Metal–Organic Framework Based Catalysts for Hydrogen Evolution
Highly efficient hydrogen evolution reactions (HERs) will determine the mass distributions of hydrogen‐powered clean technologies in the future. Metal–organic frameworks (MOFs) are emerging as a class of crystalline porous materials. Along with their derivatives, MOFs have recently been under intens...
Saved in:
Published in | Advanced Energy Materials Vol. 8; no. 24 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley
27.08.2018
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Highly efficient hydrogen evolution reactions (HERs) will determine the mass distributions of hydrogen‐powered clean technologies in the future. Metal–organic frameworks (MOFs) are emerging as a class of crystalline porous materials. Along with their derivatives, MOFs have recently been under intense study for their applications in various hydrogen production techniques. MOF‐based materials possess unique advantages, such as high specific surface area, crystalline porous structure, diverse and tunable chemical components, which offer attractive functionalities in catalyzing hydrogen evolution processes, by lowering reaction potentials, and speeding up reaction rates. Considering the rapid increase in research interest in hydrogen evolution in the last several years, this review aims to summarize recent advances in MOF‐associated hydrogen evolution research, including electrocatalytic, photocatalytic, and chemocatalytic HER. Particular attention is paid to the design and utilization of postsynthetic modification of MOFs, MOF‐supported catalysts, and MOF derivatives for highly efficient HER. The opportunities and challenges for MOF‐based materials in a hydrogen‐powered clean future are also discussed.
Metal–organic frameworks (MOFs) along with their derivatives are under intensive studies for their applications in various hydrogen evolution reactions (HER). This review summarizes the recent rapid increase in interest in MOF‐associated hydrogen evolution research, including MOFs and their corresponding derivatives for electrocatalytic, photocatalytic, and chemocatalytic HER. The opportunities and challenges for MOF‐based catalysts for future hydrogen production are also discussed in this review. |
---|---|
AbstractList | Highly efficient hydrogen evolution reactions (HERs) will determine the mass distributions of hydrogen‐powered clean technologies in the future. Metal–organic frameworks (MOFs) are emerging as a class of crystalline porous materials. Along with their derivatives, MOFs have recently been under intense study for their applications in various hydrogen production techniques. MOF‐based materials possess unique advantages, such as high specific surface area, crystalline porous structure, diverse and tunable chemical components, which offer attractive functionalities in catalyzing hydrogen evolution processes, by lowering reaction potentials, and speeding up reaction rates. Considering the rapid increase in research interest in hydrogen evolution in the last several years, this review aims to summarize recent advances in MOF‐associated hydrogen evolution research, including electrocatalytic, photocatalytic, and chemocatalytic HER. Particular attention is paid to the design and utilization of postsynthetic modification of MOFs, MOF‐supported catalysts, and MOF derivatives for highly efficient HER. The opportunities and challenges for MOF‐based materials in a hydrogen‐powered clean future are also discussed. Highly efficient hydrogen evolution reactions (HERs) will determine the mass distributions of hydrogen‐powered clean technologies in the future. Metal–organic frameworks (MOFs) are emerging as a class of crystalline porous materials. Along with their derivatives, MOFs have recently been under intense study for their applications in various hydrogen production techniques. MOF‐based materials possess unique advantages, such as high specific surface area, crystalline porous structure, diverse and tunable chemical components, which offer attractive functionalities in catalyzing hydrogen evolution processes, by lowering reaction potentials, and speeding up reaction rates. Considering the rapid increase in research interest in hydrogen evolution in the last several years, this review aims to summarize recent advances in MOF‐associated hydrogen evolution research, including electrocatalytic, photocatalytic, and chemocatalytic HER. Particular attention is paid to the design and utilization of postsynthetic modification of MOFs, MOF‐supported catalysts, and MOF derivatives for highly efficient HER. The opportunities and challenges for MOF‐based materials in a hydrogen‐powered clean future are also discussed. Metal–organic frameworks (MOFs) along with their derivatives are under intensive studies for their applications in various hydrogen evolution reactions (HER). This review summarizes the recent rapid increase in interest in MOF‐associated hydrogen evolution research, including MOFs and their corresponding derivatives for electrocatalytic, photocatalytic, and chemocatalytic HER. The opportunities and challenges for MOF‐based catalysts for future hydrogen production are also discussed in this review. |
Author | Ruqiang Zou Bingjun Zhu Qiang Xu |
Author_xml | – sequence: 1 givenname: Bingjun surname: Zhu fullname: Zhu, Bingjun organization: Peking University – sequence: 2 givenname: Ruqiang orcidid: 0000-0003-0456-4615 surname: Zou fullname: Zou, Ruqiang email: rzou@pku.edu.cn organization: Peking University – sequence: 3 givenname: Qiang surname: Xu fullname: Xu, Qiang email: q.xu@aist.go.jp organization: Yangzhou University |
BackLink | https://cir.nii.ac.jp/crid/1871991017705772544$$DView record in CiNii |
BookMark | eNqFkb9OwzAQxi1UJErpyhwJ1hT_SxxvlKqlSC1dYLac2Klc0rjYKVU23oE35ElIFFQhJISH80n3_e5O352DXmlLDcAlgiMEIb6RutyOMEQJRIiTE9BHMaJhnFDYO-YEn4Gh9xvYPMoRJKQPbpe6ksXn-8fKrWVpsmDm5FYfrHsJ7qTXKpjIpl77yge5dcG8Vs6udRlM32yxr4wtL8BpLguvh9__ADzPpk-TebhY3T9Mxoswo5STUJEYakVQriBPYJ5xTomKUyYjidM8RiqFOo2YTDjJmUoYk1QmEEumFU0pY2QArrq-O2df99pXYmP3rmxGCgw5wYgiHDUq2qkyZ713OheZqWS7Z-WkKQSCorVLtHaJo10NNvqF7ZzZSlf_DfAOOJhC1_-oxXj6uPzJXndsaUyzXhtRwhBvLoIYgxFjOKKUfAGJ0Ym7 |
CitedBy_id | crossref_primary_10_1016_j_ccr_2023_215302 crossref_primary_10_1021_acsaem_9b01579 crossref_primary_10_1016_j_ccr_2024_216238 crossref_primary_10_1002_adfm_202102321 crossref_primary_10_1016_j_jelechem_2023_117827 crossref_primary_10_1016_j_mtchem_2023_101531 crossref_primary_10_1016_j_chemphys_2023_112142 crossref_primary_10_1021_acssuschemeng_0c02496 crossref_primary_10_1039_C8CS00897C crossref_primary_10_1016_j_jssc_2023_124508 crossref_primary_10_1039_D0SC01432J crossref_primary_10_1016_j_ccr_2024_215944 crossref_primary_10_1016_j_jcis_2024_08_016 crossref_primary_10_1016_j_jcis_2024_05_168 crossref_primary_10_1002_aoc_5972 crossref_primary_10_1007_s11426_020_9839_y crossref_primary_10_1016_j_inoche_2019_02_025 crossref_primary_10_1016_j_cej_2020_124726 crossref_primary_10_1039_D1QM01006A crossref_primary_10_1002_elan_202200519 crossref_primary_10_1016_j_ccr_2024_216235 crossref_primary_10_1016_j_pmatsci_2024_101380 crossref_primary_10_1016_j_ccr_2024_216113 crossref_primary_10_1002_admi_202102423 crossref_primary_10_1016_j_mtener_2024_101542 crossref_primary_10_1016_j_seppur_2023_124184 crossref_primary_10_1557_s43578_021_00185_7 crossref_primary_10_1088_2515_7655_aca9fd crossref_primary_10_1002_adfm_202003007 crossref_primary_10_1039_C9CC08771K crossref_primary_10_1016_j_ijhydene_2022_08_011 crossref_primary_10_1016_j_mtener_2020_100573 crossref_primary_10_1021_acsaem_9b02300 crossref_primary_10_1016_j_ijhydene_2024_03_312 crossref_primary_10_1016_j_jpowsour_2021_229592 crossref_primary_10_3390_s21217423 crossref_primary_10_1002_adma_202003720 crossref_primary_10_1039_D0NJ01534B crossref_primary_10_1021_acs_chemrev_2c00460 crossref_primary_10_1039_D1SE00661D crossref_primary_10_1039_C9NR10109H crossref_primary_10_1002_celc_201801520 crossref_primary_10_1016_j_rser_2024_114671 crossref_primary_10_1021_jacs_3c03943 crossref_primary_10_26599_NRE_2024_9120114 crossref_primary_10_3390_molecules29163885 crossref_primary_10_1021_acsami_3c15490 crossref_primary_10_1039_D3TA06314C crossref_primary_10_1039_C9QI00964G crossref_primary_10_1021_acscatal_1c03866 crossref_primary_10_1007_s40843_018_9393_x crossref_primary_10_1002_adfm_202006761 crossref_primary_10_1002_cey2_361 crossref_primary_10_1016_j_enchem_2022_100078 crossref_primary_10_1016_j_ccr_2021_213804 crossref_primary_10_3390_pr12122677 crossref_primary_10_1016_j_ijhydene_2024_04_002 crossref_primary_10_1002_asia_201900748 crossref_primary_10_1039_D0DT04338A crossref_primary_10_1016_j_mtnano_2022_100278 crossref_primary_10_1016_j_jcis_2022_04_118 crossref_primary_10_1016_j_ijhydene_2023_08_083 crossref_primary_10_1039_D4CP02903H crossref_primary_10_1039_D2NR04409A crossref_primary_10_1002_ejic_202100093 crossref_primary_10_1002_smll_201805511 crossref_primary_10_1007_s12274_021_3879_9 crossref_primary_10_1021_acsami_3c18191 crossref_primary_10_1016_j_ijhydene_2022_11_087 crossref_primary_10_1021_acsmaterialslett_2c00751 crossref_primary_10_1039_D2NA00710J crossref_primary_10_1007_s12274_020_2618_y crossref_primary_10_1021_acscatal_1c04286 crossref_primary_10_1021_acs_energyfuels_3c02515 crossref_primary_10_1016_j_jcis_2024_11_095 crossref_primary_10_1002_smll_202102201 crossref_primary_10_1039_C8DT04745F crossref_primary_10_1002_adfm_202418427 crossref_primary_10_1016_j_ijhydene_2024_12_132 crossref_primary_10_1149_1945_7111_abb83e crossref_primary_10_1016_j_micromeso_2020_110813 crossref_primary_10_1002_chem_202100610 crossref_primary_10_1016_j_nantod_2023_101883 crossref_primary_10_1016_j_apsusc_2019_02_042 crossref_primary_10_1016_j_poly_2022_116035 crossref_primary_10_1016_j_envpol_2021_117305 crossref_primary_10_1016_j_rser_2021_110709 crossref_primary_10_1002_zaac_201900007 crossref_primary_10_1021_acs_chemrev_2c00587 crossref_primary_10_1016_j_molliq_2021_116633 crossref_primary_10_1021_acssuschemeng_0c02160 crossref_primary_10_1021_acssuschemeng_0c01193 crossref_primary_10_1039_C9CC05087F crossref_primary_10_1021_acs_energyfuels_3c02620 crossref_primary_10_1039_C9NR09203J crossref_primary_10_1039_D0CE00666A crossref_primary_10_1016_j_mtener_2021_100816 crossref_primary_10_1016_j_ccr_2025_216543 crossref_primary_10_1021_acs_inorgchem_9b00202 crossref_primary_10_1039_C9TA01603A crossref_primary_10_1039_C8DT04964E crossref_primary_10_1002_adfm_202102117 crossref_primary_10_1016_j_ijhydene_2021_05_083 crossref_primary_10_1016_j_jelechem_2022_117082 crossref_primary_10_1039_C9CC01433K crossref_primary_10_1016_j_ijhydene_2020_09_153 crossref_primary_10_1002_smtd_201800443 crossref_primary_10_1021_acs_cgd_3c01065 crossref_primary_10_1039_D0DT02309D crossref_primary_10_1002_asia_201901810 crossref_primary_10_1002_celc_202000136 crossref_primary_10_1016_j_ccr_2021_213824 crossref_primary_10_1016_j_ijhydene_2025_03_120 crossref_primary_10_1007_s10934_023_01516_1 crossref_primary_10_1016_j_ccr_2021_214119 crossref_primary_10_1016_j_enchem_2023_100115 crossref_primary_10_1021_acsami_9b09312 crossref_primary_10_1039_D1CC05182B crossref_primary_10_1039_D0DT01741H crossref_primary_10_18321_ectj1635 crossref_primary_10_1021_acs_langmuir_4c05122 crossref_primary_10_1021_jacs_9b02527 crossref_primary_10_1002_celc_202400525 crossref_primary_10_1039_D3SE00743J crossref_primary_10_1016_j_ijhydene_2025_02_269 crossref_primary_10_3390_catal10070720 crossref_primary_10_1007_s10751_024_02242_z crossref_primary_10_1016_j_cej_2020_127914 crossref_primary_10_1002_chem_201904280 crossref_primary_10_1016_j_apcatb_2021_119965 crossref_primary_10_1016_j_ccr_2021_214375 crossref_primary_10_1002_asia_202401484 crossref_primary_10_1002_inf2_12257 crossref_primary_10_1016_j_apsusc_2020_147000 crossref_primary_10_1039_C9CY00198K crossref_primary_10_1016_j_ensm_2019_05_022 crossref_primary_10_1016_j_talanta_2024_127489 crossref_primary_10_1039_C9NR08947K crossref_primary_10_1016_j_apmt_2020_100820 crossref_primary_10_1021_acs_chemmater_0c00356 crossref_primary_10_1021_acs_chemrev_9b00685 crossref_primary_10_1002_anie_202414493 crossref_primary_10_1021_acssuschemeng_9b00817 crossref_primary_10_1002_adfm_201902539 crossref_primary_10_1016_j_ijhydene_2023_11_297 crossref_primary_10_1021_acsanm_0c00319 crossref_primary_10_1002_adma_201903415 crossref_primary_10_1007_s40820_020_00582_3 crossref_primary_10_1016_j_inoche_2025_114266 crossref_primary_10_1016_j_cej_2022_139475 crossref_primary_10_1016_j_ijhydene_2022_07_078 crossref_primary_10_1021_acscatal_2c02081 crossref_primary_10_1016_j_cej_2021_133071 crossref_primary_10_1002_chem_202301872 crossref_primary_10_1039_C9SE00250B crossref_primary_10_1021_acs_inorgchem_2c01867 crossref_primary_10_1016_j_esci_2025_100378 crossref_primary_10_1002_advs_201802373 crossref_primary_10_1016_j_apcatb_2021_120579 crossref_primary_10_1016_j_molstruc_2023_137332 crossref_primary_10_1016_j_nanoen_2024_109559 crossref_primary_10_1039_D2NH00431C crossref_primary_10_1002_smll_202305548 crossref_primary_10_1021_jacs_3c05244 crossref_primary_10_1002_anie_202007122 crossref_primary_10_1016_j_xinn_2024_100778 crossref_primary_10_1002_ange_202414493 crossref_primary_10_1016_j_jallcom_2024_176094 crossref_primary_10_1039_D1CY02344F crossref_primary_10_1002_asia_202100438 crossref_primary_10_1016_j_carbpol_2019_115393 crossref_primary_10_1016_j_ijhydene_2020_11_086 crossref_primary_10_1021_acsami_1c04282 crossref_primary_10_1016_j_envres_2024_119028 crossref_primary_10_1021_acssuschemeng_2c06538 crossref_primary_10_1016_j_jssc_2025_125179 crossref_primary_10_1021_acs_energyfuels_4c01159 crossref_primary_10_1016_j_mcat_2022_112711 crossref_primary_10_1107_S2414314622007751 crossref_primary_10_1002_cjoc_202200571 crossref_primary_10_1016_j_ccr_2022_214599 crossref_primary_10_1021_acs_accounts_0c00525 crossref_primary_10_1016_j_apcatb_2023_122447 crossref_primary_10_1016_j_electacta_2022_139913 crossref_primary_10_1016_j_ijhydene_2021_01_162 crossref_primary_10_3390_ma17010087 crossref_primary_10_1149_1945_7111_ac4458 crossref_primary_10_3390_molecules27020499 crossref_primary_10_1021_acs_chemrev_9b00223 crossref_primary_10_1016_j_inoche_2021_109051 crossref_primary_10_1016_j_cej_2021_129155 crossref_primary_10_1002_ange_202007122 crossref_primary_10_1016_j_jcis_2021_06_152 crossref_primary_10_1021_acsomega_8b02309 crossref_primary_10_1016_j_macse_2025_100012 crossref_primary_10_1002_aenm_202101392 crossref_primary_10_1039_D0DT00605J crossref_primary_10_1039_D3TA00580A crossref_primary_10_1016_j_cattod_2022_10_013 crossref_primary_10_1039_D0NR07236B crossref_primary_10_1016_j_ceramint_2023_01_063 crossref_primary_10_1016_j_electacta_2019_135445 crossref_primary_10_1016_j_vacuum_2023_111937 crossref_primary_10_1002_adfm_202205920 crossref_primary_10_1016_j_ijhydene_2023_10_031 crossref_primary_10_1016_j_nanoen_2024_109897 crossref_primary_10_1039_D4TA00736K crossref_primary_10_1039_D0DT01688H crossref_primary_10_3390_inorganics11010016 crossref_primary_10_1016_j_mtchem_2018_12_002 crossref_primary_10_1016_j_jssc_2019_120929 crossref_primary_10_1039_D1DT03814A crossref_primary_10_1039_C9SC01866B crossref_primary_10_1039_D0NR03115A crossref_primary_10_1039_D3CC01970E crossref_primary_10_1039_C9DT04834K crossref_primary_10_1007_s40843_024_3235_9 crossref_primary_10_1002_cctc_202400013 crossref_primary_10_1039_D1RA03691B crossref_primary_10_1002_celc_201901767 crossref_primary_10_1002_sus2_3 crossref_primary_10_1016_j_apcatb_2022_122261 crossref_primary_10_1016_j_ijhydene_2022_10_108 crossref_primary_10_1016_j_jcis_2021_10_183 crossref_primary_10_1016_j_apsusc_2020_148498 crossref_primary_10_1016_j_chemphys_2020_111053 crossref_primary_10_1016_j_mtnano_2021_100144 crossref_primary_10_1002_cssc_202102368 crossref_primary_10_1039_D0MH01757D crossref_primary_10_1007_s11708_019_0629_8 crossref_primary_10_1016_j_jre_2024_08_014 crossref_primary_10_1002_anie_202113044 crossref_primary_10_1002_jsfa_13789 crossref_primary_10_1016_j_ijhydene_2022_03_256 crossref_primary_10_1007_s11426_024_2132_1 crossref_primary_10_1039_C9TA02451D crossref_primary_10_1021_jacs_0c00679 crossref_primary_10_1021_jacs_3c00957 crossref_primary_10_1021_acs_inorgchem_9b00824 crossref_primary_10_1021_acs_energyfuels_0c01559 crossref_primary_10_1039_C9RA01306G crossref_primary_10_1002_adma_202001818 crossref_primary_10_1016_j_jallcom_2020_156952 crossref_primary_10_1016_j_jece_2024_112838 crossref_primary_10_1016_j_jcis_2021_02_066 crossref_primary_10_1039_D2DT00238H crossref_primary_10_1016_j_electacta_2019_06_103 crossref_primary_10_1039_C8QM00259B crossref_primary_10_1016_j_jece_2025_116141 crossref_primary_10_1002_solr_201900438 crossref_primary_10_1016_j_electacta_2019_04_038 crossref_primary_10_1016_j_micromeso_2023_112565 crossref_primary_10_1002_smll_201906133 crossref_primary_10_1016_j_mcat_2022_112476 crossref_primary_10_1007_s12209_024_00418_w crossref_primary_10_1016_j_ccr_2021_213785 crossref_primary_10_1016_j_ccr_2020_213266 crossref_primary_10_1016_j_mtsust_2023_100349 crossref_primary_10_1021_acsami_1c16464 crossref_primary_10_1016_j_ijhydene_2020_10_121 crossref_primary_10_1016_j_jallcom_2020_157935 crossref_primary_10_1002_cnma_202300271 crossref_primary_10_1016_j_fuel_2023_130654 crossref_primary_10_1002_aenm_201801587 crossref_primary_10_1007_s42114_023_00735_z crossref_primary_10_1016_j_seppur_2024_129737 crossref_primary_10_1016_j_jcis_2020_03_021 crossref_primary_10_1002_cmt2_10 crossref_primary_10_1002_ejic_202400640 crossref_primary_10_1021_acsaem_3c01129 crossref_primary_10_1002_cctc_202101752 crossref_primary_10_1016_j_ccr_2023_215496 crossref_primary_10_1016_j_ccr_2022_214664 crossref_primary_10_1039_D1CC02815D crossref_primary_10_1002_adfm_202305894 crossref_primary_10_1016_j_apmt_2019_05_013 crossref_primary_10_1016_j_apmt_2021_101048 crossref_primary_10_1016_j_ceja_2021_100128 crossref_primary_10_1021_acsnano_2c09396 crossref_primary_10_1016_j_ijhydene_2023_04_241 crossref_primary_10_1016_j_inoche_2021_108732 crossref_primary_10_1002_aenm_202000280 crossref_primary_10_1002_advs_202000012 crossref_primary_10_1021_acs_inorgchem_1c00041 crossref_primary_10_1002_tcr_202300109 crossref_primary_10_1002_smll_202304181 crossref_primary_10_1002_smll_202207689 crossref_primary_10_1039_D1RA09063A crossref_primary_10_1039_D0EE02309D crossref_primary_10_1021_acs_jpcc_0c09328 crossref_primary_10_1021_acs_chemmater_9b04414 crossref_primary_10_1063_5_0176450 crossref_primary_10_1016_j_apsusc_2023_159187 crossref_primary_10_1016_j_xcrp_2020_100218 crossref_primary_10_1088_1755_1315_615_1_012121 crossref_primary_10_1016_j_cej_2021_134331 crossref_primary_10_1021_acsmaterialslett_9b00446 crossref_primary_10_1039_D4QI01533A crossref_primary_10_1002_cssc_201903018 crossref_primary_10_1039_C8CY02581A crossref_primary_10_1002_smtd_202201258 crossref_primary_10_1021_acsami_9b00592 crossref_primary_10_1002_cphc_201801147 crossref_primary_10_1021_acs_langmuir_1c00245 crossref_primary_10_1016_j_cej_2020_128162 crossref_primary_10_1002_eem2_12414 crossref_primary_10_1002_advs_202001274 crossref_primary_10_1021_jacs_4c05879 crossref_primary_10_1021_acs_iecr_4c00696 crossref_primary_10_1002_smsc_202100015 crossref_primary_10_1016_j_apcatb_2023_123161 crossref_primary_10_1039_D4DT00880D crossref_primary_10_1002_asia_202100262 crossref_primary_10_1016_j_ccr_2021_214300 crossref_primary_10_1021_acsami_4c11879 crossref_primary_10_1016_j_cej_2023_142904 crossref_primary_10_1039_D0TA02318C crossref_primary_10_1002_celc_202300516 crossref_primary_10_1016_j_arabjc_2019_12_012 crossref_primary_10_1021_acs_inorgchem_9b02497 crossref_primary_10_1016_j_apmt_2021_101343 crossref_primary_10_1002_ejic_202001132 crossref_primary_10_1002_smll_202305024 crossref_primary_10_1016_j_jiec_2023_10_055 crossref_primary_10_1016_j_ijhydene_2020_12_146 crossref_primary_10_1016_j_jcis_2021_05_094 crossref_primary_10_1021_acsami_4c16063 crossref_primary_10_1016_j_ijhydene_2019_04_276 crossref_primary_10_1021_acs_iecr_4c02523 crossref_primary_10_1039_D0RA10864B crossref_primary_10_1002_advs_202200010 crossref_primary_10_1016_j_jcis_2022_09_118 crossref_primary_10_1016_j_scib_2020_06_036 crossref_primary_10_1039_D0CE00738B crossref_primary_10_1016_j_enchem_2019_100005 crossref_primary_10_1016_j_jechem_2021_10_019 crossref_primary_10_1039_C9SE00749K crossref_primary_10_1039_D3NR02511J crossref_primary_10_1002_sstr_202200109 crossref_primary_10_1021_acsaem_0c01410 crossref_primary_10_1021_acs_iecr_1c04508 crossref_primary_10_1016_j_cej_2022_135720 crossref_primary_10_1021_acs_inorgchem_1c03628 crossref_primary_10_3390_chemistry5020060 crossref_primary_10_1016_j_ccr_2019_213081 crossref_primary_10_1016_j_cis_2023_102967 crossref_primary_10_1002_smll_202207342 crossref_primary_10_1016_j_cattod_2024_115117 crossref_primary_10_1016_j_mtchem_2022_101037 crossref_primary_10_1016_j_compositesb_2022_110174 crossref_primary_10_1002_smll_202303632 crossref_primary_10_1016_j_cej_2020_128069 crossref_primary_10_1021_acs_inorgchem_1c03982 crossref_primary_10_1039_D3NJ03923D crossref_primary_10_1039_D0NR08744K crossref_primary_10_1007_s10904_024_03037_z crossref_primary_10_1039_D0TA04016A crossref_primary_10_1016_j_ijhydene_2019_04_266 crossref_primary_10_1016_j_apcatb_2021_120987 crossref_primary_10_1016_j_jssc_2022_123287 crossref_primary_10_1016_j_jclepro_2024_141548 crossref_primary_10_1016_j_ccr_2019_03_012 crossref_primary_10_1039_C9TA13632K crossref_primary_10_1016_j_electacta_2023_143079 crossref_primary_10_1021_acs_cgd_0c00129 crossref_primary_10_1016_j_apsusc_2024_159590 crossref_primary_10_1021_acsaem_1c01085 crossref_primary_10_3390_molecules25051042 crossref_primary_10_1016_j_ccr_2019_213093 crossref_primary_10_1016_j_clet_2022_100417 crossref_primary_10_1039_D0TA08094B crossref_primary_10_1039_C9TA11280D crossref_primary_10_3390_ma13214700 crossref_primary_10_1039_D2TA09582C crossref_primary_10_1002_aic_18323 crossref_primary_10_1002_ange_202113044 crossref_primary_10_1016_j_apcatb_2021_120996 crossref_primary_10_1016_j_apcatb_2019_05_027 crossref_primary_10_1016_j_cej_2021_132725 |
Cites_doi | 10.1002/anie.201500267 10.1021/ja200122f 10.1016/j.rser.2012.01.029 10.1016/j.apcatb.2014.11.007 10.1002/cssc.201403345 10.1039/C6TA00766J 10.1002/adfm.201300510 10.1039/C5TA04001A 10.1039/C6RA25810G 10.1039/C4CS00448E 10.1039/C4CC09407G 10.1039/C4CC01776E 10.1007/s12274-017-1519-1 10.1021/ja403330m 10.1016/j.jpowsour.2017.09.018 10.1039/C4CC01086H 10.1002/aenm.201602643 10.1039/C6CP07294A 10.1039/c3cc43218a 10.1039/C4EE02853H 10.1016/j.nanoen.2017.03.028 10.1002/adfm.201700451 10.1039/C7CS00315C 10.1039/C3EE42350F 10.1021/acscatal.5b02302 10.1002/chem.200903526 10.1021/acsami.5b12524 10.1016/j.jpowsour.2016.06.114 10.1002/cctc.201500398 10.1016/j.jpowsour.2016.10.022 10.1002/anie.201708385 10.1007/s12274-016-1110-1 10.1002/adma.201605957 10.1016/j.chempr.2016.12.002 10.1021/acsami.6b08740 10.1039/C5EE02460A 10.1021/acsami.7b01037 10.1002/anie.201603990 10.1002/cctc.201701691 10.1002/smll.201603279 10.1039/C4CY01049C 10.1016/j.apcatb.2017.07.020 10.1021/ic5010352 10.1039/C4RA15680C 10.1002/chem.201703682 10.1039/B800489G 10.1021/acsami.7b09428 10.1021/acssuschemeng.7b00153 10.1021/acsami.6b12197 10.1021/acsami.7b01161 10.1021/acssuschemeng.7b00598 10.1016/S0360-3199(97)00012-8 10.1002/asia.201601518 10.1016/j.ccr.2015.08.004 10.1039/C4CS00470A 10.1021/acsami.7b10680 10.1016/j.pmatsci.2017.09.002 10.1021/jacs.5b02688 10.1002/adfm.201703455 10.1021/acsami.6b04729 10.1021/cs3005874 10.1002/celc.201600452 10.1039/C6TA05829A 10.1038/nmat2317 10.1021/acs.jpcc.6b02818 10.1021/jacs.6b03125 10.1016/j.apcatb.2017.03.057 10.1016/j.materresbull.2017.04.020 10.1039/C5DT00493D 10.1039/C5EE03503A 10.1038/s41598-017-05636-y 10.1002/aenm.201600423 10.1016/j.ijhydene.2017.06.191 10.1039/C7CE00215G 10.1002/anie.201800571 10.1016/j.ijhydene.2007.05.027 10.1039/C6CY02328B 10.1002/aenm.201500985 10.1039/C5SC04425A 10.1016/j.rser.2005.01.009 10.1021/acsami.7b08647 10.1039/C6DT02667B 10.1039/C7TA10284D 10.1021/acsami.7b11101 10.1021/acsenergylett.7b00219 10.1039/C7NH00079K 10.1002/anie.201612423 10.1021/acsami.6b04058 10.1016/j.apcatb.2017.01.040 10.1002/admi.201500037 10.1002/advs.201600371 10.1039/C7TA07587A 10.1016/j.nanoen.2017.07.043 10.1021/ja300539p 10.1016/j.rser.2015.10.135 10.1039/C7TA01453H 10.1039/C7EE03457A 10.1039/C6TA04619C 10.1002/anie.201600431 10.1039/C7TA00855D 10.1039/C5NR01955A 10.1038/ncomms15341 10.1002/smll.201600976 10.1039/C5CP06292F 10.1039/C7TA03167J 10.1021/acs.chemmater.6b02586 10.1039/C6TA06185K 10.1039/C5CY01716E 10.1021/ja3043905 10.1038/srep13801 10.1039/C5TA01135C 10.1039/C6TA05790J 10.1039/C5TA05018A 10.1039/C5NR03810C 10.1021/ef0500538 10.1039/C7TA05571D 10.1016/j.nanoen.2017.01.046 10.1021/ja407176p 10.1016/j.cattod.2008.08.039 10.1039/C5RA17427A 10.1021/acsami.6b01266 10.1021/jz4002345 10.1002/anie.201006882 10.1039/C5TA05210F 10.1039/C7TA10404A 10.1039/C5EE00161G 10.1038/nenergy.2015.27 10.1039/C6TA05196K 10.1039/C4CC02401J 10.1039/C7TA00692F 10.1039/C6TA07424C 10.1002/adma.201606814 10.1021/ja509019k 10.1039/C5TA00136F 10.1039/C4CY00667D 10.1016/j.ijhydene.2006.11.022 10.1039/C4TA01656D 10.1039/C7TA06671F 10.1038/ncomms7512 10.1039/C7FD00029D 10.1021/acscatal.6b01222 10.1016/0927-0248(95)00003-8 10.1016/j.ccr.2017.02.010 10.1016/j.energy.2015.08.013 10.1039/C4CC03946G 10.1016/j.chempr.2017.04.016 10.1039/c3ee41548a 10.1002/cctc.201300233 10.1021/acs.chemmater.5b02877 10.1016/j.electacta.2017.08.047 10.1039/C6TA10405C 10.1021/acsami.6b13411 10.1002/chem.200700480 10.1039/B809990C 10.1002/adma.201703614 10.1016/j.jssc.2015.10.037 10.1021/jacs.5b00075 10.1039/C7CY01514C 10.1039/C6TA06553H 10.1002/smll.201700632 10.1039/b807080f 10.1002/chem.201605337 10.1021/acsami.7b06152 10.1016/j.electacta.2017.06.179 10.1002/adma.201703663 10.1021/acsami.6b04169 10.1002/anie.201707238 10.1021/acs.inorgchem.7b01910 10.1039/c3cc39173f 10.1039/C7DT01970J 10.1016/j.apcatb.2016.02.061 10.1016/j.nanoen.2016.08.040 10.1039/C5TA09743F 10.1039/C6TA01900E 10.1038/ncomms9304 10.1039/C7NJ02334K 10.1016/j.carbon.2017.01.085 10.1021/ic801383x 10.1039/C6TA06496E 10.1021/acssuschemeng.6b02032 10.1016/j.apcatb.2017.08.086 10.1039/C6TA00011H |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | RYH AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.201801193 |
DatabaseName | CiNii Complete CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_201801193 AENM201801193 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Natural Science Foundation of China funderid: 51772008 – fundername: National Key Research and Development Program of China funderid: 2017YFA0206701 – fundername: National Program for Support of Top‐notch Young Professionals – fundername: Changjiang Scholar Program |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADMLS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFWVQ AFZJQ AGHNM AGYGG AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS EJD G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W RNS ROL RX1 RYH SUPJJ WBKPD WOHZO WXSBR ZZTAW ~S- AAMMB AEFGJ AGXDD AIDQK AIDYY 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION FEDTE GODZA HVGLF 7SP 7TB 8FD F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c4493-d360ed31fd0980fc9943d6b7a5a2bf61db0eb57a893f7d877a4a802a7ed4b4773 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:14:32 EDT 2025 Thu Apr 24 23:02:22 EDT 2025 Tue Jul 01 01:43:25 EDT 2025 Wed Aug 20 07:24:49 EDT 2025 Thu Jun 26 23:44:17 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4493-d360ed31fd0980fc9943d6b7a5a2bf61db0eb57a893f7d877a4a802a7ed4b4773 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0456-4615 0000-0001-5385-9650 |
PQID | 2093214125 |
PQPubID | 886389 |
PageCount | 33 |
ParticipantIDs | proquest_journals_2093214125 crossref_citationtrail_10_1002_aenm_201801193 crossref_primary_10_1002_aenm_201801193 wiley_primary_10_1002_aenm_201801193_AENM201801193 nii_cinii_1871991017705772544 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 27, 2018 |
PublicationDateYYYYMMDD | 2018-08-27 |
PublicationDate_xml | – month: 08 year: 2018 text: August 27, 2018 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced Energy Materials |
PublicationYear | 2018 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2017; 5 2017; 7 2017; 42 2017; 41 2017; 8 2010; 16 2017; 2 2013; 4 2017; 4 2016; 307 1995; 38 2013; 23 2017; 46 2012; 16 2007; 32 2017; 112 2013; 5 2013; 6 2017; 9 2014; 136 2017; 116 2018; 6 2012; 134 2014; 2 2015; 137 2017; 39 2017; 33 2015; 44 2017; 35 2016; 233 2015; 90 2014; 7 2014; 50 2017; 366 2017; 201 2016; 190 2017; 247 2016; 45 2017; 206 2014; 53 2017; 218 2015; 2 2018; 220 2015; 6 2015; 5 2015; 3 2013; 49 1997; 22 2015; 51 2015; 168 2017; 27 2017; 23 2015; 54 2016; 326 2017; 250 2017; 29 2017; 210 2016; 18 2015; 8 2007; 11 2015; 7 2016; 120 2007; 13 2011; 133 2017; 337 2016; 12 2016; 55 2009; 139 2016; 4 2016; 6 2017; 96 2016; 7 2005; 19 2012; 2 2016; 1 2015; 27 2017; 10 2017; 13 2017; 12 2017; 56 2011; 50 2018; 92 2008; 47 2009; 8 2013; 135 2017; 19 2016; 138 2016; 334 2009; 2 2016; 28 2018; 11 2018; 10 2009; 38 2016; 8 2016; 9 2018; 57 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_178_1 e_1_2_8_5_1 e_1_2_8_151_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_170_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_174_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_166_1 e_1_2_8_189_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_162_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_181_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_185_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 Wang J. (e_1_2_8_22_1) 2017; 29 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_179_1 e_1_2_8_110_1 e_1_2_8_152_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_171_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_137_1 e_1_2_8_175_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_156_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_163_1 e_1_2_8_98_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_182_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_186_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_167_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_138_1 e_1_2_8_172_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_176_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_190_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_141_1 e_1_2_8_164_1 e_1_2_8_97_1 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_149_1 e_1_2_8_183_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_145_1 e_1_2_8_168_1 e_1_2_8_187_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_180_1 e_1_2_8_80_1 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_150_1 e_1_2_8_8_1 e_1_2_8_192_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_139_1 e_1_2_8_173_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_61_1 e_1_2_8_135_1 e_1_2_8_177_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_191_1 e_1_2_8_92_1 e_1_2_8_165_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_142_1 e_1_2_8_161_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_184_1 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_169_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_146_1 e_1_2_8_188_1 |
References_xml | – volume: 46 start-page: 5730 year: 2017 publication-title: Chem. Soc. Rev. – volume: 4 start-page: 15536 year: 2016 publication-title: J. Mater. Chem. A – volume: 44 start-page: 2060 year: 2015 publication-title: Chem. Soc. Rev. – volume: 44 start-page: 5148 year: 2015 publication-title: Chem. Soc. Rev. – volume: 7 start-page: 3686 year: 2017 publication-title: RSC Adv. – volume: 27 start-page: 1703455 year: 2017 publication-title: Adv. Funct. Mater. – volume: 90 start-page: 1075 year: 2015 publication-title: Energy – volume: 13 start-page: 8726 year: 2007 publication-title: Chem. ‐ Eur. J. – volume: 33 start-page: 238 year: 2017 publication-title: Nano Energy – volume: 28 start-page: 6313 year: 2016 publication-title: Chem. Mater. – volume: 55 start-page: 414 year: 2016 publication-title: Renewable Sustainable Energy Rev. – volume: 137 start-page: 3197 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 1 year: 2016 publication-title: Nat. Energy – volume: 4 start-page: 17288 year: 2016 publication-title: J. Mater. Chem. A – volume: 6 start-page: 1305 year: 2018 publication-title: J. Mater. Chem. A – volume: 6 start-page: 3840 year: 2016 publication-title: Catal. Sci. Technol. – volume: 3 start-page: 20288 year: 2015 publication-title: J. Mater. Chem. A – volume: 8 start-page: 603 year: 2015 publication-title: ChemSusChem – volume: 42 start-page: 19096 year: 2017 publication-title: Int. J. Hydrogen Energy – volume: 218 start-page: 743 year: 2017 publication-title: Appl. Catal., B – volume: 137 start-page: 7169 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 16997 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 10390 year: 2014 publication-title: Chem. Commun. – volume: 46 start-page: 10553 year: 2017 publication-title: Dalton Trans. – volume: 5 start-page: 10290 year: 2015 publication-title: RSC Adv. – volume: 5 start-page: 6170 year: 2017 publication-title: J. Mater. Chem. A – volume: 2 start-page: 1070 year: 2017 publication-title: ACS Energy Lett. – volume: 7 start-page: 677 year: 2017 publication-title: Catal. Sci. Technol. – volume: 250 start-page: 167 year: 2017 publication-title: Electrochim. Acta – volume: 5 start-page: 364 year: 2015 publication-title: Catal. Sci. Technol. – volume: 8 start-page: 15341 year: 2017 publication-title: Nat. Commun. – volume: 49 start-page: 6761 year: 2013 publication-title: Chem. Commun. – volume: 8 start-page: 21278 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 18037 year: 2016 publication-title: J. Mater. Chem. A – volume: 2 start-page: 1500037 year: 2015 publication-title: Adv. Mater. Interfaces – volume: 8 start-page: 364 year: 2015 publication-title: Energy Environ. Sci. – volume: 247 start-page: 258 year: 2017 publication-title: Electrochim. Acta – volume: 8 start-page: 26794 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 41 start-page: 10966 year: 2017 publication-title: New J. Chem. – volume: 55 start-page: 9389 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 7 start-page: 5266 year: 2017 publication-title: Sci. Rep. – volume: 138 start-page: 8336 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 16 start-page: 11133 year: 2010 publication-title: Chem. ‐ Eur. J. – volume: 29 start-page: 1606814 year: 2017 publication-title: Adv. Mater. – volume: 4 start-page: 16225 year: 2016 publication-title: J. Mater. Chem. A – volume: 9 start-page: 23222 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 791 year: 2017 publication-title: Chem – volume: 96 start-page: 385 year: 2017 publication-title: Mater. Res. Bull. – volume: 3 start-page: 7163 year: 2015 publication-title: J. Mater. Chem. A – volume: 5 start-page: 1500985 year: 2015 publication-title: Adv. Energy Mater. – volume: 11 start-page: 744 year: 2018 publication-title: Energy Environ. Sci. – volume: 55 start-page: 6411 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 56 start-page: 13781 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 47 start-page: 11688 year: 2008 publication-title: Inorg. Chem. – volume: 56 start-page: 13001 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 6 start-page: 8304 year: 2015 publication-title: Nat. Commun. – volume: 4 start-page: 1202 year: 2016 publication-title: J. Mater. Chem. A – volume: 50 start-page: 7063 year: 2014 publication-title: Chem. Commun. – volume: 4 start-page: 5616 year: 2016 publication-title: J. Mater. Chem. A – volume: 56 start-page: 11938 year: 2017 publication-title: Inorg. Chem. – volume: 38 start-page: 253 year: 2009 publication-title: Chem. Soc. Rev. – volume: 233 start-page: 194 year: 2016 publication-title: J. Solid State Chem. – volume: 50 start-page: 8533 year: 2014 publication-title: Chem. Commun. – volume: 49 start-page: 3564 year: 2013 publication-title: Chem. Commun. – volume: 8 start-page: 3563 year: 2015 publication-title: Energy Environ. Sci. – volume: 307 start-page: 267 year: 2016 publication-title: Coord. Chem. Rev. – volume: 2 start-page: 342 year: 2017 publication-title: Nanoscale Horiz. – volume: 18 start-page: 4780 year: 2016 publication-title: Phys. Chem. Chem. Phys. – volume: 22 start-page: 1133 year: 1997 publication-title: Int. J. Hydrogen Energy – volume: 50 start-page: 1849 year: 2011 publication-title: Angew. Chem., Int. Ed. – volume: 4 start-page: 16645 year: 2016 publication-title: J. Mater. Chem. A – volume: 7 start-page: 18004 year: 2015 publication-title: Nanoscale – volume: 8 start-page: 10808 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 32106 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 19 start-page: 2098 year: 2005 publication-title: Energy Fuels – volume: 6 start-page: 1600423 year: 2016 publication-title: Adv. Energy Mater. – volume: 9 start-page: 34269 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 35 start-page: 115 year: 2017 publication-title: Nano Energy – volume: 9 start-page: 10759 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 6512 year: 2015 publication-title: Nat. Commun. – volume: 6 start-page: 5887 year: 2016 publication-title: ACS Catal. – volume: 366 start-page: 193 year: 2017 publication-title: J. Power Sources – volume: 5 start-page: 24116 year: 2017 publication-title: J. Mater. Chem. A – volume: 45 start-page: 13810 year: 2016 publication-title: Dalton Trans. – volume: 7 start-page: 11055 year: 2015 publication-title: Nanoscale – volume: 112 start-page: 1703663 year: 2017 publication-title: Adv. Mater. – volume: 136 start-page: 14845 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 15430 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 17982 year: 2017 publication-title: J. Mater. Chem. A – volume: 4 start-page: 15148 year: 2016 publication-title: J. Mater. Chem. A – volume: 10 start-page: 3035 year: 2017 publication-title: Nano Res. – volume: 5 start-page: 5000 year: 2017 publication-title: J. Mater. Chem. A – volume: 54 start-page: 5331 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 139 start-page: 244 year: 2009 publication-title: Catal. Today – volume: 38 start-page: 1450 year: 2009 publication-title: Chem. Soc. Rev. – volume: 168 start-page: 572 year: 2015 publication-title: Appl. Catal., B – volume: 334 start-page: 112 year: 2016 publication-title: J. Power Sources – volume: 4 start-page: 1600371 year: 2017 publication-title: Adv. Sci. – volume: 13 start-page: 1603279 year: 2017 publication-title: Small – volume: 5 start-page: 7001 year: 2017 publication-title: J. Mater. Chem. A – volume: 337 start-page: 80 year: 2017 publication-title: Coord. Chem. Rev. – volume: 8 start-page: 1923 year: 2015 publication-title: Energy Environ. Sci. – volume: 8 start-page: 76 year: 2009 publication-title: Nat. Mater. – volume: 32 start-page: 3797 year: 2007 publication-title: Int. J. Hydrogen Energy – volume: 4 start-page: 7158 year: 2016 publication-title: ACS Sustainable Chem. Eng. – volume: 44 start-page: 6212 year: 2015 publication-title: Dalton Trans. – volume: 23 start-page: 5363 year: 2013 publication-title: Adv. Funct. Mater. – volume: 27 start-page: 1700451 year: 2017 publication-title: Adv. Funct. Mater. – volume: 134 start-page: 13926 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 1602643 year: 2017 publication-title: Adv. Energy Mater. – volume: 4 start-page: 188 year: 2017 publication-title: ChemElectroChem – volume: 5 start-page: 8680 year: 2017 publication-title: J. Mater. Chem. A – volume: 13 start-page: 1700632 year: 2017 publication-title: Small – volume: 29 start-page: 35 year: 2017 publication-title: Adv. Mater. – volume: 19 start-page: 4049 year: 2017 publication-title: CrystEngComm – volume: 120 start-page: 12539 year: 2016 publication-title: J. Phys. Chem. C – volume: 9 start-page: 5213 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 1920 year: 2015 publication-title: ChemCatChem – volume: 326 start-page: 50 year: 2016 publication-title: J. Power Sources – volume: 16 start-page: 2154 year: 2012 publication-title: Renewable Sustainable Energy Rev. – volume: 10 start-page: 1113 year: 2018 publication-title: ChemCatChem – volume: 6 start-page: 1045 year: 2016 publication-title: ACS Catal. – volume: 116 start-page: 68 year: 2017 publication-title: Carbon – volume: 23 start-page: 2255 year: 2017 publication-title: Chem. ‐ Eur. J. – volume: 9 start-page: 2234 year: 2016 publication-title: Nano Res. – volume: 57 start-page: 2520 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 51 start-page: 2056 year: 2015 publication-title: Chem. Commun. – volume: 2 start-page: 11606 year: 2014 publication-title: J. Mater. Chem. A – volume: 7 start-page: 4478 year: 2017 publication-title: Catal. Sci. Technol. – volume: 8 start-page: 20675 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 29 start-page: 1605957 year: 2017 publication-title: Adv. Mater. – volume: 38 start-page: 249 year: 1995 publication-title: Sol. Energy Mater. Sol. Cells – volume: 23 start-page: 15518 year: 2017 publication-title: Chem. ‐ Eur. J. – volume: 2 start-page: 52 year: 2017 publication-title: Chem – volume: 3 start-page: 10386 year: 2015 publication-title: J. Mater. Chem. A – volume: 7 start-page: 1690 year: 2016 publication-title: Chem. Sci. – volume: 12 start-page: 515 year: 2017 publication-title: Chem. ‐ Asian J. – volume: 28 start-page: 143 year: 2016 publication-title: Nano Energy – volume: 9 start-page: 11642 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 56 start-page: 3036 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 133 start-page: 11822 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 21471 year: 2015 publication-title: J. Mater. Chem. A – volume: 6 start-page: 3229 year: 2013 publication-title: Energy Environ. Sci. – volume: 201 start-page: 71 year: 2017 publication-title: Faraday Discuss. – volume: 12 start-page: 4669 year: 2016 publication-title: Small – volume: 50 start-page: 8944 year: 2014 publication-title: Chem. Commun. – volume: 4 start-page: 6006 year: 2016 publication-title: J. Mater. Chem. A – volume: 9 start-page: 40171 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 925 year: 2013 publication-title: J. Phys. Chem. Lett. – volume: 8 start-page: 13378 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 1012 year: 2016 publication-title: Energy Environ. Sci. – volume: 9 start-page: 31841 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 135 start-page: 10210 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 13801 year: 2015 publication-title: Sci. Rep. – volume: 190 start-page: 12 year: 2016 publication-title: Appl. Catal., B – volume: 11 start-page: 401 year: 2007 publication-title: Renewable Sustainable Energy Rev. – volume: 29 start-page: 1703614 year: 2017 publication-title: Adv. Mater. – volume: 210 start-page: 45 year: 2017 publication-title: Appl. Catal., B – volume: 5 start-page: 18823 year: 2017 publication-title: J. Mater. Chem. A – volume: 5 start-page: 20985 year: 2017 publication-title: J. Mater. Chem. A – volume: 27 start-page: 7636 year: 2015 publication-title: Chem. Mater. – volume: 5 start-page: 5646 year: 2017 publication-title: ACS Sustainable Chem. Eng. – volume: 4 start-page: 5952 year: 2016 publication-title: J. Mater. Chem. A – volume: 53 start-page: 10122 year: 2014 publication-title: Inorg. Chem. – volume: 7 start-page: 130 year: 2014 publication-title: Energy Environ. Sci. – volume: 39 start-page: 626 year: 2017 publication-title: Nano Energy – volume: 92 start-page: 33 year: 2018 publication-title: Prog. Mater. Sci. – volume: 2 start-page: 2630 year: 2012 publication-title: ACS Catal. – volume: 5 start-page: 3000 year: 2013 publication-title: ChemCatChem – volume: 5 start-page: 525 year: 2015 publication-title: Catal. Sci. Technol. – volume: 3 start-page: 16435 year: 2015 publication-title: J. Mater. Chem. A – volume: 6 start-page: 3571 year: 2018 publication-title: J. Mater. Chem. A – volume: 5 start-page: 4771 year: 2017 publication-title: ACS Sustainable Chem. Eng. – volume: 32 start-page: 1121 year: 2007 publication-title: Int. J. Hydrogen Energy – volume: 206 start-page: 426 year: 2017 publication-title: Appl. Catal., B – volume: 5 start-page: 90265 year: 2015 publication-title: RSC Adv. – volume: 220 start-page: 607 year: 2018 publication-title: Appl. Catal., B – volume: 19 start-page: 2104 year: 2017 publication-title: Phys. Chem. Chem. Phys. – volume: 8 start-page: 35390 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 148 year: 2009 publication-title: Energy Environ. Sci. – volume: 4 start-page: 16057 year: 2016 publication-title: J. Mater. Chem. A – volume: 4 start-page: 13611 year: 2016 publication-title: J. Mater. Chem. A – volume: 134 start-page: 7211 year: 2012 publication-title: J. Am. Chem. Soc. – ident: e_1_2_8_79_1 doi: 10.1002/anie.201500267 – ident: e_1_2_8_177_1 doi: 10.1021/ja200122f – ident: e_1_2_8_2_1 doi: 10.1016/j.rser.2012.01.029 – ident: e_1_2_8_147_1 doi: 10.1016/j.apcatb.2014.11.007 – ident: e_1_2_8_48_1 doi: 10.1002/cssc.201403345 – ident: e_1_2_8_185_1 doi: 10.1039/C6TA00766J – ident: e_1_2_8_106_1 doi: 10.1002/adfm.201300510 – ident: e_1_2_8_96_1 doi: 10.1039/C5TA04001A – ident: e_1_2_8_118_1 doi: 10.1039/C6RA25810G – ident: e_1_2_8_16_1 doi: 10.1039/C4CS00448E – ident: e_1_2_8_138_1 doi: 10.1039/C4CC09407G – ident: e_1_2_8_137_1 doi: 10.1039/C4CC01776E – ident: e_1_2_8_64_1 doi: 10.1007/s12274-017-1519-1 – ident: e_1_2_8_174_1 doi: 10.1021/ja403330m – ident: e_1_2_8_126_1 doi: 10.1016/j.jpowsour.2017.09.018 – ident: e_1_2_8_149_1 doi: 10.1039/C4CC01086H – ident: e_1_2_8_44_1 doi: 10.1002/aenm.201602643 – ident: e_1_2_8_110_1 doi: 10.1039/C6CP07294A – ident: e_1_2_8_191_1 – ident: e_1_2_8_130_1 doi: 10.1039/c3cc43218a – ident: e_1_2_8_157_1 doi: 10.1039/C4EE02853H – ident: e_1_2_8_88_1 doi: 10.1016/j.nanoen.2017.03.028 – ident: e_1_2_8_122_1 doi: 10.1002/adfm.201700451 – ident: e_1_2_8_30_1 doi: 10.1039/C7CS00315C – ident: e_1_2_8_1_1 doi: 10.1039/C3EE42350F – ident: e_1_2_8_189_1 – ident: e_1_2_8_63_1 doi: 10.1021/acscatal.5b02302 – ident: e_1_2_8_58_1 doi: 10.1002/chem.200903526 – ident: e_1_2_8_152_1 doi: 10.1021/acsami.5b12524 – ident: e_1_2_8_40_1 doi: 10.1016/j.jpowsour.2016.06.114 – ident: e_1_2_8_80_1 doi: 10.1002/cctc.201500398 – ident: e_1_2_8_114_1 doi: 10.1016/j.jpowsour.2016.10.022 – ident: e_1_2_8_50_1 doi: 10.1002/anie.201708385 – ident: e_1_2_8_112_1 doi: 10.1007/s12274-016-1110-1 – ident: e_1_2_8_123_1 doi: 10.1002/adma.201605957 – ident: e_1_2_8_34_1 doi: 10.1016/j.chempr.2016.12.002 – ident: e_1_2_8_166_1 doi: 10.1021/acsami.6b08740 – ident: e_1_2_8_78_1 doi: 10.1039/C5EE02460A – ident: e_1_2_8_92_1 doi: 10.1021/acsami.7b01037 – ident: e_1_2_8_145_1 doi: 10.1002/anie.201603990 – ident: e_1_2_8_23_1 doi: 10.1002/cctc.201701691 – ident: e_1_2_8_172_1 doi: 10.1002/smll.201603279 – ident: e_1_2_8_179_1 doi: 10.1039/C4CY01049C – ident: e_1_2_8_6_1 – ident: e_1_2_8_54_1 doi: 10.1016/j.apcatb.2017.07.020 – ident: e_1_2_8_176_1 doi: 10.1021/ic5010352 – ident: e_1_2_8_87_1 doi: 10.1039/C4RA15680C – ident: e_1_2_8_141_1 doi: 10.1002/chem.201703682 – ident: e_1_2_8_13_1 doi: 10.1039/B800489G – ident: e_1_2_8_39_1 doi: 10.1021/acsami.7b09428 – ident: e_1_2_8_124_1 doi: 10.1021/acssuschemeng.7b00153 – ident: e_1_2_8_47_1 doi: 10.1021/acsami.6b12197 – ident: e_1_2_8_178_1 doi: 10.1021/acsami.7b01161 – ident: e_1_2_8_100_1 doi: 10.1021/acssuschemeng.7b00598 – ident: e_1_2_8_18_1 doi: 10.1016/S0360-3199(97)00012-8 – ident: e_1_2_8_25_1 doi: 10.1002/asia.201601518 – ident: e_1_2_8_29_1 doi: 10.1016/j.ccr.2015.08.004 – ident: e_1_2_8_68_1 doi: 10.1039/C4CS00470A – ident: e_1_2_8_120_1 doi: 10.1021/acsami.7b10680 – ident: e_1_2_8_37_1 doi: 10.1016/j.pmatsci.2017.09.002 – ident: e_1_2_8_57_1 doi: 10.1021/jacs.5b02688 – ident: e_1_2_8_53_1 doi: 10.1002/adfm.201703455 – ident: e_1_2_8_160_1 doi: 10.1021/acsami.6b04729 – ident: e_1_2_8_35_1 doi: 10.1021/cs3005874 – ident: e_1_2_8_115_1 doi: 10.1002/celc.201600452 – ident: e_1_2_8_116_1 doi: 10.1039/C6TA05829A – ident: e_1_2_8_7_1 – ident: e_1_2_8_19_1 doi: 10.1038/nmat2317 – ident: e_1_2_8_76_1 doi: 10.1021/acs.jpcc.6b02818 – ident: e_1_2_8_42_1 doi: 10.1021/jacs.6b03125 – ident: e_1_2_8_55_1 doi: 10.1016/j.apcatb.2017.03.057 – ident: e_1_2_8_28_1 doi: 10.1016/j.materresbull.2017.04.020 – ident: e_1_2_8_183_1 doi: 10.1039/C5DT00493D – ident: e_1_2_8_26_1 doi: 10.1039/C5EE03503A – ident: e_1_2_8_41_1 doi: 10.1038/s41598-017-05636-y – ident: e_1_2_8_33_1 doi: 10.1002/aenm.201600423 – ident: e_1_2_8_181_1 doi: 10.1016/j.ijhydene.2017.06.191 – ident: e_1_2_8_27_1 doi: 10.1039/C7CE00215G – ident: e_1_2_8_20_1 doi: 10.1002/anie.201800571 – ident: e_1_2_8_10_1 doi: 10.1016/j.ijhydene.2007.05.027 – ident: e_1_2_8_170_1 doi: 10.1039/C6CY02328B – ident: e_1_2_8_11_1 doi: 10.1002/aenm.201500985 – ident: e_1_2_8_109_1 doi: 10.1039/C5SC04425A – ident: e_1_2_8_127_1 doi: 10.1016/j.rser.2005.01.009 – ident: e_1_2_8_46_1 doi: 10.1021/acsami.7b08647 – ident: e_1_2_8_171_1 doi: 10.1039/C6DT02667B – ident: e_1_2_8_164_1 doi: 10.1039/C7TA10284D – ident: e_1_2_8_190_1 – ident: e_1_2_8_45_1 doi: 10.1021/acsami.7b11101 – ident: e_1_2_8_70_1 doi: 10.1021/acsenergylett.7b00219 – ident: e_1_2_8_119_1 doi: 10.1039/C7NH00079K – ident: e_1_2_8_131_1 doi: 10.1002/anie.201612423 – ident: e_1_2_8_186_1 doi: 10.1021/acsami.6b04058 – ident: e_1_2_8_150_1 doi: 10.1016/j.apcatb.2017.01.040 – ident: e_1_2_8_136_1 doi: 10.1002/admi.201500037 – ident: e_1_2_8_12_1 doi: 10.1002/advs.201600371 – ident: e_1_2_8_162_1 doi: 10.1039/C7TA07587A – ident: e_1_2_8_108_1 doi: 10.1016/j.nanoen.2017.07.043 – ident: e_1_2_8_153_1 doi: 10.1021/ja300539p – ident: e_1_2_8_3_1 doi: 10.1016/j.rser.2015.10.135 – ident: e_1_2_8_62_1 doi: 10.1039/C7TA01453H – ident: e_1_2_8_104_1 doi: 10.1039/C7EE03457A – ident: e_1_2_8_187_1 doi: 10.1039/C6TA04619C – ident: e_1_2_8_143_1 doi: 10.1002/anie.201600431 – ident: e_1_2_8_169_1 doi: 10.1039/C7TA00855D – ident: e_1_2_8_101_1 doi: 10.1039/C5NR01955A – ident: e_1_2_8_105_1 doi: 10.1038/ncomms15341 – ident: e_1_2_8_67_1 doi: 10.1002/smll.201600976 – ident: e_1_2_8_168_1 doi: 10.1039/C5CP06292F – ident: e_1_2_8_113_1 doi: 10.1039/C7TA03167J – ident: e_1_2_8_94_1 doi: 10.1021/acs.chemmater.6b02586 – ident: e_1_2_8_117_1 doi: 10.1039/C6TA06185K – ident: e_1_2_8_66_1 doi: 10.1039/C5CY01716E – ident: e_1_2_8_182_1 doi: 10.1021/ja3043905 – ident: e_1_2_8_69_1 doi: 10.1038/srep13801 – ident: e_1_2_8_155_1 doi: 10.1039/C5TA01135C – ident: e_1_2_8_175_1 doi: 10.1039/C6TA05790J – ident: e_1_2_8_83_1 doi: 10.1039/C5TA05018A – volume: 29 start-page: 35 year: 2017 ident: e_1_2_8_22_1 publication-title: Adv. Mater. – ident: e_1_2_8_102_1 doi: 10.1039/C5NR03810C – ident: e_1_2_8_9_1 doi: 10.1021/ef0500538 – ident: e_1_2_8_82_1 doi: 10.1039/C7TA05571D – ident: e_1_2_8_161_1 doi: 10.1016/j.nanoen.2017.01.046 – ident: e_1_2_8_146_1 doi: 10.1021/ja407176p – ident: e_1_2_8_15_1 doi: 10.1016/j.cattod.2008.08.039 – ident: e_1_2_8_81_1 doi: 10.1039/C5RA17427A – ident: e_1_2_8_98_1 doi: 10.1021/acsami.6b01266 – ident: e_1_2_8_74_1 doi: 10.1021/jz4002345 – ident: e_1_2_8_142_1 doi: 10.1002/anie.201006882 – ident: e_1_2_8_165_1 doi: 10.1039/C5TA05210F – ident: e_1_2_8_21_1 doi: 10.1039/C7TA10404A – ident: e_1_2_8_36_1 doi: 10.1039/C5EE00161G – ident: e_1_2_8_43_1 doi: 10.1038/nenergy.2015.27 – ident: e_1_2_8_99_1 doi: 10.1039/C6TA05196K – ident: e_1_2_8_75_1 doi: 10.1039/C4CC02401J – ident: e_1_2_8_125_1 doi: 10.1039/C7TA00692F – ident: e_1_2_8_163_1 doi: 10.1039/C6TA07424C – ident: e_1_2_8_60_1 doi: 10.1002/adma.201606814 – ident: e_1_2_8_144_1 doi: 10.1021/ja509019k – ident: e_1_2_8_134_1 doi: 10.1039/C5TA00136F – ident: e_1_2_8_24_1 doi: 10.1039/C4CY00667D – ident: e_1_2_8_14_1 doi: 10.1016/j.ijhydene.2006.11.022 – ident: e_1_2_8_59_1 doi: 10.1039/C4TA01656D – ident: e_1_2_8_93_1 doi: 10.1039/C7TA06671F – ident: e_1_2_8_77_1 doi: 10.1038/ncomms7512 – ident: e_1_2_8_140_1 doi: 10.1039/C7FD00029D – ident: e_1_2_8_17_1 doi: 10.1021/acscatal.6b01222 – ident: e_1_2_8_128_1 doi: 10.1016/0927-0248(95)00003-8 – ident: e_1_2_8_32_1 doi: 10.1016/j.ccr.2017.02.010 – ident: e_1_2_8_91_1 doi: 10.1016/j.energy.2015.08.013 – ident: e_1_2_8_159_1 doi: 10.1039/C4CC03946G – ident: e_1_2_8_107_1 doi: 10.1016/j.chempr.2017.04.016 – ident: e_1_2_8_139_1 doi: 10.1039/c3ee41548a – ident: e_1_2_8_184_1 doi: 10.1002/cctc.201300233 – ident: e_1_2_8_61_1 doi: 10.1021/acs.chemmater.5b02877 – ident: e_1_2_8_51_1 doi: 10.1016/j.electacta.2017.08.047 – ident: e_1_2_8_97_1 doi: 10.1039/C6TA10405C – ident: e_1_2_8_121_1 doi: 10.1021/acsami.6b13411 – ident: e_1_2_8_129_1 doi: 10.1002/chem.200700480 – ident: e_1_2_8_4_1 doi: 10.1039/B809990C – ident: e_1_2_8_31_1 doi: 10.1002/adma.201703614 – ident: e_1_2_8_132_1 doi: 10.1016/j.jssc.2015.10.037 – ident: e_1_2_8_154_1 doi: 10.1021/jacs.5b00075 – ident: e_1_2_8_148_1 doi: 10.1039/C7CY01514C – ident: e_1_2_8_192_1 – ident: e_1_2_8_5_1 – ident: e_1_2_8_89_1 doi: 10.1039/C6TA06553H – ident: e_1_2_8_52_1 doi: 10.1002/smll.201700632 – ident: e_1_2_8_38_1 doi: 10.1039/b807080f – ident: e_1_2_8_71_1 doi: 10.1002/chem.201605337 – ident: e_1_2_8_65_1 doi: 10.1021/acsami.7b06152 – ident: e_1_2_8_85_1 doi: 10.1016/j.electacta.2017.06.179 – ident: e_1_2_8_49_1 doi: 10.1002/adma.201703663 – ident: e_1_2_8_151_1 doi: 10.1021/acsami.6b04169 – ident: e_1_2_8_72_1 doi: 10.1002/anie.201707238 – ident: e_1_2_8_180_1 doi: 10.1021/acs.inorgchem.7b01910 – ident: e_1_2_8_133_1 doi: 10.1039/c3cc39173f – ident: e_1_2_8_173_1 doi: 10.1039/C7DT01970J – ident: e_1_2_8_56_1 doi: 10.1016/j.apcatb.2016.02.061 – ident: e_1_2_8_84_1 doi: 10.1016/j.nanoen.2016.08.040 – ident: e_1_2_8_8_1 – ident: e_1_2_8_188_1 – ident: e_1_2_8_90_1 doi: 10.1039/C5TA09743F – ident: e_1_2_8_103_1 doi: 10.1039/C6TA01900E – ident: e_1_2_8_73_1 doi: 10.1038/ncomms9304 – ident: e_1_2_8_86_1 doi: 10.1039/C7NJ02334K – ident: e_1_2_8_95_1 doi: 10.1016/j.carbon.2017.01.085 – ident: e_1_2_8_135_1 doi: 10.1021/ic801383x – ident: e_1_2_8_111_1 doi: 10.1039/C6TA06496E – ident: e_1_2_8_167_1 doi: 10.1021/acssuschemeng.6b02032 – ident: e_1_2_8_156_1 doi: 10.1016/j.apcatb.2017.08.086 – ident: e_1_2_8_158_1 doi: 10.1039/C6TA00011H |
SSID | ssj0000491033 ssib001225180 ssib053798997 ssib001009502 |
Score | 2.6700227 |
SecondaryResourceType | review_article |
Snippet | Highly efficient hydrogen evolution reactions (HERs) will determine the mass distributions of hydrogen‐powered clean technologies in the future. Metal–organic... |
SourceID | proquest crossref wiley nii |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Aluminum Catalysis Catalysts chemocatalysis Crystal structure Crystallinity Derivatives Design modifications electrocatalysis Hydrogen Hydrogen evolution reactions Hydrogen production Metal-organic frameworks Organic chemistry photocatalysis Porous materials |
Title | Metal–Organic Framework Based Catalysts for Hydrogen Evolution |
URI | https://cir.nii.ac.jp/crid/1871991017705772544 https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201801193 https://www.proquest.com/docview/2093214125 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELbY7gUOK35Fl12UAxKHypDYbpzcKFBUIboSsCtVXCI7ttEilMLSIsGJd-ANeRLGv01hEQsXqx3FjpPP9sw4nm8QuieqXBLCC0yEAQelrEtskxRiaxpzm4HKcBs7PD8qZyfs-WK8iDncQ3TJSj5ov54bV_I_qIIMcLVRsv-AbGoUBPAb8IUSEIbyQhjPNZjO8bgC9WGVrbVF_Xmr0WNQUcoG-VnikZVjXhjNvqizJbQ4mn4Ofevbp5N4JED7mECwZ_2DbDaY125IgMZ7t04D683SSV-tP8JoexulCyd8mURhc6GwZNXYx-qH9RC0Ny6rsAWp-zLPshQX0ao3VnxQ9G9rs-d6FbqzBABFZcnm6EYLxS_vvyindGTQ0yuTxtZvUv0dtEvAPyADtDt5On_xOm2vgeNT5NSFV8RHiJSdOXm43Yktk2SnOz3d8jb6PoszOo6vor3gLWQTD_01dEl319GVHofkDfTIDYIf374H-LMEf-bgzxL8GcCfRfizBP9NdPJsevxkhkNaDNwyVlOsaJlrRQuj8rrKTVvXjKpScjEWRJqyUDLXcswFWKKGq4pzwWBGEsG1YpJxTm-hQbfs9G2UabDvaynAiDQtGxdcVmVl-XwMZfb7txkiHN9M0wbOeJu65H1zPhxDdD9d_8GzpfzxykN40dCoLQvw2sFPAeXAwX3gljVviA4iBE2YcZ-gdm3zaoFNPkTEwfKXuzST6dE8_du_cO_uoMub2XCABquztT4E43Ml74aB9hOZFntb |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal%E2%80%93Organic+Framework+Based+Catalysts+for+Hydrogen+Evolution&rft.jtitle=Advanced+energy+materials&rft.au=Zhu%2C+Bingjun&rft.au=Zou%2C+Ruqiang&rft.au=Xu%2C+Qiang&rft.date=2018-08-27&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=8&rft.issue=24&rft_id=info:doi/10.1002%2Faenm.201801193&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_201801193 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |