Emerging therapeutic strategies for enhancing sensitivity and countering resistance to programmed cell death protein 1 or programmed death‐ligand 1 inhibitors in non–small cell lung cancer

The availability of agents targeting the programmed cell death protein 1 (PD‐1)/programmed death‐ligand 1 (PD‐L1) immune checkpoint has transformed treatment of advanced and/or metastatic non–small cell lung cancer (NSCLC). However, a substantial proportion of patients treated with these agents do n...

Full description

Saved in:
Bibliographic Details
Published inCancer Vol. 129; no. 9; pp. 1319 - 1350
Main Authors Villaruz, Liza C., Blumenschein, George R., Otterson, Gregory A., Leal, Ticiana A.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The availability of agents targeting the programmed cell death protein 1 (PD‐1)/programmed death‐ligand 1 (PD‐L1) immune checkpoint has transformed treatment of advanced and/or metastatic non–small cell lung cancer (NSCLC). However, a substantial proportion of patients treated with these agents do not respond or experience only a brief period of clinical benefit. Even among those whose disease responds, many subsequently experience disease progression. Consequently, novel approaches are needed that enhance antitumor immunity and counter resistance to PD‐(L)1 inhibitors, thereby improving and/or prolonging responses and patient outcomes, in both PD‐(L)1 inhibitor‐sensitive and inhibitor‐resistant NSCLC. Mechanisms contributing to sensitivity and/or resistance to PD‐(L)1 inhibitors in NSCLC include upregulation of other immune checkpoints and/or the presence of an immunosuppressive tumor microenvironment, which represent potential targets for new therapies. This review explores novel therapeutic regimens under investigation for enhancing responses to PD‐(L)1 inhibitors and countering resistance, and summarizes the latest clinical evidence in NSCLC. Novel therapeutic approaches are required to enhance antitumor immunity and counter resistance to programmed cell death protein 1 (PD‐1)/programmed death‐ligand 1 (PD‐L1) inhibitors in non–small cell lung cancer (NSCLC). This study explores emerging approaches currently under investigation for enhancing responses to PD‐(L)1 inhibitors and countering resistance and reviews the latest clinical evidence in NSCLC.
AbstractList Abstract The availability of agents targeting the programmed cell death protein 1 (PD‐1)/programmed death‐ligand 1 (PD‐L1) immune checkpoint has transformed treatment of advanced and/or metastatic non–small cell lung cancer (NSCLC). However, a substantial proportion of patients treated with these agents do not respond or experience only a brief period of clinical benefit. Even among those whose disease responds, many subsequently experience disease progression. Consequently, novel approaches are needed that enhance antitumor immunity and counter resistance to PD‐(L)1 inhibitors, thereby improving and/or prolonging responses and patient outcomes, in both PD‐(L)1 inhibitor‐sensitive and inhibitor‐resistant NSCLC. Mechanisms contributing to sensitivity and/or resistance to PD‐(L)1 inhibitors in NSCLC include upregulation of other immune checkpoints and/or the presence of an immunosuppressive tumor microenvironment, which represent potential targets for new therapies. This review explores novel therapeutic regimens under investigation for enhancing responses to PD‐(L)1 inhibitors and countering resistance, and summarizes the latest clinical evidence in NSCLC. Novel therapeutic approaches are required to enhance antitumor immunity and counter resistance to programmed cell death protein 1 (PD‐1)/programmed death‐ligand 1 (PD‐L1) inhibitors in non–small cell lung cancer (NSCLC). This study explores emerging approaches currently under investigation for enhancing responses to PD‐(L)1 inhibitors and countering resistance and reviews the latest clinical evidence in NSCLC.
The availability of agents targeting the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) immune checkpoint has transformed treatment of advanced and/or metastatic non–small cell lung cancer (NSCLC). However, a substantial proportion of patients treated with these agents do not respond or experience only a brief period of clinical benefit. Even among those whose disease responds, many subsequently experience disease progression. Consequently, novel approaches are needed that enhance antitumor immunity and counter resistance to PD-(L)1 inhibitors, thereby improving and/or prolonging responses and patient outcomes, in both PD-(L)1 inhibitor-sensitive and inhibitor-resistant NSCLC. Mechanisms contributing to sensitivity and/or resistance to PD-(L)1 inhibitors in NSCLC include upregulation of other immune checkpoints and/or the presence of an immunosuppressive tumor microenvironment, which represent potential targets for new therapies. This review explores novel therapeutic regimens under investigation for enhancing responses to PD-(L)1 inhibitors and countering resistance, and summarizes the latest clinical evidence in NSCLC.
The availability of agents targeting the programmed cell death protein 1 (PD‐1)/programmed death‐ligand 1 (PD‐L1) immune checkpoint has transformed treatment of advanced and/or metastatic non–small cell lung cancer (NSCLC). However, a substantial proportion of patients treated with these agents do not respond or experience only a brief period of clinical benefit. Even among those whose disease responds, many subsequently experience disease progression. Consequently, novel approaches are needed that enhance antitumor immunity and counter resistance to PD‐(L)1 inhibitors, thereby improving and/or prolonging responses and patient outcomes, in both PD‐(L)1 inhibitor‐sensitive and inhibitor‐resistant NSCLC. Mechanisms contributing to sensitivity and/or resistance to PD‐(L)1 inhibitors in NSCLC include upregulation of other immune checkpoints and/or the presence of an immunosuppressive tumor microenvironment, which represent potential targets for new therapies. This review explores novel therapeutic regimens under investigation for enhancing responses to PD‐(L)1 inhibitors and countering resistance, and summarizes the latest clinical evidence in NSCLC. Novel therapeutic approaches are required to enhance antitumor immunity and counter resistance to programmed cell death protein 1 (PD‐1)/programmed death‐ligand 1 (PD‐L1) inhibitors in non–small cell lung cancer (NSCLC). This study explores emerging approaches currently under investigation for enhancing responses to PD‐(L)1 inhibitors and countering resistance and reviews the latest clinical evidence in NSCLC.
The availability of agents targeting the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) immune checkpoint has transformed treatment of advanced and/or metastatic non-small cell lung cancer (NSCLC). However, a substantial proportion of patients treated with these agents do not respond or experience only a brief period of clinical benefit. Even among those whose disease responds, many subsequently experience disease progression. Consequently, novel approaches are needed that enhance antitumor immunity and counter resistance to PD-(L)1 inhibitors, thereby improving and/or prolonging responses and patient outcomes, in both PD-(L)1 inhibitor-sensitive and inhibitor-resistant NSCLC. Mechanisms contributing to sensitivity and/or resistance to PD-(L)1 inhibitors in NSCLC include upregulation of other immune checkpoints and/or the presence of an immunosuppressive tumor microenvironment, which represent potential targets for new therapies. This review explores novel therapeutic regimens under investigation for enhancing responses to PD-(L)1 inhibitors and countering resistance, and summarizes the latest clinical evidence in NSCLC.The availability of agents targeting the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) immune checkpoint has transformed treatment of advanced and/or metastatic non-small cell lung cancer (NSCLC). However, a substantial proportion of patients treated with these agents do not respond or experience only a brief period of clinical benefit. Even among those whose disease responds, many subsequently experience disease progression. Consequently, novel approaches are needed that enhance antitumor immunity and counter resistance to PD-(L)1 inhibitors, thereby improving and/or prolonging responses and patient outcomes, in both PD-(L)1 inhibitor-sensitive and inhibitor-resistant NSCLC. Mechanisms contributing to sensitivity and/or resistance to PD-(L)1 inhibitors in NSCLC include upregulation of other immune checkpoints and/or the presence of an immunosuppressive tumor microenvironment, which represent potential targets for new therapies. This review explores novel therapeutic regimens under investigation for enhancing responses to PD-(L)1 inhibitors and countering resistance, and summarizes the latest clinical evidence in NSCLC.
Author Blumenschein, George R.
Villaruz, Liza C.
Otterson, Gregory A.
Leal, Ticiana A.
AuthorAffiliation 3 The Ohio State University-James Comprehensive Cancer Center, Columbus, Ohio, USA
4 Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
1 Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
2 Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
AuthorAffiliation_xml – name: 3 The Ohio State University-James Comprehensive Cancer Center, Columbus, Ohio, USA
– name: 4 Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA
– name: 1 Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
– name: 2 Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
Author_xml – sequence: 1
  givenname: Liza C.
  orcidid: 0000-0001-7456-523X
  surname: Villaruz
  fullname: Villaruz, Liza C.
  email: villaruzl@upmc.edu
  organization: UPMC Hillman Cancer Center
– sequence: 2
  givenname: George R.
  surname: Blumenschein
  fullname: Blumenschein, George R.
  organization: The University of Texas MD Anderson Cancer Center
– sequence: 3
  givenname: Gregory A.
  surname: Otterson
  fullname: Otterson, Gregory A.
  organization: The Ohio State University‐James Comprehensive Cancer Center
– sequence: 4
  givenname: Ticiana A.
  surname: Leal
  fullname: Leal, Ticiana A.
  organization: Emory University School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36848319$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1qFTEUx4NU7G114wNIwI0UpiaTzExmJeVSP6AoiIK7kMmcmUmZSa5JpnJ3fQShL-Sz9EnM3FtLdeEqH-fHL-eE_xE6sM4CQs8pOaWE5K-11f6U8VKwR2hFSV1lhPL8AK0IISIrOPt2iI5CuEzHKi_YE3TISsEFo_UK_TqfwPfG9jgO4NUG5mg0DtGrCL2BgDvnMdhBWb1AAWww0VyZuMXKtli72UbwS8lDMCEmDnB0eONd79U0QWJgHHELKg7LbQRjMcXJ-gDZVW-vf46mX6wUGzuYxkTnQ9riNO_t9U2YVBLtbOOcHtTLW_4petypMcCzu_UYfX17_mX9Prv49O7D-uwi05zXLCtYJTjLuSZlTQC6kjU5FXldVqToKs6BaKVz3pC87ToBLSd12-imEU2rmGg0O0Zv9t7N3KSWNdj0R6PceDMpv5VOGfl3xZpB9u5KUpozXhCRDK_uDN59nyFEOZmwjKMsuDnIvBKEi0owktCX_6CXbvY2zZeouuKiYAVN1Mme0t6F4KG774YSuSRDLsmQu2Qk-MXD_u_RP1FIAN0DP8wI2_-o5Prj-vNe-hv1V81_
CitedBy_id crossref_primary_10_1021_acsmedchemlett_4c00023
crossref_primary_10_5937_jomb0_48051
crossref_primary_10_1200_JCO_24_00280
crossref_primary_10_3892_ol_2023_14166
crossref_primary_10_1111_jcmm_17895
Cites_doi 10.1007/s00262‐018‐2160‐x
10.1172/jci80445
10.1158/1535‐7163.MCT‐20‐0226
10.1200/JCO.2021.39.15_suppl.2583
10.1158/1078‐0432.CCR‐20‐4746
10.1038/ncomms10501
10.1158/1535‐7163.MCT‐18‐1376
10.1136/jitc‐2021‐002852
10.1371/journal.pone.0089350
10.1016/S0959‐8049(20)31098‐4
10.1016/j.annonc.2021.08.1796
10.1038/s41568‐021‐00363‐z
10.1200/JCO.2017.35.15_suppl.3004
10.1056/NEJMoa1910231
10.3390/ijms22105282
10.1016/S0140‐6736(16)32517‐X
10.1158/1535‐7163.MCT‐18‐0836
10.1056/NEJMoa2109970
10.1016/j.jtho.2020.03.003
10.1126/scitranslmed.3007974
10.1158/1078‐0432.CCR‐21‐0972
10.1016/j.annonc.2020.08.1139
10.1016/j.annonc.2020.08.1724
10.1200/JCO.2020.38.15_suppl.TPS3159
10.1186/s12943‐019‐1090‐3
10.1126/scitranslmed.aaa4306
10.3390/ijms22010075
10.1186/s40425‐018‐0422‐y
10.3389/fphar.2020.00441
10.3390/ijms22169030
10.1016/j.annonc.2020.08.1714
10.1002/cac2.12010
10.1136/jitc‐2020‐SITC2020.0587
10.1136/jitc‐2019‐000398
10.1016/j.annonc.2021.04.008
10.1016/j.jtho.2021.05.001
10.1186/s12943‐020‐01260‐z
10.1158/2159‐8290.Cd‐15‐1545
10.1111/sji.13129
10.1053/j.gastro.2020.03.018
10.1172/jci.insight.120360
10.1200/JCO.2020.38.15_suppl.e21659
10.1634/theoncologist.2019‐IO‐S1‐s05
10.1158/1538‐7445.AM2020‐CT150
10.1158/1538‐7445.AM2021‐1854
10.1038/s41590‐020‐0769‐3
10.3390/cancers12123851
10.1177/1179554921996288
10.3390/cancers12123729
10.3389/fonc.2015.00034
10.1126/scitranslmed.aal3604
10.1093/annonc/mdy275
10.1136/jitc‐2021‐SITC2021.602
10.1016/j.jtho.2021.05.005
10.1177/1758835920937902
10.1016/j.pharmthera.2020.107694
10.1056/NEJMoa1604958
10.1093/intimm/dxu079
10.1158/2159‐8290.Cd‐16‐1223
10.3389/fimmu.2021.699895
10.1111/cei.13407
10.1016/j.jtho.2020.10.006
10.1016/j.jcmgh.2021.03.003
10.1200/JCO.2021.39.15_suppl.2596
10.1101/cshperspect.a022301
10.1136/jitc‐2020‐SITC2020.0699
10.1172/jci.insight.124184
10.1073/pnas.1410626111
10.3390/biomedicines9091277
10.3390/cells10112831
10.1073/pnas.1822001116
10.1016/j.annonc.2021.10.217
10.1136/jitc‐2020‐SITC2020.0363
10.1016/j.ejca.2021.02.030
10.1084/jem.20100643
10.1093/jncics/pkab012
10.1038/s41571‐021‐00520‐1
10.1001/jamaoncol.2021.0366
10.1016/j.jtho.2020.10.004
10.1080/19420862.2019.1629239
10.1016/annonc/annonc741
10.1172/jci.insight.142843
10.1158/1078‐0432.Ccr‐19‐1090
10.1200/jco.20.01605
10.1126/science.aba6098
10.1186/s12885‐019‐5917‐5
10.1172/JCI81187
10.1016/j.annonc.2020.11.020
10.1158/1078‐0432.CCR‐21‐2781
10.1158/1078‐0432.CCR‐20‐1830
10.1186/s12964‐020‐0521‐5
10.1158/1078‐0432.Ccr‐20‐3136
10.1016/j.annonc.2021.10.139
10.1136/jitc‐2020‐SITC2020.0362
10.1080/2162402X.2018.1466769
10.1016/j.ccell.2015.08.004
10.18632/oncotarget.4751
10.1172/jci.insight.121157
10.1158/2326‐6066.Cir‐16‐0104
10.1136/jitc‐2020‐000966
10.14348/molcells.2021.0044
10.1309/AJCP9Q6OVLVSHTMY
10.1126/sciimmunol.aay0555
10.1016/j.jtho.2017.01.019
10.1001/jamanetworkopen.2019.6879
10.1158/1538‐7445.AM2021‐CT039
10.1016/j.immuni.2014.02.012
10.1016/j.annonc.2021.08.1882
10.1007/s11912‐021‐01124‐9
10.1016/j.jtho.2021.07.009
10.3390/cancers12051125
10.1186/s12943‐019‐1087‐y
10.1016/j.coph.2020.08.003
10.1016/j.annonc.2020.08.1629
10.1016/j.jtho.2021.01.299
10.3389/fimmu.2019.00292
10.1016/j.it.2016.10.002
10.1016/j.ccell.2014.10.018
10.1186/s40425‐018‐0479‐7
10.1111/sji.12980
10.1136/jitc‐2020‐000911
10.1002/cncr.32468
10.1056/NEJMoa1810865
10.1016/j.crphar.2021.100017
10.1158/2326‐6066.cir‐18‐0713
10.1016/j.esmoop.2021.100273
10.21037/jtd.2018.07.45
ContentType Journal Article
Copyright 2023 The Authors. Cancer published by Wiley Periodicals LLC on behalf of American Cancer Society.
2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. Cancer published by Wiley Periodicals LLC on behalf of American Cancer Society.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TO
7U7
C1K
H94
K9.
NAPCQ
7X8
5PM
DOI 10.1002/cncr.34683
DatabaseName Wiley Online Library
Wiley-Blackwell Open Access Backfiles (Open Access)
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Oncogenes and Growth Factors Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Oncogenes and Growth Factors Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE

AIDS and Cancer Research Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1097-0142
EndPage 1350
ExternalDocumentID 10_1002_cncr_34683
36848319
CNCR34683
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: BeiGene, Ltd
– fundername: NCI NIH HHS
  grantid: P30 CA047904
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
1CY
1L6
1OC
24P
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AARRQ
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHFT
ABIJN
ABIVO
ABJNI
ABLJU
ABOCM
ABPPZ
ABPVW
ABQWH
ABXGK
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEIGN
AEIMD
AENEX
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AIACR
AIAGR
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
E3Z
EBS
EMOBN
EX3
F00
F01
F04
F5P
FD6
FUBAC
G-S
G.N
GNP
GODZA
GX1
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IH2
IX1
J0M
JPC
KBYEO
KQQ
KZ1
L7B
LATKE
LAW
LC2
LC3
LH4
LITHE
LMP
LOXES
LP6
LP7
LSO
LUTES
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SJN
SUPJJ
TEORI
UDS
UHB
V2E
V8K
V9Y
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WVDHM
WXI
WXSBR
XG1
XPP
XV2
Z0Y
ZGI
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
.GJ
.Y3
31~
3O-
AAQOH
AAYXX
ACCFJ
AEEZP
AEQDE
AFFNX
AGNAY
AI.
AIWBW
AJBDE
C1A
CITATION
DIK
EJD
HF~
H~9
J5H
LW6
N4W
NEJ
OHT
RSU
VH1
WHG
Y6R
YQJ
ZXP
7TO
7U7
C1K
H94
K9.
NAPCQ
7X8
5PM
ID FETCH-LOGICAL-c4493-53784324c0690eef63b218296705f744e0cac24b02dff8ed409dbcbb8bda38bc3
IEDL.DBID DR2
ISSN 0008-543X
1097-0142
IngestDate Tue Sep 17 21:28:45 EDT 2024
Sat Aug 17 04:36:42 EDT 2024
Thu Oct 10 22:12:11 EDT 2024
Fri Aug 23 01:41:12 EDT 2024
Sun Oct 13 10:32:58 EDT 2024
Sat Aug 24 00:48:47 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords non-small cell lung cancer
programmed cell death protein 1
immunotherapy
neoplasm
programmed death-ligand 1
drug resistance
tumor escape
Language English
License Attribution-NonCommercial
2023 The Authors. Cancer published by Wiley Periodicals LLC on behalf of American Cancer Society.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproductionin any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4493-53784324c0690eef63b218296705f744e0cac24b02dff8ed409dbcbb8bda38bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
AUTHOR CONTRIBUTIONS
Liza C. Villaruz: Conceptualization and writing–review and editing. George R. Blumenschein Jr: Conceptualization and writing–review and editing. Gregory A. Otterson: Conceptualization and writing–review and editing. Ticiana A. Leal: Conceptualization and writing–review and editing.
ORCID 0000-0001-7456-523X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcncr.34683
PMID 36848319
PQID 2797485351
PQPubID 2045183
PageCount 32
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11234508
proquest_miscellaneous_2780487830
proquest_journals_2797485351
crossref_primary_10_1002_cncr_34683
pubmed_primary_36848319
wiley_primary_10_1002_cncr_34683_CNCR34683
PublicationCentury 2000
PublicationDate 1 May 2023
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 1 May 2023
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Atlanta
PublicationTitle Cancer
PublicationTitleAlternate Cancer
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 27
2017; 7
2021; 21
2021; 23
2021; 22
2019; 11
2019; 10
2020; 126
2014; 27
2020; 369
2014; 26
2020; 15
2019; 19
2019; 18
2020; 200
2020; 12
2020; 11
2017; 9
2022; 28
2020; 19
2020; 18
2020; 8
2018; 7
2018; 6
2021; 32
2018; 3
2020; 53
2017; 38
2019; 24
2020; 92
2021; 39
2018; 379
2017; 35
2019; 25
2019; 116
2020; 138
2014; 9
2012; 137
2014; 6
2021; 81
2021; 9
2019; 7
2018; 29
2021; 7
2021; 6
2021; 5
2015; 6
2019; 4
2015; 5
2021; 44
2021; 2
2010; 207
2019; 2
2020; 40
2015; 125
2022; 95
2021; 149
2020; 80
2020; 38
2018; 67
2014; 40
2014; 111
2019; 381
2015; 7
2022; 386
2016; 4
2021; 219
2021; 16
2016; 6
2016; 7
2021; 15
2015; 28
2021; 10
2021; 12
2020; 31
2022
2021
2021; 18
2022; 7
2017; 12
2020; 159
2016; 375
2017; 19
2020; 22
2020; 21
2018; 10
2017; 389
e_1_2_6_114_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_95_1
e_1_2_6_118_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_91_1
e_1_2_6_110_1
e_1_2_6_133_1
e_1_2_6_19_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_99_1
e_1_2_6_125_1
e_1_2_6_64_1
e_1_2_6_87_1
e_1_2_6_106_1
e_1_2_6_129_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_83_1
e_1_2_6_121_1
e_1_2_6_102_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_68_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_96_1
e_1_2_6_117_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_92_1
e_1_2_6_132_1
e_1_2_6_113_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_39_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_58_1
e_1_2_6_42_1
e_1_2_6_105_1
e_1_2_6_128_1
e_1_2_6_65_1
e_1_2_6_80_1
e_1_2_6_109_1
e_1_2_6_61_1
e_1_2_6_120_1
e_1_2_6_101_1
e_1_2_6_124_1
e_1_2_6_6_1
Wei T (e_1_2_6_84_1) 2015; 5
e_1_2_6_23_1
e_1_2_6_2_1
Tjulandin SA (e_1_2_6_47_1) 2017; 19
e_1_2_6_88_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_97_1
e_1_2_6_116_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_93_1
e_1_2_6_131_1
e_1_2_6_112_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_62_1
e_1_2_6_85_1
e_1_2_6_104_1
e_1_2_6_43_1
e_1_2_6_127_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_108_1
e_1_2_6_100_1
e_1_2_6_123_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_66_1
e_1_2_6_89_1
e_1_2_6_28_1
e_1_2_6_52_1
e_1_2_6_98_1
e_1_2_6_115_1
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_94_1
e_1_2_6_119_1
e_1_2_6_71_1
e_1_2_6_90_1
e_1_2_6_130_1
e_1_2_6_111_1
e_1_2_6_134_1
e_1_2_6_14_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_56_1
e_1_2_6_37_1
e_1_2_6_79_1
e_1_2_6_103_1
e_1_2_6_126_1
e_1_2_6_63_1
e_1_2_6_86_1
e_1_2_6_21_1
e_1_2_6_107_1
e_1_2_6_40_1
e_1_2_6_82_1
e_1_2_6_122_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
References_xml – volume: 18
  start-page: 2051
  issue: 11
  year: 2019
  end-page: 2062
  article-title: Preclinical development of the anti‐LAG‐3 antibody REGN3767: characterization and activity in combination with the anti‐PD‐1 antibody cemiplimab in human PD‐1xLAG‐3–knockin mice
  publication-title: Mol Cancer Therapeut
– volume: 92
  issue: 6
  year: 2020
  article-title: Immune checkpoint blockade and biomarkers of clinical response in non‐small cell lung cancer
  publication-title: Scand J Immunol
– volume: 7
  issue: 3
  year: 2022
  article-title: Anti‐PD‐L1 and anti‐CD73 combination therapy promotes T cell response to EGFR‐mutated NSCLC
  publication-title: JCI Insight
– volume: 18
  issue: 1
  year: 2019
  article-title: AXL receptor tyrosine kinase as a promising anti‐cancer approach: functions, molecular mechanisms and clinical applications
  publication-title: Mol Cancer
– volume: 31
  issue: suppl 4
  year: 2020
  article-title: 1315P Phase Ib/II open‐label, randomised evaluation of atezolizumab (atezo) + CPI‐444 vs docetaxel as second/third‐line therapy in MORPHEUS‐NSCLC (non‐small cell lung cancer)
  publication-title: Ann Oncol
– volume: 39
  issue: suppl 15
  year: 2021
  article-title: Preliminary data from QUILT 3.055: a phase 2 multi‐cohort study of N803 (IL‐15 superagonist) in combination with checkpoint inhibitors (CPI)
  publication-title: J Clin Oncol
– volume: 27
  start-page: 1296
  issue: 5
  year: 2021
  end-page: 1304
  article-title: Efficacy and biomarker analysis of camrelizumab in combination with apatinib in patients with advanced nonsquamous NSCLC previously treated with chemotherapy
  publication-title: Clin Cancer Res
– volume: 40
  start-page: 569
  issue: 4
  year: 2014
  end-page: 581
  article-title: Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses
  publication-title: Immunity
– volume: 10
  issue: 11
  year: 2021
  article-title: Adenosine receptor antagonists to combat cancer and to boost anti‐cancer chemotherapy and immunotherapy
  publication-title: Cells
– volume: 81
  issue: suppl 13
  year: 2021
  article-title: Abstract 1854: a Fc‐competent anti‐human TIGIT blocking antibody BGB‐A1217 elicits strong immune responses and potent anti‐tumor efficacy in pre‐clinical models
  publication-title: Cancer Res
– volume: 27
  start-page: 11
  issue: 1
  year: 2014
  end-page: 20
  article-title: CCR4 and its ligands: from bench to bedside
  publication-title: Int Immunol
– volume: 219
  year: 2021
  article-title: Combination therapy with PD‐1/PD‐L1 blockade in non‐small cell lung cancer: strategies and mechanisms
  publication-title: Pharmacol Therapeut
– volume: 369
  issue: 6506
  year: 2020
  article-title: An orally available non‐nucleotide STING agonist with antitumor activity
  publication-title: Science
– volume: 26
  start-page: 923
  issue: 6
  year: 2014
  end-page: 937
  article-title: The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function
  publication-title: Cancer Cell
– volume: 12
  start-page: 814
  issue: 5
  year: 2017
  end-page: 823
  article-title: LAG‐3 protein expression in non‐small cell lung cancer and its relationship with PD‐1/PD‐L1 and tumor‐infiltrating lymphocytes
  publication-title: J Thorac Oncol
– volume: 7
  start-page: 709
  issue: 5
  year: 2021
  end-page: 717
  article-title: Tislelizumab plus chemotherapy vs chemotherapy alone as first‐line treatment for advanced squamous non‐small‐cell lung cancer: a phase 3 randomized clinical trial
  publication-title: JAMA Oncol
– volume: 21
  start-page: 481
  issue: 8
  year: 2021
  end-page: 499
  article-title: Interleukins in cancer: from biology to therapy
  publication-title: Nat Rev Cancer
– volume: 10
  year: 2019
  article-title: FcγR‐binding is an important functional attribute for immune checkpoint antibodies in cancer immunotherapy
  publication-title: Front Immunol
– volume: 44
  start-page: 363
  issue: 5
  year: 2021
  end-page: 373
  article-title: Clinical perspectives to overcome acquired resistance to anti‐programmed death‐1 and anti‐programmed death ligand‐1 therapy in non‐small cell lung cancer
  publication-title: Mol Cells
– year: 2022
– volume: 19
  start-page: 2564
  issue: 12
  year: 2020
  end-page: 2574
  article-title: A novel bispecific antibody with PD‐L1–assisted OX40 activation for cancer treatment
  publication-title: Mol Cancer Therapeut
– volume: 125
  start-page: 4053
  issue: 11
  year: 2015
  end-page: 4062
  article-title: TIGIT predominantly regulates the immune response via regulatory T cells
  publication-title: J Clin Investig
– volume: 6
  start-page: 827
  issue: 8
  year: 2016
  end-page: 837
  article-title: Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade
  publication-title: Cancer Discov
– volume: 11
  year: 2020
  article-title: Resistance to PD‐L1/PD‐1 blockade immunotherapy. A tumor‐intrinsic or tumor‐extrinsic phenomenon?
  publication-title: Front Pharmacol
– volume: 125
  start-page: 2046
  issue: 5
  year: 2015
  end-page: 2058
  article-title: TIGIT and PD‐1 impair tumor antigen‐specific CD8⁺ T cells in melanoma patients
  publication-title: J Clin Investig
– volume: 32
  issue: suppl 7
  year: 2021
  article-title: LBA2 Updated analysis and patient‐reported outcomes (PROs) from CITYSCAPE: a randomised, double‐blind, phase II study of the anti‐TIGIT antibody tiragolumab + atezolizumab (TA) versus placebo + atezolizumab (PA) as first‐line treatment for PD‐L1+ NSCLC
  publication-title: Ann Oncol
– volume: 381
  start-page: 2020
  issue: 21
  year: 2019
  end-page: 2031
  article-title: Nivolumab plus ipilimumab in advanced non‐small‐cell lung cancer
  publication-title: N Engl J Med
– volume: 27
  start-page: 460
  issue: 2
  year: 2021
  end-page: 472
  article-title: OX40 agonist BMS‐986178 alone or in combination with nivolumab and/or ipilimumab in patients with advanced solid tumors
  publication-title: Clin Cancer Res
– volume: 21
  start-page: 1346
  issue: 11
  year: 2020
  end-page: 1358
  article-title: The PD‐1 expression balance between effector and regulatory T cells predicts the clinical efficacy of PD‐1 blockade therapies
  publication-title: Nat Immunol
– volume: 375
  start-page: 819
  issue: 9
  year: 2016
  end-page: 829
  article-title: Mutations associated with acquired resistance to PD‐1 blockade in melanoma
  publication-title: N Engl J Med
– volume: 6
  issue: 5
  year: 2021
  article-title: First‐line nivolumab plus ipilimumab with two cycles of chemotherapy versus chemotherapy alone (four cycles) in advanced non‐small‐cell lung cancer: CheckMate 9LA 2‐year update
  publication-title: ESMO Open
– volume: 28
  start-page: 285
  issue: 3
  year: 2015
  end-page: 295
  article-title: FcγRs modulate the anti‐tumor activity of antibodies targeting the PD‐1/PD‐L1 axis
  publication-title: Cancer Cell
– volume: 67
  start-page: 1079
  issue: 7
  year: 2018
  end-page: 1090
  article-title: The binding of an anti‐PD‐1 antibody to FcγRΙ has a profound impact on its biological functions
  publication-title: Cancer Immunol Immunother
– volume: 200
  start-page: 108
  issue: 2
  year: 2020
  end-page: 119
  article-title: TIGIT as an emerging immune checkpoint
  publication-title: Clin Exp Immunol
– volume: 12
  year: 2020
  article-title: Resistance to immune checkpoint inhibitors in non‐small cell lung cancer: biomarkers and therapeutic strategies
  publication-title: Therapeut Adv Med Oncol
– volume: 31
  start-page: S891
  issue: suppl 4
  year: 2020
  end-page: S892
  article-title: 1410P Safety and efficacy of vibostolimab, an anti‐TIGIT antibody, plus pembrolizumab in patients with anti‐PD‐1/PD‐L1‐naive NSCLC
  publication-title: Ann Oncol
– volume: 31
  issue: suppl 4
  year: 2020
  article-title: 1400P Vibostolimab, an anti‐TIGIT antibody, as monotherapy and in combination with pembrolizumab in anti‐PD‐1/PD‐L1‐refractory NSCLC
  publication-title: Ann Oncol
– volume: 40
  start-page: 69
  issue: 2‐3
  year: 2020
  end-page: 80
  article-title: CXCL5/CXCR2 axis in tumor microenvironment as potential diagnostic biomarker and therapeutic target
  publication-title: Cancer Commun (Lond)
– volume: 3
  issue: 24
  year: 2018
  article-title: Tumor‐specific MHC‐II expression drives a unique pattern of resistance to immunotherapy via LAG‐3/FCRL6 engagement
  publication-title: JCI Insight
– volume: 19
  issue: 1
  year: 2020
  article-title: Overcoming immunotherapy resistance in non‐small cell lung cancer (NSCLC) ‐ novel approaches and future outlook
  publication-title: Mol Cancer
– volume: 5
  issue: 3
  year: 2021
  article-title: Response rate and survival at key timepoints with PD‐1 blockade vs chemotherapy in PD‐L1 subgroups: meta‐analysis of metastatic NSCLC trials
  publication-title: JNCI Cancer Spectr
– volume: 16
  start-page: 1512
  issue: 9
  year: 2021
  end-page: 1522
  article-title: Tislelizumab plus chemotherapy as first‐line treatment for locally advanced or metastatic nonsquamous NSCLC (RATIONALE 304): a randomized phase 3 trial
  publication-title: J Thorac Oncol
– volume: 32
  start-page: S996
  issue: suppl 7
  year: 2021
  end-page: S997
  article-title: 1280P sitravatinib + tislelizumab in patients with metastatic non‐small cell lung cancer (NSCLC)
  publication-title: Ann Oncol
– volume: 39
  start-page: 723
  issue: 7
  year: 2021
  end-page: 733
  article-title: Five‐year outcomes from the randomized, phase III trials CheckMate 017 and 057: nivolumab versus docetaxel in previously treated non‐small‐cell lung cancer
  publication-title: J Clin Oncol
– volume: 137
  start-page: 978
  issue: 6
  year: 2012
  end-page: 985
  article-title: Ectopic expression of TIM‐3 in lung cancers: a potential independent prognostic factor for patients with NSCLC
  publication-title: Am J Clin Pathol
– volume: 4
  issue: 41
  year: 2019
  article-title: VEGF‐A drives TOX‐dependent T cell exhaustion in anti‐PD‐1‐resistant microsatellite stable colorectal cancers
  publication-title: Sci Immunol
– volume: 9
  issue: 9
  year: 2021
  article-title: Targeting TIGIT for immunotherapy of cancer: update on clinical development
  publication-title: Biomedicines
– volume: 9
  issue: 389
  year: 2017
  article-title: In vivo imaging reveals a tumor‐associated macrophage‐mediated resistance pathway in anti‐PD‐1 therapy
  publication-title: Sci Transl Med
– volume: 21
  issue: suppl 5
  year: 2021
  article-title: LBA42 ‐ COAST: an open‐label, randomised, phase II platform study of durvalumab alone or in combination with novel agents in patients with locally advanced, unresectable, stage III NSCLC
  publication-title: Ann Oncol
– volume: 159
  start-page: 306
  issue: 1
  year: 2020
  end-page: 319.e12
  article-title: Combination of PD‐1 inhibitor and OX40 agonist induces tumor rejection and immune memory in mouse models of pancreatic cancer
  publication-title: Gastroenterology
– volume: 31
  issue: suppl 4
  year: 2020
  article-title: 1019O Phase I studies of Sym021, an anti‐PD‐1 antibody, alone and in combination with Sym022 (anti‐LAG‐3) or Sym023 (anti‐TIM‐3)
  publication-title: Ann Oncol
– volume: 138
  start-page: S12
  issue: suppl 2
  year: 2020
  end-page: S13
  article-title: Continuous vs intermittent adenosine 2A receptor (A2AR) inhibition in preclinical colon cancer (CC) models and in a phase (Ph) II study of taminadenant (NIR178) + spartalizumab (PDR001) in patients (pts) with non‐small cell lung cancer (NSCLC)
  publication-title: Eur J Cancer
– volume: 38
  issue: suppl 15
  year: 2020
  article-title: ARC‐4 study: efficacy and safety of AB928 plus carboplatin, pemetrexed and a PD‐1 antibody in participants with metastatic non‐small cell lung cancer (mNSCLC)
  publication-title: J Clin Oncol
– volume: 8
  issue: 1
  year: 2020
  article-title: Tim‐3 finds its place in the cancer immunotherapy landscape
  publication-title: J Immunother Cancer
– volume: 126
  start-page: 260
  issue: 2
  year: 2020
  end-page: 270
  article-title: Biomarkers for immune checkpoint inhibition in non‐small cell lung cancer (NSCLC)
  publication-title: Cancer
– volume: 27
  start-page: 6749
  issue: 24
  year: 2021
  end-page: 6760
  article-title: Association of AXL and PD‐L1 expression with clinical outcomes in patients with advanced renal cell carcinoma treated with PD‐1 blockade
  publication-title: Clin Cancer Res
– volume: 7
  issue: 283
  year: 2015
  article-title: STING agonist formulated cancer vaccines can cure established tumors resistant to PD‐1 blockade
  publication-title: Sci Transl Med
– volume: 38
  start-page: 20
  issue: 1
  year: 2017
  end-page: 28
  article-title: TIGIT: a key inhibitor of the cancer immunity cycle
  publication-title: Trends Immunol
– volume: 6
  issue: suppl 1
  year: 2018
  article-title: O21 A phase 1 study of TSR‐022, an anti‐TIM‐3 monoclonal antibody, in combination with TSR‐042 (anti‐PD‐1) in patients with colorectal cancer and post‐PD‐1 NSCLC and melanoma
  publication-title: J Immunother Cancer
– volume: 16
  start-page: 1718
  issue: 10
  year: 2021
  end-page: 1732
  article-title: Five year survival update from KEYNOTE‐010: pembrolizumab versus docetaxel for previously treated, programmed death‐ligand 1‐positive advanced NSCLC
  publication-title: J Thorac Oncol
– volume: 27
  start-page: 3620
  issue: 13
  year: 2021
  end-page: 3629
  article-title: Phase I/Ib clinical trial of sabatolimab, an anti–TIM‐3 antibody, alone and in combination with spartalizumab, an anti–PD‐1 antibody, in advanced solid tumors
  publication-title: Clin Cancer Res
– volume: 2
  issue: 7
  year: 2019
  article-title: Association of survival and immune‐related biomarkers with immunotherapy in patients with non‐small cell lung cancer: a meta‐analysis and individual patient‐level analysis
  publication-title: JAMA Netw Open
– volume: 7
  start-page: 188
  issue: 2
  year: 2017
  end-page: 201
  article-title: Primary resistance to PD‐1 blockade mediated by JAK1/2 mutations
  publication-title: Cancer Discov
– volume: 12
  issue: 12
  year: 2020
  article-title: Primary and acquired resistance to immunotherapy in lung cancer: unveiling the mechanisms underlying of immune checkpoint blockade therapy
  publication-title: Cancers (Basel)
– volume: 12
  issue: 12
  year: 2020
  article-title: Acquired resistance to PD‐1/PD‐L1 blockade in lung cancer: mechanisms and patterns of failure
  publication-title: Cancers (Basel)
– volume: 32
  issue: suppl 7
  year: 2021
  article-title: 1191O MRTX‐500: phase II trial of sitravatinib (sitra) + nivolumab (nivo) in patients (pts) with non‐squamous (NSQ) non‐small cell lung cancer (NSCLC) progressing on or after prior checkpoint inhibitor (CPI) therapy
  publication-title: Ann Oncol
– volume: 4
  start-page: 1061
  issue: 12
  year: 2016
  end-page: 1071
  article-title: Established T cell‐inflamed tumors rejected after adaptive resistance was reversed by combination STING activation and PD‐1 pathway blockade
  publication-title: Cancer Immunol Res
– volume: 9
  issue: suppl 2
  year: 2021
  article-title: 602 AXL targeting with bemcentinb restores PD‐1 blockade sensitivity of STK11/LKB1 mutant NSCLC through innate immune cell mediated expansion of TCF1+ CD8 T cells
  publication-title: J Immunother Cancer
– volume: 386
  start-page: 24
  issue: 1
  year: 2022
  end-page: 34
  article-title: Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma
  publication-title: N Engl J Med
– volume: 32
  start-page: S1429
  issue: suppl 7
  year: 2021
  end-page: S1430
  article-title: 120O Pembrolizumab (Pembro) with or without lenvatinib (Lenva) in first‐line metastatic NSCLC with PD‐L1 TPS ≥1% (LEAP‐007): A phase III, randomized, double‐blind study
  publication-title: Ann Oncol
– volume: 53
  start-page: 126
  year: 2020
  end-page: 133
  article-title: Targeting the A2AR in cancer; early lessons from the clinic
  publication-title: Curr Opin Pharmacol
– volume: 116
  start-page: 9999
  issue: 20
  year: 2019
  end-page: 10008
  article-title: PD‐1(+) regulatory T cells amplified by PD‐1 blockade promote hyperprogression of cancer
  publication-title: Proc Natl Acad Sci U S A
– volume: 111
  start-page: 11774
  issue: 32
  year: 2014
  end-page: 11779
  article-title: Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid‐derived cells
  publication-title: Proc Natl Acad Sci U S A
– volume: 207
  start-page: 2187
  issue: 10
  year: 2010
  end-page: 2194
  article-title: Targeting Tim‐3 and PD‐1 pathways to reverse T cell exhaustion and restore anti‐tumor immunity
  publication-title: J Exp Med
– year: 2021
– volume: 8
  issue: 1
  year: 2020
  article-title: Defining tumor resistance to PD‐1 pathway blockade: recommendations from the first meeting of the SITC Immunotherapy Resistance Taskforce
  publication-title: J Immunother Cancer
– volume: 15
  year: 2021
  article-title: The synergistic effect of PARP inhibitors and immune checkpoint inhibitors
  publication-title: Clin Med Insights Oncol
– volume: 8
  issue: 2
  year: 2020
  article-title: T‐cell agonists in cancer immunotherapy
  publication-title: J Immunother Cancer
– volume: 18
  start-page: 632
  issue: 3
  year: 2019
  end-page: 641
  article-title: TSR‐033, a novel therapeutic antibody targeting LAG‐3, enhances T‐cell function and the activity of PD‐1 blockade in vitro and in vivo
  publication-title: Mol Cancer Therapeut
– volume: 18
  start-page: 29
  issue: 1
  year: 2020
  article-title: TIMs, TAMs, and PS‐ antibody targeting: implications for cancer immunotherapy
  publication-title: Cell Commun Signal
– volume: 16
  start-page: 289
  issue: 2
  year: 2021
  end-page: 298
  article-title: Phase 1 expansion cohort of ramucirumab plus pembrolizumab in advanced treatment‐naive NSCLC
  publication-title: J Thorac Oncol
– volume: 6
  issue: 1
  year: 2018
  article-title: High and low mutational burden tumors versus immunologically hot and cold tumors and response to immune checkpoint inhibitors
  publication-title: J Immunother Cancer
– volume: 18
  issue: 1
  year: 2019
  article-title: STING: a master regulator in the cancer‐immunity cycle
  publication-title: Mol Cancer
– volume: 8
  issue: suppl 3
  year: 2020
  article-title: 363 Vactosertib and durvalumab as second or later line treatment for PD‐L1 positive non‐small cell lung cancer: interim result
  publication-title: J Immunother Cancer
– volume: 28
  start-page: 479
  issue: 3
  year: 2022
  end-page: 488
  article-title: Mogamulizumab in combination with nivolumab in a phase I/II study of patients with locally advanced or metastatic solid tumors
  publication-title: Clin Cancer Res
– volume: 9
  issue: 7
  year: 2021
  article-title: STING agonist loaded lipid nanoparticles overcome anti‐PD‐1 resistance in melanoma lung metastasis via NK cell activation
  publication-title: J Immunother Cancer
– volume: 32
  start-page: 881
  issue: 7
  year: 2021
  end-page: 895
  article-title: Pemetrexed plus platinum with or without pembrolizumab in patients with previously untreated metastatic nonsquamous NSCLC: protocol‐specified final analysis from KEYNOTE‐189
  publication-title: Ann Oncol
– volume: 5
  year: 2015
  article-title: OX40 agonists and combination immunotherapy: putting the pedal to the metal
  publication-title: Front Oncol
– volume: 5
  start-page: 2190
  issue: 7
  year: 2015
  end-page: 2201
  article-title: Increased expression of immunosuppressive molecules on intratumoral and circulating regulatory T cells in non‐small‐cell lung cancer patients
  publication-title: Am J Cancer Res
– volume: 11
  start-page: 1139
  issue: 6
  year: 2019
  end-page: 1148
  article-title: Characterization of a novel anti‐human lymphocyte activation gene 3 (LAG‐3) antibody for cancer immunotherapy
  publication-title: MAbs
– volume: 6
  issue: 237
  year: 2014
  article-title: Disruption of CXCR2‐mediated MDSC tumor trafficking enhances anti‐PD1 efficacy
  publication-title: Sci Transl Med
– volume: 35
  issue: suppl 15
  year: 2017
  article-title: Safety and clinical activity of adenosine A2a receptor (A2aR) antagonist, CPI‐444, in anti‐PD1/PDL1 treatment‐refractory renal cell (RCC) and non‐small cell lung cancer (NSCLC) patients
  publication-title: J Clin Oncol
– volume: 23
  issue: 11
  year: 2021
  article-title: The landscape of immunotherapy in advanced NSCLC: driving beyond PD‐1/PD‐L1 inhibitors (CTLA‐4, LAG3, IDO, OX40, TIGIT, Vaccines)
  publication-title: Curr Oncol Rep
– volume: 12
  issue: 5
  year: 2020
  article-title: Precision medicine for NSCLC in the era of immunotherapy: new biomarkers to select the most suitable treatment or the most suitable patient
  publication-title: Cancers (Basel)
– volume: 389
  start-page: 255
  issue: 10066
  year: 2017
  end-page: 265
  article-title: Atezolizumab versus docetaxel in patients with previously treated non‐small‐cell lung cancer (OAK): a phase 3, open‐label, multicentre randomised controlled trial
  publication-title: Lancet
– volume: 15
  start-page: 1210
  issue: 7
  year: 2020
  end-page: 1222
  article-title: Bintrafusp alfa, a bifunctional fusion protein targeting TGF‐β and PD‐L1, in second‐line treatment of patients with NSCLC: results from an expansion cohort of a phase 1 trial
  publication-title: J Thorac Oncol
– volume: 7
  start-page: 896
  issue: 6
  year: 2019
  end-page: 909
  article-title: Function of human tumor‐infiltrating lymphocytes in early‐stage non‐small cell lung cancer
  publication-title: Cancer Immunol Res
– volume: 22
  issue: 1
  year: 2020
  article-title: The next‐generation immune checkpoint LAG‐3 and its therapeutic potential in oncology: third time's a charm
  publication-title: Int J Mol Sci
– volume: 16
  start-page: S118
  issue: 3
  year: 2021
  end-page: S119
  article-title: OA07.08 HUDSON: an open‐label, multi‐drug, biomarker‐directed, phase II platform study in patients with NSCLC, who progressed on anti‐PD(L)1 therapy
  publication-title: J Thorac Oncol
– volume: 22
  issue: 10
  year: 2021
  article-title: Understanding LAG‐3 signaling
  publication-title: Int J Mol Sci
– volume: 9
  issue: 10
  year: 2017
  article-title: Targeting TGF‐β signaling for therapeutic gain
  publication-title: Cold Spring Harb Perspect Biol
– volume: 24
  start-page: S31
  issue: uppl 1
  year: 2019
  end-page: S41
  article-title: PD‐1/PD‐L1 blockade therapy in advanced non‐small‐cell lung cancer: current status and future directions
  publication-title: Oncologist
– volume: 81
  issue: suppl 13
  year: 2021
  article-title: Abstract CT039: Results from RATIONALE 303: a global phase 3 study of tislelizumab (TIS) vs docetaxel (TAX) as second‐ or third‐line therapy for patients with locally advanced or metastatic NSCLC
  publication-title: Cancer Res
– volume: 80
  issue: suppl 16
  year: 2020
  article-title: Abstract CT150: A first‐in‐human phase I study of the OX40 agonist GSK3174998 (GSK998) +/‐ pembrolizumab in patients (Pts) with selected advanced solid tumors (ENGAGE‐1)
  publication-title: Cancer Res
– volume: 10
  start-page: 4741
  issue: 8
  year: 2018
  end-page: 4750
  article-title: High CCR4 expression in the tumor microenvironment is a poor prognostic indicator in lung adenocarcinoma
  publication-title: J Thorac Dis
– volume: 16
  start-page: 205
  issue: 2
  year: 2021
  end-page: 215
  article-title: Dual EGFR‐VEGF pathway inhibition: a promising strategy for patients with EGFR‐mutant NSCLC
  publication-title: J Thorac Oncol
– volume: 16
  start-page: 1909
  issue: 11
  year: 2021
  end-page: 1924
  article-title: IMpower150 final overall survival analyses for atezolizumab plus bevacizumab and chemotherapy in first‐line metastatic nonsquamous NSCLC
  publication-title: J Thorac Oncol
– volume: 12
  start-page: 443
  issue: 2
  year: 2021
  end-page: 464
  article-title: TIGIT and PD1 co‐blockade restores ex vivo functions of human tumor‐infiltrating CD8(+) T cells in hepatocellular carcinoma
  publication-title: Cell Mol Gastroenterol Hepatol
– volume: 2
  year: 2021
  article-title: Progress towards a clinically‐successful ATR inhibitor for cancer therapy
  publication-title: Curr Res Pharmacol Drug Discov
– volume: 3
  issue: 21
  year: 2018
  article-title: Sitravatinib potentiates immune checkpoint blockade in refractory cancer models
  publication-title: JCI Insight
– volume: 379
  start-page: 2040
  issue: 21
  year: 2018
  end-page: 2051
  article-title: Pembrolizumab plus chemotherapy for squamous non‐small‐cell lung cancer
  publication-title: N Engl J Med
– volume: 149
  start-page: 222
  issue: 24
  year: 2021
  end-page: 232
  article-title: Novel PD‐1 inhibitor prolgolimab: expanding non‐resectable/metastatic melanoma therapy choice
  publication-title: Eur J Cancer
– volume: 39
  issue: suppl 15
  year: 2021
  article-title: AdvanTIG‐105: phase 1 dose‐escalation study of anti‐TIGIT monoclonal antibody ociperlimab (BGB‐A1217) in combination with tislelizumab in patients with advanced solid tumors
  publication-title: J Clin Oncol
– volume: 3
  issue: 14
  year: 2018
  article-title: CD226 opposes TIGIT to disrupt Tregs in melanoma
  publication-title: JCI Insight
– volume: 25
  start-page: 6614
  issue: 22
  year: 2019
  end-page: 6622
  article-title: A phase I study of the anti‐CC chemokine receptor 4 antibody, mogamulizumab, in combination with nivolumab in patients with advanced or metastatic solid tumors
  publication-title: Clin Cancer Res
– volume: 18
  start-page: 625
  issue: 10
  year: 2021
  end-page: 644
  article-title: Selecting the optimal immunotherapy regimen in driver‐negative metastatic NSCLC
  publication-title: Nat Rev Clin Oncol
– volume: 38
  issue: suppl 15
  year: 2020
  article-title: First‐in‐human phase I/II clinical trial of ONC‐392: preserving CTLA‐4 immune tolerance checkpoint for safer and more effective cancer immunotherapy
  publication-title: J Clin Oncol
– volume: 12
  year: 2021
  article-title: TIGIT, the next step towards successful combination immune checkpoint therapy in cancer
  publication-title: Front Immunol
– volume: 19
  issue: 1
  year: 2019
  article-title: Prognostic value of TGF‐β in lung cancer: systematic review and meta‐analysis
  publication-title: BMC Cancer
– volume: 8
  issue: suppl 3
  year: 2020
  article-title: 362 A PhII study of bemcentinib, a first‐in‐class selective AXL kinase inhibitor, in combination with pembrolizumab in pts with previously‐treated advanced NSCLC: updated clinical & translational analysis
  publication-title: J Immunother Cancer
– volume: 95
  issue: 3
  year: 2022
  article-title: Targeting regulatory T cells in anti‐PD‐1/PD‐L1 cancer immunotherapy
  publication-title: Scand J Immunol
– volume: 7
  issue: 1
  year: 2016
  article-title: Adaptive resistance to therapeutic PD‐1 blockade is associated with upregulation of alternative immune checkpoints
  publication-title: Nat Commun
– volume: 8
  issue: suppl 3
  year: 2020
  article-title: 587 Tumor‐activated Fc‐engineered anti‐CTLA‐4 monoclonal antibody, XTX101, demonstrates tumor‐selective PD and efficacy in preclinical models
  publication-title: J Immunother Cancer
– volume: 29
  start-page: iv192
  issue: suppl 4
  year: 2018
  end-page: iv237
  article-title: Metastatic non‐small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow‐up
  publication-title: Ann Oncol
– volume: 8
  issue: suppl 3
  year: 2020
  article-title: 699 A differentiated anti‐OX40 agonist BGB‐A445 does not block OX40‐OX40L interaction and reveals remarkable anti‐tumor efficacy in preclinical models
  publication-title: J Immunother Cancer
– volume: 9
  issue: 2
  year: 2014
  article-title: PD‐1 blockade and OX40 triggering synergistically protects against tumor growth in a murine model of ovarian cancer
  publication-title: PLoS One
– volume: 19
  start-page: 5
  issue: 3
  year: 2017
  end-page: 12
  article-title: BCD‐100 – first Russian PD‐1 inhibitor
  publication-title: J Mod Oncol
– volume: 32
  start-page: 395
  issue: 3
  year: 2021
  end-page: 403
  article-title: Safety and efficacy of quavonlimab, a novel anti‐CTLA‐4 antibody (MK‐1308), in combination with pembrolizumab in first‐line advanced non‐small‐cell lung cancer
  publication-title: Ann Oncol
– volume: 6
  start-page: 27359
  issue: 29
  year: 2015
  end-page: 27777
  article-title: LAG3 and PD1 co‐inhibitory molecules collaborate to limit CD8+ T cell signaling and dampen antitumor immunity in a murine ovarian cancer model
  publication-title: Oncotarget
– volume: 22
  issue: 16
  year: 2021
  article-title: Failure of immunotherapy‐the molecular and immunological origin of immunotherapy resistance in lung cancer
  publication-title: Int J Mol Sci
– volume: 7
  issue: 8
  year: 2018
  article-title: TIGIT and PD‐1 dual checkpoint blockade enhances antitumor immunity and survival in GBM
  publication-title: Oncoimmunology
– ident: e_1_2_6_21_1
  doi: 10.1007/s00262‐018‐2160‐x
– ident: e_1_2_6_56_1
  doi: 10.1172/jci80445
– ident: e_1_2_6_72_1
  doi: 10.1158/1535‐7163.MCT‐20‐0226
– ident: e_1_2_6_67_1
  doi: 10.1200/JCO.2021.39.15_suppl.2583
– ident: e_1_2_6_82_1
  doi: 10.1158/1078‐0432.CCR‐20‐4746
– ident: e_1_2_6_50_1
  doi: 10.1038/ncomms10501
– ident: e_1_2_6_86_1
  doi: 10.1158/1535‐7163.MCT‐18‐1376
– ident: e_1_2_6_133_1
  doi: 10.1136/jitc‐2021‐002852
– ident: e_1_2_6_68_1
  doi: 10.1371/journal.pone.0089350
– ident: e_1_2_6_121_1
  doi: 10.1016/S0959‐8049(20)31098‐4
– ident: e_1_2_6_104_1
  doi: 10.1016/j.annonc.2021.08.1796
– ident: e_1_2_6_34_1
  doi: 10.1038/s41568‐021‐00363‐z
– ident: e_1_2_6_119_1
  doi: 10.1200/JCO.2017.35.15_suppl.3004
– ident: e_1_2_6_12_1
  doi: 10.1056/NEJMoa1910231
– ident: e_1_2_6_83_1
  doi: 10.3390/ijms22105282
– ident: e_1_2_6_15_1
  doi: 10.1016/S0140‐6736(16)32517‐X
– ident: e_1_2_6_87_1
  doi: 10.1158/1535‐7163.MCT‐18‐0836
– ident: e_1_2_6_114_1
– ident: e_1_2_6_90_1
  doi: 10.1056/NEJMoa2109970
– ident: e_1_2_6_33_1
  doi: 10.1016/j.jtho.2020.03.003
– ident: e_1_2_6_111_1
  doi: 10.1126/scitranslmed.3007974
– ident: e_1_2_6_126_1
  doi: 10.1158/1078‐0432.CCR‐21‐0972
– ident: e_1_2_6_81_1
  doi: 10.1016/j.annonc.2020.08.1139
– ident: e_1_2_6_65_1
  doi: 10.1016/j.annonc.2020.08.1724
– ident: e_1_2_6_75_1
  doi: 10.1200/JCO.2020.38.15_suppl.TPS3159
– ident: e_1_2_6_127_1
  doi: 10.1186/s12943‐019‐1090‐3
– ident: e_1_2_6_132_1
  doi: 10.1126/scitranslmed.aaa4306
– ident: e_1_2_6_28_1
  doi: 10.3390/ijms22010075
– ident: e_1_2_6_80_1
  doi: 10.1186/s40425‐018‐0422‐y
– ident: e_1_2_6_19_1
  doi: 10.3389/fphar.2020.00441
– ident: e_1_2_6_37_1
  doi: 10.3390/ijms22169030
– ident: e_1_2_6_66_1
  doi: 10.1016/j.annonc.2020.08.1714
– ident: e_1_2_6_110_1
  doi: 10.1002/cac2.12010
– ident: e_1_2_6_76_1
  doi: 10.1136/jitc‐2020‐SITC2020.0587
– ident: e_1_2_6_8_1
  doi: 10.1136/jitc‐2019‐000398
– ident: e_1_2_6_16_1
  doi: 10.1016/j.annonc.2021.04.008
– ident: e_1_2_6_10_1
  doi: 10.1016/j.jtho.2021.05.001
– ident: e_1_2_6_18_1
  doi: 10.1186/s12943‐020‐01260‐z
– ident: e_1_2_6_92_1
  doi: 10.1158/2159‐8290.Cd‐15‐1545
– ident: e_1_2_6_53_1
  doi: 10.1111/sji.13129
– ident: e_1_2_6_69_1
  doi: 10.1053/j.gastro.2020.03.018
– volume: 5
  start-page: 2190
  issue: 7
  year: 2015
  ident: e_1_2_6_84_1
  article-title: Increased expression of immunosuppressive molecules on intratumoral and circulating regulatory T cells in non‐small‐cell lung cancer patients
  publication-title: Am J Cancer Res
  contributor:
    fullname: Wei T
– ident: e_1_2_6_49_1
  doi: 10.1172/jci.insight.120360
– ident: e_1_2_6_122_1
  doi: 10.1200/JCO.2020.38.15_suppl.e21659
– ident: e_1_2_6_91_1
– ident: e_1_2_6_2_1
  doi: 10.1634/theoncologist.2019‐IO‐S1‐s05
– ident: e_1_2_6_71_1
  doi: 10.1158/1538‐7445.AM2020‐CT150
– ident: e_1_2_6_59_1
  doi: 10.1158/1538‐7445.AM2021‐1854
– ident: e_1_2_6_52_1
  doi: 10.1038/s41590‐020‐0769‐3
– ident: e_1_2_6_48_1
  doi: 10.3390/cancers12123851
– ident: e_1_2_6_117_1
  doi: 10.1177/1179554921996288
– ident: e_1_2_6_17_1
  doi: 10.3390/cancers12123729
– ident: e_1_2_6_30_1
  doi: 10.3389/fonc.2015.00034
– ident: e_1_2_6_96_1
  doi: 10.1126/scitranslmed.aal3604
– ident: e_1_2_6_4_1
  doi: 10.1093/annonc/mdy275
– ident: e_1_2_6_129_1
  doi: 10.1136/jitc‐2021‐SITC2021.602
– ident: e_1_2_6_43_1
  doi: 10.1016/j.jtho.2021.05.005
– volume: 19
  start-page: 5
  issue: 3
  year: 2017
  ident: e_1_2_6_47_1
  article-title: BCD‐100 – first Russian PD‐1 inhibitor
  publication-title: J Mod Oncol
  contributor:
    fullname: Tjulandin SA
– ident: e_1_2_6_95_1
  doi: 10.1177/1758835920937902
– ident: e_1_2_6_31_1
  doi: 10.1016/j.pharmthera.2020.107694
– ident: e_1_2_6_41_1
  doi: 10.1056/NEJMoa1604958
– ident: e_1_2_6_107_1
  doi: 10.1093/intimm/dxu079
– ident: e_1_2_6_130_1
  doi: 10.1158/2159‐8290.Cd‐16‐1223
– ident: e_1_2_6_57_1
  doi: 10.3389/fimmu.2021.699895
– ident: e_1_2_6_25_1
  doi: 10.1111/cei.13407
– ident: e_1_2_6_32_1
  doi: 10.1016/j.jtho.2020.10.006
– ident: e_1_2_6_58_1
  doi: 10.1016/j.jcmgh.2021.03.003
– ident: e_1_2_6_39_1
  doi: 10.1200/JCO.2021.39.15_suppl.2596
– ident: e_1_2_6_38_1
  doi: 10.1101/cshperspect.a022301
– ident: e_1_2_6_73_1
  doi: 10.1136/jitc‐2020‐SITC2020.0699
– ident: e_1_2_6_103_1
  doi: 10.1172/jci.insight.124184
– ident: e_1_2_6_98_1
  doi: 10.1073/pnas.1410626111
– ident: e_1_2_6_62_1
  doi: 10.3390/biomedicines9091277
– ident: e_1_2_6_115_1
  doi: 10.3390/cells10112831
– ident: e_1_2_6_54_1
  doi: 10.1073/pnas.1822001116
– ident: e_1_2_6_63_1
  doi: 10.1016/j.annonc.2021.10.217
– ident: e_1_2_6_113_1
  doi: 10.1136/jitc‐2020‐SITC2020.0363
– ident: e_1_2_6_46_1
  doi: 10.1016/j.ejca.2021.02.030
– ident: e_1_2_6_78_1
  doi: 10.1084/jem.20100643
– ident: e_1_2_6_9_1
  doi: 10.1093/jncics/pkab012
– ident: e_1_2_6_3_1
  doi: 10.1038/s41571‐021‐00520‐1
– ident: e_1_2_6_44_1
  doi: 10.1001/jamaoncol.2021.0366
– ident: e_1_2_6_100_1
  doi: 10.1016/j.jtho.2020.10.004
– ident: e_1_2_6_89_1
  doi: 10.1080/19420862.2019.1629239
– ident: e_1_2_6_125_1
  doi: 10.1016/annonc/annonc741
– ident: e_1_2_6_123_1
  doi: 10.1172/jci.insight.142843
– ident: e_1_2_6_108_1
  doi: 10.1158/1078‐0432.Ccr‐19‐1090
– ident: e_1_2_6_11_1
  doi: 10.1200/jco.20.01605
– ident: e_1_2_6_134_1
  doi: 10.1126/science.aba6098
– ident: e_1_2_6_35_1
  doi: 10.1186/s12885‐019‐5917‐5
– ident: e_1_2_6_22_1
  doi: 10.1172/JCI81187
– ident: e_1_2_6_74_1
  doi: 10.1016/j.annonc.2020.11.020
– ident: e_1_2_6_109_1
  doi: 10.1158/1078‐0432.CCR‐21‐2781
– ident: e_1_2_6_112_1
– ident: e_1_2_6_70_1
  doi: 10.1158/1078‐0432.CCR‐20‐1830
– ident: e_1_2_6_77_1
  doi: 10.1186/s12964‐020‐0521‐5
– ident: e_1_2_6_102_1
  doi: 10.1158/1078‐0432.Ccr‐20‐3136
– ident: e_1_2_6_101_1
  doi: 10.1016/j.annonc.2021.10.139
– ident: e_1_2_6_64_1
– ident: e_1_2_6_128_1
  doi: 10.1136/jitc‐2020‐SITC2020.0362
– ident: e_1_2_6_60_1
  doi: 10.1080/2162402X.2018.1466769
– ident: e_1_2_6_20_1
  doi: 10.1016/j.ccell.2015.08.004
– ident: e_1_2_6_88_1
  doi: 10.18632/oncotarget.4751
– ident: e_1_2_6_51_1
  doi: 10.1172/jci.insight.121157
– ident: e_1_2_6_131_1
  doi: 10.1158/2326‐6066.Cir‐16‐0104
– ident: e_1_2_6_29_1
  doi: 10.1136/jitc‐2020‐000966
– ident: e_1_2_6_36_1
  doi: 10.14348/molcells.2021.0044
– ident: e_1_2_6_79_1
  doi: 10.1309/AJCP9Q6OVLVSHTMY
– ident: e_1_2_6_97_1
  doi: 10.1126/sciimmunol.aay0555
– ident: e_1_2_6_85_1
  doi: 10.1016/j.jtho.2017.01.019
– ident: e_1_2_6_94_1
  doi: 10.1001/jamanetworkopen.2019.6879
– ident: e_1_2_6_45_1
  doi: 10.1158/1538‐7445.AM2021‐CT039
– ident: e_1_2_6_23_1
  doi: 10.1016/j.immuni.2014.02.012
– ident: e_1_2_6_105_1
  doi: 10.1016/j.annonc.2021.08.1882
– ident: e_1_2_6_26_1
  doi: 10.1007/s11912‐021‐01124‐9
– ident: e_1_2_6_99_1
  doi: 10.1016/j.jtho.2021.07.009
– ident: e_1_2_6_6_1
  doi: 10.3390/cancers12051125
– ident: e_1_2_6_40_1
  doi: 10.1186/s12943‐019‐1087‐y
– ident: e_1_2_6_116_1
  doi: 10.1016/j.coph.2020.08.003
– ident: e_1_2_6_120_1
  doi: 10.1016/j.annonc.2020.08.1629
– ident: e_1_2_6_124_1
  doi: 10.1016/j.jtho.2021.01.299
– ident: e_1_2_6_42_1
  doi: 10.3389/fimmu.2019.00292
– ident: e_1_2_6_24_1
  doi: 10.1016/j.it.2016.10.002
– ident: e_1_2_6_61_1
  doi: 10.1016/j.ccell.2014.10.018
– ident: e_1_2_6_93_1
  doi: 10.1186/s40425‐018‐0479‐7
– ident: e_1_2_6_7_1
  doi: 10.1111/sji.12980
– ident: e_1_2_6_27_1
  doi: 10.1136/jitc‐2020‐000911
– ident: e_1_2_6_5_1
  doi: 10.1002/cncr.32468
– ident: e_1_2_6_13_1
  doi: 10.1056/NEJMoa1810865
– ident: e_1_2_6_118_1
  doi: 10.1016/j.crphar.2021.100017
– ident: e_1_2_6_55_1
  doi: 10.1158/2326‐6066.cir‐18‐0713
– ident: e_1_2_6_14_1
  doi: 10.1016/j.esmoop.2021.100273
– ident: e_1_2_6_106_1
  doi: 10.21037/jtd.2018.07.45
SSID ssj0007253
Score 2.4963055
SecondaryResourceType review_article
Snippet The availability of agents targeting the programmed cell death protein 1 (PD‐1)/programmed death‐ligand 1 (PD‐L1) immune checkpoint has transformed treatment...
The availability of agents targeting the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) immune checkpoint has transformed treatment...
Abstract The availability of agents targeting the programmed cell death protein 1 (PD‐1)/programmed death‐ligand 1 (PD‐L1) immune checkpoint has transformed...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1319
SubjectTerms Apoptosis
B7-H1 Antigen
Carcinoma, Non-Small-Cell Lung - pathology
Cell death
drug resistance
Humans
Immune checkpoint
Immune Checkpoint Inhibitors - therapeutic use
Immunotherapy
Immunotherapy - adverse effects
Inhibitors
Ligands
Lung cancer
Lung Neoplasms - pathology
Metastases
Mortality
neoplasm
Non-small cell lung carcinoma
non–small cell lung cancer
Oncology
Patients
PD-1 protein
PD-L1 protein
Programmed Cell Death 1 Receptor
programmed cell death protein 1
programmed death‐ligand 1
Proteins
Sensitivity enhancement
Small cell lung carcinoma
tumor escape
Tumor Microenvironment
Title Emerging therapeutic strategies for enhancing sensitivity and countering resistance to programmed cell death protein 1 or programmed death‐ligand 1 inhibitors in non–small cell lung cancer
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcncr.34683
https://www.ncbi.nlm.nih.gov/pubmed/36848319
https://www.proquest.com/docview/2797485351
https://www.proquest.com/docview/2780487830/abstract/
https://pubmed.ncbi.nlm.nih.gov/PMC11234508
Volume 129
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1La9wwEMeHNIfSS98Pp2lQaU8Fb9aWbMvQS1kaQqGhhAb2UowlS12TVFvW3ktO-QiFfqF-lnySzsj2PhootDeBZMmPGfkvefwbgNeZzazSKg7LLK1CUQobom7WIVoHj4RFDax8tMVJenwmPkyT6Q68Hf6F6fgQqw038gw_X5ODl6o5XENDtdOLERepJNQnkfRIEZ2u2VFZ3CMoxzJMBJ-u2KTx4frQ7bfRDYl5M1JyU8H6V9DRPfgynHwXeXI-WrZqpC__4Dr-79Xdh7u9NmXvOmN6ADvGPYTbH_uv74_gF-1gUVIjtvHXFmvagTbBUAAz42aE8MBGDcXGd8kpWOkq5tNSePIhwzU-6VY0ONbOWR8jhjeA0XcEVpEsZZ4gUTsWMex1o4mvvb76cVF_pV4jVrtZrWrKGoRF5ubu-upn863EjnxvFzidMU1jLR7D2dH7z5PjsM8AEWohch4mPJOEDNTEUzbGplwRcT5Ps3FiMyHMWJc6RnOKK2ulqXCxWqHlKamqkkul-RPYxWHNM2C5zIlSEdlYKlER-A21sbZ5Io3Bkgng1WAJxfcO9FF0SOe4oIdR-IcRwP5gJEXv7E0RZ7goQ9mTRAG8XFWjm9JVls7Ml9RG4lyZST4O4GlnU6theCqFxKkwALllbasGhADfrnH1zKPAUS1zgRo7gDfemv5y6sXkZHLqS3v_0vg53InxvnUxnvuw2y6W5gXqsFYdwK1YfDrwXvcb4843UA
link.rule.ids 230,315,786,790,891,1382,11589,27955,27956,46085,46327,46509,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NbtQwEMctKBL0wvdHoIARnJCy3dhO4hzRQrVAu4eqlfYWxY7NRrRetMleOPURkHghnqVPwoyTze5SCQluluzY-Zhx_nYmvyHkTWpTq7RiYZEmZSgKYUPQzToE6-CRsKCBlY-2mCTjU_FpGk-72Bz8F6blQ_QbbugZfr5GB8cN6f01NVQ7vRhwkUh-ndwAf4_RL98fr-lRKesglEMZxoJPezop218fu_0-uiIyr8ZKbmpY_xI6uNNmWq09uxBjT74Olo0a6O9_kB3_-_ruktudPKXvWnu6R64Zd5_cPOo-wD8gv3ATC_Ma0Y0ft2jdrIATFDQwNW6GFA9oVGN4fJufghaupD4zhYcfUljmo3QFm6PNnHZhYnAHKH5KoCUqU-ohEpWjEYVeN5r42suLH2fVF-w1opWbVarCxEFQpG7uLi9-1ucFdOR7O4MZjWoca_GQnB58OBmNwy4JRKiFyHgY81QiNVAjUtkYm3CF0PksSYexTYUwQ11oBhbFSmulKWG9WoLxKanKgkul-SOyA8OaJ4RmMkNQRWSZVKJE9hvIY22zWBoDJROQ1ytTyL-1rI-8pTqzHB9G7h9GQPZWVpJ3_l7nLIV1GSifOArIq74aPBWvsnBmvsQ2EqbLVPJhQB63RtUPwxMpJMyGAZFb5tY3QAr4do2rZp4GDoKZC5DZAXnrzekvp56PJqNjX3r6L41fklvjk6PD_PDj5PMzssvgHrYhn3tkp1kszXOQZY164Z3vN9JFOpk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NatwwEB7SFEIvpf91m7ZT2lPBzdqSbS30UrZd0r8llAb2ZixZyhpSbdjd3PMIhb5QnyVP0hnZ6-wSKPQm0FiyPT_-JI--AXhduMJpo9O4KvI6lpV0MeFmE5N1iEQ6wsA6ZFtM8sNj-XmaTXfg3fosTMsP0W-4sWeEeM0Ofla7gyvSUOPN4q2QuRI34KbMCTowr7M86uNwkXYclAMVZ1JMe3LS9ODq2u3P0TWMeT1VchPChm_Q-A7c7sAjvm-1fRd2rL8He9-63-P34Q9vMXHVIdw4VoXL1ZoOAgmhovUz5tggoSUnr7fVI7DyNYa6EYGaEGkRzsCSLAJXc-ySuOgGkTf6sWbciIHiofGYII26IRJ6Ly9-nTYnPGqCjZ81uuGyPtREP_eXF7-XPysaKIx2SvEGDc-1eADH448_RodxV6IhNlIORZyJQjGnn2HCY2tdLjRTwg_zYpC5Qko7MJVJSd9p7ZyyNa0mazINrXRdCaWNeAi7NK19DDhUQ6aRSFyqtKyZmY3Aq3HDTFlLLRvBq7WmyrOWiaNsOZfTkvVZBn1GsL9WYtl547JMC1o1ES7Jkghe9t3kR_yUlbfzc5ZRFMwKJQYRPGp13k8jciUVxaoI1JY19ALM0b3d45tZ4OomOCskgeAI3gTD-cetl6PJ6HtoPfkf4Rewd_RhXH79NPnyFG6l9ArbfMx92F0tzu0zwkwr_Ty4xl-VQRif
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emerging+therapeutic+strategies+for+enhancing+sensitivity+and+countering+resistance+to+programmed+cell+death+protein+1+or+programmed+death%E2%80%90ligand+1+inhibitors+in+non%E2%80%93small+cell+lung+cancer&rft.jtitle=Cancer&rft.au=Villaruz%2C+Liza+C&rft.au=Blumenschein%2C+George+R&rft.au=Otterson%2C+Gregory+A&rft.au=Leal%2C+Ticiana+A&rft.date=2023-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0008-543X&rft.eissn=1097-0142&rft.volume=129&rft.issue=9&rft.spage=1319&rft.epage=1350&rft_id=info:doi/10.1002%2Fcncr.34683&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-543X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-543X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-543X&client=summon