Metal–Organic Framework Based Catalysts for Hydrogen Evolution

Highly efficient hydrogen evolution reactions (HERs) will determine the mass distributions of hydrogen‐powered clean technologies in the future. Metal–organic frameworks (MOFs) are emerging as a class of crystalline porous materials. Along with their derivatives, MOFs have recently been under intens...

Full description

Saved in:
Bibliographic Details
Published inAdvanced Energy Materials Vol. 8; no. 24
Main Authors Zhu, Bingjun, Zou, Ruqiang, Xu, Qiang
Format Journal Article
LanguageEnglish
Published Weinheim Wiley 27.08.2018
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Highly efficient hydrogen evolution reactions (HERs) will determine the mass distributions of hydrogen‐powered clean technologies in the future. Metal–organic frameworks (MOFs) are emerging as a class of crystalline porous materials. Along with their derivatives, MOFs have recently been under intense study for their applications in various hydrogen production techniques. MOF‐based materials possess unique advantages, such as high specific surface area, crystalline porous structure, diverse and tunable chemical components, which offer attractive functionalities in catalyzing hydrogen evolution processes, by lowering reaction potentials, and speeding up reaction rates. Considering the rapid increase in research interest in hydrogen evolution in the last several years, this review aims to summarize recent advances in MOF‐associated hydrogen evolution research, including electrocatalytic, photocatalytic, and chemocatalytic HER. Particular attention is paid to the design and utilization of postsynthetic modification of MOFs, MOF‐supported catalysts, and MOF derivatives for highly efficient HER. The opportunities and challenges for MOF‐based materials in a hydrogen‐powered clean future are also discussed. Metal–organic frameworks (MOFs) along with their derivatives are under intensive studies for their applications in various hydrogen evolution reactions (HER). This review summarizes the recent rapid increase in interest in MOF‐associated hydrogen evolution research, including MOFs and their corresponding derivatives for electrocatalytic, photocatalytic, and chemocatalytic HER. The opportunities and challenges for MOF‐based catalysts for future hydrogen production are also discussed in this review.
AbstractList Highly efficient hydrogen evolution reactions (HERs) will determine the mass distributions of hydrogen‐powered clean technologies in the future. Metal–organic frameworks (MOFs) are emerging as a class of crystalline porous materials. Along with their derivatives, MOFs have recently been under intense study for their applications in various hydrogen production techniques. MOF‐based materials possess unique advantages, such as high specific surface area, crystalline porous structure, diverse and tunable chemical components, which offer attractive functionalities in catalyzing hydrogen evolution processes, by lowering reaction potentials, and speeding up reaction rates. Considering the rapid increase in research interest in hydrogen evolution in the last several years, this review aims to summarize recent advances in MOF‐associated hydrogen evolution research, including electrocatalytic, photocatalytic, and chemocatalytic HER. Particular attention is paid to the design and utilization of postsynthetic modification of MOFs, MOF‐supported catalysts, and MOF derivatives for highly efficient HER. The opportunities and challenges for MOF‐based materials in a hydrogen‐powered clean future are also discussed.
Highly efficient hydrogen evolution reactions (HERs) will determine the mass distributions of hydrogen‐powered clean technologies in the future. Metal–organic frameworks (MOFs) are emerging as a class of crystalline porous materials. Along with their derivatives, MOFs have recently been under intense study for their applications in various hydrogen production techniques. MOF‐based materials possess unique advantages, such as high specific surface area, crystalline porous structure, diverse and tunable chemical components, which offer attractive functionalities in catalyzing hydrogen evolution processes, by lowering reaction potentials, and speeding up reaction rates. Considering the rapid increase in research interest in hydrogen evolution in the last several years, this review aims to summarize recent advances in MOF‐associated hydrogen evolution research, including electrocatalytic, photocatalytic, and chemocatalytic HER. Particular attention is paid to the design and utilization of postsynthetic modification of MOFs, MOF‐supported catalysts, and MOF derivatives for highly efficient HER. The opportunities and challenges for MOF‐based materials in a hydrogen‐powered clean future are also discussed. Metal–organic frameworks (MOFs) along with their derivatives are under intensive studies for their applications in various hydrogen evolution reactions (HER). This review summarizes the recent rapid increase in interest in MOF‐associated hydrogen evolution research, including MOFs and their corresponding derivatives for electrocatalytic, photocatalytic, and chemocatalytic HER. The opportunities and challenges for MOF‐based catalysts for future hydrogen production are also discussed in this review.
Author Ruqiang Zou
Bingjun Zhu
Qiang Xu
Author_xml – sequence: 1
  givenname: Bingjun
  surname: Zhu
  fullname: Zhu, Bingjun
  organization: Peking University
– sequence: 2
  givenname: Ruqiang
  orcidid: 0000-0003-0456-4615
  surname: Zou
  fullname: Zou, Ruqiang
  email: rzou@pku.edu.cn
  organization: Peking University
– sequence: 3
  givenname: Qiang
  surname: Xu
  fullname: Xu, Qiang
  email: q.xu@aist.go.jp
  organization: Yangzhou University
BackLink https://cir.nii.ac.jp/crid/1871991017705772544$$DView record in CiNii
BookMark eNqFkb9OwzAQxi1UJErpyhwJ1hT_SxxvlKqlSC1dYLac2Klc0rjYKVU23oE35ElIFFQhJISH80n3_e5O352DXmlLDcAlgiMEIb6RutyOMEQJRIiTE9BHMaJhnFDYO-YEn4Gh9xvYPMoRJKQPbpe6ksXn-8fKrWVpsmDm5FYfrHsJ7qTXKpjIpl77yge5dcG8Vs6udRlM32yxr4wtL8BpLguvh9__ADzPpk-TebhY3T9Mxoswo5STUJEYakVQriBPYJ5xTomKUyYjidM8RiqFOo2YTDjJmUoYk1QmEEumFU0pY2QArrq-O2df99pXYmP3rmxGCgw5wYgiHDUq2qkyZ713OheZqWS7Z-WkKQSCorVLtHaJo10NNvqF7ZzZSlf_DfAOOJhC1_-oxXj6uPzJXndsaUyzXhtRwhBvLoIYgxFjOKKUfAGJ0Ym7
CitedBy_id crossref_primary_10_1016_j_ccr_2023_215302
crossref_primary_10_1021_acsaem_9b01579
crossref_primary_10_1016_j_ccr_2024_216238
crossref_primary_10_1002_adfm_202102321
crossref_primary_10_1016_j_jelechem_2023_117827
crossref_primary_10_1016_j_mtchem_2023_101531
crossref_primary_10_1016_j_chemphys_2023_112142
crossref_primary_10_1021_acssuschemeng_0c02496
crossref_primary_10_1039_C8CS00897C
crossref_primary_10_1016_j_jssc_2023_124508
crossref_primary_10_1039_D0SC01432J
crossref_primary_10_1016_j_ccr_2024_215944
crossref_primary_10_1016_j_jcis_2024_08_016
crossref_primary_10_1016_j_jcis_2024_05_168
crossref_primary_10_1002_aoc_5972
crossref_primary_10_1007_s11426_020_9839_y
crossref_primary_10_1016_j_inoche_2019_02_025
crossref_primary_10_1016_j_cej_2020_124726
crossref_primary_10_1039_D1QM01006A
crossref_primary_10_1002_elan_202200519
crossref_primary_10_1016_j_ccr_2024_216235
crossref_primary_10_1016_j_pmatsci_2024_101380
crossref_primary_10_1016_j_ccr_2024_216113
crossref_primary_10_1002_admi_202102423
crossref_primary_10_1016_j_mtener_2024_101542
crossref_primary_10_1016_j_seppur_2023_124184
crossref_primary_10_1557_s43578_021_00185_7
crossref_primary_10_1088_2515_7655_aca9fd
crossref_primary_10_1002_adfm_202003007
crossref_primary_10_1039_C9CC08771K
crossref_primary_10_1016_j_ijhydene_2022_08_011
crossref_primary_10_1016_j_mtener_2020_100573
crossref_primary_10_1021_acsaem_9b02300
crossref_primary_10_1016_j_ijhydene_2024_03_312
crossref_primary_10_1016_j_jpowsour_2021_229592
crossref_primary_10_3390_s21217423
crossref_primary_10_1002_adma_202003720
crossref_primary_10_1039_D0NJ01534B
crossref_primary_10_1021_acs_chemrev_2c00460
crossref_primary_10_1039_D1SE00661D
crossref_primary_10_1039_C9NR10109H
crossref_primary_10_1002_celc_201801520
crossref_primary_10_1016_j_rser_2024_114671
crossref_primary_10_1021_jacs_3c03943
crossref_primary_10_26599_NRE_2024_9120114
crossref_primary_10_3390_molecules29163885
crossref_primary_10_1021_acsami_3c15490
crossref_primary_10_1039_D3TA06314C
crossref_primary_10_1039_C9QI00964G
crossref_primary_10_1021_acscatal_1c03866
crossref_primary_10_1007_s40843_018_9393_x
crossref_primary_10_1002_adfm_202006761
crossref_primary_10_1002_cey2_361
crossref_primary_10_1016_j_enchem_2022_100078
crossref_primary_10_1016_j_ccr_2021_213804
crossref_primary_10_3390_pr12122677
crossref_primary_10_1016_j_ijhydene_2024_04_002
crossref_primary_10_1002_asia_201900748
crossref_primary_10_1039_D0DT04338A
crossref_primary_10_1016_j_mtnano_2022_100278
crossref_primary_10_1016_j_jcis_2022_04_118
crossref_primary_10_1016_j_ijhydene_2023_08_083
crossref_primary_10_1039_D4CP02903H
crossref_primary_10_1039_D2NR04409A
crossref_primary_10_1002_ejic_202100093
crossref_primary_10_1002_smll_201805511
crossref_primary_10_1007_s12274_021_3879_9
crossref_primary_10_1021_acsami_3c18191
crossref_primary_10_1016_j_ijhydene_2022_11_087
crossref_primary_10_1021_acsmaterialslett_2c00751
crossref_primary_10_1039_D2NA00710J
crossref_primary_10_1007_s12274_020_2618_y
crossref_primary_10_1021_acscatal_1c04286
crossref_primary_10_1021_acs_energyfuels_3c02515
crossref_primary_10_1016_j_jcis_2024_11_095
crossref_primary_10_1002_smll_202102201
crossref_primary_10_1039_C8DT04745F
crossref_primary_10_1002_adfm_202418427
crossref_primary_10_1016_j_ijhydene_2024_12_132
crossref_primary_10_1149_1945_7111_abb83e
crossref_primary_10_1016_j_micromeso_2020_110813
crossref_primary_10_1002_chem_202100610
crossref_primary_10_1016_j_nantod_2023_101883
crossref_primary_10_1016_j_apsusc_2019_02_042
crossref_primary_10_1016_j_poly_2022_116035
crossref_primary_10_1016_j_envpol_2021_117305
crossref_primary_10_1016_j_rser_2021_110709
crossref_primary_10_1002_zaac_201900007
crossref_primary_10_1021_acs_chemrev_2c00587
crossref_primary_10_1016_j_molliq_2021_116633
crossref_primary_10_1021_acssuschemeng_0c02160
crossref_primary_10_1021_acssuschemeng_0c01193
crossref_primary_10_1039_C9CC05087F
crossref_primary_10_1021_acs_energyfuels_3c02620
crossref_primary_10_1039_C9NR09203J
crossref_primary_10_1039_D0CE00666A
crossref_primary_10_1016_j_mtener_2021_100816
crossref_primary_10_1016_j_ccr_2025_216543
crossref_primary_10_1021_acs_inorgchem_9b00202
crossref_primary_10_1039_C9TA01603A
crossref_primary_10_1039_C8DT04964E
crossref_primary_10_1002_adfm_202102117
crossref_primary_10_1016_j_ijhydene_2021_05_083
crossref_primary_10_1016_j_jelechem_2022_117082
crossref_primary_10_1039_C9CC01433K
crossref_primary_10_1016_j_ijhydene_2020_09_153
crossref_primary_10_1002_smtd_201800443
crossref_primary_10_1021_acs_cgd_3c01065
crossref_primary_10_1039_D0DT02309D
crossref_primary_10_1002_asia_201901810
crossref_primary_10_1002_celc_202000136
crossref_primary_10_1016_j_ccr_2021_213824
crossref_primary_10_1016_j_ijhydene_2025_03_120
crossref_primary_10_1007_s10934_023_01516_1
crossref_primary_10_1016_j_ccr_2021_214119
crossref_primary_10_1016_j_enchem_2023_100115
crossref_primary_10_1021_acsami_9b09312
crossref_primary_10_1039_D1CC05182B
crossref_primary_10_1039_D0DT01741H
crossref_primary_10_18321_ectj1635
crossref_primary_10_1021_acs_langmuir_4c05122
crossref_primary_10_1021_jacs_9b02527
crossref_primary_10_1002_celc_202400525
crossref_primary_10_1039_D3SE00743J
crossref_primary_10_1016_j_ijhydene_2025_02_269
crossref_primary_10_3390_catal10070720
crossref_primary_10_1007_s10751_024_02242_z
crossref_primary_10_1016_j_cej_2020_127914
crossref_primary_10_1002_chem_201904280
crossref_primary_10_1016_j_apcatb_2021_119965
crossref_primary_10_1016_j_ccr_2021_214375
crossref_primary_10_1002_asia_202401484
crossref_primary_10_1002_inf2_12257
crossref_primary_10_1016_j_apsusc_2020_147000
crossref_primary_10_1039_C9CY00198K
crossref_primary_10_1016_j_ensm_2019_05_022
crossref_primary_10_1016_j_talanta_2024_127489
crossref_primary_10_1039_C9NR08947K
crossref_primary_10_1016_j_apmt_2020_100820
crossref_primary_10_1021_acs_chemmater_0c00356
crossref_primary_10_1021_acs_chemrev_9b00685
crossref_primary_10_1002_anie_202414493
crossref_primary_10_1021_acssuschemeng_9b00817
crossref_primary_10_1002_adfm_201902539
crossref_primary_10_1016_j_ijhydene_2023_11_297
crossref_primary_10_1021_acsanm_0c00319
crossref_primary_10_1002_adma_201903415
crossref_primary_10_1007_s40820_020_00582_3
crossref_primary_10_1016_j_inoche_2025_114266
crossref_primary_10_1016_j_cej_2022_139475
crossref_primary_10_1016_j_ijhydene_2022_07_078
crossref_primary_10_1021_acscatal_2c02081
crossref_primary_10_1016_j_cej_2021_133071
crossref_primary_10_1002_chem_202301872
crossref_primary_10_1039_C9SE00250B
crossref_primary_10_1021_acs_inorgchem_2c01867
crossref_primary_10_1016_j_esci_2025_100378
crossref_primary_10_1002_advs_201802373
crossref_primary_10_1016_j_apcatb_2021_120579
crossref_primary_10_1016_j_molstruc_2023_137332
crossref_primary_10_1016_j_nanoen_2024_109559
crossref_primary_10_1039_D2NH00431C
crossref_primary_10_1002_smll_202305548
crossref_primary_10_1021_jacs_3c05244
crossref_primary_10_1002_anie_202007122
crossref_primary_10_1016_j_xinn_2024_100778
crossref_primary_10_1002_ange_202414493
crossref_primary_10_1016_j_jallcom_2024_176094
crossref_primary_10_1039_D1CY02344F
crossref_primary_10_1002_asia_202100438
crossref_primary_10_1016_j_carbpol_2019_115393
crossref_primary_10_1016_j_ijhydene_2020_11_086
crossref_primary_10_1021_acsami_1c04282
crossref_primary_10_1016_j_envres_2024_119028
crossref_primary_10_1021_acssuschemeng_2c06538
crossref_primary_10_1016_j_jssc_2025_125179
crossref_primary_10_1021_acs_energyfuels_4c01159
crossref_primary_10_1016_j_mcat_2022_112711
crossref_primary_10_1107_S2414314622007751
crossref_primary_10_1002_cjoc_202200571
crossref_primary_10_1016_j_ccr_2022_214599
crossref_primary_10_1021_acs_accounts_0c00525
crossref_primary_10_1016_j_apcatb_2023_122447
crossref_primary_10_1016_j_electacta_2022_139913
crossref_primary_10_1016_j_ijhydene_2021_01_162
crossref_primary_10_3390_ma17010087
crossref_primary_10_1149_1945_7111_ac4458
crossref_primary_10_3390_molecules27020499
crossref_primary_10_1021_acs_chemrev_9b00223
crossref_primary_10_1016_j_inoche_2021_109051
crossref_primary_10_1016_j_cej_2021_129155
crossref_primary_10_1002_ange_202007122
crossref_primary_10_1016_j_jcis_2021_06_152
crossref_primary_10_1021_acsomega_8b02309
crossref_primary_10_1016_j_macse_2025_100012
crossref_primary_10_1002_aenm_202101392
crossref_primary_10_1039_D0DT00605J
crossref_primary_10_1039_D3TA00580A
crossref_primary_10_1016_j_cattod_2022_10_013
crossref_primary_10_1039_D0NR07236B
crossref_primary_10_1016_j_ceramint_2023_01_063
crossref_primary_10_1016_j_electacta_2019_135445
crossref_primary_10_1016_j_vacuum_2023_111937
crossref_primary_10_1002_adfm_202205920
crossref_primary_10_1016_j_ijhydene_2023_10_031
crossref_primary_10_1016_j_nanoen_2024_109897
crossref_primary_10_1039_D4TA00736K
crossref_primary_10_1039_D0DT01688H
crossref_primary_10_3390_inorganics11010016
crossref_primary_10_1016_j_mtchem_2018_12_002
crossref_primary_10_1016_j_jssc_2019_120929
crossref_primary_10_1039_D1DT03814A
crossref_primary_10_1039_C9SC01866B
crossref_primary_10_1039_D0NR03115A
crossref_primary_10_1039_D3CC01970E
crossref_primary_10_1039_C9DT04834K
crossref_primary_10_1007_s40843_024_3235_9
crossref_primary_10_1002_cctc_202400013
crossref_primary_10_1039_D1RA03691B
crossref_primary_10_1002_celc_201901767
crossref_primary_10_1002_sus2_3
crossref_primary_10_1016_j_apcatb_2022_122261
crossref_primary_10_1016_j_ijhydene_2022_10_108
crossref_primary_10_1016_j_jcis_2021_10_183
crossref_primary_10_1016_j_apsusc_2020_148498
crossref_primary_10_1016_j_chemphys_2020_111053
crossref_primary_10_1016_j_mtnano_2021_100144
crossref_primary_10_1002_cssc_202102368
crossref_primary_10_1039_D0MH01757D
crossref_primary_10_1007_s11708_019_0629_8
crossref_primary_10_1016_j_jre_2024_08_014
crossref_primary_10_1002_anie_202113044
crossref_primary_10_1002_jsfa_13789
crossref_primary_10_1016_j_ijhydene_2022_03_256
crossref_primary_10_1007_s11426_024_2132_1
crossref_primary_10_1039_C9TA02451D
crossref_primary_10_1021_jacs_0c00679
crossref_primary_10_1021_jacs_3c00957
crossref_primary_10_1021_acs_inorgchem_9b00824
crossref_primary_10_1021_acs_energyfuels_0c01559
crossref_primary_10_1039_C9RA01306G
crossref_primary_10_1002_adma_202001818
crossref_primary_10_1016_j_jallcom_2020_156952
crossref_primary_10_1016_j_jece_2024_112838
crossref_primary_10_1016_j_jcis_2021_02_066
crossref_primary_10_1039_D2DT00238H
crossref_primary_10_1016_j_electacta_2019_06_103
crossref_primary_10_1039_C8QM00259B
crossref_primary_10_1016_j_jece_2025_116141
crossref_primary_10_1002_solr_201900438
crossref_primary_10_1016_j_electacta_2019_04_038
crossref_primary_10_1016_j_micromeso_2023_112565
crossref_primary_10_1002_smll_201906133
crossref_primary_10_1016_j_mcat_2022_112476
crossref_primary_10_1007_s12209_024_00418_w
crossref_primary_10_1016_j_ccr_2021_213785
crossref_primary_10_1016_j_ccr_2020_213266
crossref_primary_10_1016_j_mtsust_2023_100349
crossref_primary_10_1021_acsami_1c16464
crossref_primary_10_1016_j_ijhydene_2020_10_121
crossref_primary_10_1016_j_jallcom_2020_157935
crossref_primary_10_1002_cnma_202300271
crossref_primary_10_1016_j_fuel_2023_130654
crossref_primary_10_1002_aenm_201801587
crossref_primary_10_1007_s42114_023_00735_z
crossref_primary_10_1016_j_seppur_2024_129737
crossref_primary_10_1016_j_jcis_2020_03_021
crossref_primary_10_1002_cmt2_10
crossref_primary_10_1002_ejic_202400640
crossref_primary_10_1021_acsaem_3c01129
crossref_primary_10_1002_cctc_202101752
crossref_primary_10_1016_j_ccr_2023_215496
crossref_primary_10_1016_j_ccr_2022_214664
crossref_primary_10_1039_D1CC02815D
crossref_primary_10_1002_adfm_202305894
crossref_primary_10_1016_j_apmt_2019_05_013
crossref_primary_10_1016_j_apmt_2021_101048
crossref_primary_10_1016_j_ceja_2021_100128
crossref_primary_10_1021_acsnano_2c09396
crossref_primary_10_1016_j_ijhydene_2023_04_241
crossref_primary_10_1016_j_inoche_2021_108732
crossref_primary_10_1002_aenm_202000280
crossref_primary_10_1002_advs_202000012
crossref_primary_10_1021_acs_inorgchem_1c00041
crossref_primary_10_1002_tcr_202300109
crossref_primary_10_1002_smll_202304181
crossref_primary_10_1002_smll_202207689
crossref_primary_10_1039_D1RA09063A
crossref_primary_10_1039_D0EE02309D
crossref_primary_10_1021_acs_jpcc_0c09328
crossref_primary_10_1021_acs_chemmater_9b04414
crossref_primary_10_1063_5_0176450
crossref_primary_10_1016_j_apsusc_2023_159187
crossref_primary_10_1016_j_xcrp_2020_100218
crossref_primary_10_1088_1755_1315_615_1_012121
crossref_primary_10_1016_j_cej_2021_134331
crossref_primary_10_1021_acsmaterialslett_9b00446
crossref_primary_10_1039_D4QI01533A
crossref_primary_10_1002_cssc_201903018
crossref_primary_10_1039_C8CY02581A
crossref_primary_10_1002_smtd_202201258
crossref_primary_10_1021_acsami_9b00592
crossref_primary_10_1002_cphc_201801147
crossref_primary_10_1021_acs_langmuir_1c00245
crossref_primary_10_1016_j_cej_2020_128162
crossref_primary_10_1002_eem2_12414
crossref_primary_10_1002_advs_202001274
crossref_primary_10_1021_jacs_4c05879
crossref_primary_10_1021_acs_iecr_4c00696
crossref_primary_10_1002_smsc_202100015
crossref_primary_10_1016_j_apcatb_2023_123161
crossref_primary_10_1039_D4DT00880D
crossref_primary_10_1002_asia_202100262
crossref_primary_10_1016_j_ccr_2021_214300
crossref_primary_10_1021_acsami_4c11879
crossref_primary_10_1016_j_cej_2023_142904
crossref_primary_10_1039_D0TA02318C
crossref_primary_10_1002_celc_202300516
crossref_primary_10_1016_j_arabjc_2019_12_012
crossref_primary_10_1021_acs_inorgchem_9b02497
crossref_primary_10_1016_j_apmt_2021_101343
crossref_primary_10_1002_ejic_202001132
crossref_primary_10_1002_smll_202305024
crossref_primary_10_1016_j_jiec_2023_10_055
crossref_primary_10_1016_j_ijhydene_2020_12_146
crossref_primary_10_1016_j_jcis_2021_05_094
crossref_primary_10_1021_acsami_4c16063
crossref_primary_10_1016_j_ijhydene_2019_04_276
crossref_primary_10_1021_acs_iecr_4c02523
crossref_primary_10_1039_D0RA10864B
crossref_primary_10_1002_advs_202200010
crossref_primary_10_1016_j_jcis_2022_09_118
crossref_primary_10_1016_j_scib_2020_06_036
crossref_primary_10_1039_D0CE00738B
crossref_primary_10_1016_j_enchem_2019_100005
crossref_primary_10_1016_j_jechem_2021_10_019
crossref_primary_10_1039_C9SE00749K
crossref_primary_10_1039_D3NR02511J
crossref_primary_10_1002_sstr_202200109
crossref_primary_10_1021_acsaem_0c01410
crossref_primary_10_1021_acs_iecr_1c04508
crossref_primary_10_1016_j_cej_2022_135720
crossref_primary_10_1021_acs_inorgchem_1c03628
crossref_primary_10_3390_chemistry5020060
crossref_primary_10_1016_j_ccr_2019_213081
crossref_primary_10_1016_j_cis_2023_102967
crossref_primary_10_1002_smll_202207342
crossref_primary_10_1016_j_cattod_2024_115117
crossref_primary_10_1016_j_mtchem_2022_101037
crossref_primary_10_1016_j_compositesb_2022_110174
crossref_primary_10_1002_smll_202303632
crossref_primary_10_1016_j_cej_2020_128069
crossref_primary_10_1021_acs_inorgchem_1c03982
crossref_primary_10_1039_D3NJ03923D
crossref_primary_10_1039_D0NR08744K
crossref_primary_10_1007_s10904_024_03037_z
crossref_primary_10_1039_D0TA04016A
crossref_primary_10_1016_j_ijhydene_2019_04_266
crossref_primary_10_1016_j_apcatb_2021_120987
crossref_primary_10_1016_j_jssc_2022_123287
crossref_primary_10_1016_j_jclepro_2024_141548
crossref_primary_10_1016_j_ccr_2019_03_012
crossref_primary_10_1039_C9TA13632K
crossref_primary_10_1016_j_electacta_2023_143079
crossref_primary_10_1021_acs_cgd_0c00129
crossref_primary_10_1016_j_apsusc_2024_159590
crossref_primary_10_1021_acsaem_1c01085
crossref_primary_10_3390_molecules25051042
crossref_primary_10_1016_j_ccr_2019_213093
crossref_primary_10_1016_j_clet_2022_100417
crossref_primary_10_1039_D0TA08094B
crossref_primary_10_1039_C9TA11280D
crossref_primary_10_3390_ma13214700
crossref_primary_10_1039_D2TA09582C
crossref_primary_10_1002_aic_18323
crossref_primary_10_1002_ange_202113044
crossref_primary_10_1016_j_apcatb_2021_120996
crossref_primary_10_1016_j_apcatb_2019_05_027
crossref_primary_10_1016_j_cej_2021_132725
Cites_doi 10.1002/anie.201500267
10.1021/ja200122f
10.1016/j.rser.2012.01.029
10.1016/j.apcatb.2014.11.007
10.1002/cssc.201403345
10.1039/C6TA00766J
10.1002/adfm.201300510
10.1039/C5TA04001A
10.1039/C6RA25810G
10.1039/C4CS00448E
10.1039/C4CC09407G
10.1039/C4CC01776E
10.1007/s12274-017-1519-1
10.1021/ja403330m
10.1016/j.jpowsour.2017.09.018
10.1039/C4CC01086H
10.1002/aenm.201602643
10.1039/C6CP07294A
10.1039/c3cc43218a
10.1039/C4EE02853H
10.1016/j.nanoen.2017.03.028
10.1002/adfm.201700451
10.1039/C7CS00315C
10.1039/C3EE42350F
10.1021/acscatal.5b02302
10.1002/chem.200903526
10.1021/acsami.5b12524
10.1016/j.jpowsour.2016.06.114
10.1002/cctc.201500398
10.1016/j.jpowsour.2016.10.022
10.1002/anie.201708385
10.1007/s12274-016-1110-1
10.1002/adma.201605957
10.1016/j.chempr.2016.12.002
10.1021/acsami.6b08740
10.1039/C5EE02460A
10.1021/acsami.7b01037
10.1002/anie.201603990
10.1002/cctc.201701691
10.1002/smll.201603279
10.1039/C4CY01049C
10.1016/j.apcatb.2017.07.020
10.1021/ic5010352
10.1039/C4RA15680C
10.1002/chem.201703682
10.1039/B800489G
10.1021/acsami.7b09428
10.1021/acssuschemeng.7b00153
10.1021/acsami.6b12197
10.1021/acsami.7b01161
10.1021/acssuschemeng.7b00598
10.1016/S0360-3199(97)00012-8
10.1002/asia.201601518
10.1016/j.ccr.2015.08.004
10.1039/C4CS00470A
10.1021/acsami.7b10680
10.1016/j.pmatsci.2017.09.002
10.1021/jacs.5b02688
10.1002/adfm.201703455
10.1021/acsami.6b04729
10.1021/cs3005874
10.1002/celc.201600452
10.1039/C6TA05829A
10.1038/nmat2317
10.1021/acs.jpcc.6b02818
10.1021/jacs.6b03125
10.1016/j.apcatb.2017.03.057
10.1016/j.materresbull.2017.04.020
10.1039/C5DT00493D
10.1039/C5EE03503A
10.1038/s41598-017-05636-y
10.1002/aenm.201600423
10.1016/j.ijhydene.2017.06.191
10.1039/C7CE00215G
10.1002/anie.201800571
10.1016/j.ijhydene.2007.05.027
10.1039/C6CY02328B
10.1002/aenm.201500985
10.1039/C5SC04425A
10.1016/j.rser.2005.01.009
10.1021/acsami.7b08647
10.1039/C6DT02667B
10.1039/C7TA10284D
10.1021/acsami.7b11101
10.1021/acsenergylett.7b00219
10.1039/C7NH00079K
10.1002/anie.201612423
10.1021/acsami.6b04058
10.1016/j.apcatb.2017.01.040
10.1002/admi.201500037
10.1002/advs.201600371
10.1039/C7TA07587A
10.1016/j.nanoen.2017.07.043
10.1021/ja300539p
10.1016/j.rser.2015.10.135
10.1039/C7TA01453H
10.1039/C7EE03457A
10.1039/C6TA04619C
10.1002/anie.201600431
10.1039/C7TA00855D
10.1039/C5NR01955A
10.1038/ncomms15341
10.1002/smll.201600976
10.1039/C5CP06292F
10.1039/C7TA03167J
10.1021/acs.chemmater.6b02586
10.1039/C6TA06185K
10.1039/C5CY01716E
10.1021/ja3043905
10.1038/srep13801
10.1039/C5TA01135C
10.1039/C6TA05790J
10.1039/C5TA05018A
10.1039/C5NR03810C
10.1021/ef0500538
10.1039/C7TA05571D
10.1016/j.nanoen.2017.01.046
10.1021/ja407176p
10.1016/j.cattod.2008.08.039
10.1039/C5RA17427A
10.1021/acsami.6b01266
10.1021/jz4002345
10.1002/anie.201006882
10.1039/C5TA05210F
10.1039/C7TA10404A
10.1039/C5EE00161G
10.1038/nenergy.2015.27
10.1039/C6TA05196K
10.1039/C4CC02401J
10.1039/C7TA00692F
10.1039/C6TA07424C
10.1002/adma.201606814
10.1021/ja509019k
10.1039/C5TA00136F
10.1039/C4CY00667D
10.1016/j.ijhydene.2006.11.022
10.1039/C4TA01656D
10.1039/C7TA06671F
10.1038/ncomms7512
10.1039/C7FD00029D
10.1021/acscatal.6b01222
10.1016/0927-0248(95)00003-8
10.1016/j.ccr.2017.02.010
10.1016/j.energy.2015.08.013
10.1039/C4CC03946G
10.1016/j.chempr.2017.04.016
10.1039/c3ee41548a
10.1002/cctc.201300233
10.1021/acs.chemmater.5b02877
10.1016/j.electacta.2017.08.047
10.1039/C6TA10405C
10.1021/acsami.6b13411
10.1002/chem.200700480
10.1039/B809990C
10.1002/adma.201703614
10.1016/j.jssc.2015.10.037
10.1021/jacs.5b00075
10.1039/C7CY01514C
10.1039/C6TA06553H
10.1002/smll.201700632
10.1039/b807080f
10.1002/chem.201605337
10.1021/acsami.7b06152
10.1016/j.electacta.2017.06.179
10.1002/adma.201703663
10.1021/acsami.6b04169
10.1002/anie.201707238
10.1021/acs.inorgchem.7b01910
10.1039/c3cc39173f
10.1039/C7DT01970J
10.1016/j.apcatb.2016.02.061
10.1016/j.nanoen.2016.08.040
10.1039/C5TA09743F
10.1039/C6TA01900E
10.1038/ncomms9304
10.1039/C7NJ02334K
10.1016/j.carbon.2017.01.085
10.1021/ic801383x
10.1039/C6TA06496E
10.1021/acssuschemeng.6b02032
10.1016/j.apcatb.2017.08.086
10.1039/C6TA00011H
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID RYH
AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.201801193
DatabaseName CiNii Complete
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList CrossRef
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_201801193
AENM201801193
Genre reviewArticle
GrantInformation_xml – fundername: Natural Science Foundation of China
  funderid: 51772008
– fundername: National Key Research and Development Program of China
  funderid: 2017YFA0206701
– fundername: National Program for Support of Top‐notch Young Professionals
– fundername: Changjiang Scholar Program
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMLS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
EJD
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
RNS
ROL
RX1
RYH
SUPJJ
WBKPD
WOHZO
WXSBR
ZZTAW
~S-
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c4493-d360ed31fd0980fc9943d6b7a5a2bf61db0eb57a893f7d877a4a802a7ed4b4773
ISSN 1614-6832
IngestDate Fri Jul 25 12:14:32 EDT 2025
Thu Apr 24 23:02:22 EDT 2025
Tue Jul 01 01:43:25 EDT 2025
Wed Aug 20 07:24:49 EDT 2025
Thu Jun 26 23:44:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4493-d360ed31fd0980fc9943d6b7a5a2bf61db0eb57a893f7d877a4a802a7ed4b4773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0456-4615
0000-0001-5385-9650
PQID 2093214125
PQPubID 886389
PageCount 33
ParticipantIDs proquest_journals_2093214125
crossref_citationtrail_10_1002_aenm_201801193
crossref_primary_10_1002_aenm_201801193
wiley_primary_10_1002_aenm_201801193_AENM201801193
nii_cinii_1871991017705772544
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 27, 2018
PublicationDateYYYYMMDD 2018-08-27
PublicationDate_xml – month: 08
  year: 2018
  text: August 27, 2018
  day: 27
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced Energy Materials
PublicationYear 2018
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2017; 5
2017; 7
2017; 42
2017; 41
2017; 8
2010; 16
2017; 2
2013; 4
2017; 4
2016; 307
1995; 38
2013; 23
2017; 46
2012; 16
2007; 32
2017; 112
2013; 5
2013; 6
2017; 9
2014; 136
2017; 116
2018; 6
2012; 134
2014; 2
2015; 137
2017; 39
2017; 33
2015; 44
2017; 35
2016; 233
2015; 90
2014; 7
2014; 50
2017; 366
2017; 201
2016; 190
2017; 247
2016; 45
2017; 206
2014; 53
2017; 218
2015; 2
2018; 220
2015; 6
2015; 5
2015; 3
2013; 49
1997; 22
2015; 51
2015; 168
2017; 27
2017; 23
2015; 54
2016; 326
2017; 250
2017; 29
2017; 210
2016; 18
2015; 8
2007; 11
2015; 7
2016; 120
2007; 13
2011; 133
2017; 337
2016; 12
2016; 55
2009; 139
2016; 4
2016; 6
2017; 96
2016; 7
2005; 19
2012; 2
2016; 1
2015; 27
2017; 10
2017; 13
2017; 12
2017; 56
2011; 50
2018; 92
2008; 47
2009; 8
2013; 135
2017; 19
2016; 138
2016; 334
2009; 2
2016; 28
2018; 11
2018; 10
2009; 38
2016; 8
2016; 9
2018; 57
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_178_1
e_1_2_8_5_1
e_1_2_8_151_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_170_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_159_1
e_1_2_8_174_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_166_1
e_1_2_8_189_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_162_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_181_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_185_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
Wang J. (e_1_2_8_22_1) 2017; 29
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_179_1
e_1_2_8_110_1
e_1_2_8_152_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_171_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_137_1
e_1_2_8_175_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_156_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_163_1
e_1_2_8_98_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_182_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_186_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_167_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_138_1
e_1_2_8_172_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_176_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_190_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_141_1
e_1_2_8_164_1
e_1_2_8_97_1
e_1_2_8_160_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_149_1
e_1_2_8_183_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_145_1
e_1_2_8_168_1
e_1_2_8_187_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_180_1
e_1_2_8_80_1
e_1_2_8_154_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_150_1
e_1_2_8_8_1
e_1_2_8_192_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_139_1
e_1_2_8_173_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_158_1
e_1_2_8_61_1
e_1_2_8_135_1
e_1_2_8_177_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_191_1
e_1_2_8_92_1
e_1_2_8_165_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_142_1
e_1_2_8_161_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_184_1
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_169_1
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_146_1
e_1_2_8_188_1
References_xml – volume: 46
  start-page: 5730
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 4
  start-page: 15536
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 44
  start-page: 2060
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 44
  start-page: 5148
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 7
  start-page: 3686
  year: 2017
  publication-title: RSC Adv.
– volume: 27
  start-page: 1703455
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 90
  start-page: 1075
  year: 2015
  publication-title: Energy
– volume: 13
  start-page: 8726
  year: 2007
  publication-title: Chem. ‐ Eur. J.
– volume: 33
  start-page: 238
  year: 2017
  publication-title: Nano Energy
– volume: 28
  start-page: 6313
  year: 2016
  publication-title: Chem. Mater.
– volume: 55
  start-page: 414
  year: 2016
  publication-title: Renewable Sustainable Energy Rev.
– volume: 137
  start-page: 3197
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 4
  start-page: 17288
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 1305
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 3840
  year: 2016
  publication-title: Catal. Sci. Technol.
– volume: 3
  start-page: 20288
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 603
  year: 2015
  publication-title: ChemSusChem
– volume: 42
  start-page: 19096
  year: 2017
  publication-title: Int. J. Hydrogen Energy
– volume: 218
  start-page: 743
  year: 2017
  publication-title: Appl. Catal., B
– volume: 137
  start-page: 7169
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 16997
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 10390
  year: 2014
  publication-title: Chem. Commun.
– volume: 46
  start-page: 10553
  year: 2017
  publication-title: Dalton Trans.
– volume: 5
  start-page: 10290
  year: 2015
  publication-title: RSC Adv.
– volume: 5
  start-page: 6170
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 1070
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 7
  start-page: 677
  year: 2017
  publication-title: Catal. Sci. Technol.
– volume: 250
  start-page: 167
  year: 2017
  publication-title: Electrochim. Acta
– volume: 5
  start-page: 364
  year: 2015
  publication-title: Catal. Sci. Technol.
– volume: 8
  start-page: 15341
  year: 2017
  publication-title: Nat. Commun.
– volume: 49
  start-page: 6761
  year: 2013
  publication-title: Chem. Commun.
– volume: 8
  start-page: 21278
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 18037
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 1500037
  year: 2015
  publication-title: Adv. Mater. Interfaces
– volume: 8
  start-page: 364
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 247
  start-page: 258
  year: 2017
  publication-title: Electrochim. Acta
– volume: 8
  start-page: 26794
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 41
  start-page: 10966
  year: 2017
  publication-title: New J. Chem.
– volume: 55
  start-page: 9389
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 7
  start-page: 5266
  year: 2017
  publication-title: Sci. Rep.
– volume: 138
  start-page: 8336
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 16
  start-page: 11133
  year: 2010
  publication-title: Chem. ‐ Eur. J.
– volume: 29
  start-page: 1606814
  year: 2017
  publication-title: Adv. Mater.
– volume: 4
  start-page: 16225
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 23222
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 791
  year: 2017
  publication-title: Chem
– volume: 96
  start-page: 385
  year: 2017
  publication-title: Mater. Res. Bull.
– volume: 3
  start-page: 7163
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 1500985
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 744
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 55
  start-page: 6411
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 56
  start-page: 13781
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 47
  start-page: 11688
  year: 2008
  publication-title: Inorg. Chem.
– volume: 56
  start-page: 13001
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  start-page: 8304
  year: 2015
  publication-title: Nat. Commun.
– volume: 4
  start-page: 1202
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 50
  start-page: 7063
  year: 2014
  publication-title: Chem. Commun.
– volume: 4
  start-page: 5616
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 56
  start-page: 11938
  year: 2017
  publication-title: Inorg. Chem.
– volume: 38
  start-page: 253
  year: 2009
  publication-title: Chem. Soc. Rev.
– volume: 233
  start-page: 194
  year: 2016
  publication-title: J. Solid State Chem.
– volume: 50
  start-page: 8533
  year: 2014
  publication-title: Chem. Commun.
– volume: 49
  start-page: 3564
  year: 2013
  publication-title: Chem. Commun.
– volume: 8
  start-page: 3563
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 307
  start-page: 267
  year: 2016
  publication-title: Coord. Chem. Rev.
– volume: 2
  start-page: 342
  year: 2017
  publication-title: Nanoscale Horiz.
– volume: 18
  start-page: 4780
  year: 2016
  publication-title: Phys. Chem. Chem. Phys.
– volume: 22
  start-page: 1133
  year: 1997
  publication-title: Int. J. Hydrogen Energy
– volume: 50
  start-page: 1849
  year: 2011
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  start-page: 16645
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 18004
  year: 2015
  publication-title: Nanoscale
– volume: 8
  start-page: 10808
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 32106
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 19
  start-page: 2098
  year: 2005
  publication-title: Energy Fuels
– volume: 6
  start-page: 1600423
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 34269
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 35
  start-page: 115
  year: 2017
  publication-title: Nano Energy
– volume: 9
  start-page: 10759
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 6512
  year: 2015
  publication-title: Nat. Commun.
– volume: 6
  start-page: 5887
  year: 2016
  publication-title: ACS Catal.
– volume: 366
  start-page: 193
  year: 2017
  publication-title: J. Power Sources
– volume: 5
  start-page: 24116
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 45
  start-page: 13810
  year: 2016
  publication-title: Dalton Trans.
– volume: 7
  start-page: 11055
  year: 2015
  publication-title: Nanoscale
– volume: 112
  start-page: 1703663
  year: 2017
  publication-title: Adv. Mater.
– volume: 136
  start-page: 14845
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 15430
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 17982
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 15148
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 3035
  year: 2017
  publication-title: Nano Res.
– volume: 5
  start-page: 5000
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 54
  start-page: 5331
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 139
  start-page: 244
  year: 2009
  publication-title: Catal. Today
– volume: 38
  start-page: 1450
  year: 2009
  publication-title: Chem. Soc. Rev.
– volume: 168
  start-page: 572
  year: 2015
  publication-title: Appl. Catal., B
– volume: 334
  start-page: 112
  year: 2016
  publication-title: J. Power Sources
– volume: 4
  start-page: 1600371
  year: 2017
  publication-title: Adv. Sci.
– volume: 13
  start-page: 1603279
  year: 2017
  publication-title: Small
– volume: 5
  start-page: 7001
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 337
  start-page: 80
  year: 2017
  publication-title: Coord. Chem. Rev.
– volume: 8
  start-page: 1923
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 76
  year: 2009
  publication-title: Nat. Mater.
– volume: 32
  start-page: 3797
  year: 2007
  publication-title: Int. J. Hydrogen Energy
– volume: 4
  start-page: 7158
  year: 2016
  publication-title: ACS Sustainable Chem. Eng.
– volume: 44
  start-page: 6212
  year: 2015
  publication-title: Dalton Trans.
– volume: 23
  start-page: 5363
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 27
  start-page: 1700451
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 134
  start-page: 13926
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 1602643
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 188
  year: 2017
  publication-title: ChemElectroChem
– volume: 5
  start-page: 8680
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 13
  start-page: 1700632
  year: 2017
  publication-title: Small
– volume: 29
  start-page: 35
  year: 2017
  publication-title: Adv. Mater.
– volume: 19
  start-page: 4049
  year: 2017
  publication-title: CrystEngComm
– volume: 120
  start-page: 12539
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 9
  start-page: 5213
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 1920
  year: 2015
  publication-title: ChemCatChem
– volume: 326
  start-page: 50
  year: 2016
  publication-title: J. Power Sources
– volume: 16
  start-page: 2154
  year: 2012
  publication-title: Renewable Sustainable Energy Rev.
– volume: 10
  start-page: 1113
  year: 2018
  publication-title: ChemCatChem
– volume: 6
  start-page: 1045
  year: 2016
  publication-title: ACS Catal.
– volume: 116
  start-page: 68
  year: 2017
  publication-title: Carbon
– volume: 23
  start-page: 2255
  year: 2017
  publication-title: Chem. ‐ Eur. J.
– volume: 9
  start-page: 2234
  year: 2016
  publication-title: Nano Res.
– volume: 57
  start-page: 2520
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 51
  start-page: 2056
  year: 2015
  publication-title: Chem. Commun.
– volume: 2
  start-page: 11606
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 4478
  year: 2017
  publication-title: Catal. Sci. Technol.
– volume: 8
  start-page: 20675
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 29
  start-page: 1605957
  year: 2017
  publication-title: Adv. Mater.
– volume: 38
  start-page: 249
  year: 1995
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 23
  start-page: 15518
  year: 2017
  publication-title: Chem. ‐ Eur. J.
– volume: 2
  start-page: 52
  year: 2017
  publication-title: Chem
– volume: 3
  start-page: 10386
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 1690
  year: 2016
  publication-title: Chem. Sci.
– volume: 12
  start-page: 515
  year: 2017
  publication-title: Chem. ‐ Asian J.
– volume: 28
  start-page: 143
  year: 2016
  publication-title: Nano Energy
– volume: 9
  start-page: 11642
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 56
  start-page: 3036
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 133
  start-page: 11822
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 21471
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 3229
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 201
  start-page: 71
  year: 2017
  publication-title: Faraday Discuss.
– volume: 12
  start-page: 4669
  year: 2016
  publication-title: Small
– volume: 50
  start-page: 8944
  year: 2014
  publication-title: Chem. Commun.
– volume: 4
  start-page: 6006
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 40171
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 925
  year: 2013
  publication-title: J. Phys. Chem. Lett.
– volume: 8
  start-page: 13378
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 1012
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 31841
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 135
  start-page: 10210
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 13801
  year: 2015
  publication-title: Sci. Rep.
– volume: 190
  start-page: 12
  year: 2016
  publication-title: Appl. Catal., B
– volume: 11
  start-page: 401
  year: 2007
  publication-title: Renewable Sustainable Energy Rev.
– volume: 29
  start-page: 1703614
  year: 2017
  publication-title: Adv. Mater.
– volume: 210
  start-page: 45
  year: 2017
  publication-title: Appl. Catal., B
– volume: 5
  start-page: 18823
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 20985
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 27
  start-page: 7636
  year: 2015
  publication-title: Chem. Mater.
– volume: 5
  start-page: 5646
  year: 2017
  publication-title: ACS Sustainable Chem. Eng.
– volume: 4
  start-page: 5952
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 53
  start-page: 10122
  year: 2014
  publication-title: Inorg. Chem.
– volume: 7
  start-page: 130
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 39
  start-page: 626
  year: 2017
  publication-title: Nano Energy
– volume: 92
  start-page: 33
  year: 2018
  publication-title: Prog. Mater. Sci.
– volume: 2
  start-page: 2630
  year: 2012
  publication-title: ACS Catal.
– volume: 5
  start-page: 3000
  year: 2013
  publication-title: ChemCatChem
– volume: 5
  start-page: 525
  year: 2015
  publication-title: Catal. Sci. Technol.
– volume: 3
  start-page: 16435
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 3571
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 4771
  year: 2017
  publication-title: ACS Sustainable Chem. Eng.
– volume: 32
  start-page: 1121
  year: 2007
  publication-title: Int. J. Hydrogen Energy
– volume: 206
  start-page: 426
  year: 2017
  publication-title: Appl. Catal., B
– volume: 5
  start-page: 90265
  year: 2015
  publication-title: RSC Adv.
– volume: 220
  start-page: 607
  year: 2018
  publication-title: Appl. Catal., B
– volume: 19
  start-page: 2104
  year: 2017
  publication-title: Phys. Chem. Chem. Phys.
– volume: 8
  start-page: 35390
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 148
  year: 2009
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 16057
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 13611
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 134
  start-page: 7211
  year: 2012
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_8_79_1
  doi: 10.1002/anie.201500267
– ident: e_1_2_8_177_1
  doi: 10.1021/ja200122f
– ident: e_1_2_8_2_1
  doi: 10.1016/j.rser.2012.01.029
– ident: e_1_2_8_147_1
  doi: 10.1016/j.apcatb.2014.11.007
– ident: e_1_2_8_48_1
  doi: 10.1002/cssc.201403345
– ident: e_1_2_8_185_1
  doi: 10.1039/C6TA00766J
– ident: e_1_2_8_106_1
  doi: 10.1002/adfm.201300510
– ident: e_1_2_8_96_1
  doi: 10.1039/C5TA04001A
– ident: e_1_2_8_118_1
  doi: 10.1039/C6RA25810G
– ident: e_1_2_8_16_1
  doi: 10.1039/C4CS00448E
– ident: e_1_2_8_138_1
  doi: 10.1039/C4CC09407G
– ident: e_1_2_8_137_1
  doi: 10.1039/C4CC01776E
– ident: e_1_2_8_64_1
  doi: 10.1007/s12274-017-1519-1
– ident: e_1_2_8_174_1
  doi: 10.1021/ja403330m
– ident: e_1_2_8_126_1
  doi: 10.1016/j.jpowsour.2017.09.018
– ident: e_1_2_8_149_1
  doi: 10.1039/C4CC01086H
– ident: e_1_2_8_44_1
  doi: 10.1002/aenm.201602643
– ident: e_1_2_8_110_1
  doi: 10.1039/C6CP07294A
– ident: e_1_2_8_191_1
– ident: e_1_2_8_130_1
  doi: 10.1039/c3cc43218a
– ident: e_1_2_8_157_1
  doi: 10.1039/C4EE02853H
– ident: e_1_2_8_88_1
  doi: 10.1016/j.nanoen.2017.03.028
– ident: e_1_2_8_122_1
  doi: 10.1002/adfm.201700451
– ident: e_1_2_8_30_1
  doi: 10.1039/C7CS00315C
– ident: e_1_2_8_1_1
  doi: 10.1039/C3EE42350F
– ident: e_1_2_8_189_1
– ident: e_1_2_8_63_1
  doi: 10.1021/acscatal.5b02302
– ident: e_1_2_8_58_1
  doi: 10.1002/chem.200903526
– ident: e_1_2_8_152_1
  doi: 10.1021/acsami.5b12524
– ident: e_1_2_8_40_1
  doi: 10.1016/j.jpowsour.2016.06.114
– ident: e_1_2_8_80_1
  doi: 10.1002/cctc.201500398
– ident: e_1_2_8_114_1
  doi: 10.1016/j.jpowsour.2016.10.022
– ident: e_1_2_8_50_1
  doi: 10.1002/anie.201708385
– ident: e_1_2_8_112_1
  doi: 10.1007/s12274-016-1110-1
– ident: e_1_2_8_123_1
  doi: 10.1002/adma.201605957
– ident: e_1_2_8_34_1
  doi: 10.1016/j.chempr.2016.12.002
– ident: e_1_2_8_166_1
  doi: 10.1021/acsami.6b08740
– ident: e_1_2_8_78_1
  doi: 10.1039/C5EE02460A
– ident: e_1_2_8_92_1
  doi: 10.1021/acsami.7b01037
– ident: e_1_2_8_145_1
  doi: 10.1002/anie.201603990
– ident: e_1_2_8_23_1
  doi: 10.1002/cctc.201701691
– ident: e_1_2_8_172_1
  doi: 10.1002/smll.201603279
– ident: e_1_2_8_179_1
  doi: 10.1039/C4CY01049C
– ident: e_1_2_8_6_1
– ident: e_1_2_8_54_1
  doi: 10.1016/j.apcatb.2017.07.020
– ident: e_1_2_8_176_1
  doi: 10.1021/ic5010352
– ident: e_1_2_8_87_1
  doi: 10.1039/C4RA15680C
– ident: e_1_2_8_141_1
  doi: 10.1002/chem.201703682
– ident: e_1_2_8_13_1
  doi: 10.1039/B800489G
– ident: e_1_2_8_39_1
  doi: 10.1021/acsami.7b09428
– ident: e_1_2_8_124_1
  doi: 10.1021/acssuschemeng.7b00153
– ident: e_1_2_8_47_1
  doi: 10.1021/acsami.6b12197
– ident: e_1_2_8_178_1
  doi: 10.1021/acsami.7b01161
– ident: e_1_2_8_100_1
  doi: 10.1021/acssuschemeng.7b00598
– ident: e_1_2_8_18_1
  doi: 10.1016/S0360-3199(97)00012-8
– ident: e_1_2_8_25_1
  doi: 10.1002/asia.201601518
– ident: e_1_2_8_29_1
  doi: 10.1016/j.ccr.2015.08.004
– ident: e_1_2_8_68_1
  doi: 10.1039/C4CS00470A
– ident: e_1_2_8_120_1
  doi: 10.1021/acsami.7b10680
– ident: e_1_2_8_37_1
  doi: 10.1016/j.pmatsci.2017.09.002
– ident: e_1_2_8_57_1
  doi: 10.1021/jacs.5b02688
– ident: e_1_2_8_53_1
  doi: 10.1002/adfm.201703455
– ident: e_1_2_8_160_1
  doi: 10.1021/acsami.6b04729
– ident: e_1_2_8_35_1
  doi: 10.1021/cs3005874
– ident: e_1_2_8_115_1
  doi: 10.1002/celc.201600452
– ident: e_1_2_8_116_1
  doi: 10.1039/C6TA05829A
– ident: e_1_2_8_7_1
– ident: e_1_2_8_19_1
  doi: 10.1038/nmat2317
– ident: e_1_2_8_76_1
  doi: 10.1021/acs.jpcc.6b02818
– ident: e_1_2_8_42_1
  doi: 10.1021/jacs.6b03125
– ident: e_1_2_8_55_1
  doi: 10.1016/j.apcatb.2017.03.057
– ident: e_1_2_8_28_1
  doi: 10.1016/j.materresbull.2017.04.020
– ident: e_1_2_8_183_1
  doi: 10.1039/C5DT00493D
– ident: e_1_2_8_26_1
  doi: 10.1039/C5EE03503A
– ident: e_1_2_8_41_1
  doi: 10.1038/s41598-017-05636-y
– ident: e_1_2_8_33_1
  doi: 10.1002/aenm.201600423
– ident: e_1_2_8_181_1
  doi: 10.1016/j.ijhydene.2017.06.191
– ident: e_1_2_8_27_1
  doi: 10.1039/C7CE00215G
– ident: e_1_2_8_20_1
  doi: 10.1002/anie.201800571
– ident: e_1_2_8_10_1
  doi: 10.1016/j.ijhydene.2007.05.027
– ident: e_1_2_8_170_1
  doi: 10.1039/C6CY02328B
– ident: e_1_2_8_11_1
  doi: 10.1002/aenm.201500985
– ident: e_1_2_8_109_1
  doi: 10.1039/C5SC04425A
– ident: e_1_2_8_127_1
  doi: 10.1016/j.rser.2005.01.009
– ident: e_1_2_8_46_1
  doi: 10.1021/acsami.7b08647
– ident: e_1_2_8_171_1
  doi: 10.1039/C6DT02667B
– ident: e_1_2_8_164_1
  doi: 10.1039/C7TA10284D
– ident: e_1_2_8_190_1
– ident: e_1_2_8_45_1
  doi: 10.1021/acsami.7b11101
– ident: e_1_2_8_70_1
  doi: 10.1021/acsenergylett.7b00219
– ident: e_1_2_8_119_1
  doi: 10.1039/C7NH00079K
– ident: e_1_2_8_131_1
  doi: 10.1002/anie.201612423
– ident: e_1_2_8_186_1
  doi: 10.1021/acsami.6b04058
– ident: e_1_2_8_150_1
  doi: 10.1016/j.apcatb.2017.01.040
– ident: e_1_2_8_136_1
  doi: 10.1002/admi.201500037
– ident: e_1_2_8_12_1
  doi: 10.1002/advs.201600371
– ident: e_1_2_8_162_1
  doi: 10.1039/C7TA07587A
– ident: e_1_2_8_108_1
  doi: 10.1016/j.nanoen.2017.07.043
– ident: e_1_2_8_153_1
  doi: 10.1021/ja300539p
– ident: e_1_2_8_3_1
  doi: 10.1016/j.rser.2015.10.135
– ident: e_1_2_8_62_1
  doi: 10.1039/C7TA01453H
– ident: e_1_2_8_104_1
  doi: 10.1039/C7EE03457A
– ident: e_1_2_8_187_1
  doi: 10.1039/C6TA04619C
– ident: e_1_2_8_143_1
  doi: 10.1002/anie.201600431
– ident: e_1_2_8_169_1
  doi: 10.1039/C7TA00855D
– ident: e_1_2_8_101_1
  doi: 10.1039/C5NR01955A
– ident: e_1_2_8_105_1
  doi: 10.1038/ncomms15341
– ident: e_1_2_8_67_1
  doi: 10.1002/smll.201600976
– ident: e_1_2_8_168_1
  doi: 10.1039/C5CP06292F
– ident: e_1_2_8_113_1
  doi: 10.1039/C7TA03167J
– ident: e_1_2_8_94_1
  doi: 10.1021/acs.chemmater.6b02586
– ident: e_1_2_8_117_1
  doi: 10.1039/C6TA06185K
– ident: e_1_2_8_66_1
  doi: 10.1039/C5CY01716E
– ident: e_1_2_8_182_1
  doi: 10.1021/ja3043905
– ident: e_1_2_8_69_1
  doi: 10.1038/srep13801
– ident: e_1_2_8_155_1
  doi: 10.1039/C5TA01135C
– ident: e_1_2_8_175_1
  doi: 10.1039/C6TA05790J
– ident: e_1_2_8_83_1
  doi: 10.1039/C5TA05018A
– volume: 29
  start-page: 35
  year: 2017
  ident: e_1_2_8_22_1
  publication-title: Adv. Mater.
– ident: e_1_2_8_102_1
  doi: 10.1039/C5NR03810C
– ident: e_1_2_8_9_1
  doi: 10.1021/ef0500538
– ident: e_1_2_8_82_1
  doi: 10.1039/C7TA05571D
– ident: e_1_2_8_161_1
  doi: 10.1016/j.nanoen.2017.01.046
– ident: e_1_2_8_146_1
  doi: 10.1021/ja407176p
– ident: e_1_2_8_15_1
  doi: 10.1016/j.cattod.2008.08.039
– ident: e_1_2_8_81_1
  doi: 10.1039/C5RA17427A
– ident: e_1_2_8_98_1
  doi: 10.1021/acsami.6b01266
– ident: e_1_2_8_74_1
  doi: 10.1021/jz4002345
– ident: e_1_2_8_142_1
  doi: 10.1002/anie.201006882
– ident: e_1_2_8_165_1
  doi: 10.1039/C5TA05210F
– ident: e_1_2_8_21_1
  doi: 10.1039/C7TA10404A
– ident: e_1_2_8_36_1
  doi: 10.1039/C5EE00161G
– ident: e_1_2_8_43_1
  doi: 10.1038/nenergy.2015.27
– ident: e_1_2_8_99_1
  doi: 10.1039/C6TA05196K
– ident: e_1_2_8_75_1
  doi: 10.1039/C4CC02401J
– ident: e_1_2_8_125_1
  doi: 10.1039/C7TA00692F
– ident: e_1_2_8_163_1
  doi: 10.1039/C6TA07424C
– ident: e_1_2_8_60_1
  doi: 10.1002/adma.201606814
– ident: e_1_2_8_144_1
  doi: 10.1021/ja509019k
– ident: e_1_2_8_134_1
  doi: 10.1039/C5TA00136F
– ident: e_1_2_8_24_1
  doi: 10.1039/C4CY00667D
– ident: e_1_2_8_14_1
  doi: 10.1016/j.ijhydene.2006.11.022
– ident: e_1_2_8_59_1
  doi: 10.1039/C4TA01656D
– ident: e_1_2_8_93_1
  doi: 10.1039/C7TA06671F
– ident: e_1_2_8_77_1
  doi: 10.1038/ncomms7512
– ident: e_1_2_8_140_1
  doi: 10.1039/C7FD00029D
– ident: e_1_2_8_17_1
  doi: 10.1021/acscatal.6b01222
– ident: e_1_2_8_128_1
  doi: 10.1016/0927-0248(95)00003-8
– ident: e_1_2_8_32_1
  doi: 10.1016/j.ccr.2017.02.010
– ident: e_1_2_8_91_1
  doi: 10.1016/j.energy.2015.08.013
– ident: e_1_2_8_159_1
  doi: 10.1039/C4CC03946G
– ident: e_1_2_8_107_1
  doi: 10.1016/j.chempr.2017.04.016
– ident: e_1_2_8_139_1
  doi: 10.1039/c3ee41548a
– ident: e_1_2_8_184_1
  doi: 10.1002/cctc.201300233
– ident: e_1_2_8_61_1
  doi: 10.1021/acs.chemmater.5b02877
– ident: e_1_2_8_51_1
  doi: 10.1016/j.electacta.2017.08.047
– ident: e_1_2_8_97_1
  doi: 10.1039/C6TA10405C
– ident: e_1_2_8_121_1
  doi: 10.1021/acsami.6b13411
– ident: e_1_2_8_129_1
  doi: 10.1002/chem.200700480
– ident: e_1_2_8_4_1
  doi: 10.1039/B809990C
– ident: e_1_2_8_31_1
  doi: 10.1002/adma.201703614
– ident: e_1_2_8_132_1
  doi: 10.1016/j.jssc.2015.10.037
– ident: e_1_2_8_154_1
  doi: 10.1021/jacs.5b00075
– ident: e_1_2_8_148_1
  doi: 10.1039/C7CY01514C
– ident: e_1_2_8_192_1
– ident: e_1_2_8_5_1
– ident: e_1_2_8_89_1
  doi: 10.1039/C6TA06553H
– ident: e_1_2_8_52_1
  doi: 10.1002/smll.201700632
– ident: e_1_2_8_38_1
  doi: 10.1039/b807080f
– ident: e_1_2_8_71_1
  doi: 10.1002/chem.201605337
– ident: e_1_2_8_65_1
  doi: 10.1021/acsami.7b06152
– ident: e_1_2_8_85_1
  doi: 10.1016/j.electacta.2017.06.179
– ident: e_1_2_8_49_1
  doi: 10.1002/adma.201703663
– ident: e_1_2_8_151_1
  doi: 10.1021/acsami.6b04169
– ident: e_1_2_8_72_1
  doi: 10.1002/anie.201707238
– ident: e_1_2_8_180_1
  doi: 10.1021/acs.inorgchem.7b01910
– ident: e_1_2_8_133_1
  doi: 10.1039/c3cc39173f
– ident: e_1_2_8_173_1
  doi: 10.1039/C7DT01970J
– ident: e_1_2_8_56_1
  doi: 10.1016/j.apcatb.2016.02.061
– ident: e_1_2_8_84_1
  doi: 10.1016/j.nanoen.2016.08.040
– ident: e_1_2_8_8_1
– ident: e_1_2_8_188_1
– ident: e_1_2_8_90_1
  doi: 10.1039/C5TA09743F
– ident: e_1_2_8_103_1
  doi: 10.1039/C6TA01900E
– ident: e_1_2_8_73_1
  doi: 10.1038/ncomms9304
– ident: e_1_2_8_86_1
  doi: 10.1039/C7NJ02334K
– ident: e_1_2_8_95_1
  doi: 10.1016/j.carbon.2017.01.085
– ident: e_1_2_8_135_1
  doi: 10.1021/ic801383x
– ident: e_1_2_8_111_1
  doi: 10.1039/C6TA06496E
– ident: e_1_2_8_167_1
  doi: 10.1021/acssuschemeng.6b02032
– ident: e_1_2_8_156_1
  doi: 10.1016/j.apcatb.2017.08.086
– ident: e_1_2_8_158_1
  doi: 10.1039/C6TA00011H
SSID ssj0000491033
ssib001225180
ssib053798997
ssib001009502
Score 2.6700227
SecondaryResourceType review_article
Snippet Highly efficient hydrogen evolution reactions (HERs) will determine the mass distributions of hydrogen‐powered clean technologies in the future. Metal–organic...
SourceID proquest
crossref
wiley
nii
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Aluminum
Catalysis
Catalysts
chemocatalysis
Crystal structure
Crystallinity
Derivatives
Design modifications
electrocatalysis
Hydrogen
Hydrogen evolution reactions
Hydrogen production
Metal-organic frameworks
Organic chemistry
photocatalysis
Porous materials
Title Metal–Organic Framework Based Catalysts for Hydrogen Evolution
URI https://cir.nii.ac.jp/crid/1871991017705772544
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201801193
https://www.proquest.com/docview/2093214125
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELbY7gUOK35Fl12UAxKHypDYbpzcKFBUIboSsCtVXCI7ttEilMLSIsGJd-ANeRLGv01hEQsXqx3FjpPP9sw4nm8QuieqXBLCC0yEAQelrEtskxRiaxpzm4HKcBs7PD8qZyfs-WK8iDncQ3TJSj5ov54bV_I_qIIMcLVRsv-AbGoUBPAb8IUSEIbyQhjPNZjO8bgC9WGVrbVF_Xmr0WNQUcoG-VnikZVjXhjNvqizJbQ4mn4Ofevbp5N4JED7mECwZ_2DbDaY125IgMZ7t04D683SSV-tP8JoexulCyd8mURhc6GwZNXYx-qH9RC0Ny6rsAWp-zLPshQX0ao3VnxQ9G9rs-d6FbqzBABFZcnm6EYLxS_vvyindGTQ0yuTxtZvUv0dtEvAPyADtDt5On_xOm2vgeNT5NSFV8RHiJSdOXm43Yktk2SnOz3d8jb6PoszOo6vor3gLWQTD_01dEl319GVHofkDfTIDYIf374H-LMEf-bgzxL8GcCfRfizBP9NdPJsevxkhkNaDNwyVlOsaJlrRQuj8rrKTVvXjKpScjEWRJqyUDLXcswFWKKGq4pzwWBGEsG1YpJxTm-hQbfs9G2UabDvaynAiDQtGxdcVmVl-XwMZfb7txkiHN9M0wbOeJu65H1zPhxDdD9d_8GzpfzxykN40dCoLQvw2sFPAeXAwX3gljVviA4iBE2YcZ-gdm3zaoFNPkTEwfKXuzST6dE8_du_cO_uoMub2XCABquztT4E43Ml74aB9hOZFntb
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal%E2%80%93Organic+Framework+Based+Catalysts+for+Hydrogen+Evolution&rft.jtitle=Advanced+energy+materials&rft.au=Zhu%2C+Bingjun&rft.au=Zou%2C+Ruqiang&rft.au=Xu%2C+Qiang&rft.date=2018-08-27&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=8&rft.issue=24&rft_id=info:doi/10.1002%2Faenm.201801193&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_201801193
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon