZ6dn5N3-39x-z3IfX3Lu-zY05gI35_QIPycOZ5wNYV_p64PcH-PpDDbxC_wVDJ_w6 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3dT9tADMAtBprGy9gHsAy23bS9DClVL7kkl0eEQN3W8jCBxFt0SRxRjSWIpg_bXz_7Lg0toEnsrVEcXZOzL_bF_hngs4oqJREjH0NEX-ky9Y0ygZ-miZQGjY5ttvvkNB6dq28X0UWXm8O1MI4P0W-4sWXY9ZoNnDekl6zcFHg1kFya-QQ2uKW3jah-9PQoZk_Z_HqVKJ-G1h2dlBN5bq9dfR_dczLv50ou-7D2JXSy5Tqtziy7kHNPfg7mbT4o_twhO_73_b2A5517Kg6dPr2ENaxfwVPXsPL3a5gszaZoKuEQTjzPgtYlwZu6wlVWimbe0og4E6YuxbSdiV9NOa2mXKkluiY_23B-cnx2NPK7hgx-oSiQ8nVoyGHIySNDOTQyj6M8VWmZ0OI9TEs6rnKDIQVJBmUhLT1OahyW_DEx0BrDHVivmxrfgKgosDSK-X8GVRWVaZWkxbBQeRCgVnnkwZfFtGRFRyvnphlX2SJq4ceT2cfjwade9toxOh6U2l_MbtbZ6SwLGF6juRzXg4_9abIw_mxiamzmJEP6ytT9WHqw65ShHyak4ITRvh7oFTXpBZjevXqmnl5aijfF3UGs48SDA6sG__jr2eHR8dj-evsY4Q_wbHQ2GWfjr6ff92AzIPfMJeLsw3p7M8d35E61-XtrNH8Bv_ka7g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9wwDLcYaBMvCNgH5TPT9rJJnS5t2iYSLyfgxMaH9rCb0F6qtHXFSdAi7u6B_x477ZU7MSHx1iqu0thxYif2zwBfVVQqiRj5GCL6ShfGt8oGvjGJlBatjl20-8VlfDpUv66iqyU4nOXCNPgQ3YEba4Zbr1nB74pyTsltjjc_JGdmvoEVhsmjOb3S_zv8N-xuERLjKiNLlSif-tYtPClH8jx9vbghPbMynwdLzhuxbhcarMNaaz6KfiPvDVjCahPeNgUlH97DxRy3RV2KBmKJ5SBo3RB86CqazEdRTyc0YhwLWxViNBmL27oYlSPOpBJtEZ4PMByc_Dk69duCCX6uyNHxdWhpQ8_IYkLZszKLo8woUyS0uPZMQe9lZjEkJ8aizKVDd5MaewVf9gVaY_gRlqu6wi0QJTl-VjE-n0VVRoUpE5P3cpUFAWqVRR58m3EtzVs0cS5qcZPOvArmcOo47MGXjvauwdD4L9XujPlpq0fjNGBwGc3psh587ppJA_haw1ZYT4mG5hOj4sfSg0-NrLpuQnIeGHrXA70gxY6A0bUXW6rRtUPZJr84iHWcePDdCfyFX0_7Ryfn7mn7NcQH8O738SA9_3l5tgOrXMe-iZPZheXJ_RT3yNqZZPvtpH4ECHf6wQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Association+of+biological+age+with+health+outcomes+and+its+modifiable+factors&rft.jtitle=Aging+cell&rft.au=Liu%2C+Wei-Shi&rft.au=You%2C+Jia&rft.au=Ge%2C+Yi-Jun&rft.au=Wu%2C+Bang-Sheng&rft.date=2023-12-01&rft.issn=1474-9726&rft.eissn=1474-9726&rft.volume=22&rft.issue=12&rft.spage=e13995&rft_id=info:doi/10.1111%2Facel.13995&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-9718&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-9718&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-9718&client=summon |