In Situ Carbon Homogeneous Doping on Ultrathin Bismuth Molybdate: A Dual‐Purpose Strategy for Efficient Molecular Oxygen Activation
Solar‐driven activation of molecular oxygen, which harnesses light to produce reactive oxygen species for the removal of pollutants, is the most green and low‐cost approach for environmental remediation. The energy coupling between photons, excitons, and oxygen is the crucial step in this reaction a...
Saved in:
Published in | Advanced Functional Materials Vol. 27; no. 47 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley
15.12.2017
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Solar‐driven activation of molecular oxygen, which harnesses light to produce reactive oxygen species for the removal of pollutants, is the most green and low‐cost approach for environmental remediation. The energy coupling between photons, excitons, and oxygen is the crucial step in this reaction and still remains a challenge. In this study, a dual‐purpose strategy for enhanced molecular oxygen activation is established by in situ carbon homogeneous doping on ultrathin Bi2MoO6 nanosheets for the first time. The C‐doped ultrathin 2D material exhibits an enlarged bandgap straddling the electrochemical potential of O2 /•O2− and H2O /•OH, without any attenuation of light absorption. An internal electric field and shortened carrier‐transportation distance are also found in the longitude orientation of the nanosheets ([001] axis), leading to a higher density of effective photogenerated carriers localized on the exposed {001} surface. As applied for the nitric oxide removal, the reactive rate over the ultrathin C‐doped Bi2MoO6 nanosheets is 4.3 times higher than that over the bulk counterparts as a result of the increasing reactive oxygen species. This new proof‐of‐concept strategy not only realizes the band structure engineering and charge transportation regulation but also paves a new way to construct highly efficient photocatalytic materials.
A dual‐purpose strategy for enhanced molecular oxygen activation is established by in situ carbon homogeneous doping on ultrathin Bi2MoO6 nanosheets. The constructed material with shorter distance in the direction of charge transfer and promoted redox ability without losing any absorption of solar light is 4.3 times higher than that over the bulk counterparts in long‐term nitric oxide removal. |
---|---|
AbstractList | Solar‐driven activation of molecular oxygen, which harnesses light to produce reactive oxygen species for the removal of pollutants, is the most green and low‐cost approach for environmental remediation. The energy coupling between photons, excitons, and oxygen is the crucial step in this reaction and still remains a challenge. In this study, a dual‐purpose strategy for enhanced molecular oxygen activation is established by in situ carbon homogeneous doping on ultrathin Bi
2
MoO
6
nanosheets for the first time. The C‐doped ultrathin 2D material exhibits an enlarged bandgap straddling the electrochemical potential of O
2
/•O
2
−
and H
2
O /•OH, without any attenuation of light absorption. An internal electric field and shortened carrier‐transportation distance are also found in the longitude orientation of the nanosheets ([001] axis), leading to a higher density of effective photogenerated carriers localized on the exposed {001} surface. As applied for the nitric oxide removal, the reactive rate over the ultrathin C‐doped Bi
2
MoO
6
nanosheets is 4.3 times higher than that over the bulk counterparts as a result of the increasing reactive oxygen species. This new proof‐of‐concept strategy not only realizes the band structure engineering and charge transportation regulation but also paves a new way to construct highly efficient photocatalytic materials. Solar‐driven activation of molecular oxygen, which harnesses light to produce reactive oxygen species for the removal of pollutants, is the most green and low‐cost approach for environmental remediation. The energy coupling between photons, excitons, and oxygen is the crucial step in this reaction and still remains a challenge. In this study, a dual‐purpose strategy for enhanced molecular oxygen activation is established by in situ carbon homogeneous doping on ultrathin Bi2MoO6 nanosheets for the first time. The C‐doped ultrathin 2D material exhibits an enlarged bandgap straddling the electrochemical potential of O2 /•O2− and H2O /•OH, without any attenuation of light absorption. An internal electric field and shortened carrier‐transportation distance are also found in the longitude orientation of the nanosheets ([001] axis), leading to a higher density of effective photogenerated carriers localized on the exposed {001} surface. As applied for the nitric oxide removal, the reactive rate over the ultrathin C‐doped Bi2MoO6 nanosheets is 4.3 times higher than that over the bulk counterparts as a result of the increasing reactive oxygen species. This new proof‐of‐concept strategy not only realizes the band structure engineering and charge transportation regulation but also paves a new way to construct highly efficient photocatalytic materials. Solar‐driven activation of molecular oxygen, which harnesses light to produce reactive oxygen species for the removal of pollutants, is the most green and low‐cost approach for environmental remediation. The energy coupling between photons, excitons, and oxygen is the crucial step in this reaction and still remains a challenge. In this study, a dual‐purpose strategy for enhanced molecular oxygen activation is established by in situ carbon homogeneous doping on ultrathin Bi2MoO6 nanosheets for the first time. The C‐doped ultrathin 2D material exhibits an enlarged bandgap straddling the electrochemical potential of O2 /•O2− and H2O /•OH, without any attenuation of light absorption. An internal electric field and shortened carrier‐transportation distance are also found in the longitude orientation of the nanosheets ([001] axis), leading to a higher density of effective photogenerated carriers localized on the exposed {001} surface. As applied for the nitric oxide removal, the reactive rate over the ultrathin C‐doped Bi2MoO6 nanosheets is 4.3 times higher than that over the bulk counterparts as a result of the increasing reactive oxygen species. This new proof‐of‐concept strategy not only realizes the band structure engineering and charge transportation regulation but also paves a new way to construct highly efficient photocatalytic materials. A dual‐purpose strategy for enhanced molecular oxygen activation is established by in situ carbon homogeneous doping on ultrathin Bi2MoO6 nanosheets. The constructed material with shorter distance in the direction of charge transfer and promoted redox ability without losing any absorption of solar light is 4.3 times higher than that over the bulk counterparts in long‐term nitric oxide removal. |
Author | Jinhua Ye Xing Ding Hong Pang Lizhi Zhang Hao Chen Guangming Zhan Xiao Hai Xuehao Zhang Wei Zhou Hui Song Shengyao Wang |
Author_xml | – sequence: 1 givenname: Shengyao surname: Wang fullname: Wang, Shengyao organization: National Institute for Materials Science (NIMS) – sequence: 2 givenname: Xing surname: Ding fullname: Ding, Xing organization: Huazhong Agricultural University – sequence: 3 givenname: Xuehao surname: Zhang fullname: Zhang, Xuehao organization: Huazhong Agricultural University – sequence: 4 givenname: Hong surname: Pang fullname: Pang, Hong organization: Hokkaido University – sequence: 5 givenname: Xiao surname: Hai fullname: Hai, Xiao organization: Hokkaido University – sequence: 6 givenname: Guangming surname: Zhan fullname: Zhan, Guangming organization: Central China Normal University – sequence: 7 givenname: Wei surname: Zhou fullname: Zhou, Wei organization: National Institute for Materials Science (NIMS) – sequence: 8 givenname: Hui surname: Song fullname: Song, Hui organization: Hokkaido University – sequence: 9 givenname: Lizhi surname: Zhang fullname: Zhang, Lizhi organization: Central China Normal University – sequence: 10 givenname: Hao surname: Chen fullname: Chen, Hao email: hchenhao@mail.hzau.edu.cn organization: Huazhong Agricultural University – sequence: 11 givenname: Jinhua orcidid: 0000-0001-6424-7959 surname: Ye fullname: Ye, Jinhua email: jinhua.ye@nims.go.jp organization: School of Material Science and Engineering, Tianjin University |
BackLink | https://cir.nii.ac.jp/crid/1873961342751247360$$DView record in CiNii |
BookMark | eNqFkM9rFDEUx4NUsK1ePQf0utv8zoy3dbe_oKVCLXgbMtmXbcpssiYZdW5evPs3-pc440oRQbwk4fH55L33PUIHIQZA6CUlc0oIOzFrt50zQjXhNeNP0CFVVM04YdXB45t-eIaOcn4gI6a5OETfLgO-9aXHS5PaGPBF3MYNBIh9xqu482GDx-pdV5Ip9z7gtz5v-3KPr2M3tGtT4A1e4FVvuh9fv7_r0y5mwLcTDJsBu5jwqXPeeghlUsD2nUn45ssw9sALW_wnU3wMz9FTZ7oML37fx-ju7PT98mJ2dXN-uVxczawQNZ8ZJRyXraQUrLGagdDSEUKkbZmilNBasdZCq6upUFUSrNDV2mkluQQm-DF6tf93l-LHHnJpHmKfwtiyobWWtSJKVyMl9pRNMecErrG-_JpzXMx3DSXNFHgzBd48Bj5q87-0XfJbk4Z_C_Ve-Ow7GP5DN4vV2fWf7uu9G7wfx5tOWmleK8oF05Iyobki_Cc3N6GW |
CitedBy_id | crossref_primary_10_1016_j_nanoen_2018_12_071 crossref_primary_10_1016_j_jhazmat_2021_126634 crossref_primary_10_1016_j_esci_2024_100228 crossref_primary_10_1016_j_ultsonch_2019_104819 crossref_primary_10_1002_ange_202400985 crossref_primary_10_1039_C8NR07823H crossref_primary_10_1016_j_apsusc_2023_156393 crossref_primary_10_1039_D4RA04949G crossref_primary_10_1039_C9NJ00647H crossref_primary_10_3390_md17060316 crossref_primary_10_1016_j_apcatb_2019_117966 crossref_primary_10_1016_j_envpol_2023_121813 crossref_primary_10_1016_j_apcatb_2020_119481 crossref_primary_10_1021_acs_jpcc_9b02784 crossref_primary_10_1016_j_cej_2020_126185 crossref_primary_10_1016_j_foodchem_2022_134895 crossref_primary_10_1016_j_jallcom_2021_162534 crossref_primary_10_1002_smll_202301817 crossref_primary_10_1039_D2QI00311B crossref_primary_10_1002_smll_201901008 crossref_primary_10_1016_j_jallcom_2024_175609 crossref_primary_10_1021_acsami_1c17386 crossref_primary_10_1016_j_apcatb_2021_120492 crossref_primary_10_1016_j_jcis_2021_10_173 crossref_primary_10_1039_D0TA08165E crossref_primary_10_1039_D0TA04923A crossref_primary_10_1016_j_jcis_2020_02_003 crossref_primary_10_2166_wst_2018_361 crossref_primary_10_1016_j_jallcom_2019_06_311 crossref_primary_10_1021_acscatal_3c03914 crossref_primary_10_1088_1361_6528_abb72c crossref_primary_10_1002_advs_202406329 crossref_primary_10_1016_j_mcat_2024_114336 crossref_primary_10_1016_j_cej_2021_129915 crossref_primary_10_1016_j_jcou_2021_101648 crossref_primary_10_1016_j_gee_2021_01_012 crossref_primary_10_1002_anie_202304050 crossref_primary_10_1016_j_seppur_2022_122066 crossref_primary_10_1002_solr_202000442 crossref_primary_10_1016_j_apsusc_2024_161323 crossref_primary_10_1021_acscatal_1c04564 crossref_primary_10_1016_j_apcatb_2020_119820 crossref_primary_10_1016_j_cej_2019_04_137 crossref_primary_10_1016_j_apsusc_2021_150104 crossref_primary_10_1021_acssuschemeng_8b04454 crossref_primary_10_1002_adfm_201803309 crossref_primary_10_1021_acs_iecr_3c04141 crossref_primary_10_1016_j_cej_2024_152589 crossref_primary_10_1016_j_cej_2021_129596 crossref_primary_10_3390_ijms232112979 crossref_primary_10_1016_j_watres_2023_121075 crossref_primary_10_1016_j_apcatb_2018_08_063 crossref_primary_10_1016_j_cej_2020_125395 crossref_primary_10_1016_j_jphotochem_2023_114872 crossref_primary_10_1002_ange_202304050 crossref_primary_10_1039_D1RA07275G crossref_primary_10_3390_nano12152569 crossref_primary_10_1007_s11051_019_4478_5 crossref_primary_10_1039_C9CY00855A crossref_primary_10_3390_nano11092221 crossref_primary_10_1016_j_apcatb_2021_120549 crossref_primary_10_1016_j_jlumin_2021_118675 crossref_primary_10_1002_ange_202106310 crossref_primary_10_1038_s42004_020_0319_9 crossref_primary_10_1016_j_nanoen_2018_08_058 crossref_primary_10_1039_C9TA10144F crossref_primary_10_1016_j_cej_2022_140602 crossref_primary_10_1021_acssuschemeng_8b02040 crossref_primary_10_1016_j_jallcom_2020_157668 crossref_primary_10_1039_D1EN00894C crossref_primary_10_1002_adma_202200180 crossref_primary_10_1016_j_apcatb_2021_120159 crossref_primary_10_1016_j_apcatb_2023_122492 crossref_primary_10_1016_j_jwpe_2023_104080 crossref_primary_10_1016_j_cej_2020_126072 crossref_primary_10_1016_j_surfin_2021_101272 crossref_primary_10_1002_adfm_202112831 crossref_primary_10_1039_C9NR10822J crossref_primary_10_1016_j_cej_2024_150536 crossref_primary_10_1021_acsami_9b17623 crossref_primary_10_1016_j_jcis_2019_07_073 crossref_primary_10_1016_j_apsusc_2021_152033 crossref_primary_10_1016_j_jhazmat_2020_122355 crossref_primary_10_1016_j_apcatb_2019_118585 crossref_primary_10_1002_cssc_201901196 crossref_primary_10_1016_j_jallcom_2022_166146 crossref_primary_10_1039_D0SE01224F crossref_primary_10_1039_C9CY01862J crossref_primary_10_1016_j_cej_2022_135786 crossref_primary_10_1016_j_jcis_2021_02_036 crossref_primary_10_1016_j_jcis_2021_07_018 crossref_primary_10_1002_anie_202106310 crossref_primary_10_1016_j_apcatb_2019_04_084 crossref_primary_10_1016_j_jcis_2019_12_131 crossref_primary_10_1016_j_scib_2021_07_016 crossref_primary_10_1016_j_optmat_2024_114825 crossref_primary_10_1021_acs_energyfuels_2c01660 crossref_primary_10_1016_j_jcis_2021_05_091 crossref_primary_10_1002_smll_202304053 crossref_primary_10_1039_C9CY00308H crossref_primary_10_1016_j_apsusc_2022_155893 crossref_primary_10_1016_j_cej_2021_129305 crossref_primary_10_1186_s11671_019_2981_3 crossref_primary_10_1016_j_apcatb_2018_06_016 crossref_primary_10_1021_acsnano_3c12773 crossref_primary_10_1016_j_seppur_2025_131994 crossref_primary_10_3390_catal11091089 crossref_primary_10_1002_adsu_202200009 crossref_primary_10_1007_s12274_024_6518_4 crossref_primary_10_1016_j_cej_2018_12_008 crossref_primary_10_1002_smll_201904107 crossref_primary_10_1002_admi_202100695 crossref_primary_10_1039_C8CY00470F crossref_primary_10_1016_j_jallcom_2024_173759 crossref_primary_10_1002_anie_202400985 crossref_primary_10_3390_catal8050185 crossref_primary_10_1002_adma_201900546 crossref_primary_10_1039_D0TA01180K crossref_primary_10_1016_j_cej_2020_126328 crossref_primary_10_1016_j_jcis_2022_03_014 crossref_primary_10_1002_adma_202005256 crossref_primary_10_1016_j_jhazmat_2020_122659 crossref_primary_10_1021_acs_iecr_3c01503 crossref_primary_10_1021_acs_analchem_2c02848 crossref_primary_10_1016_j_cej_2019_123919 crossref_primary_10_1016_j_seppur_2025_131746 crossref_primary_10_1002_adma_202106838 crossref_primary_10_1016_j_pmatsci_2022_101047 crossref_primary_10_1016_j_apcatb_2024_124667 crossref_primary_10_1016_j_jhazmat_2018_10_063 crossref_primary_10_1039_D2CS00205A crossref_primary_10_1016_j_fuel_2020_119171 crossref_primary_10_1016_j_cej_2019_123236 crossref_primary_10_1016_j_mtphys_2020_100294 crossref_primary_10_1016_j_watres_2021_117266 crossref_primary_10_1016_j_triboint_2025_110577 crossref_primary_10_1016_j_apsusc_2024_161381 crossref_primary_10_1016_j_jcis_2023_02_005 crossref_primary_10_1002_adfm_202010763 crossref_primary_10_1016_j_cej_2022_136703 crossref_primary_10_1016_j_electacta_2020_137382 crossref_primary_10_1016_j_apsusc_2019_143655 crossref_primary_10_1088_2053_1583_abc73a crossref_primary_10_1002_smll_202303980 crossref_primary_10_1039_D0TA02102D crossref_primary_10_1016_j_apcatb_2021_120352 |
Cites_doi | 10.1016/j.jallcom.2014.04.097 10.1039/b921692h 10.1002/adfm.201404178 10.1021/acscatal.6b01657 10.1002/anie.200602138 10.1016/j.apcatb.2010.05.022 10.1126/science.1183591 10.1021/nn700179k 10.1021/ja4092903 10.1039/c1cc10888c 10.1002/adma.200500328 10.1039/C5TA00103J 10.1002/anie.201506966 10.1002/adma.201603765 10.1039/C7CC04052K 10.1126/science.1141483 10.1002/anie.201204675 10.1038/ncomms5470 10.1016/j.apsusc.2013.07.124 10.1038/ncomms11480 10.1002/adma.201701774 10.1021/acscatal.6b00490 10.1038/ncomms5475 10.1021/jp901437a 10.1002/adma.201601413 10.1021/ar500412p 10.1002/adma.201600301 10.1021/ja311739v 10.1039/C6TA10964K 10.1002/smll.201302950 10.1002/adfm.201504695 10.1021/es405714q 10.1038/ncomms9340 10.1038/ncomms8698 10.1002/aenm.201501654 10.1016/j.apcatb.2015.09.046 10.1021/cr0200116 10.1021/acscatal.6b02613 10.1021/jacs.6b12273 10.1021/es502290f 10.1039/C4SC03229B 10.1021/acs.accounts.6b00523 |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | RYH AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201703923 |
DatabaseName | CiNii Complete CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_201703923 ADFM201703923 |
Genre | article |
GrantInformation_xml | – fundername: National Basic Research Program of China funderid: 2014CB239301 – fundername: China Scholarship Council funderid: 201406250019; 201606760019 – fundername: Central Universities of China funderid: 2015PY120; 2015PY047; 2016PY088 – fundername: National Science Foundation of China funderid: 21633004; 51572101; 21607047 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYH RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RWI WRC .Y3 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION FEDTE HF~ HVGLF 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c4493-a64f35b511ecac72e475f0005cb261101962bceb78cb26885ec478df76535e243 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 08:00:45 EDT 2025 Tue Jul 01 04:11:42 EDT 2025 Thu Apr 24 23:06:28 EDT 2025 Wed Jan 22 17:09:55 EST 2025 Tue Aug 12 03:00:50 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 47 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4493-a64f35b511ecac72e475f0005cb261101962bceb78cb26885ec478df76535e243 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8105-8903 0000-0001-9485-3458 0000-0003-0026-6469 0000-0002-9286-082X 0000-0001-6424-7959 |
PQID | 1975960678 |
PQPubID | 2045204 |
PageCount | 10 |
ParticipantIDs | proquest_journals_1975960678 crossref_citationtrail_10_1002_adfm_201703923 crossref_primary_10_1002_adfm_201703923 wiley_primary_10_1002_adfm_201703923_ADFM201703923 nii_cinii_1873961342751247360 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 15, 2017 |
PublicationDateYYYYMMDD | 2017-12-15 |
PublicationDate_xml | – month: 12 year: 2017 text: December 15, 2017 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced Functional Materials |
PublicationYear | 2017 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2017; 5 2010; 98 2015; 6 2004; 104 2015; 5 2015; 3 2010; 327 2010; 39 2015; 54 2014; 48 2009; 113 2013; 284 2017; 29 2016; 182 2008; 2 2017; 139 2012; 51 2017; 50 2015; 48 2016; 6 2017; 53 2016; 7 2015; 25 2014; 5 2007; 317 2006; 45 2014; 608 2013; 135 2017 2011; 47 2016; 28 2005; 17 2016; 26 2014; 10 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 Li H. (e_1_2_7_16_1) 2017 |
References_xml | – volume: 6 start-page: 3180 year: 2016 publication-title: ACS Catal. – volume: 182 start-page: 316 year: 2016 publication-title: Appl. Catal., B – volume: 6 start-page: 1873 year: 2015 publication-title: Chem. Sci. – volume: 135 start-page: 3200 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 39 start-page: 4206 year: 2010 publication-title: Chem. Soc. Rev. – volume: 98 start-page: 138 year: 2010 publication-title: Appl. Catal., B – volume: 48 start-page: 10345 year: 2014 publication-title: Environ. Sci. Technol. – volume: 54 start-page: 13971 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 6 start-page: 8276 year: 2016 publication-title: ACS Catal. – volume: 28 start-page: 6940 year: 2016 publication-title: Adv. Mater. – volume: 5 start-page: 4470 year: 2014 publication-title: Nat. Commun. – volume: 6 start-page: 8340 year: 2015 publication-title: Nat. Commun. – volume: 5 start-page: 8117 year: 2017 publication-title: J. Mater. Chem. A – volume: 28 start-page: 10033 year: 2016 publication-title: Adv. Mater. – volume: 53 start-page: 8604 year: 2017 publication-title: Chem. Commun. – volume: 25 start-page: 2189 year: 2015 publication-title: Adv. Funct. Mater. – volume: 45 start-page: 6612 year: 2006 publication-title: Angew. Chem., Int. Ed. – volume: 5 start-page: 1501654 year: 2015 publication-title: Adv. Energy Mater. – volume: 113 start-page: 12176 year: 2009 publication-title: J. Phys. Chem. C – volume: 327 start-page: 319 year: 2010 publication-title: Science – volume: 28 start-page: 4059 year: 2016 publication-title: Adv. Mater. – volume: 50 start-page: 112 year: 2017 publication-title: Acc. Chem. Res. – volume: 48 start-page: 575 year: 2015 publication-title: Acc. Chem. Res. – volume: 5 start-page: 4475 year: 2014 publication-title: Nat. Commun. – volume: 6 start-page: 7698 year: 2015 publication-title: Nat. Commun. – volume: 2 start-page: 523 year: 2008 publication-title: ACS Nano – volume: 51 start-page: 8727 year: 2012 publication-title: Angew. Chem., Int. Ed. – volume: 7 start-page: 11480 year: 2016 publication-title: Nat. Commun. – volume: 3 start-page: 6118 year: 2015 publication-title: J. Mater. Chem. A – volume: 139 start-page: 4737 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 47 start-page: 4517 year: 2011 publication-title: Chem. Commun. – volume: 284 start-page: 497 year: 2013 publication-title: Appl. Surf. Sci. – year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 10 start-page: 2791 year: 2014 publication-title: Small – volume: 6 start-page: 6511 year: 2016 publication-title: ACS Catal. – volume: 17 start-page: 2531 year: 2005 publication-title: Adv. Mater. – volume: 29 start-page: 1701774 year: 2017 publication-title: Adv. Mater. – volume: 317 start-page: 100 year: 2007 publication-title: Science – volume: 608 start-page: 44 year: 2014 publication-title: J. Alloys Compd. – volume: 26 start-page: 1428 year: 2016 publication-title: Adv. Funct. Mater. – volume: 48 start-page: 5823 year: 2014 publication-title: Environ. Sci. Technol. – volume: 135 start-page: 15750 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 104 start-page: 3037 year: 2004 publication-title: Chem. Rev. – ident: e_1_2_7_31_1 doi: 10.1016/j.jallcom.2014.04.097 – ident: e_1_2_7_8_1 doi: 10.1039/b921692h – ident: e_1_2_7_32_1 doi: 10.1002/adfm.201404178 – ident: e_1_2_7_42_1 doi: 10.1021/acscatal.6b01657 – ident: e_1_2_7_7_1 doi: 10.1002/anie.200602138 – ident: e_1_2_7_25_1 doi: 10.1016/j.apcatb.2010.05.022 – ident: e_1_2_7_2_1 doi: 10.1126/science.1183591 – ident: e_1_2_7_9_1 doi: 10.1021/nn700179k – ident: e_1_2_7_5_1 doi: 10.1021/ja4092903 – ident: e_1_2_7_11_1 doi: 10.1039/c1cc10888c – ident: e_1_2_7_6_1 doi: 10.1002/adma.200500328 – ident: e_1_2_7_28_1 doi: 10.1039/C5TA00103J – ident: e_1_2_7_20_1 doi: 10.1002/anie.201506966 – ident: e_1_2_7_33_1 doi: 10.1002/adma.201603765 – ident: e_1_2_7_43_1 doi: 10.1039/C7CC04052K – ident: e_1_2_7_14_1 doi: 10.1126/science.1141483 – ident: e_1_2_7_13_1 doi: 10.1002/anie.201204675 – ident: e_1_2_7_15_1 doi: 10.1038/ncomms5470 – ident: e_1_2_7_30_1 doi: 10.1016/j.apsusc.2013.07.124 – ident: e_1_2_7_18_1 doi: 10.1038/ncomms11480 – ident: e_1_2_7_34_1 doi: 10.1002/adma.201701774 – ident: e_1_2_7_17_1 doi: 10.1021/acscatal.6b00490 – ident: e_1_2_7_21_1 doi: 10.1038/ncomms5475 – ident: e_1_2_7_27_1 doi: 10.1021/jp901437a – ident: e_1_2_7_39_1 doi: 10.1002/adma.201601413 – ident: e_1_2_7_4_1 doi: 10.1021/ar500412p – ident: e_1_2_7_23_1 doi: 10.1002/adma.201600301 – ident: e_1_2_7_3_1 doi: 10.1021/ja311739v – ident: e_1_2_7_38_1 doi: 10.1039/C6TA10964K – ident: e_1_2_7_22_1 doi: 10.1002/smll.201302950 – ident: e_1_2_7_26_1 doi: 10.1002/adfm.201504695 – ident: e_1_2_7_35_1 doi: 10.1021/es405714q – ident: e_1_2_7_19_1 doi: 10.1038/ncomms9340 – ident: e_1_2_7_29_1 doi: 10.1038/ncomms8698 – ident: e_1_2_7_12_1 doi: 10.1002/aenm.201501654 – ident: e_1_2_7_41_1 doi: 10.1016/j.apcatb.2015.09.046 – ident: e_1_2_7_1_1 doi: 10.1021/cr0200116 – year: 2017 ident: e_1_2_7_16_1 publication-title: Angew. Chem., Int. Ed. – ident: e_1_2_7_36_1 doi: 10.1021/acscatal.6b02613 – ident: e_1_2_7_37_1 doi: 10.1021/jacs.6b12273 – ident: e_1_2_7_40_1 doi: 10.1021/es502290f – ident: e_1_2_7_24_1 doi: 10.1039/C4SC03229B – ident: e_1_2_7_10_1 doi: 10.1021/acs.accounts.6b00523 |
SSID | ssj0017734 ssib024095149 |
Score | 2.6005564 |
Snippet | Solar‐driven activation of molecular oxygen, which harnesses light to produce reactive oxygen species for the removal of pollutants, is the most green and... |
SourceID | proquest crossref wiley nii |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Activation Band structure of solids Bi2MoO6 Bismuth Construction materials Coupling (molecular) C‐doping Doping Electrochemical potential Electromagnetic absorption Excitons Harnesses Materials science molecular oxygen activation Nanostructure Nitric oxide NO removal Oxygen Photons Pollutants Strategy Transportation ultrathin 2D materials |
Title | In Situ Carbon Homogeneous Doping on Ultrathin Bismuth Molybdate: A Dual‐Purpose Strategy for Efficient Molecular Oxygen Activation |
URI | https://cir.nii.ac.jp/crid/1873961342751247360 https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201703923 https://www.proquest.com/docview/1975960678 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLZgXODAb7TCNvmAxClbHdtxwi2sqwqigBiVeotsx9EiugQtiUQ5ceHO38hfwntJGlokhAQXK7HsOLHfsz87732PkKeSR05pYzxQwhQSLjyTSuUFmRVMp9JIjt7I8zfBbCFeLeVyy4u_44cYDtxQM9r5GhVcm-rkF2moTjP0JGcgsgBSYBJGgy1ERe8H_iimVPdbOWBo4MWWG9bGsX-yW31nVbpe5PkO4NyGre26M71D9OaNO3OTj8dNbY7tl9_IHP_nk-6S2z0opXEnRffINVfcJ7e2qAofkG8vC3qe1w091VemLOisvCxB9lzZVHTSOl1RyF2skOz2Ii_oi7y6bOoLOi9Xa4OnCs9pTCeNXv34-v0dDG5ZOdoz464pAGd61nJZwBKIVbqIvfTt5zW0QWO7icH2kCymZx9OZ14fwsGzQkTc04HIOAw4Y85qq3wnlMwQJ1oDWzeG5Dy-sc6oEDPCUDorVJhmKpBcOl_wR2SvKAu3TyjjKsyycWAcIFZfcxNJKTOZQq1M2sgfEW8zhInt-c0xzMYq6ZiZ_QS7Nxm6d0SeDeU_dcwefyx5CBIBD8WUhYpHgIGErwArCcWD8YgcbGQl6WeAKmGRkrg7VOGI-O2g_6WVJJ5M58Pd43-p9ITcxGu0tmHygOzVV407BMxUmyNyI57MX58ftfrxE9r4Das |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLXasgAWvBEDLXgBYpV2_IoTJBZD09EM7RQEHWl2aew4asQ0QU0iGFZs2PMr_AqfwJdwncfQQUJISF2wsRTLL9n32uc61-ci9Fgw38hIKQeUMIaEcUfFQjpuojmJYqEEs6-RJ4fuaMpfzsRsDX3r3sI0_BDLCzerGfV-bRXcXkjv_GINjeLEPiUnILOAUlq_yn2z-ABWW_F8HMASP6F0uHe0O3LawAKO5txnTuTyhMEwCDE60pIaLkVi0YtWYFAQSxlDlTZKejbD84TRXHpxIl3BhKGcQbvr6JINI27p-oM3S8YqImXzI9sl1qWMzDqeyD7dWR3vyjm4nqXpCsQ9D5Trk254HX3v5qhxcHm3XZVqW3_6jT7yv5rEG-hai7vxoFGUm2jNZLfQ1XNsjLfRl3GG36ZlhXejM5VneJSf5qBeJq8KHNTvyjDkTueWz_ckzfCLtDityhM8yecLZS9OnuEBDqpo_uPz19cgv3lhcEv-u8BgG-C9mq4DTnlbpQlKjF99XEAfeKC7MHN30PRC5uEu2sjyzNxDmDDpJUnfVQZAOY2Y8oUQiYihViK0T3vI6WQm1C2Fu40kMg8b8mka2uUMl8vZQ0-X5d835CV_LLkFIgiN2pR4kvkA8ziVAAe5ZG6_hzY74QzbTa4IiS-FNYCl10O0lrK_9BIOguFk-XX_Xyo9QpdHR5OD8GB8uP8AXbH51rmIiE20UZ5VZgsgYqke1kqJ0fFFC_BP-gdoLg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLXaIiFY8EYMtOAFiFXa8StOkFgMTUczlCkVMNLs0thx1IhpUjWJYFixYc-n8Cv8Al_CdR5DBwkhIXXBxlIsv2Tfax87956L0GPBfCMjpRxQwhgSxh0VC-m4ieYkioUSzHojTw7c0ZS_nInZGvrW-cI0_BDLBzerGfV-bRX8NE52fpGGRnFiPckJiCyAlNasct8sPsClrXg-DmCFn1A63Hu3O3LauAKO5txnTuTyhMEoCDE60pIaLkViwYtWcJ8gljGGKm2U9GyG5wmjufTiRLqCCUM5g3bX0SXu9n0bLCJ4sySsIlI2_7FdYi3KyKyjiezTndXxrhyD61mariDc8zi5PuiG19H3booa-5b321WptvWn39gj_6c5vIGutagbDxo1uYnWTHYLXT3HxXgbfRln-G1aVng3OlN5hkf5SQ7KZfKqwEHtVYYhdzq3bL7HaYZfpMVJVR7jST5fKPts8gwPcFBF8x-fvx6C9OaFwS317wLDzQDv1WQdcMbbKk1IYvz64wL6wAPdBZm7g6YXMg930UaWZ-YewoRJL0n6rjIAyWnElC-ESEQMtRKhfdpDTicyoW4J3G0ckXnYUE_T0C5nuFzOHnq6LH_aUJf8seQWSCA0alPiSeYDyONUAhjkkrn9HtrsZDNst7giJL4U9vorvR6itZD9pZdwEAwny6_7_1LpEbp8GAzDV-OD_Qfois22lkVEbKKN8qwyW4APS_WwVkmMji5afn8CL3Nm3Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Situ+Carbon+Homogeneous+Doping+on+Ultrathin+Bismuth+Molybdate%3A+A+Dual%E2%80%90Purpose+Strategy+for+Efficient+Molecular+Oxygen+Activation&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Shengyao&rft.au=Ding%2C+Xing&rft.au=Zhang%2C+Xuehao&rft.au=Pang%2C+Hong&rft.date=2017-12-15&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=27&rft.issue=47&rft_id=info:doi/10.1002%2Fadfm.201703923&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |