Association of biological age with health outcomes and its modifiable factors

Identifying the clinical implications and modifiable and unmodifiable factors of aging requires the measurement of biological age (BA) and age gap. Leveraging the biomedical traits involved with physical measures, biochemical assays, genomic data, and cognitive functions from the healthy participant...

Full description

Saved in:
Bibliographic Details
Published inAging cell Vol. 22; no. 12; pp. e13995 - n/a
Main Authors Liu, Wei‐Shi, You, Jia, Ge, Yi‐Jun, Wu, Bang‐Sheng, Zhang, Yi, Chen, Shi‐Dong, Zhang, Ya‐Ru, Huang, Shu‐Yi, Ma, Ling‐Zhi, Feng, Jian‐Feng, Cheng, Wei, Yu, Jin‐Tai
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.12.2023
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Identifying the clinical implications and modifiable and unmodifiable factors of aging requires the measurement of biological age (BA) and age gap. Leveraging the biomedical traits involved with physical measures, biochemical assays, genomic data, and cognitive functions from the healthy participants in the UK Biobank, we establish an integrative BA model consisting of multi‐dimensional indicators. Accelerated aging (age gap >3.2 years) at baseline is associated incident circulatory diseases, related chronic disorders, all‐cause, and cause‐specific mortality. We identify 35 modifiable factors for age gap (p < 4.81 × 10−4), where pulmonary functions, body mass, hand grip strength, basal metabolic rate, estimated glomerular filtration rate, and C‐reactive protein show the most significant associations. Genetic analyses replicate the possible associations between age gap and health‐related outcomes and further identify CST3 as an essential gene for biological aging, which is highly expressed in the brain and is associated with immune and metabolic traits. Our study profiles the landscape of biological aging and provides insights into the preventive strategies and therapeutic targets for aging. The study included 59,316 healthy participants in the UK Biobank and considered 8276 phenotypes for developing biological age model. LightGBM algorithm was conducted to identify the most important predictors for biological age and build the model and the top 20 predictors were selected. We tested the longitudinal associations of age gap with 70 common health‐related outcomes, all‐cause mortality and cause‐specific mortality, and the genetic correlations of age gap with common health‐related outcomes. We identified 34 modifiable factors and 9 genomic risk loci for age gap and profiled the pleiotropy of rs3761280 in the UK Biobank.
AbstractList Identifying the clinical implications and modifiable and unmodifiable factors of aging requires the measurement of biological age (BA) and age gap. Leveraging the biomedical traits involved with physical measures, biochemical assays, genomic data, and cognitive functions from the healthy participants in the UK Biobank, we establish an integrative BA model consisting of multi-dimensional indicators. Accelerated aging (age gap >3.2 years) at baseline is associated incident circulatory diseases, related chronic disorders, all-cause, and cause-specific mortality. We identify 35 modifiable factors for age gap (p < 4.81 × 10-4 ), where pulmonary functions, body mass, hand grip strength, basal metabolic rate, estimated glomerular filtration rate, and C-reactive protein show the most significant associations. Genetic analyses replicate the possible associations between age gap and health-related outcomes and further identify CST3 as an essential gene for biological aging, which is highly expressed in the brain and is associated with immune and metabolic traits. Our study profiles the landscape of biological aging and provides insights into the preventive strategies and therapeutic targets for aging.Identifying the clinical implications and modifiable and unmodifiable factors of aging requires the measurement of biological age (BA) and age gap. Leveraging the biomedical traits involved with physical measures, biochemical assays, genomic data, and cognitive functions from the healthy participants in the UK Biobank, we establish an integrative BA model consisting of multi-dimensional indicators. Accelerated aging (age gap >3.2 years) at baseline is associated incident circulatory diseases, related chronic disorders, all-cause, and cause-specific mortality. We identify 35 modifiable factors for age gap (p < 4.81 × 10-4 ), where pulmonary functions, body mass, hand grip strength, basal metabolic rate, estimated glomerular filtration rate, and C-reactive protein show the most significant associations. Genetic analyses replicate the possible associations between age gap and health-related outcomes and further identify CST3 as an essential gene for biological aging, which is highly expressed in the brain and is associated with immune and metabolic traits. Our study profiles the landscape of biological aging and provides insights into the preventive strategies and therapeutic targets for aging.
Identifying the clinical implications and modifiable and unmodifiable factors of aging requires the measurement of biological age (BA) and age gap. Leveraging the biomedical traits involved with physical measures, biochemical assays, genomic data, and cognitive functions from the healthy participants in the UK Biobank, we establish an integrative BA model consisting of multi-dimensional indicators. Accelerated aging (age gap >3.2 years) at baseline is associated incident circulatory diseases, related chronic disorders, all-cause, and cause-specific mortality. We identify 35 modifiable factors for age gap (p < 4.81 × 10 ), where pulmonary functions, body mass, hand grip strength, basal metabolic rate, estimated glomerular filtration rate, and C-reactive protein show the most significant associations. Genetic analyses replicate the possible associations between age gap and health-related outcomes and further identify CST3 as an essential gene for biological aging, which is highly expressed in the brain and is associated with immune and metabolic traits. Our study profiles the landscape of biological aging and provides insights into the preventive strategies and therapeutic targets for aging.
Identifying the clinical implications and modifiable and unmodifiable factors of aging requires the measurement of biological age (BA) and age gap. Leveraging the biomedical traits involved with physical measures, biochemical assays, genomic data, and cognitive functions from the healthy participants in the UK Biobank, we establish an integrative BA model consisting of multi‐dimensional indicators. Accelerated aging (age gap >3.2 years) at baseline is associated incident circulatory diseases, related chronic disorders, all‐cause, and cause‐specific mortality. We identify 35 modifiable factors for age gap ( p  < 4.81 × 10 −4 ), where pulmonary functions, body mass, hand grip strength, basal metabolic rate, estimated glomerular filtration rate, and C‐reactive protein show the most significant associations. Genetic analyses replicate the possible associations between age gap and health‐related outcomes and further identify CST3 as an essential gene for biological aging, which is highly expressed in the brain and is associated with immune and metabolic traits. Our study profiles the landscape of biological aging and provides insights into the preventive strategies and therapeutic targets for aging. The study included 59,316 healthy participants in the UK Biobank and considered 8276 phenotypes for developing biological age model. LightGBM algorithm was conducted to identify the most important predictors for biological age and build the model and the top 20 predictors were selected. We tested the longitudinal associations of age gap with 70 common health‐related outcomes, all‐cause mortality and cause‐specific mortality, and the genetic correlations of age gap with common health‐related outcomes. We identified 34 modifiable factors and 9 genomic risk loci for age gap and profiled the pleiotropy of rs3761280 in the UK Biobank.
Identifying the clinical implications and modifiable and unmodifiable factors of aging requires the measurement of biological age (BA) and age gap. Leveraging the biomedical traits involved with physical measures, biochemical assays, genomic data, and cognitive functions from the healthy participants in the UK Biobank, we establish an integrative BA model consisting of multi‐dimensional indicators. Accelerated aging (age gap >3.2 years) at baseline is associated incident circulatory diseases, related chronic disorders, all‐cause, and cause‐specific mortality. We identify 35 modifiable factors for age gap ( p  < 4.81 × 10 −4 ), where pulmonary functions, body mass, hand grip strength, basal metabolic rate, estimated glomerular filtration rate, and C‐reactive protein show the most significant associations. Genetic analyses replicate the possible associations between age gap and health‐related outcomes and further identify CST3 as an essential gene for biological aging, which is highly expressed in the brain and is associated with immune and metabolic traits. Our study profiles the landscape of biological aging and provides insights into the preventive strategies and therapeutic targets for aging.
Identifying the clinical implications and modifiable and unmodifiable factors of aging requires the measurement of biological age (BA) and age gap. Leveraging the biomedical traits involved with physical measures, biochemical assays, genomic data, and cognitive functions from the healthy participants in the UK Biobank, we establish an integrative BA model consisting of multi‐dimensional indicators. Accelerated aging (age gap >3.2 years) at baseline is associated incident circulatory diseases, related chronic disorders, all‐cause, and cause‐specific mortality. We identify 35 modifiable factors for age gap (p < 4.81 × 10−4), where pulmonary functions, body mass, hand grip strength, basal metabolic rate, estimated glomerular filtration rate, and C‐reactive protein show the most significant associations. Genetic analyses replicate the possible associations between age gap and health‐related outcomes and further identify CST3 as an essential gene for biological aging, which is highly expressed in the brain and is associated with immune and metabolic traits. Our study profiles the landscape of biological aging and provides insights into the preventive strategies and therapeutic targets for aging.
Identifying the clinical implications and modifiable and unmodifiable factors of aging requires the measurement of biological age (BA) and age gap. Leveraging the biomedical traits involved with physical measures, biochemical assays, genomic data, and cognitive functions from the healthy participants in the UK Biobank, we establish an integrative BA model consisting of multi‐dimensional indicators. Accelerated aging (age gap >3.2 years) at baseline is associated incident circulatory diseases, related chronic disorders, all‐cause, and cause‐specific mortality. We identify 35 modifiable factors for age gap (p < 4.81 × 10−4), where pulmonary functions, body mass, hand grip strength, basal metabolic rate, estimated glomerular filtration rate, and C‐reactive protein show the most significant associations. Genetic analyses replicate the possible associations between age gap and health‐related outcomes and further identify CST3 as an essential gene for biological aging, which is highly expressed in the brain and is associated with immune and metabolic traits. Our study profiles the landscape of biological aging and provides insights into the preventive strategies and therapeutic targets for aging. The study included 59,316 healthy participants in the UK Biobank and considered 8276 phenotypes for developing biological age model. LightGBM algorithm was conducted to identify the most important predictors for biological age and build the model and the top 20 predictors were selected. We tested the longitudinal associations of age gap with 70 common health‐related outcomes, all‐cause mortality and cause‐specific mortality, and the genetic correlations of age gap with common health‐related outcomes. We identified 34 modifiable factors and 9 genomic risk loci for age gap and profiled the pleiotropy of rs3761280 in the UK Biobank.
Author You, Jia
Ge, Yi‐Jun
Zhang, Ya‐Ru
Yu, Jin‐Tai
Liu, Wei‐Shi
Chen, Shi‐Dong
Cheng, Wei
Wu, Bang‐Sheng
Ma, Ling‐Zhi
Zhang, Yi
Feng, Jian‐Feng
Huang, Shu‐Yi
AuthorAffiliation 1 Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science Shanghai Medical College, Fudan University Shanghai China
3 Key Laboratory of Computational Neuroscience and Brain‐Inspired Intelligence (Fudan University), Ministry of Education Shanghai China
5 Department of Computer Science University of Warwick Coventry UK
4 Department of Neurology, Qingdao Municipal Hospital Qingdao University Qingdao China
6 Fudan ISTBI—ZJNU Algorithm Centre for Brain‐Inspired Intelligence Zhejiang Normal University Jinhua China
2 Institute of Science and Technology for Brain‐Inspired Intelligence, Fudan University Shanghai China
7 Shanghai Medical College and Zhongshan Hosptital Immunotherapy Technology Transfer Center Shanghai China
AuthorAffiliation_xml – name: 2 Institute of Science and Technology for Brain‐Inspired Intelligence, Fudan University Shanghai China
– name: 1 Department of Neurology and National Center for Neurological Diseases, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science Shanghai Medical College, Fudan University Shanghai China
– name: 5 Department of Computer Science University of Warwick Coventry UK
– name: 6 Fudan ISTBI—ZJNU Algorithm Centre for Brain‐Inspired Intelligence Zhejiang Normal University Jinhua China
– name: 7 Shanghai Medical College and Zhongshan Hosptital Immunotherapy Technology Transfer Center Shanghai China
– name: 4 Department of Neurology, Qingdao Municipal Hospital Qingdao University Qingdao China
– name: 3 Key Laboratory of Computational Neuroscience and Brain‐Inspired Intelligence (Fudan University), Ministry of Education Shanghai China
Author_xml – sequence: 1
  givenname: Wei‐Shi
  surname: Liu
  fullname: Liu, Wei‐Shi
  organization: Shanghai Medical College, Fudan University
– sequence: 2
  givenname: Jia
  surname: You
  fullname: You, Jia
  organization: Key Laboratory of Computational Neuroscience and Brain‐Inspired Intelligence (Fudan University), Ministry of Education
– sequence: 3
  givenname: Yi‐Jun
  surname: Ge
  fullname: Ge, Yi‐Jun
  organization: Shanghai Medical College, Fudan University
– sequence: 4
  givenname: Bang‐Sheng
  surname: Wu
  fullname: Wu, Bang‐Sheng
  organization: Shanghai Medical College, Fudan University
– sequence: 5
  givenname: Yi
  surname: Zhang
  fullname: Zhang, Yi
  organization: Shanghai Medical College, Fudan University
– sequence: 6
  givenname: Shi‐Dong
  surname: Chen
  fullname: Chen, Shi‐Dong
  organization: Shanghai Medical College, Fudan University
– sequence: 7
  givenname: Ya‐Ru
  surname: Zhang
  fullname: Zhang, Ya‐Ru
  organization: Shanghai Medical College, Fudan University
– sequence: 8
  givenname: Shu‐Yi
  surname: Huang
  fullname: Huang, Shu‐Yi
  organization: Shanghai Medical College, Fudan University
– sequence: 9
  givenname: Ling‐Zhi
  surname: Ma
  fullname: Ma, Ling‐Zhi
  organization: Qingdao University
– sequence: 10
  givenname: Jian‐Feng
  surname: Feng
  fullname: Feng, Jian‐Feng
  organization: University of Warwick
– sequence: 11
  givenname: Wei
  surname: Cheng
  fullname: Cheng, Wei
  email: wcheng@fudan.edu.cn
  organization: Shanghai Medical College and Zhongshan Hosptital Immunotherapy Technology Transfer Center
– sequence: 12
  givenname: Jin‐Tai
  orcidid: 0000-0002-2532-383X
  surname: Yu
  fullname: Yu, Jin‐Tai
  email: jintai_yu@fudan.edu.cn
  organization: Shanghai Medical College, Fudan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37723992$$D View this record in MEDLINE/PubMed
BookMark eNp9kVtrGzEQhUVxaS7tS39AEeQlBJxK2oukp2JMLgWHvLTPYlY7aytoV-5qN8b_PnKcmDaU6GUk9M1hzpwTMulCh4R85eySp_MdLPpLnmldfCDHPJf5VEtRTg53ro7ISYwPjHGpWfaJHGVSisSLY3I3izFYB4MLHQ0NrVzwYekseApLpBs3rOgKwacSxsGGFiOFrqZuiLQNtWscVB5pA3YIffxMPjbgI355qafk9_XVr_ntdHF_83M-W0xtnutiqjJQglWs0MgZ8KosKp3rWiJYpuv0birAjKkSkFvOuEguFbK6ELoQSmF2Sn7sdddj1WJtsRt68Gbduxb6rQngzL8_nVuZZXg0nKXNqFImhfMXhT78GTEOpnUx7dFDh2GMRqiyzKRSJU_o2Rv0IYx9l_wZoVmaR-oyT9S3v0c6zPK66gRc7AHbhxh7bA4IZ2aXo9nlaJ5zTDB7A1s3PIeU7Dj__xa-b9k4j9t3xM1sfrXY9zwBTcmvdA
CitedBy_id crossref_primary_10_1016_j_xops_2025_100708
crossref_primary_10_1038_s41514_024_00178_w
crossref_primary_10_1016_j_jocn_2025_111142
crossref_primary_10_3390_cells13141192
crossref_primary_10_1016_j_jad_2024_12_023
crossref_primary_10_1002_advs_202406670
crossref_primary_10_1111_jcpe_14040
crossref_primary_10_1016_j_ypmed_2024_108091
crossref_primary_10_1186_s12916_023_03239_1
crossref_primary_10_1186_s12889_025_22114_7
crossref_primary_10_1016_j_jnha_2024_100405
crossref_primary_10_3390_jcm13185441
crossref_primary_10_1039_D4FO04230A
crossref_primary_10_1016_j_arr_2024_102293
Cites_doi 10.1016/j.arr.2021.101348
10.1038/s41588-021-00944-6
10.1371/journal.pgen.1004383
10.1086/519795
10.1371/journal.pmed.1003830
10.1101/gr.092619.109
10.1093/gerona/glz146
10.1038/ng.2007.29
10.1080/01621459.2018.1554485
10.1007/s10654-021-00797-7
10.1126/science.adc9020
10.1111/j.1750-3639.2006.tb00562.x
10.1016/j.cell.2022.11.001
10.1056/NEJMoa043161
10.1016/j.eclinm.2022.101665
10.1007/s11427-023-2305-0
10.1136/jnnp-2019-321913
10.1016/j.eclinm.2021.101060
10.1093/nar/28.1.27
10.1016/S2666-7568(22)00072-1
10.1016/j.ajhg.2010.11.011
10.1038/ng1934
10.1038/s41582-019-0244-7
10.1038/s41588-022-01178-w
10.1126/science.1262110
10.7554/eLife.81869
10.1038/s41586-018-0579-z
10.1016/S0140-6736(18)33067-8
10.1016/j.tcb.2018.02.001
10.1016/j.mad.2013.11.009
10.1111/acel.12601
10.1038/s41419-018-0530-0
10.4161/fly.19695
10.1016/j.cmet.2015.05.011
10.1001/archinternmed.2007.40
10.1038/nprot.2015.123
10.1038/nrcardio.2017.155
10.1038/s41573-020-0067-7
10.1161/CIRCRESAHA.120.315936
10.18632/aging.101414
10.1016/S2213-8587(22)00033-X
10.1038/s41467-023-38013-7
10.1038/ng.3680
10.1016/j.jacc.2021.12.017
10.1038/s41591-023-02296-6
10.1136/svn-2023-002332
10.1111/j.1532-5415.2001.49272.x
10.1016/j.cell.2015.02.020
10.1016/j.xinn.2021.100141
10.1038/s41588-020-0676-4
10.1038/nmeth0810-575
10.1681/ASN.2015121308
10.1038/s41574-018-0062-9
10.1001/jamacardio.2019.5306
10.1038/s41467-017-01261-5
10.1007/s00439-015-1552-7
10.1016/j.neurobiolaging.2022.03.015
10.1158/1541-7786.183.2.3
10.1016/j.jamda.2018.10.011
10.1002/sim.4067
10.1016/j.cger.2017.06.001
10.1038/s41588-020-0621-6
10.1016/j.ebiom.2021.103600
10.1093/nar/gku1179
10.1093/ageing/aft160
10.1161/JAHA.121.022257
10.1016/j.cmet.2014.02.006
10.1016/j.biopsych.2006.02.004
10.1016/j.ebiom.2023.104458
10.1016/j.mad.2005.10.004
10.1038/s41398-022-01923-z
10.1016/j.jacc.2016.05.092
10.3389/fnut.2023.1052281
10.1161/01.RES.0000155964.34150.F7
10.1093/gerona/glab251
10.1183/13993003.00347-2016
10.1016/S0140-6736(18)32279-7
10.1016/j.jacc.2019.11.062
10.1161/01.ATV.0000168416.74206.62
10.1038/nbt.4096
10.1093/ageing/afs091
10.1038/s41576-019-0183-6
10.1039/D0FO02921A
10.1002/hbm.25316
10.1038/ng.3406
10.1373/clinchem.2004.041889
10.1038/s41586-022-05473-8
10.1093/ageing/afx086
10.14336/AD.2017.0103
10.1038/s41586-022-04521-7
10.1038/s41576-022-00511-7
10.1186/s12916-022-02403-3
10.1038/s41392-022-01251-0
10.1016/S2468-2667(21)00066-9
10.1016/j.cmet.2022.11.001
ContentType Journal Article
Copyright 2023 The Authors. published by Anatomical Society and John Wiley & Sons Ltd.
2023 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd.
2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by Anatomical Society and John Wiley & Sons Ltd.
– notice: 2023 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
7X8
5PM
DOI 10.1111/acel.13995
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

CrossRef
Calcium & Calcified Tissue Abstracts

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Liu et al
EISSN 1474-9726
EndPage n/a
ExternalDocumentID PMC10726867
37723992
10_1111_acel_13995
ACEL13995
Genre researchArticle
Journal Article
GeographicLocations United Kingdom--UK
GeographicLocations_xml – name: United Kingdom--UK
GrantInformation_xml – fundername: Shanghai Municipal Science and Technology Major Project
  funderid: 2018SHZDZX01
– fundername: Science and Technology Innovation 2030 Major Projects
  funderid: 2022ZD0211600
– fundername: National Natural Science Foundation of China
  funderid: 82071201; 82071997; 82271471; 92249305
– fundername: Science and Technology Innovation 2030 Major Projects
  grantid: 2022ZD0211600
– fundername: National Natural Science Foundation of China
  grantid: 82071201
– fundername: National Natural Science Foundation of China
  grantid: 82271471
– fundername: Shanghai Municipal Science and Technology Major Project
  grantid: 2018SHZDZX01
– fundername: National Natural Science Foundation of China
  grantid: 82071997
– fundername: National Natural Science Foundation of China
  grantid: 92249305
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
23M
24P
2WC
31~
36B
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52W
52X
53G
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FH
8UM
930
A01
A03
AAHHS
AAZKR
ABCQN
ABDBF
ABEML
ABJNI
ACCFJ
ACCMX
ACGFO
ACGFS
ACPRK
ACSCC
ACUHS
ACXQS
ADBBV
ADKYN
ADRAZ
ADZMN
ADZOD
AEEZP
AEGXH
AENEX
AEQDE
AFBPY
AFEBI
AFKRA
AFZJQ
AIAGR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BFHJK
BHPHI
BY8
CAG
CCPQU
COF
CS3
D-6
D-7
D-E
D-F
DIK
DR2
E3Z
EAD
EAP
EBD
EBS
EJD
EMB
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FIJ
GODZA
GROUPED_DOAJ
GX1
HCIFZ
HF~
HOLLA
HZ~
IAO
IHE
IHR
IPNFZ
ITC
IX1
J0M
K.9
KQ8
LC2
LC3
LH4
LK8
LP6
LP7
LW6
M48
M7P
MK4
N04
N05
N9A
O9-
OBS
OIG
OK1
OVD
P2P
P2X
P2Z
P4B
P4D
PIMPY
Q11
ROL
RPM
RX1
SUPJJ
SV3
TEORI
TR2
TUS
UB1
V8K
W8V
WIN
WQJ
WRC
WXI
XG1
YFH
YUY
~IA
~WT
AAYXX
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
PQGLB
7QP
7TK
7X8
5PM
ID FETCH-LOGICAL-c4495-83a820b059e10a1b65b949d7eac09d1b6fbae3086ae1c10121118e0d5295288e3
IEDL.DBID M48
ISSN 1474-9718
1474-9726
IngestDate Thu Aug 21 18:37:39 EDT 2025
Thu Jul 10 22:13:10 EDT 2025
Wed Aug 13 04:45:28 EDT 2025
Mon Jul 21 06:06:34 EDT 2025
Tue Jul 01 01:49:20 EDT 2025
Thu Apr 24 23:12:59 EDT 2025
Wed Jan 22 16:19:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Aging
mortality
disease
biological age
modifiable factor
unmodifiable factor
Language English
License Attribution
2023 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4495-83a820b059e10a1b65b949d7eac09d1b6fbae3086ae1c10121118e0d5295288e3
Notes Wei‐Shi Liu, Jia You, and Yi‐Jun Ge these authors contributed equally.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2532-383X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1111/acel.13995
PMID 37723992
PQID 2902887964
PQPubID 1036381
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10726867
proquest_miscellaneous_2866378861
proquest_journals_2902887964
pubmed_primary_37723992
crossref_primary_10_1111_acel_13995
crossref_citationtrail_10_1111_acel_13995
wiley_primary_10_1111_acel_13995_ACEL13995
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2023
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: December 2023
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
– name: Hoboken
PublicationTitle Aging cell
PublicationTitleAlternate Aging Cell
PublicationYear 2023
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2007; 39
2021; 69
2018; 562
2017; 8
2023; 35
2023; 186
2019; 15
2022; 23
2020; 126
2022; 20
2001; 49
2004; 2
2015; 348
2013; 7
2021; 72
2018; 47
2020; 19
2022; 378
2005; 25
2006; 60
2018; 9
2015; 47
2020; 5
2023; 66
2019; 20
2020; 52
2023; 29
2017; 33
2015; 134
2021; 39
2020; 91
2015; 43
2022; 79
2022; 37
2014; 19
2023; 613
2022; 77
2022; 603
2019; 393
2006; 127
2009; 19
2014; 136–137
2016; 48
2010; 7
2018; 36
2014; 10
2023; 10
2015; 161
2018; 28
2021; 6
2021; 42
2023; 14
2000; 28
2023; 12
2021; 2
2005; 352
2017; 28
2006; 16
2013; 42
2011; 30
2008; 168
2022; 115
2014; 43
2016; 11
2021; 53
2021; 12
2023; 89
2018; 392
2022; 3
2020; 75
2023
2017; 16
2022; 7
2021; 18
2015; 22
2022; 12
2005; 51
2020; 115
2005; 96
2011; 88
2007; 81
2022; 53
2022; 10
2022; 54
2020; 21
2022; 11
2012; 6
2018; 10
2018; 15
2016; 68
2018; 14
e_1_2_11_70_1
e_1_2_11_93_1
e_1_2_11_72_1
e_1_2_11_91_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_97_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_76_1
e_1_2_11_95_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_83_1
e_1_2_11_60_1
e_1_2_11_81_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_68_1
e_1_2_11_89_1
Adzhubei I. (e_1_2_11_2_1) 2013; 7
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_62_1
e_1_2_11_87_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_64_1
e_1_2_11_85_1
e_1_2_11_17_1
e_1_2_11_15_1
e_1_2_11_59_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_94_1
e_1_2_11_50_1
e_1_2_11_71_1
e_1_2_11_92_1
e_1_2_11_90_1
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_56_1
e_1_2_11_77_1
e_1_2_11_58_1
e_1_2_11_79_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_33_1
e_1_2_11_54_1
e_1_2_11_75_1
e_1_2_11_96_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_82_1
e_1_2_11_61_1
e_1_2_11_80_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_88_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_86_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_84_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
References_xml – volume: 43
  start-page: D1049
  year: 2015
  end-page: D1056
  article-title: Gene ontology consortium: Going forward
  publication-title: Nucleic Acids Research
– volume: 10
  year: 2014
  article-title: Bayesian test for colocalisation between pairs of genetic association studies using summary statistics
  publication-title: PLoS Genetics
– volume: 79
  start-page: 837
  year: 2022
  end-page: 847
  article-title: Inflammation, aging, and cardiovascular disease: JACC review topic of the week
  publication-title: Journal of the American College of Cardiology
– volume: 115
  start-page: 393
  year: 2020
  end-page: 402
  article-title: Cauchy combination test: A powerful test with analytic ‐value calculation under arbitrary dependency structures
  publication-title: Journal of the American Statistical Association
– volume: 18
  year: 2021
  article-title: Consumption of coffee and tea and risk of developing stroke, dementia, and poststroke dementia: A cohort study in the UK Biobank
  publication-title: PLoS Medicine
– volume: 91
  start-page: 1201
  year: 2020
  end-page: 1209
  article-title: Evidence‐based prevention of Alzheimer's disease: Systematic review and meta‐analysis of 243 observational prospective studies and 153 randomised controlled trials
  publication-title: Journal of Neurology, Neurosurgery, and Psychiatry
– volume: 392
  start-page: 1789
  year: 2018
  end-page: 1858
  article-title: Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the global burden of disease study 2017
  publication-title: Lancet
– volume: 7
  start-page: 391
  year: 2022
  article-title: Aging and aging‐related diseases: From molecular mechanisms to interventions and treatments
  publication-title: Signal Transduction and Targeted Therapy
– volume: 393
  start-page: 1297
  year: 2019
  article-title: UK Biobank, big data, and the consequences of non‐representativeness
  publication-title: Lancet
– volume: 77
  start-page: 1189
  year: 2022
  end-page: 1198
  article-title: Lifestyle factors and genetic variants on 2 biological age measures: Evidence from 94 443 Taiwan biobank participants
  publication-title: The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences
– volume: 7
  start-page: 575
  year: 2010
  end-page: 576
  article-title: MutationTaster evaluates disease‐causing potential of sequence alterations
  publication-title: Nature Methods
– volume: 21
  start-page: 88
  year: 2020
  end-page: 101
  article-title: The genetics of human ageing
  publication-title: Nature Reviews. Genetics
– volume: 12
  year: 2023
  article-title: Multimodal brain age estimates relate to Alzheimer disease biomarkers and cognition in early stages: A cross‐sectional observational study
  publication-title: eLife
– volume: 39
  year: 2021
  article-title: A cross‐sectional analysis of racial differences in accelerated aging and cognitive function among patients with atrial fibrillation: The SAGE‐AF study: Forrester, accelerated aging and cognitive function
  publication-title: EClinicalMedicine
– volume: 75
  start-page: 1913
  year: 2020
  end-page: 1920
  article-title: Estimating biological age in the Singapore longitudinal aging study
  publication-title: The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences
– volume: 75
  start-page: 919
  year: 2020
  end-page: 930
  article-title: Biological versus chronological aging: JACC focus seminar
  publication-title: Journal of the American College of Cardiology
– volume: 127
  start-page: 240
  year: 2006
  end-page: 248
  article-title: A new approach to the concept and computation of biological age
  publication-title: Mechanisms of Ageing and Development
– volume: 20
  start-page: 207
  year: 2022
  article-title: Biological aging mediates the associations between urinary metals and osteoarthritis among U.S. adults
  publication-title: BMC Medicine
– volume: 15
  start-page: 565
  year: 2019
  end-page: 581
  article-title: Ageing as a risk factor for neurodegenerative disease
  publication-title: Nature Reviews. Neurology
– volume: 11
  start-page: 1
  year: 2016
  end-page: 9
  article-title: SIFT missense predictions for genomes
  publication-title: Nature Protocols
– volume: 28
  start-page: 407
  year: 2017
  end-page: 420
  article-title: Renal aging: Causes and consequences
  publication-title: Journal of the American Society of Nephrology
– volume: 378
  start-page: eadc9020
  year: 2022
  article-title: Molecular basis of astrocyte diversity and morphology across the CNS in health and disease
  publication-title: Science
– volume: 60
  start-page: 432
  year: 2006
  end-page: 435
  article-title: Telomere shortening and mood disorders: Preliminary support for a chronic stress model of accelerated aging
  publication-title: Biological Psychiatry
– volume: 14
  start-page: 2277
  year: 2023
  article-title: Accelerated biological aging and risk of depression and anxiety: Evidence from 424,299 UK Biobank participants
  publication-title: Nature Communications
– volume: 603
  start-page: 893
  year: 2022
  end-page: 899
  article-title: Single‐cell dissection of the human brain vasculature
  publication-title: Nature
– volume: 68
  start-page: 934
  year: 2016
  end-page: 945
  article-title: Cystatin C and cardiovascular disease: A mendelian randomization study
  publication-title: Journal of the American College of Cardiology
– volume: 348
  start-page: 648
  year: 2015
  end-page: 660
  article-title: Human genomics. The genotype‐tissue expression (GTEx) pilot analysis: Multitissue gene regulation in humans
  publication-title: Science
– volume: 35
  start-page: 12
  year: 2023
  end-page: 35
  article-title: Meta‐hallmarks of aging and cancer
  publication-title: Cell Metabolism
– volume: 43
  start-page: 10
  year: 2014
  end-page: 12
  article-title: The frailty phenotype and the frailty index: Different instruments for different purposes
  publication-title: Age and Ageing
– volume: 2
  start-page: 183
  year: 2004
  end-page: 195
  article-title: Cystatin C antagonizes transforming growth factor beta signaling in normal and cancer cells
  publication-title: Molecular Cancer Research
– volume: 42
  start-page: 1626
  year: 2021
  end-page: 1640
  article-title: Prediction of brain age and cognitive age: Quantifying brain and cognitive maintenance in aging
  publication-title: Human Brain Mapping
– volume: 9
  start-page: 506
  year: 2018
  article-title: Epithelial cell‐derived cytokines CST3 and GDF15 as potential therapeutics for pulmonary fibrosis
  publication-title: Cell Death & Disease
– volume: 11
  year: 2022
  article-title: Associations between blood pressure and accelerated DNA methylation aging
  publication-title: Journal of the American Heart Association
– volume: 10
  start-page: 253
  year: 2022
  end-page: 263
  article-title: Body‐mass index and risk of obesity‐related complex multimorbidity: An observational multicohort study
  publication-title: The Lancet Diabetes and Endocrinology
– volume: 186
  start-page: 243
  year: 2023
  end-page: 278
  article-title: Hallmarks of aging: An expanding universe
  publication-title: Cell
– volume: 7
  year: 2013
  article-title: Predicting functional effect of human missense mutations using PolyPhen‐2
  publication-title: Current Protocols in Human Genetics Chapter
– volume: 134
  start-page: 705
  year: 2015
  end-page: 715
  article-title: A missense variant in CST3 exerts a recessive effect on susceptibility to age‐related macular degeneration resembling its association with Alzheimer's disease
  publication-title: Human Genetics
– volume: 2
  year: 2021
  article-title: clusterProfiler 4.0: A universal enrichment tool for interpreting omics data
  publication-title: Innovation (Camb)
– volume: 53
  start-page: 1425
  year: 2021
  end-page: 1433
  article-title: Polygenic basis and biomedical consequences of telomere length variation
  publication-title: Nature Genetics
– volume: 136–137
  start-page: 50
  year: 2014
  end-page: 58
  article-title: Water‐loss dehydration and aging
  publication-title: Mechanisms of Ageing and Development
– volume: 168
  start-page: 147
  year: 2008
  end-page: 153
  article-title: Cystatin C and aging success
  publication-title: Archives of Internal Medicine
– volume: 30
  start-page: 377
  year: 2011
  end-page: 399
  article-title: Multiple imputation using chained equations: Issues and guidance for practice
  publication-title: Statistics in Medicine
– volume: 39
  start-page: 1440
  year: 2007
  end-page: 1442
  article-title: Cystatin C inhibits amyloid‐beta deposition in Alzheimer's disease mouse models
  publication-title: Nature Genetics
– volume: 16
  start-page: 624
  year: 2017
  end-page: 633
  article-title: Molecular and physiological manifestations and measurement of aging in humans
  publication-title: Aging Cell
– volume: 19
  start-page: 513
  year: 2020
  end-page: 532
  article-title: The quest to slow ageing through drug discovery
  publication-title: Nature Reviews. Drug Discovery
– volume: 20
  start-page: 725
  year: 2019
  end-page: 729
  article-title: Alcohol consumption and risk of incident frailty: The English longitudinal study of aging
  publication-title: Journal of the American Medical Directors Association
– volume: 25
  start-page: 1470
  year: 2005
  end-page: 1474
  article-title: Genotype and plasma concentration of cystatin C in patients with coronary heart disease and risk for secondary cardiovascular events
  publication-title: Arteriosclerosis, Thrombosis, and Vascular Biology
– volume: 47
  start-page: 26
  year: 2018
  end-page: 34
  article-title: A systematic review and meta‐analysis of prospective associations between alcohol consumption and incident frailty
  publication-title: Age and Ageing
– volume: 69
  year: 2021
  article-title: A systematic review of biological, social and environmental factors associated with epigenetic clock acceleration
  publication-title: Ageing Research Reviews
– volume: 126
  start-page: 1242
  year: 2020
  end-page: 1259
  article-title: Modifiable cardiovascular risk, hematopoiesis, and innate immunity
  publication-title: Circulation Research
– volume: 54
  start-page: 1466
  year: 2022
  end-page: 1469
  article-title: SAIGE‐GENE+ improves the efficiency and accuracy of set‐based rare variant association tests
  publication-title: Nature Genetics
– volume: 10
  start-page: 573
  year: 2018
  end-page: 591
  article-title: An epigenetic biomarker of aging for lifespan and healthspan
  publication-title: Aging (Albany NY)
– volume: 42
  start-page: 33
  year: 2013
  end-page: 39
  article-title: Low fat‐free mass as a marker of mortality in community‐dwelling healthy elderly subjects
  publication-title: Age and Ageing
– volume: 562
  start-page: 203
  year: 2018
  end-page: 209
  article-title: The UK biobank resource with deep phenotyping and genomic data
  publication-title: Nature
– volume: 53
  year: 2022
  article-title: Development of a novel dementia risk prediction model in the general population: A large, longitudinal, population‐based machine‐learning study
  publication-title: EClinicalMedicine
– volume: 47
  start-page: 1236
  year: 2015
  end-page: 1241
  article-title: An atlas of genetic correlations across human diseases and traits
  publication-title: Nature Genetics
– volume: 16
  start-page: 60
  year: 2006
  end-page: 70
  article-title: The role of cystatin C in cerebral amyloid angiopathy and stroke: Cell biology and animal models
  publication-title: Brain Pathology
– volume: 96
  start-page: 368
  year: 2005
  end-page: 375
  article-title: Cystatin C deficiency increases elastic lamina degradation and aortic dilatation in apolipoprotein E‐null mice
  publication-title: Circulation Research
– volume: 49
  start-page: 1633
  year: 2001
  end-page: 1640
  article-title: Total body mass, fat mass, fat‐free mass, and skeletal muscle in older people: Cross‐sectional differences in 60‐year‐old persons
  publication-title: Journal of the American Geriatrics Society
– volume: 22
  start-page: 4
  year: 2015
  end-page: 11
  article-title: Understanding the cellular and molecular mechanisms of physical activity‐induced health benefits
  publication-title: Cell Metabolism
– volume: 115
  start-page: 60
  year: 2022
  end-page: 69
  article-title: Differences between multimodal brain‐age and chronological‐age are linked to telomere shortening
  publication-title: Neurobiology of Aging
– volume: 29
  start-page: 1221
  year: 2023
  end-page: 1231
  article-title: Heterogeneous aging across multiple organ systems and prediction of chronic disease and mortality
  publication-title: Nature Medicine
– volume: 6
  start-page: 80
  year: 2012
  end-page: 92
  article-title: A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso‐2; iso‐3
  publication-title: Fly (Austin)
– volume: 37
  start-page: 35
  year: 2022
  end-page: 48
  article-title: Exploring domains, clinical implications and environmental associations of a deep learning marker of biological ageing
  publication-title: European Journal of Epidemiology
– volume: 6
  start-page: e396
  year: 2021
  end-page: e407
  article-title: Modifications to residential neighbourhood characteristics and risk of 79 common health conditions: A prospective cohort study
  publication-title: The Lancet Public Health
– year: 2023
  article-title: Development of machine learning‐based models to predict 10‐year risk of cardiovascular disease: A prospective cohort study
  publication-title: Stroke and Vascular Neurology
– volume: 66
  start-page: 893
  year: 2023
  end-page: 1066
  article-title: Biomarkers of aging
  publication-title: Science China. Life Sciences
– volume: 39
  start-page: 17
  year: 2007
  end-page: 23
  article-title: Systematic meta‐analyses of Alzheimer disease genetic association studies: The AlzGene database
  publication-title: Nature Genetics
– volume: 89
  year: 2023
  article-title: Modeling biological age using blood biomarkers and physical measurements in Chinese adults
  publication-title: eBioMedicine
– volume: 12
  start-page: 171
  year: 2022
  article-title: Tea consumption and risk of incident dementia: A prospective cohort study of 377 592 UK Biobank participants
  publication-title: Translational Psychiatry
– volume: 81
  start-page: 559
  year: 2007
  end-page: 575
  article-title: PLINK: A tool set for whole‐genome association and population‐based linkage analyses
  publication-title: American Journal of Human Genetics
– volume: 48
  start-page: 1471
  year: 2016
  end-page: 1486
  article-title: Exercise, ageing and the lung
  publication-title: The European Respiratory Journal
– volume: 14
  start-page: 513
  year: 2018
  end-page: 537
  article-title: Sarcopenic obesity in older adults: Aetiology, epidemiology and treatment strategies
  publication-title: Nature Reviews. Endocrinology
– volume: 161
  start-page: 106
  year: 2015
  end-page: 118
  article-title: Promoting health and longevity through diet: From model organisms to humans
  publication-title: Cell
– volume: 352
  start-page: 2049
  year: 2005
  end-page: 2060
  article-title: Cystatin C and the risk of death and cardiovascular events among elderly persons
  publication-title: The New England Journal of Medicine
– volume: 33
  start-page: 447
  year: 2017
  end-page: 457
  article-title: The effects of aging on lung structure and function
  publication-title: Clinics in Geriatric Medicine
– volume: 48
  start-page: 1418
  year: 2016
  end-page: 1424
  article-title: Genome‐wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants
  publication-title: Nature Genetics
– volume: 5
  start-page: 19
  year: 2020
  end-page: 26
  article-title: Sex differences in blood pressure trajectories over the life course
  publication-title: JAMA Cardiology
– volume: 28
  start-page: 27
  year: 2000
  end-page: 30
  article-title: KEGG: Kyoto encyclopedia of genes and genomes
  publication-title: Nucleic Acids Research
– volume: 36
  start-page: 411
  year: 2018
  end-page: 420
  article-title: Integrating single‐cell transcriptomic data across different conditions, technologies, and species
  publication-title: Nature Biotechnology
– volume: 28
  start-page: 436
  year: 2018
  end-page: 453
  article-title: Hallmarks of cellular senescence
  publication-title: Trends in Cell Biology
– volume: 52
  start-page: 969
  year: 2020
  end-page: 983
  article-title: Dynamic incorporation of multiple in silico functional annotations empowers rare variant association analysis of large whole‐genome sequencing studies at scale
  publication-title: Nature Genetics
– volume: 8
  start-page: 628
  year: 2017
  end-page: 642
  article-title: The biology of aging and cancer: A brief overview of shared and divergent molecular hallmarks
  publication-title: Aging and Disease
– volume: 51
  start-page: 321
  year: 2005
  end-page: 327
  article-title: Plasma concentrations of cystatin C in patients with coronary heart disease and risk for secondary cardiovascular events: More than simply a marker of glomerular filtration rate
  publication-title: Clinical Chemistry
– volume: 23
  start-page: 715
  year: 2022
  end-page: 727
  article-title: Measuring biological age using omics data
  publication-title: Nature Reviews. Genetics
– volume: 12
  start-page: 2814
  year: 2021
  end-page: 2828
  article-title: Research progress on the potential delaying skin aging effect and mechanism of tea for oral and external use
  publication-title: Food & Function
– volume: 88
  start-page: 76
  year: 2011
  end-page: 82
  article-title: GCTA: A tool for genome‐wide complex trait analysis
  publication-title: American Journal of Human Genetics
– volume: 10
  year: 2023
  article-title: Extra cup of tea intake associated with increased risk of Alzheimer's disease: Genetic insights from Mendelian randomization
  publication-title: Frontiers in Nutrition
– volume: 613
  start-page: 508
  year: 2023
  end-page: 518
  article-title: FinnGen provides genetic insights from a well‐phenotyped isolated population
  publication-title: Nature
– volume: 3
  start-page: e321
  year: 2022
  end-page: e331
  article-title: Modifiable traits, healthy behaviours, and leukocyte telomere length: A population‐based study in UK biobank
  publication-title: The Lancet Healthy Longevity
– volume: 19
  start-page: 1553
  year: 2009
  end-page: 1561
  article-title: Identification of deleterious mutations within three human genomes
  publication-title: Genome Research
– volume: 15
  start-page: 97
  year: 2018
  end-page: 105
  article-title: Arterial stiffness as a risk factor for clinical hypertension
  publication-title: Nature Reviews. Cardiology
– volume: 19
  start-page: 407
  year: 2014
  end-page: 417
  article-title: Low protein intake is associated with a major reduction in IGF‐1, cancer, and overall mortality in the 65 and younger but not older population
  publication-title: Cell Metabolism
– volume: 52
  start-page: 634
  year: 2020
  end-page: 639
  article-title: Scalable generalized linear mixed model for region‐based association tests in large biobanks and cohorts
  publication-title: Nature Genetics
– volume: 72
  year: 2021
  article-title: Machine learning for brain age prediction: Introduction to methods and clinical applications
  publication-title: eBioMedicine
– volume: 8
  start-page: 1826
  year: 2017
  article-title: Functional mapping and annotation of genetic associations with FUMA
  publication-title: Nature Communications
– ident: e_1_2_11_66_1
  doi: 10.1016/j.arr.2021.101348
– ident: e_1_2_11_19_1
  doi: 10.1038/s41588-021-00944-6
– ident: e_1_2_11_30_1
  doi: 10.1371/journal.pgen.1004383
– ident: e_1_2_11_69_1
  doi: 10.1086/519795
– ident: e_1_2_11_94_1
  doi: 10.1371/journal.pmed.1003830
– ident: e_1_2_11_17_1
  doi: 10.1101/gr.092619.109
– ident: e_1_2_11_95_1
  doi: 10.1093/gerona/glz146
– ident: e_1_2_11_63_1
  doi: 10.1038/ng.2007.29
– ident: e_1_2_11_58_1
  doi: 10.1080/01621459.2018.1554485
– ident: e_1_2_11_29_1
  doi: 10.1007/s10654-021-00797-7
– ident: e_1_2_11_20_1
  doi: 10.1126/science.adc9020
– ident: e_1_2_11_54_1
  doi: 10.1111/j.1750-3639.2006.tb00562.x
– ident: e_1_2_11_60_1
  doi: 10.1016/j.cell.2022.11.001
– ident: e_1_2_11_76_1
  doi: 10.1056/NEJMoa043161
– ident: e_1_2_11_91_1
  doi: 10.1016/j.eclinm.2022.101665
– ident: e_1_2_11_3_1
  doi: 10.1007/s11427-023-2305-0
– ident: e_1_2_11_93_1
  doi: 10.1136/jnnp-2019-321913
– ident: e_1_2_11_23_1
  doi: 10.1016/j.eclinm.2021.101060
– ident: e_1_2_11_40_1
  doi: 10.1093/nar/28.1.27
– ident: e_1_2_11_9_1
  doi: 10.1016/S2666-7568(22)00072-1
– ident: e_1_2_11_89_1
  doi: 10.1016/j.ajhg.2010.11.011
– ident: e_1_2_11_8_1
  doi: 10.1038/ng1934
– ident: e_1_2_11_36_1
  doi: 10.1038/s41582-019-0244-7
– ident: e_1_2_11_96_1
  doi: 10.1038/s41588-022-01178-w
– ident: e_1_2_11_31_1
  doi: 10.1126/science.1262110
– ident: e_1_2_11_64_1
  doi: 10.7554/eLife.81869
– ident: e_1_2_11_13_1
  doi: 10.1038/s41586-018-0579-z
– ident: e_1_2_11_41_1
  doi: 10.1016/S0140-6736(18)33067-8
– ident: e_1_2_11_34_1
  doi: 10.1016/j.tcb.2018.02.001
– ident: e_1_2_11_35_1
  doi: 10.1016/j.mad.2013.11.009
– ident: e_1_2_11_42_1
  doi: 10.1111/acel.12601
– ident: e_1_2_11_43_1
  doi: 10.1038/s41419-018-0530-0
– volume: 7
  year: 2013
  ident: e_1_2_11_2_1
  article-title: Predicting functional effect of human missense mutations using PolyPhen‐2
  publication-title: Current Protocols in Human Genetics Chapter
– ident: e_1_2_11_18_1
  doi: 10.4161/fly.19695
– ident: e_1_2_11_65_1
  doi: 10.1016/j.cmet.2015.05.011
– ident: e_1_2_11_73_1
  doi: 10.1001/archinternmed.2007.40
– ident: e_1_2_11_84_1
  doi: 10.1038/nprot.2015.123
– ident: e_1_2_11_72_1
  doi: 10.1038/nrcardio.2017.155
– ident: e_1_2_11_68_1
  doi: 10.1038/s41573-020-0067-7
– ident: e_1_2_11_74_1
  doi: 10.1161/CIRCRESAHA.120.315936
– ident: e_1_2_11_52_1
  doi: 10.18632/aging.101414
– ident: e_1_2_11_45_1
  doi: 10.1016/S2213-8587(22)00033-X
– ident: e_1_2_11_24_1
  doi: 10.1038/s41467-023-38013-7
– ident: e_1_2_11_39_1
  doi: 10.1038/ng.3680
– ident: e_1_2_11_56_1
  doi: 10.1016/j.jacc.2021.12.017
– ident: e_1_2_11_82_1
  doi: 10.1038/s41591-023-02296-6
– ident: e_1_2_11_90_1
  doi: 10.1136/svn-2023-002332
– ident: e_1_2_11_51_1
  doi: 10.1111/j.1532-5415.2001.49272.x
– ident: e_1_2_11_22_1
  doi: 10.1016/j.cell.2015.02.020
– ident: e_1_2_11_87_1
  doi: 10.1016/j.xinn.2021.100141
– ident: e_1_2_11_55_1
  doi: 10.1038/s41588-020-0676-4
– ident: e_1_2_11_75_1
  doi: 10.1038/nmeth0810-575
– ident: e_1_2_11_67_1
  doi: 10.1681/ASN.2015121308
– ident: e_1_2_11_7_1
  doi: 10.1038/s41574-018-0062-9
– ident: e_1_2_11_38_1
  doi: 10.1001/jamacardio.2019.5306
– ident: e_1_2_11_85_1
  doi: 10.1038/s41467-017-01261-5
– ident: e_1_2_11_12_1
  doi: 10.1007/s00439-015-1552-7
– ident: e_1_2_11_92_1
  doi: 10.1016/j.neurobiolaging.2022.03.015
– ident: e_1_2_11_79_1
  doi: 10.1158/1541-7786.183.2.3
– ident: e_1_2_11_48_1
  doi: 10.1016/j.jamda.2018.10.011
– ident: e_1_2_11_86_1
  doi: 10.1002/sim.4067
– ident: e_1_2_11_78_1
  doi: 10.1016/j.cger.2017.06.001
– ident: e_1_2_11_97_1
  doi: 10.1038/s41588-020-0621-6
– ident: e_1_2_11_6_1
  doi: 10.1016/j.ebiom.2021.103600
– ident: e_1_2_11_27_1
  doi: 10.1093/nar/gku1179
– ident: e_1_2_11_14_1
  doi: 10.1093/ageing/aft160
– ident: e_1_2_11_88_1
  doi: 10.1161/JAHA.121.022257
– ident: e_1_2_11_53_1
  doi: 10.1016/j.cmet.2014.02.006
– ident: e_1_2_11_77_1
  doi: 10.1016/j.biopsych.2006.02.004
– ident: e_1_2_11_15_1
  doi: 10.1016/j.ebiom.2023.104458
– ident: e_1_2_11_46_1
  doi: 10.1016/j.mad.2005.10.004
– ident: e_1_2_11_37_1
  doi: 10.1038/s41398-022-01923-z
– ident: e_1_2_11_83_1
  doi: 10.1016/j.jacc.2016.05.092
– ident: e_1_2_11_81_1
  doi: 10.3389/fnut.2023.1052281
– ident: e_1_2_11_80_1
  doi: 10.1161/01.RES.0000155964.34150.F7
– ident: e_1_2_11_57_1
  doi: 10.1093/gerona/glab251
– ident: e_1_2_11_70_1
  doi: 10.1183/13993003.00347-2016
– ident: e_1_2_11_26_1
  doi: 10.1016/S0140-6736(18)32279-7
– ident: e_1_2_11_33_1
  doi: 10.1016/j.jacc.2019.11.062
– ident: e_1_2_11_59_1
  doi: 10.1161/01.ATV.0000168416.74206.62
– ident: e_1_2_11_11_1
  doi: 10.1038/nbt.4096
– ident: e_1_2_11_28_1
  doi: 10.1093/ageing/afs091
– ident: e_1_2_11_62_1
  doi: 10.1038/s41576-019-0183-6
– ident: e_1_2_11_21_1
  doi: 10.1039/D0FO02921A
– ident: e_1_2_11_4_1
  doi: 10.1002/hbm.25316
– ident: e_1_2_11_10_1
  doi: 10.1038/ng.3406
– ident: e_1_2_11_47_1
  doi: 10.1373/clinchem.2004.041889
– ident: e_1_2_11_50_1
  doi: 10.1038/s41586-022-05473-8
– ident: e_1_2_11_49_1
  doi: 10.1093/ageing/afx086
– ident: e_1_2_11_5_1
  doi: 10.14336/AD.2017.0103
– ident: e_1_2_11_25_1
  doi: 10.1038/s41586-022-04521-7
– ident: e_1_2_11_71_1
  doi: 10.1038/s41576-022-00511-7
– ident: e_1_2_11_16_1
  doi: 10.1186/s12916-022-02403-3
– ident: e_1_2_11_32_1
  doi: 10.1038/s41392-022-01251-0
– ident: e_1_2_11_44_1
  doi: 10.1016/S2468-2667(21)00066-9
– ident: e_1_2_11_61_1
  doi: 10.1016/j.cmet.2022.11.001
SSID ssj0017903
Score 2.5327318
Snippet Identifying the clinical implications and modifiable and unmodifiable factors of aging requires the measurement of biological age (BA) and age gap. Leveraging...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e13995
SubjectTerms Age differences
Aging
Aging - genetics
Algorithms
Biobanks
biological age
Blood pressure
Body mass
Brain
C-reactive protein
Cardiovascular Diseases
Child, Preschool
Chronic obstructive pulmonary disease
Cognitive ability
disease
Ethnicity
Genetic analysis
Glomerular filtration rate
Growth factors
Hand Strength
Humans
Metabolic rate
modifiable factor
Mortality
Outcome Assessment, Health Care
Physiology
Regression analysis
Therapeutic targets
unmodifiable factor
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na90wDBelMNil7T7apu2Gx3ZpIY_nxEkc2KWUljLWHUoLvZRgJwp9rEvGXt5h--sr2Un23joG6y3BCnYsyZZs6SeADyqplURMQowRQ6WrPDTKRGGeZ1IaNDp10e4XX9Lza_XpJrlZg49DLozHhxgP3Fgz3HrNCm7sfEnJTYn3E8mZmbQAc7AWW0SXI3YUI0-56HqVqZA61j02KYfx_P50dTd6ZGI-jpRctmDdFnS2CbfD4H3kydfJorOT8tcfuI5P_bst2OhtU3HshekFrGHzEp75apU_X8HFEitFWwuP38RMFrQoCT7RFT6tUrSLjjrEuTBNJWbdXHxrq1k94zQt0Vf4eQ3XZ6dXJ-dhX40hLBV5UaGODVkLlswxlFMjbZrYXOVVRiv3NK_ovbYGY_KQDMpSOug4qXFa8U1ipDXG27DetA3ugqjJqzSKwf8Mqjqp8jrLy2mpbBShVjYJ4HDgSlH2UOVcMeO-GFwWnp7CTU8A70fa7x6g469UBwNzi15J50XEyDWac3EDeDc2k3rxnYlpsF0QDQkrQ-6nMoAdLwtjNzF5JozrG4BekZKRgKG7V1ua2Z2D8CanO0p1mgVw5KTgH0Mvjk9OP7unvf8h3ofnEdljPvLmANa7Hwt8Q_ZTZ986PXkAbCsW0w
  priority: 102
  providerName: Wiley-Blackwell
Title Association of biological age with health outcomes and its modifiable factors
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Facel.13995
https://www.ncbi.nlm.nih.gov/pubmed/37723992
https://www.proquest.com/docview/2902887964
https://www.proquest.com/docview/2866378861
https://pubmed.ncbi.nlm.nih.gov/PMC10726867
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9wwDBf9YLCX0q3bmn4cHtvLBilnx0nsh1JKaSllN8rYQd-Ckyj04JpsvTtY__tJTnLt0TL2EhKsECPJkWRLPwF81nGlJWIcYoQYalPa0GmnQmtTKR06k_hs99H35HKsr27imzXo-3d2DJy9GNpxP6nx_fToz--HE1rwx31WjitweiS5RnMdNskipbxAR_rxNCG1vkOy1KkObaqSDqZ09d1Vw_TM23yeNPnUmfXW6GIbtjo3Upy2cn8Da1i_hVdtY8mHHRg94bpoKtFCLbE8BP0_BG--irYCUjSLOSkdzoSrSzGZz8RdU06qCVdUia4ZzzsYX5z_PLsMu8YJYaEp4AlN5Miw5-Q5oRw6mSdxbrUtU_rJDm1Jz1XuMKJgxqEspEd5kwaHJR_6KWMweg8bdVPjLoiKAkCnGafPoa7i0lapLYaFzpVCo_M4gC8917KiQxXn5hbTrI8umMOZ53AAn5a0v1osjRepDnrmZ706ZIpBZgyXzQbwcTlMK4GPN1yNzYJoSK8YHT-RAXxoZbX8TERBBEPwBmBWpLgkYJTt1ZF6cuvRtik-VolJ0gC-eoH_Y-rZ6dn5N3-39x-z3IfX3Lu-zY05gI35_QIPycOZ5wNYV_p64PcH-PpDDbxC_wVDJ_w6
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3dT9tADMAtBprGy9gHsAy23bS9DClVL7kkl0eEQN3W8jCBxFt0SRxRjSWIpg_bXz_7Lg0toEnsrVEcXZOzL_bF_hngs4oqJREjH0NEX-ky9Y0ygZ-miZQGjY5ttvvkNB6dq28X0UWXm8O1MI4P0W-4sWXY9ZoNnDekl6zcFHg1kFya-QQ2uKW3jah-9PQoZk_Z_HqVKJ-G1h2dlBN5bq9dfR_dczLv50ou-7D2JXSy5Tqtziy7kHNPfg7mbT4o_twhO_73_b2A5517Kg6dPr2ENaxfwVPXsPL3a5gszaZoKuEQTjzPgtYlwZu6wlVWimbe0og4E6YuxbSdiV9NOa2mXKkluiY_23B-cnx2NPK7hgx-oSiQ8nVoyGHIySNDOTQyj6M8VWmZ0OI9TEs6rnKDIQVJBmUhLT1OahyW_DEx0BrDHVivmxrfgKgosDSK-X8GVRWVaZWkxbBQeRCgVnnkwZfFtGRFRyvnphlX2SJq4ceT2cfjwade9toxOh6U2l_MbtbZ6SwLGF6juRzXg4_9abIw_mxiamzmJEP6ytT9WHqw65ShHyak4ITRvh7oFTXpBZjevXqmnl5aijfF3UGs48SDA6sG__jr2eHR8dj-evsY4Q_wbHQ2GWfjr6ff92AzIPfMJeLsw3p7M8d35E61-XtrNH8Bv_ka7g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9wwDLcYaBMvCNgH5TPT9rJJnS5t2iYSLyfgxMaH9rCb0F6qtHXFSdAi7u6B_x477ZU7MSHx1iqu0thxYif2zwBfVVQqiRj5GCL6ShfGt8oGvjGJlBatjl20-8VlfDpUv66iqyU4nOXCNPgQ3YEba4Zbr1nB74pyTsltjjc_JGdmvoEVhsmjOb3S_zv8N-xuERLjKiNLlSif-tYtPClH8jx9vbghPbMynwdLzhuxbhcarMNaaz6KfiPvDVjCahPeNgUlH97DxRy3RV2KBmKJ5SBo3RB86CqazEdRTyc0YhwLWxViNBmL27oYlSPOpBJtEZ4PMByc_Dk69duCCX6uyNHxdWhpQ8_IYkLZszKLo8woUyS0uPZMQe9lZjEkJ8aizKVDd5MaewVf9gVaY_gRlqu6wi0QJTl-VjE-n0VVRoUpE5P3cpUFAWqVRR58m3EtzVs0cS5qcZPOvArmcOo47MGXjvauwdD4L9XujPlpq0fjNGBwGc3psh587ppJA_haw1ZYT4mG5hOj4sfSg0-NrLpuQnIeGHrXA70gxY6A0bUXW6rRtUPZJr84iHWcePDdCfyFX0_7Ryfn7mn7NcQH8O738SA9_3l5tgOrXMe-iZPZheXJ_RT3yNqZZPvtpH4ECHf6wQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Association+of+biological+age+with+health+outcomes+and+its+modifiable+factors&rft.jtitle=Aging+cell&rft.au=Liu%2C+Wei-Shi&rft.au=You%2C+Jia&rft.au=Ge%2C+Yi-Jun&rft.au=Wu%2C+Bang-Sheng&rft.date=2023-12-01&rft.issn=1474-9726&rft.eissn=1474-9726&rft.volume=22&rft.issue=12&rft.spage=e13995&rft_id=info:doi/10.1111%2Facel.13995&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-9718&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-9718&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-9718&client=summon