In Situ Carbon Homogeneous Doping on Ultrathin Bismuth Molybdate: A Dual‐Purpose Strategy for Efficient Molecular Oxygen Activation

Solar‐driven activation of molecular oxygen, which harnesses light to produce reactive oxygen species for the removal of pollutants, is the most green and low‐cost approach for environmental remediation. The energy coupling between photons, excitons, and oxygen is the crucial step in this reaction a...

Full description

Saved in:
Bibliographic Details
Published inAdvanced Functional Materials Vol. 27; no. 47
Main Authors Wang, Shengyao, Ding, Xing, Zhang, Xuehao, Pang, Hong, Hai, Xiao, Zhan, Guangming, Zhou, Wei, Song, Hui, Zhang, Lizhi, Chen, Hao, Ye, Jinhua
Format Journal Article
LanguageEnglish
Published Hoboken Wiley 15.12.2017
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Solar‐driven activation of molecular oxygen, which harnesses light to produce reactive oxygen species for the removal of pollutants, is the most green and low‐cost approach for environmental remediation. The energy coupling between photons, excitons, and oxygen is the crucial step in this reaction and still remains a challenge. In this study, a dual‐purpose strategy for enhanced molecular oxygen activation is established by in situ carbon homogeneous doping on ultrathin Bi2MoO6 nanosheets for the first time. The C‐doped ultrathin 2D material exhibits an enlarged bandgap straddling the electrochemical potential of O2 /•O2− and H2O /•OH, without any attenuation of light absorption. An internal electric field and shortened carrier‐transportation distance are also found in the longitude orientation of the nanosheets ([001] axis), leading to a higher density of effective photogenerated carriers localized on the exposed {001} surface. As applied for the nitric oxide removal, the reactive rate over the ultrathin C‐doped Bi2MoO6 nanosheets is 4.3 times higher than that over the bulk counterparts as a result of the increasing reactive oxygen species. This new proof‐of‐concept strategy not only realizes the band structure engineering and charge transportation regulation but also paves a new way to construct highly efficient photocatalytic materials. A dual‐purpose strategy for enhanced molecular oxygen activation is established by in situ carbon homogeneous doping on ultrathin Bi2MoO6 nanosheets. The constructed material with shorter distance in the direction of charge transfer and promoted redox ability without losing any absorption of solar light is 4.3 times higher than that over the bulk counterparts in long‐term nitric oxide removal.
AbstractList Solar‐driven activation of molecular oxygen, which harnesses light to produce reactive oxygen species for the removal of pollutants, is the most green and low‐cost approach for environmental remediation. The energy coupling between photons, excitons, and oxygen is the crucial step in this reaction and still remains a challenge. In this study, a dual‐purpose strategy for enhanced molecular oxygen activation is established by in situ carbon homogeneous doping on ultrathin Bi 2 MoO 6 nanosheets for the first time. The C‐doped ultrathin 2D material exhibits an enlarged bandgap straddling the electrochemical potential of O 2 /•O 2 − and H 2 O /•OH, without any attenuation of light absorption. An internal electric field and shortened carrier‐transportation distance are also found in the longitude orientation of the nanosheets ([001] axis), leading to a higher density of effective photogenerated carriers localized on the exposed {001} surface. As applied for the nitric oxide removal, the reactive rate over the ultrathin C‐doped Bi 2 MoO 6 nanosheets is 4.3 times higher than that over the bulk counterparts as a result of the increasing reactive oxygen species. This new proof‐of‐concept strategy not only realizes the band structure engineering and charge transportation regulation but also paves a new way to construct highly efficient photocatalytic materials.
Solar‐driven activation of molecular oxygen, which harnesses light to produce reactive oxygen species for the removal of pollutants, is the most green and low‐cost approach for environmental remediation. The energy coupling between photons, excitons, and oxygen is the crucial step in this reaction and still remains a challenge. In this study, a dual‐purpose strategy for enhanced molecular oxygen activation is established by in situ carbon homogeneous doping on ultrathin Bi2MoO6 nanosheets for the first time. The C‐doped ultrathin 2D material exhibits an enlarged bandgap straddling the electrochemical potential of O2 /•O2− and H2O /•OH, without any attenuation of light absorption. An internal electric field and shortened carrier‐transportation distance are also found in the longitude orientation of the nanosheets ([001] axis), leading to a higher density of effective photogenerated carriers localized on the exposed {001} surface. As applied for the nitric oxide removal, the reactive rate over the ultrathin C‐doped Bi2MoO6 nanosheets is 4.3 times higher than that over the bulk counterparts as a result of the increasing reactive oxygen species. This new proof‐of‐concept strategy not only realizes the band structure engineering and charge transportation regulation but also paves a new way to construct highly efficient photocatalytic materials.
Solar‐driven activation of molecular oxygen, which harnesses light to produce reactive oxygen species for the removal of pollutants, is the most green and low‐cost approach for environmental remediation. The energy coupling between photons, excitons, and oxygen is the crucial step in this reaction and still remains a challenge. In this study, a dual‐purpose strategy for enhanced molecular oxygen activation is established by in situ carbon homogeneous doping on ultrathin Bi2MoO6 nanosheets for the first time. The C‐doped ultrathin 2D material exhibits an enlarged bandgap straddling the electrochemical potential of O2 /•O2− and H2O /•OH, without any attenuation of light absorption. An internal electric field and shortened carrier‐transportation distance are also found in the longitude orientation of the nanosheets ([001] axis), leading to a higher density of effective photogenerated carriers localized on the exposed {001} surface. As applied for the nitric oxide removal, the reactive rate over the ultrathin C‐doped Bi2MoO6 nanosheets is 4.3 times higher than that over the bulk counterparts as a result of the increasing reactive oxygen species. This new proof‐of‐concept strategy not only realizes the band structure engineering and charge transportation regulation but also paves a new way to construct highly efficient photocatalytic materials. A dual‐purpose strategy for enhanced molecular oxygen activation is established by in situ carbon homogeneous doping on ultrathin Bi2MoO6 nanosheets. The constructed material with shorter distance in the direction of charge transfer and promoted redox ability without losing any absorption of solar light is 4.3 times higher than that over the bulk counterparts in long‐term nitric oxide removal.
Author Jinhua Ye
Xing Ding
Hong Pang
Lizhi Zhang
Hao Chen
Guangming Zhan
Xiao Hai
Xuehao Zhang
Wei Zhou
Hui Song
Shengyao Wang
Author_xml – sequence: 1
  givenname: Shengyao
  surname: Wang
  fullname: Wang, Shengyao
  organization: National Institute for Materials Science (NIMS)
– sequence: 2
  givenname: Xing
  surname: Ding
  fullname: Ding, Xing
  organization: Huazhong Agricultural University
– sequence: 3
  givenname: Xuehao
  surname: Zhang
  fullname: Zhang, Xuehao
  organization: Huazhong Agricultural University
– sequence: 4
  givenname: Hong
  surname: Pang
  fullname: Pang, Hong
  organization: Hokkaido University
– sequence: 5
  givenname: Xiao
  surname: Hai
  fullname: Hai, Xiao
  organization: Hokkaido University
– sequence: 6
  givenname: Guangming
  surname: Zhan
  fullname: Zhan, Guangming
  organization: Central China Normal University
– sequence: 7
  givenname: Wei
  surname: Zhou
  fullname: Zhou, Wei
  organization: National Institute for Materials Science (NIMS)
– sequence: 8
  givenname: Hui
  surname: Song
  fullname: Song, Hui
  organization: Hokkaido University
– sequence: 9
  givenname: Lizhi
  surname: Zhang
  fullname: Zhang, Lizhi
  organization: Central China Normal University
– sequence: 10
  givenname: Hao
  surname: Chen
  fullname: Chen, Hao
  email: hchenhao@mail.hzau.edu.cn
  organization: Huazhong Agricultural University
– sequence: 11
  givenname: Jinhua
  orcidid: 0000-0001-6424-7959
  surname: Ye
  fullname: Ye, Jinhua
  email: jinhua.ye@nims.go.jp
  organization: School of Material Science and Engineering, Tianjin University
BackLink https://cir.nii.ac.jp/crid/1873961342751247360$$DView record in CiNii
BookMark eNqFkM9rFDEUx4NUsK1ePQf0utv8zoy3dbe_oKVCLXgbMtmXbcpssiYZdW5evPs3-pc440oRQbwk4fH55L33PUIHIQZA6CUlc0oIOzFrt50zQjXhNeNP0CFVVM04YdXB45t-eIaOcn4gI6a5OETfLgO-9aXHS5PaGPBF3MYNBIh9xqu482GDx-pdV5Ip9z7gtz5v-3KPr2M3tGtT4A1e4FVvuh9fv7_r0y5mwLcTDJsBu5jwqXPeeghlUsD2nUn45ssw9sALW_wnU3wMz9FTZ7oML37fx-ju7PT98mJ2dXN-uVxczawQNZ8ZJRyXraQUrLGagdDSEUKkbZmilNBasdZCq6upUFUSrNDV2mkluQQm-DF6tf93l-LHHnJpHmKfwtiyobWWtSJKVyMl9pRNMecErrG-_JpzXMx3DSXNFHgzBd48Bj5q87-0XfJbk4Z_C_Ve-Ow7GP5DN4vV2fWf7uu9G7wfx5tOWmleK8oF05Iyobki_Cc3N6GW
CitedBy_id crossref_primary_10_1016_j_nanoen_2018_12_071
crossref_primary_10_1016_j_jhazmat_2021_126634
crossref_primary_10_1016_j_esci_2024_100228
crossref_primary_10_1016_j_ultsonch_2019_104819
crossref_primary_10_1002_ange_202400985
crossref_primary_10_1039_C8NR07823H
crossref_primary_10_1016_j_apsusc_2023_156393
crossref_primary_10_1039_D4RA04949G
crossref_primary_10_1039_C9NJ00647H
crossref_primary_10_3390_md17060316
crossref_primary_10_1016_j_apcatb_2019_117966
crossref_primary_10_1016_j_envpol_2023_121813
crossref_primary_10_1016_j_apcatb_2020_119481
crossref_primary_10_1021_acs_jpcc_9b02784
crossref_primary_10_1016_j_cej_2020_126185
crossref_primary_10_1016_j_foodchem_2022_134895
crossref_primary_10_1016_j_jallcom_2021_162534
crossref_primary_10_1002_smll_202301817
crossref_primary_10_1039_D2QI00311B
crossref_primary_10_1002_smll_201901008
crossref_primary_10_1016_j_jallcom_2024_175609
crossref_primary_10_1021_acsami_1c17386
crossref_primary_10_1016_j_apcatb_2021_120492
crossref_primary_10_1016_j_jcis_2021_10_173
crossref_primary_10_1039_D0TA08165E
crossref_primary_10_1039_D0TA04923A
crossref_primary_10_1016_j_jcis_2020_02_003
crossref_primary_10_2166_wst_2018_361
crossref_primary_10_1016_j_jallcom_2019_06_311
crossref_primary_10_1021_acscatal_3c03914
crossref_primary_10_1088_1361_6528_abb72c
crossref_primary_10_1002_advs_202406329
crossref_primary_10_1016_j_mcat_2024_114336
crossref_primary_10_1016_j_cej_2021_129915
crossref_primary_10_1016_j_jcou_2021_101648
crossref_primary_10_1016_j_gee_2021_01_012
crossref_primary_10_1002_anie_202304050
crossref_primary_10_1016_j_seppur_2022_122066
crossref_primary_10_1002_solr_202000442
crossref_primary_10_1016_j_apsusc_2024_161323
crossref_primary_10_1021_acscatal_1c04564
crossref_primary_10_1016_j_apcatb_2020_119820
crossref_primary_10_1016_j_cej_2019_04_137
crossref_primary_10_1016_j_apsusc_2021_150104
crossref_primary_10_1021_acssuschemeng_8b04454
crossref_primary_10_1002_adfm_201803309
crossref_primary_10_1021_acs_iecr_3c04141
crossref_primary_10_1016_j_cej_2024_152589
crossref_primary_10_1016_j_cej_2021_129596
crossref_primary_10_3390_ijms232112979
crossref_primary_10_1016_j_watres_2023_121075
crossref_primary_10_1016_j_apcatb_2018_08_063
crossref_primary_10_1016_j_cej_2020_125395
crossref_primary_10_1016_j_jphotochem_2023_114872
crossref_primary_10_1002_ange_202304050
crossref_primary_10_1039_D1RA07275G
crossref_primary_10_3390_nano12152569
crossref_primary_10_1007_s11051_019_4478_5
crossref_primary_10_1039_C9CY00855A
crossref_primary_10_3390_nano11092221
crossref_primary_10_1016_j_apcatb_2021_120549
crossref_primary_10_1016_j_jlumin_2021_118675
crossref_primary_10_1002_ange_202106310
crossref_primary_10_1038_s42004_020_0319_9
crossref_primary_10_1016_j_nanoen_2018_08_058
crossref_primary_10_1039_C9TA10144F
crossref_primary_10_1016_j_cej_2022_140602
crossref_primary_10_1021_acssuschemeng_8b02040
crossref_primary_10_1016_j_jallcom_2020_157668
crossref_primary_10_1039_D1EN00894C
crossref_primary_10_1002_adma_202200180
crossref_primary_10_1016_j_apcatb_2021_120159
crossref_primary_10_1016_j_apcatb_2023_122492
crossref_primary_10_1016_j_jwpe_2023_104080
crossref_primary_10_1016_j_cej_2020_126072
crossref_primary_10_1016_j_surfin_2021_101272
crossref_primary_10_1002_adfm_202112831
crossref_primary_10_1039_C9NR10822J
crossref_primary_10_1016_j_cej_2024_150536
crossref_primary_10_1021_acsami_9b17623
crossref_primary_10_1016_j_jcis_2019_07_073
crossref_primary_10_1016_j_apsusc_2021_152033
crossref_primary_10_1016_j_jhazmat_2020_122355
crossref_primary_10_1016_j_apcatb_2019_118585
crossref_primary_10_1002_cssc_201901196
crossref_primary_10_1016_j_jallcom_2022_166146
crossref_primary_10_1039_D0SE01224F
crossref_primary_10_1039_C9CY01862J
crossref_primary_10_1016_j_cej_2022_135786
crossref_primary_10_1016_j_jcis_2021_02_036
crossref_primary_10_1016_j_jcis_2021_07_018
crossref_primary_10_1002_anie_202106310
crossref_primary_10_1016_j_apcatb_2019_04_084
crossref_primary_10_1016_j_jcis_2019_12_131
crossref_primary_10_1016_j_scib_2021_07_016
crossref_primary_10_1016_j_optmat_2024_114825
crossref_primary_10_1021_acs_energyfuels_2c01660
crossref_primary_10_1016_j_jcis_2021_05_091
crossref_primary_10_1002_smll_202304053
crossref_primary_10_1039_C9CY00308H
crossref_primary_10_1016_j_apsusc_2022_155893
crossref_primary_10_1016_j_cej_2021_129305
crossref_primary_10_1186_s11671_019_2981_3
crossref_primary_10_1016_j_apcatb_2018_06_016
crossref_primary_10_1021_acsnano_3c12773
crossref_primary_10_1016_j_seppur_2025_131994
crossref_primary_10_3390_catal11091089
crossref_primary_10_1002_adsu_202200009
crossref_primary_10_1007_s12274_024_6518_4
crossref_primary_10_1016_j_cej_2018_12_008
crossref_primary_10_1002_smll_201904107
crossref_primary_10_1002_admi_202100695
crossref_primary_10_1039_C8CY00470F
crossref_primary_10_1016_j_jallcom_2024_173759
crossref_primary_10_1002_anie_202400985
crossref_primary_10_3390_catal8050185
crossref_primary_10_1002_adma_201900546
crossref_primary_10_1039_D0TA01180K
crossref_primary_10_1016_j_cej_2020_126328
crossref_primary_10_1016_j_jcis_2022_03_014
crossref_primary_10_1002_adma_202005256
crossref_primary_10_1016_j_jhazmat_2020_122659
crossref_primary_10_1021_acs_iecr_3c01503
crossref_primary_10_1021_acs_analchem_2c02848
crossref_primary_10_1016_j_cej_2019_123919
crossref_primary_10_1016_j_seppur_2025_131746
crossref_primary_10_1002_adma_202106838
crossref_primary_10_1016_j_pmatsci_2022_101047
crossref_primary_10_1016_j_apcatb_2024_124667
crossref_primary_10_1016_j_jhazmat_2018_10_063
crossref_primary_10_1039_D2CS00205A
crossref_primary_10_1016_j_fuel_2020_119171
crossref_primary_10_1016_j_cej_2019_123236
crossref_primary_10_1016_j_mtphys_2020_100294
crossref_primary_10_1016_j_watres_2021_117266
crossref_primary_10_1016_j_triboint_2025_110577
crossref_primary_10_1016_j_apsusc_2024_161381
crossref_primary_10_1016_j_jcis_2023_02_005
crossref_primary_10_1002_adfm_202010763
crossref_primary_10_1016_j_cej_2022_136703
crossref_primary_10_1016_j_electacta_2020_137382
crossref_primary_10_1016_j_apsusc_2019_143655
crossref_primary_10_1088_2053_1583_abc73a
crossref_primary_10_1002_smll_202303980
crossref_primary_10_1039_D0TA02102D
crossref_primary_10_1016_j_apcatb_2021_120352
Cites_doi 10.1016/j.jallcom.2014.04.097
10.1039/b921692h
10.1002/adfm.201404178
10.1021/acscatal.6b01657
10.1002/anie.200602138
10.1016/j.apcatb.2010.05.022
10.1126/science.1183591
10.1021/nn700179k
10.1021/ja4092903
10.1039/c1cc10888c
10.1002/adma.200500328
10.1039/C5TA00103J
10.1002/anie.201506966
10.1002/adma.201603765
10.1039/C7CC04052K
10.1126/science.1141483
10.1002/anie.201204675
10.1038/ncomms5470
10.1016/j.apsusc.2013.07.124
10.1038/ncomms11480
10.1002/adma.201701774
10.1021/acscatal.6b00490
10.1038/ncomms5475
10.1021/jp901437a
10.1002/adma.201601413
10.1021/ar500412p
10.1002/adma.201600301
10.1021/ja311739v
10.1039/C6TA10964K
10.1002/smll.201302950
10.1002/adfm.201504695
10.1021/es405714q
10.1038/ncomms9340
10.1038/ncomms8698
10.1002/aenm.201501654
10.1016/j.apcatb.2015.09.046
10.1021/cr0200116
10.1021/acscatal.6b02613
10.1021/jacs.6b12273
10.1021/es502290f
10.1039/C4SC03229B
10.1021/acs.accounts.6b00523
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID RYH
AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201703923
DatabaseName CiNii Complete
CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201703923
ADFM201703923
Genre article
GrantInformation_xml – fundername: National Basic Research Program of China
  funderid: 2014CB239301
– fundername: China Scholarship Council
  funderid: 201406250019; 201606760019
– fundername: Central Universities of China
  funderid: 2015PY120; 2015PY047; 2016PY088
– fundername: National Science Foundation of China
  funderid: 21633004; 51572101; 21607047
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYH
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
WRC
.Y3
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
HF~
HVGLF
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c4493-a64f35b511ecac72e475f0005cb261101962bceb78cb26885ec478df76535e243
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 08:00:45 EDT 2025
Tue Jul 01 04:11:42 EDT 2025
Thu Apr 24 23:06:28 EDT 2025
Wed Jan 22 17:09:55 EST 2025
Tue Aug 12 03:00:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 47
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4493-a64f35b511ecac72e475f0005cb261101962bceb78cb26885ec478df76535e243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8105-8903
0000-0001-9485-3458
0000-0003-0026-6469
0000-0002-9286-082X
0000-0001-6424-7959
PQID 1975960678
PQPubID 2045204
PageCount 10
ParticipantIDs proquest_journals_1975960678
crossref_citationtrail_10_1002_adfm_201703923
crossref_primary_10_1002_adfm_201703923
wiley_primary_10_1002_adfm_201703923_ADFM201703923
nii_cinii_1873961342751247360
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 15, 2017
PublicationDateYYYYMMDD 2017-12-15
PublicationDate_xml – month: 12
  year: 2017
  text: December 15, 2017
  day: 15
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced Functional Materials
PublicationYear 2017
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2017; 5
2010; 98
2015; 6
2004; 104
2015; 5
2015; 3
2010; 327
2010; 39
2015; 54
2014; 48
2009; 113
2013; 284
2017; 29
2016; 182
2008; 2
2017; 139
2012; 51
2017; 50
2015; 48
2016; 6
2017; 53
2016; 7
2015; 25
2014; 5
2007; 317
2006; 45
2014; 608
2013; 135
2017
2011; 47
2016; 28
2005; 17
2016; 26
2014; 10
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
Li H. (e_1_2_7_16_1) 2017
References_xml – volume: 6
  start-page: 3180
  year: 2016
  publication-title: ACS Catal.
– volume: 182
  start-page: 316
  year: 2016
  publication-title: Appl. Catal., B
– volume: 6
  start-page: 1873
  year: 2015
  publication-title: Chem. Sci.
– volume: 135
  start-page: 3200
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 39
  start-page: 4206
  year: 2010
  publication-title: Chem. Soc. Rev.
– volume: 98
  start-page: 138
  year: 2010
  publication-title: Appl. Catal., B
– volume: 48
  start-page: 10345
  year: 2014
  publication-title: Environ. Sci. Technol.
– volume: 54
  start-page: 13971
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  start-page: 8276
  year: 2016
  publication-title: ACS Catal.
– volume: 28
  start-page: 6940
  year: 2016
  publication-title: Adv. Mater.
– volume: 5
  start-page: 4470
  year: 2014
  publication-title: Nat. Commun.
– volume: 6
  start-page: 8340
  year: 2015
  publication-title: Nat. Commun.
– volume: 5
  start-page: 8117
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 28
  start-page: 10033
  year: 2016
  publication-title: Adv. Mater.
– volume: 53
  start-page: 8604
  year: 2017
  publication-title: Chem. Commun.
– volume: 25
  start-page: 2189
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 45
  start-page: 6612
  year: 2006
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  start-page: 1501654
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 113
  start-page: 12176
  year: 2009
  publication-title: J. Phys. Chem. C
– volume: 327
  start-page: 319
  year: 2010
  publication-title: Science
– volume: 28
  start-page: 4059
  year: 2016
  publication-title: Adv. Mater.
– volume: 50
  start-page: 112
  year: 2017
  publication-title: Acc. Chem. Res.
– volume: 48
  start-page: 575
  year: 2015
  publication-title: Acc. Chem. Res.
– volume: 5
  start-page: 4475
  year: 2014
  publication-title: Nat. Commun.
– volume: 6
  start-page: 7698
  year: 2015
  publication-title: Nat. Commun.
– volume: 2
  start-page: 523
  year: 2008
  publication-title: ACS Nano
– volume: 51
  start-page: 8727
  year: 2012
  publication-title: Angew. Chem., Int. Ed.
– volume: 7
  start-page: 11480
  year: 2016
  publication-title: Nat. Commun.
– volume: 3
  start-page: 6118
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 139
  start-page: 4737
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 47
  start-page: 4517
  year: 2011
  publication-title: Chem. Commun.
– volume: 284
  start-page: 497
  year: 2013
  publication-title: Appl. Surf. Sci.
– year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 10
  start-page: 2791
  year: 2014
  publication-title: Small
– volume: 6
  start-page: 6511
  year: 2016
  publication-title: ACS Catal.
– volume: 17
  start-page: 2531
  year: 2005
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1701774
  year: 2017
  publication-title: Adv. Mater.
– volume: 317
  start-page: 100
  year: 2007
  publication-title: Science
– volume: 608
  start-page: 44
  year: 2014
  publication-title: J. Alloys Compd.
– volume: 26
  start-page: 1428
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 48
  start-page: 5823
  year: 2014
  publication-title: Environ. Sci. Technol.
– volume: 135
  start-page: 15750
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 104
  start-page: 3037
  year: 2004
  publication-title: Chem. Rev.
– ident: e_1_2_7_31_1
  doi: 10.1016/j.jallcom.2014.04.097
– ident: e_1_2_7_8_1
  doi: 10.1039/b921692h
– ident: e_1_2_7_32_1
  doi: 10.1002/adfm.201404178
– ident: e_1_2_7_42_1
  doi: 10.1021/acscatal.6b01657
– ident: e_1_2_7_7_1
  doi: 10.1002/anie.200602138
– ident: e_1_2_7_25_1
  doi: 10.1016/j.apcatb.2010.05.022
– ident: e_1_2_7_2_1
  doi: 10.1126/science.1183591
– ident: e_1_2_7_9_1
  doi: 10.1021/nn700179k
– ident: e_1_2_7_5_1
  doi: 10.1021/ja4092903
– ident: e_1_2_7_11_1
  doi: 10.1039/c1cc10888c
– ident: e_1_2_7_6_1
  doi: 10.1002/adma.200500328
– ident: e_1_2_7_28_1
  doi: 10.1039/C5TA00103J
– ident: e_1_2_7_20_1
  doi: 10.1002/anie.201506966
– ident: e_1_2_7_33_1
  doi: 10.1002/adma.201603765
– ident: e_1_2_7_43_1
  doi: 10.1039/C7CC04052K
– ident: e_1_2_7_14_1
  doi: 10.1126/science.1141483
– ident: e_1_2_7_13_1
  doi: 10.1002/anie.201204675
– ident: e_1_2_7_15_1
  doi: 10.1038/ncomms5470
– ident: e_1_2_7_30_1
  doi: 10.1016/j.apsusc.2013.07.124
– ident: e_1_2_7_18_1
  doi: 10.1038/ncomms11480
– ident: e_1_2_7_34_1
  doi: 10.1002/adma.201701774
– ident: e_1_2_7_17_1
  doi: 10.1021/acscatal.6b00490
– ident: e_1_2_7_21_1
  doi: 10.1038/ncomms5475
– ident: e_1_2_7_27_1
  doi: 10.1021/jp901437a
– ident: e_1_2_7_39_1
  doi: 10.1002/adma.201601413
– ident: e_1_2_7_4_1
  doi: 10.1021/ar500412p
– ident: e_1_2_7_23_1
  doi: 10.1002/adma.201600301
– ident: e_1_2_7_3_1
  doi: 10.1021/ja311739v
– ident: e_1_2_7_38_1
  doi: 10.1039/C6TA10964K
– ident: e_1_2_7_22_1
  doi: 10.1002/smll.201302950
– ident: e_1_2_7_26_1
  doi: 10.1002/adfm.201504695
– ident: e_1_2_7_35_1
  doi: 10.1021/es405714q
– ident: e_1_2_7_19_1
  doi: 10.1038/ncomms9340
– ident: e_1_2_7_29_1
  doi: 10.1038/ncomms8698
– ident: e_1_2_7_12_1
  doi: 10.1002/aenm.201501654
– ident: e_1_2_7_41_1
  doi: 10.1016/j.apcatb.2015.09.046
– ident: e_1_2_7_1_1
  doi: 10.1021/cr0200116
– year: 2017
  ident: e_1_2_7_16_1
  publication-title: Angew. Chem., Int. Ed.
– ident: e_1_2_7_36_1
  doi: 10.1021/acscatal.6b02613
– ident: e_1_2_7_37_1
  doi: 10.1021/jacs.6b12273
– ident: e_1_2_7_40_1
  doi: 10.1021/es502290f
– ident: e_1_2_7_24_1
  doi: 10.1039/C4SC03229B
– ident: e_1_2_7_10_1
  doi: 10.1021/acs.accounts.6b00523
SSID ssj0017734
ssib024095149
Score 2.6005564
Snippet Solar‐driven activation of molecular oxygen, which harnesses light to produce reactive oxygen species for the removal of pollutants, is the most green and...
SourceID proquest
crossref
wiley
nii
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Activation
Band structure of solids
Bi2MoO6
Bismuth
Construction materials
Coupling (molecular)
C‐doping
Doping
Electrochemical potential
Electromagnetic absorption
Excitons
Harnesses
Materials science
molecular oxygen activation
Nanostructure
Nitric oxide
NO removal
Oxygen
Photons
Pollutants
Strategy
Transportation
ultrathin 2D materials
Title In Situ Carbon Homogeneous Doping on Ultrathin Bismuth Molybdate: A Dual‐Purpose Strategy for Efficient Molecular Oxygen Activation
URI https://cir.nii.ac.jp/crid/1873961342751247360
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201703923
https://www.proquest.com/docview/1975960678
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLZgXODAb7TCNvmAxClbHdtxwi2sqwqigBiVeotsx9EiugQtiUQ5ceHO38hfwntJGlokhAQXK7HsOLHfsz87732PkKeSR05pYzxQwhQSLjyTSuUFmRVMp9JIjt7I8zfBbCFeLeVyy4u_44cYDtxQM9r5GhVcm-rkF2moTjP0JGcgsgBSYBJGgy1ERe8H_iimVPdbOWBo4MWWG9bGsX-yW31nVbpe5PkO4NyGre26M71D9OaNO3OTj8dNbY7tl9_IHP_nk-6S2z0opXEnRffINVfcJ7e2qAofkG8vC3qe1w091VemLOisvCxB9lzZVHTSOl1RyF2skOz2Ii_oi7y6bOoLOi9Xa4OnCs9pTCeNXv34-v0dDG5ZOdoz464pAGd61nJZwBKIVbqIvfTt5zW0QWO7icH2kCymZx9OZ14fwsGzQkTc04HIOAw4Y85qq3wnlMwQJ1oDWzeG5Dy-sc6oEDPCUDorVJhmKpBcOl_wR2SvKAu3TyjjKsyycWAcIFZfcxNJKTOZQq1M2sgfEW8zhInt-c0xzMYq6ZiZ_QS7Nxm6d0SeDeU_dcwefyx5CBIBD8WUhYpHgIGErwArCcWD8YgcbGQl6WeAKmGRkrg7VOGI-O2g_6WVJJ5M58Pd43-p9ITcxGu0tmHygOzVV407BMxUmyNyI57MX58ftfrxE9r4Das
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLXasgAWvBEDLXgBYpV2_IoTJBZD09EM7RQEHWl2aew4asQ0QU0iGFZs2PMr_AqfwJdwncfQQUJISF2wsRTLL9n32uc61-ci9Fgw38hIKQeUMIaEcUfFQjpuojmJYqEEs6-RJ4fuaMpfzsRsDX3r3sI0_BDLCzerGfV-bRXcXkjv_GINjeLEPiUnILOAUlq_yn2z-ABWW_F8HMASP6F0uHe0O3LawAKO5txnTuTyhMEwCDE60pIaLkVi0YtWYFAQSxlDlTZKejbD84TRXHpxIl3BhKGcQbvr6JINI27p-oM3S8YqImXzI9sl1qWMzDqeyD7dWR3vyjm4nqXpCsQ9D5Trk254HX3v5qhxcHm3XZVqW3_6jT7yv5rEG-hai7vxoFGUm2jNZLfQ1XNsjLfRl3GG36ZlhXejM5VneJSf5qBeJq8KHNTvyjDkTueWz_ckzfCLtDityhM8yecLZS9OnuEBDqpo_uPz19cgv3lhcEv-u8BgG-C9mq4DTnlbpQlKjF99XEAfeKC7MHN30PRC5uEu2sjyzNxDmDDpJUnfVQZAOY2Y8oUQiYihViK0T3vI6WQm1C2Fu40kMg8b8mka2uUMl8vZQ0-X5d835CV_LLkFIgiN2pR4kvkA8ziVAAe5ZG6_hzY74QzbTa4IiS-FNYCl10O0lrK_9BIOguFk-XX_Xyo9QpdHR5OD8GB8uP8AXbH51rmIiE20UZ5VZgsgYqke1kqJ0fFFC_BP-gdoLg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLXaIiFY8EYMtOAFiFXa8StOkFgMTUczlCkVMNLs0thx1IhpUjWJYFixYc-n8Cv8Al_CdR5DBwkhIXXBxlIsv2Tfax87956L0GPBfCMjpRxQwhgSxh0VC-m4ieYkioUSzHojTw7c0ZS_nInZGvrW-cI0_BDLBzerGfV-bRX8NE52fpGGRnFiPckJiCyAlNasct8sPsClrXg-DmCFn1A63Hu3O3LauAKO5txnTuTyhMEoCDE60pIaLkViwYtWcJ8gljGGKm2U9GyG5wmjufTiRLqCCUM5g3bX0SXu9n0bLCJ4sySsIlI2_7FdYi3KyKyjiezTndXxrhyD61mariDc8zi5PuiG19H3booa-5b321WptvWn39gj_6c5vIGutagbDxo1uYnWTHYLXT3HxXgbfRln-G1aVng3OlN5hkf5SQ7KZfKqwEHtVYYhdzq3bL7HaYZfpMVJVR7jST5fKPts8gwPcFBF8x-fvx6C9OaFwS317wLDzQDv1WQdcMbbKk1IYvz64wL6wAPdBZm7g6YXMg930UaWZ-YewoRJL0n6rjIAyWnElC-ESEQMtRKhfdpDTicyoW4J3G0ckXnYUE_T0C5nuFzOHnq6LH_aUJf8seQWSCA0alPiSeYDyONUAhjkkrn9HtrsZDNst7giJL4U9vorvR6itZD9pZdwEAwny6_7_1LpEbp8GAzDV-OD_Qfois22lkVEbKKN8qwyW4APS_WwVkmMji5afn8CL3Nm3Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Situ+Carbon+Homogeneous+Doping+on+Ultrathin+Bismuth+Molybdate%3A+A+Dual%E2%80%90Purpose+Strategy+for+Efficient+Molecular+Oxygen+Activation&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Shengyao&rft.au=Ding%2C+Xing&rft.au=Zhang%2C+Xuehao&rft.au=Pang%2C+Hong&rft.date=2017-12-15&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=27&rft.issue=47&rft_id=info:doi/10.1002%2Fadfm.201703923&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon