Global distribution, formation and fate of mineral‐associated soil organic matter under a changing climate: A trait‐based perspective
Soil organic matter (SOM) is the largest actively cycling reservoir of terrestrial carbon (C), and the majority of SOM in Earth's mineral soils (~65%) is mineral‐associated organic matter (MAOM). Thus, the formation and fate of MAOM can exert substantial influence on the global C cycle. To pred...
Saved in:
Published in | Functional ecology Vol. 36; no. 6; pp. 1411 - 1429 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Wiley Subscription Services, Inc
01.06.2022
British Ecological Society; Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Soil organic matter (SOM) is the largest actively cycling reservoir of terrestrial carbon (C), and the majority of SOM in Earth's mineral soils (~65%) is mineral‐associated organic matter (MAOM). Thus, the formation and fate of MAOM can exert substantial influence on the global C cycle. To predict future changes to Earth's climate, it is critical to mechanistically understand the processes by which MAOM is formed and decomposed, and to accurately represent this process‐based understanding in biogeochemical and Earth system models.
In this review, we use a trait‐based framework to synthesize the interacting roles of plants, soil micro‐organisms, and the mineral matrix in regulating MAOM formation and decomposition. Our proposed framework differentiates between plant and microbial traits that influence total OM inputs to the soil (‘feedstock traits’) versus traits that influence the proportion of OM inputs that are ultimately incorporated into MAOM (‘MAOM formation traits’). We discuss how these feedstock and MAOM formation traits may be altered by warming, altered precipitation and elevated carbon dioxide.
At a planetary scale, these feedstock and MAOM formation traits help shape the distribution of MAOM across Earth's biomes, and modulate biome‐specific responses of MAOM to climate change. We leverage a global synthesis of MAOM measurements to provide estimates of the total amount of MAOM‐C globally (~840–1540 Pg C; 34%–51% of total terrestrial organic C), and its distribution across Earth's biomes. We show that MAOM‐C concentration is highest in temperate forests and grasslands, and lowest in shrublands and savannas. Grasslands and croplands have the highest proportion of soil organic carbon (SOC) in the MAOM fraction (i.e. the MAOM‐C:SOC ratio), while boreal forests and tundra have the lowest MAOM‐C:SOC ratio. Drawing on our trait framework, we then review experimental data and posit the effects of climate change on MAOM pools in different biomes.
We conclude by discussing how MAOM is integrated into soil C models, and how feedstock and MAOM formation traits may be included in these models. We also summarize the projected fate of MAOM under climate change scenarios (Representative Concentration Pathways 4.5 and 8.5) and discuss key model uncertainties.
Read the free Plain Language Summary for this article on the Journal blog.
Read the free Plain Language Summary for this article on the Journal blog. |
---|---|
AbstractList | Soil organic matter (SOM) is the largest actively cycling reservoir of terrestrial carbon (C), and the majority of SOM in Earth's mineral soils (~65%) is mineral‐associated organic matter (MAOM). Thus, the formation and fate of MAOM can exert substantial influence on the global C cycle. To predict future changes to Earth's climate, it is critical to mechanistically understand the processes by which MAOM is formed and decomposed, and to accurately represent this process‐based understanding in biogeochemical and Earth system models.
In this review, we use a trait‐based framework to synthesize the interacting roles of plants, soil micro‐organisms, and the mineral matrix in regulating MAOM formation and decomposition. Our proposed framework differentiates between plant and microbial traits that influence total OM inputs to the soil (‘feedstock traits’) versus traits that influence the proportion of OM inputs that are ultimately incorporated into MAOM (‘MAOM formation traits’). We discuss how these feedstock and MAOM formation traits may be altered by warming, altered precipitation and elevated carbon dioxide.
At a planetary scale, these feedstock and MAOM formation traits help shape the distribution of MAOM across Earth's biomes, and modulate biome‐specific responses of MAOM to climate change. We leverage a global synthesis of MAOM measurements to provide estimates of the total amount of MAOM‐C globally (~840–1540 Pg C; 34%–51% of total terrestrial organic C), and its distribution across Earth's biomes. We show that MAOM‐C concentration is highest in temperate forests and grasslands, and lowest in shrublands and savannas. Grasslands and croplands have the highest proportion of soil organic carbon (SOC) in the MAOM fraction (i.e. the MAOM‐C:SOC ratio), while boreal forests and tundra have the lowest MAOM‐C:SOC ratio. Drawing on our trait framework, we then review experimental data and posit the effects of climate change on MAOM pools in different biomes.
We conclude by discussing how MAOM is integrated into soil C models, and how feedstock and MAOM formation traits may be included in these models. We also summarize the projected fate of MAOM under climate change scenarios (Representative Concentration Pathways 4.5 and 8.5) and discuss key model uncertainties.
Read the free
Plain Language Summary
for this article on the Journal blog. Soil organic matter (SOM) is the largest actively cycling reservoir of terrestrial carbon (C), and the majority of SOM in Earth's mineral soils (~65%) is mineral-associated organic matter (MAOM). Thus, the formation and fate of MAOM can exert substantial influence on the global C cycle. To predict future changes to Earth's climate, it is critical to mechanistically understand the processes by which MAOM is formed and decomposed, and to accurately represent this process-based understanding in biogeochemical and Earth system models. In this review, we use a trait-based framework to synthesize the interacting roles of plants, soil micro-organisms, and the mineral matrix in regulating MAOM formation and decomposition. Our proposed framework differentiates between plant and microbial traits that influence total OM inputs to the soil (‘feedstock traits’) versus traits that influence the proportion of OM inputs that are ultimately incorporated into MAOM (‘MAOM formation traits’). We discuss how these feedstock and MAOM formation traits may be altered by warming, altered precipitation and elevated carbon dioxide. At a planetary scale, these feedstock and MAOM formation traits help shape the distribution of MAOM across Earth's biomes, and modulate biome-specific responses of MAOM to climate change. We leverage a global synthesis of MAOM measurements to provide estimates of the total amount of MAOM-C globally (~840–1540 Pg C; 34%–51% of total terrestrial organic C), and its distribution across Earth's biomes. We show that MAOM-C concentration is highest in temperate forests and grasslands, and lowest in shrublands and savannas. Grasslands and croplands have the highest proportion of soil organic carbon (SOC) in the MAOM fraction (i.e. the MAOM-C:SOC ratio), while boreal forests and tundra have the lowest MAOM-C:SOC ratio. Drawing on our trait framework, we then review experimental data and posit the effects of climate change on MAOM pools in different biomes. We conclude by discussing how MAOM is integrated into soil C models, and how feedstock and MAOM formation traits may be included in these models. We also summarize the projected fate of MAOM under climate change scenarios (Representative Concentration Pathways 4.5 and 8.5) and discuss key model uncertainties. Soil organic matter (SOM) is the largest actively cycling reservoir of terrestrial carbon (C), and the majority of SOM in Earth's mineral soils (~65%) is mineral‐associated organic matter (MAOM). Thus, the formation and fate of MAOM can exert substantial influence on the global C cycle. To predict future changes to Earth's climate, it is critical to mechanistically understand the processes by which MAOM is formed and decomposed, and to accurately represent this process‐based understanding in biogeochemical and Earth system models.In this review, we use a trait‐based framework to synthesize the interacting roles of plants, soil micro‐organisms, and the mineral matrix in regulating MAOM formation and decomposition. Our proposed framework differentiates between plant and microbial traits that influence total OM inputs to the soil (‘feedstock traits’) versus traits that influence the proportion of OM inputs that are ultimately incorporated into MAOM (‘MAOM formation traits’). We discuss how these feedstock and MAOM formation traits may be altered by warming, altered precipitation and elevated carbon dioxide.At a planetary scale, these feedstock and MAOM formation traits help shape the distribution of MAOM across Earth's biomes, and modulate biome‐specific responses of MAOM to climate change. We leverage a global synthesis of MAOM measurements to provide estimates of the total amount of MAOM‐C globally (~840–1540 Pg C; 34%–51% of total terrestrial organic C), and its distribution across Earth's biomes. We show that MAOM‐C concentration is highest in temperate forests and grasslands, and lowest in shrublands and savannas. Grasslands and croplands have the highest proportion of soil organic carbon (SOC) in the MAOM fraction (i.e. the MAOM‐C:SOC ratio), while boreal forests and tundra have the lowest MAOM‐C:SOC ratio. Drawing on our trait framework, we then review experimental data and posit the effects of climate change on MAOM pools in different biomes.We conclude by discussing how MAOM is integrated into soil C models, and how feedstock and MAOM formation traits may be included in these models. We also summarize the projected fate of MAOM under climate change scenarios (Representative Concentration Pathways 4.5 and 8.5) and discuss key model uncertainties.Read the free Plain Language Summary for this article on the Journal blog. Soil organic matter (SOM) is the largest actively cycling reservoir of terrestrial carbon (C), and the majority of SOM in Earth's mineral soils (~65%) is mineral‐associated organic matter (MAOM). Thus, the formation and fate of MAOM can exert substantial influence on the global C cycle. To predict future changes to Earth's climate, it is critical to mechanistically understand the processes by which MAOM is formed and decomposed, and to accurately represent this process‐based understanding in biogeochemical and Earth system models. In this review, we use a trait‐based framework to synthesize the interacting roles of plants, soil micro‐organisms, and the mineral matrix in regulating MAOM formation and decomposition. Our proposed framework differentiates between plant and microbial traits that influence total OM inputs to the soil (‘feedstock traits’) versus traits that influence the proportion of OM inputs that are ultimately incorporated into MAOM (‘MAOM formation traits’). We discuss how these feedstock and MAOM formation traits may be altered by warming, altered precipitation and elevated carbon dioxide. At a planetary scale, these feedstock and MAOM formation traits help shape the distribution of MAOM across Earth's biomes, and modulate biome‐specific responses of MAOM to climate change. We leverage a global synthesis of MAOM measurements to provide estimates of the total amount of MAOM‐C globally (~840–1540 Pg C; 34%–51% of total terrestrial organic C), and its distribution across Earth's biomes. We show that MAOM‐C concentration is highest in temperate forests and grasslands, and lowest in shrublands and savannas. Grasslands and croplands have the highest proportion of soil organic carbon (SOC) in the MAOM fraction (i.e. the MAOM‐C:SOC ratio), while boreal forests and tundra have the lowest MAOM‐C:SOC ratio. Drawing on our trait framework, we then review experimental data and posit the effects of climate change on MAOM pools in different biomes. We conclude by discussing how MAOM is integrated into soil C models, and how feedstock and MAOM formation traits may be included in these models. We also summarize the projected fate of MAOM under climate change scenarios (Representative Concentration Pathways 4.5 and 8.5) and discuss key model uncertainties. Read the free Plain Language Summary for this article on the Journal blog. Read the free Plain Language Summary for this article on the Journal blog. |
Author | Pett‐Ridge, Jennifer Whalen, Emily D. Jilling, Andrea Sokol, Noah W. Georgiou, Katerina Kallenbach, Cynthia |
Author_xml | – sequence: 1 givenname: Noah W. orcidid: 0000-0003-0239-1976 surname: Sokol fullname: Sokol, Noah W. email: sokol1@llnl.gov organization: Lawrence Livermore National Laboratory – sequence: 2 givenname: Emily D. orcidid: 0000-0001-9269-289X surname: Whalen fullname: Whalen, Emily D. organization: University of New Hampshire – sequence: 3 givenname: Andrea orcidid: 0000-0002-9215-0289 surname: Jilling fullname: Jilling, Andrea organization: Oklahoma State University – sequence: 4 givenname: Cynthia orcidid: 0000-0001-7059-472X surname: Kallenbach fullname: Kallenbach, Cynthia organization: McGill University – sequence: 5 givenname: Jennifer orcidid: 0000-0002-4439-2398 surname: Pett‐Ridge fullname: Pett‐Ridge, Jennifer organization: University of California Merced – sequence: 6 givenname: Katerina orcidid: 0000-0002-2819-3292 surname: Georgiou fullname: Georgiou, Katerina email: georgiou1@llnl.gov organization: Lawrence Livermore National Laboratory |
BackLink | https://www.osti.gov/biblio/1856644$$D View this record in Osti.gov |
BookMark | eNqFUbFu2zAQJYoUqJ1kzkq0axWTEkVJ3QwjcQoE6JDuxIk8OQwU0iXpFN6yZus39ktC2UWHLOFwPBzfu3e8Nycnzjsk5IKzS57PgleyLkpR1ZdcMME-kNn_ygmZsVJ2RStk9YnMY3xgjHV1Wc7Iy3r0PYzU2JiC7XfJeveVDj48wpRScIYOkJD6gT5ahwHGv89_IEavbS4bGr0dqQ8bcFbTTEoY6M6ZHIHqe3Ab6zZUjzY_4Te6pCmATblFDzGztxjiFnWyT3hGPg4wRjz_d5-Su-urn6ub4vbH-vtqeVtoITpWgJaswYYZU5qGVwzroetkOQjTC13risseeGMQoO1N35VNC6zNOTSmQqxOyedjVx-TVVHbhPpee-fyEIq3tZRCZNCXI2gb_K8dxqQe_C64PJUqZVPVbVaZUIsjSgcfY8BBbUP-ZtgrztRkiZoMUJMB6mBJZtRvGFn_sOdpK-P7vN92xP17Mur6anXkvQL-daRL |
CitedBy_id | crossref_primary_10_1016_j_jenvman_2024_123950 crossref_primary_10_1016_j_soilbio_2022_108811 crossref_primary_10_1016_j_agee_2024_109073 crossref_primary_10_1016_j_agee_2025_109475 crossref_primary_10_1002_fee_2724 crossref_primary_10_1016_j_soilbio_2024_109589 crossref_primary_10_1002_jpln_202200217 crossref_primary_10_1088_1748_9326_acfa12 crossref_primary_10_1016_j_catena_2024_107814 crossref_primary_10_1002_ldr_5350 crossref_primary_10_3389_fsoil_2024_1481275 crossref_primary_10_1038_s41467_023_40768_y crossref_primary_10_1111_gcb_16413 crossref_primary_10_1016_j_geodrs_2023_e00678 crossref_primary_10_1007_s11368_023_03664_y crossref_primary_10_1016_j_jhazmat_2024_136671 crossref_primary_10_1021_acs_est_4c00028 crossref_primary_10_5194_soil_10_349_2024 crossref_primary_10_1016_j_soilbio_2024_109457 crossref_primary_10_1016_j_eehl_2024_03_001 crossref_primary_10_1021_acs_est_2c07274 crossref_primary_10_1016_j_soilbio_2024_109695 crossref_primary_10_1016_j_ecolmodel_2024_110835 crossref_primary_10_1016_j_scitotenv_2023_165793 crossref_primary_10_1007_s11430_024_1359_9 crossref_primary_10_1007_s11104_023_06308_9 crossref_primary_10_1016_j_jclepro_2024_144106 crossref_primary_10_1016_j_apsoil_2024_105346 crossref_primary_10_1007_s00374_023_01755_z crossref_primary_10_1016_j_rser_2024_115032 crossref_primary_10_1007_s10533_024_01160_0 crossref_primary_10_1016_j_agee_2024_109053 crossref_primary_10_1038_s41558_024_02087_y crossref_primary_10_2139_ssrn_4846467 crossref_primary_10_1007_s10533_023_01061_8 crossref_primary_10_1016_j_soilbio_2023_109288 crossref_primary_10_1038_s41467_025_57354_z crossref_primary_10_5194_bg_20_1559_2023 crossref_primary_10_1016_j_soilbio_2024_109367 crossref_primary_10_1016_j_ecolind_2023_110614 crossref_primary_10_1016_j_foreco_2024_122161 crossref_primary_10_3390_biology13110852 crossref_primary_10_1016_j_catena_2022_106785 crossref_primary_10_1139_er_2022_0129 crossref_primary_10_1016_j_agee_2024_108998 crossref_primary_10_1016_j_geoderma_2024_117030 crossref_primary_10_1016_j_scitotenv_2023_168525 crossref_primary_10_1016_j_soilbio_2024_109518 crossref_primary_10_1016_j_scitotenv_2025_178511 crossref_primary_10_1038_s41561_024_01384_7 crossref_primary_10_1016_j_geoderma_2024_116869 crossref_primary_10_1111_ejss_13536 crossref_primary_10_1016_j_geoderma_2023_116671 crossref_primary_10_1016_j_chemgeo_2025_122714 crossref_primary_10_1007_s10533_024_01162_y crossref_primary_10_1016_j_geoderma_2023_116432 crossref_primary_10_1038_s41467_024_55765_y crossref_primary_10_1016_j_fecs_2024_100291 crossref_primary_10_1016_j_still_2024_106323 crossref_primary_10_1029_2023JG007474 crossref_primary_10_1007_s11104_023_06030_6 crossref_primary_10_1111_nph_19560 crossref_primary_10_1016_j_geoderma_2024_117001 crossref_primary_10_3390_f15122255 crossref_primary_10_1016_j_scitotenv_2023_166977 crossref_primary_10_1016_j_soilbio_2023_109145 crossref_primary_10_1111_ejss_13527 crossref_primary_10_1038_s41561_023_01354_5 crossref_primary_10_1111_nph_18914 crossref_primary_10_1016_j_scitotenv_2024_173814 crossref_primary_10_3390_agriculture14081290 crossref_primary_10_1016_j_jenvman_2023_119480 crossref_primary_10_1021_acs_analchem_4c00184 crossref_primary_10_1038_s41467_023_38700_5 crossref_primary_10_1139_cjss_2023_0118 crossref_primary_10_1038_s43247_024_01771_3 crossref_primary_10_1016_j_catena_2025_108838 crossref_primary_10_1016_j_soilbio_2023_109152 crossref_primary_10_1111_1365_2435_14028 crossref_primary_10_1007_s10533_024_01181_9 crossref_primary_10_1007_s42729_024_02038_8 crossref_primary_10_1002_sd_3000 crossref_primary_10_3390_biomass4040070 crossref_primary_10_1016_j_envint_2023_108393 crossref_primary_10_1016_j_apsoil_2024_105301 crossref_primary_10_1016_j_geoderma_2024_116811 crossref_primary_10_1111_gcb_16921 crossref_primary_10_1016_j_still_2023_105770 crossref_primary_10_1016_j_scitotenv_2024_178133 crossref_primary_10_1016_j_egg_2024_100279 crossref_primary_10_1360_SSTe_2024_0003 crossref_primary_10_1016_j_foreco_2023_120848 crossref_primary_10_36783_18069657rbcs20230065 crossref_primary_10_1002_sae2_70017 crossref_primary_10_3390_microorganisms12020337 crossref_primary_10_1093_ismeco_ycae173 crossref_primary_10_1016_j_catena_2024_108444 crossref_primary_10_1016_j_agee_2023_108497 crossref_primary_10_1111_ejss_13586 crossref_primary_10_5194_soil_10_307_2024 crossref_primary_10_1016_j_geoderma_2024_116943 crossref_primary_10_1093_nsr_nwae178 crossref_primary_10_1016_j_geodrs_2024_e00885 crossref_primary_10_1038_s41467_024_53947_2 crossref_primary_10_1002_jpln_202300080 crossref_primary_10_1016_j_seh_2024_100123 crossref_primary_10_1016_j_soilbio_2024_109672 crossref_primary_10_1016_j_soilbio_2024_109390 crossref_primary_10_1007_s43979_023_00076_2 |
Cites_doi | 10.1111/1365‐2745.13276 10.1007/s10533‐014‐0009‐8 10.5194/soil‐6‐115‐2020 10.1038/s41559‐019‐0958‐3 10.1038/nclimate2322 10.1016/j.soilbio.2017.03.002 10.1046/j.1365‐2486.2002.00546.x 10.1038/nature16069 10.1016/j.gca.2019.07.030 10.1111/1365‐2745.12993 10.1029/2007JG000564 10.1093/femsec/fiv095 10.1111/1462‐2920.14366 10.1016/j.gca.2011.03.006 10.1016/j.soilbio.2018.02.016 10.1126/science.1082750 10.1016/j.scitotenv.2017.11.060 10.1016/j.scitotenv.2020.142333 10.1111/geb.12062 10.1016/j.soilbio.2021.108466 10.1007/s11104‐017‐3522‐4 10.1038/ncomms13630 10.1890/12‐0279.1 10.1016/j.geoderma.2019.114160 10.1111/j.1469‐8137.2012.04225.x 10.1016/j.soilbio.2018.08.002 10.1038/s41561‐019‐0484‐6 10.1007/s10533‐021‐00859‐8 10.1073/pnas.1916387117 10.1007/s11104‐010‐0391‐5 10.1111/ejss.12562 10.1016/bs.agron.2014.10.005 10.1038/ncomms3947 10.1038/s41586‐021‐03306‐8 10.1111/gcb.14316 10.2136/sssaj2007.0342 10.1016/J.SOILBIO.2014.10.018 10.1038/s41467‐020‐20102‐6 10.1071/SR10029 10.1111/gcb.12113 10.1029/93GB02725 10.1007/s10533‐018‐0509‐z 10.1007/s11104‐016‐3090‐z 10.1029/2008GB003381 10.1038/nclimate2361 10.1016/j.geoderma.2018.05.024 10.1038/s41396‐019‐0510‐0 10.1016/j.geoderma.2019.05.001 10.1111/gcb.14009 10.1126/sciadv.abe9256 10.1038/s41598‐018‐30150‐0 10.1111/gcb.16073 10.1038/nclimate1796 10.1038/s41467‐020‐17502‐z 10.1007/s10533‐008‐9249‐9 10.1111/j.1365‐2486.2006.01259.x 10.1016/j.gca.2019.06.028 10.1111/gcb.14777 10.1038/s41467‐017‐01116‐z 10.1021/acs.est.1c00300 10.5194/bg‐17‐3367‐2020 10.1111/gcb.13850 10.1038/s41467‐018‐06232‐y 10.1016/j.soilbio.2015.10.017 10.1126/sciadv.abd1343 10.1073/pnas.1701762114 10.1111/1365‐2745.12770 10.1111/gcb.15584 10.1016/j.soilbio.2019.01.013 10.1016/j.soilbio.2015.06.008 10.1016/j.soilbio.2014.12.002 10.1126/science.aal1319 10.1016/j.soilbio.2020.107742 10.1016/j.soilbio.2021.108189 10.1016/j.soilbio.2019.04.004 10.3389/fmicb.2019.01914 10.1016/0038‐0717(93)90046‐E 10.1038/s41598‐019‐54487‐2 10.1073/pnas.1700299114 10.1007/s10021‐017‐0152‐x 10.1371/journal.pone.0169748 10.4155/cmt.13.77 10.1038/s41597‐020‐0444‐4 10.1007/s00018‐014‐1767‐0 10.1016/j.soilbio.2019.05.002 10.1007/s11104‐016‐2880‐7 10.1007/s10533‐021‐00759‐x 10.1002/jgrg.20067 10.1038/s43017‐021‐00162‐y 10.5281/zenodo.5987644 10.1111/gcb.15206 10.1111/gcb.14859 10.1111/gcb.15754 10.1111/gcb.12036 10.5194/bg‐17‐4007‐2020 10.1016/j.soilbio.2012.03.026 10.1016/j.soilbio.2011.04.020 10.1890/12‐0681.1 10.1038/s41467‐020‐19792‐9 10.5194/gmd‐13‐4413‐2020 10.1038/s41586‐020‐2566‐4 10.1029/2019GL085543 10.1088/1748‐9326/11/1/014008 10.1111/nph.17279 10.1111/gcb.12493 10.1016/j.rhisph.2020.100263 10.1111/gcb.12161 10.1890/06‐0219 10.1023/A:1004213929699 10.1007/s10533‐018‐0428‐z 10.1088/1748‐9326/abf28b 10.1016/j.soilbio.2016.08.014 10.5194/bg‐11‐3899‐2014 10.1038/nclimate2436 10.1038/nclimate2580 10.2136/sssaj1992.03615995005600030017x 10.1021/acs.est.0c04592 10.1016/j.rse.2009.08.016 10.1016/j.soilbio.2020.107935 10.1111/gcb.13979 10.1007/s10533‐021‐00819‐2 10.1038/s41561‐021‐00744‐x 10.1016/j.scitotenv.2021.148569 10.1126/sciadv.abd3176 10.3389/fpls.2021.614968 10.1007/s10533‐018‐0459‐5 10.1111/gcb.16023 10.1111/gcb.14482 10.1016/j.soilbio.2008.07.002 10.1038/s41396‐021‐00906‐0 10.3389/fmicb.2016.00323 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States) |
CorporateAuthor_xml | – sequence: 0 name: Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States) |
DBID | 24P AAYXX CITATION 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 OTOTI |
DOI | 10.1111/1365-2435.14040 |
DatabaseName | Wiley Online Library Open Access CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts OSTI.GOV |
DatabaseTitle | CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database Animal Behavior Abstracts Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Entomology Abstracts |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Environmental Sciences |
EISSN | 1365-2435 |
EndPage | 1429 |
ExternalDocumentID | 1856644 10_1111_1365_2435_14040 FEC14040 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: University of New Hampshire (Dissertation Year Fellowship) – fundername: U.S. Department of Energy, Office of Biological and Environmental Research, Genomic Science Program funderid: SCW1632 – fundername: Lawrence Livermore National Laboratory (LLNL) LDRD Program funderid: 21‐ERD‐045; 22‐LW‐022 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1OC 24P 29H 2AX 2WC 31~ 33P 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAISJ AAKGQ AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABJNI ABLJU ABPLY ABPVW ABTAH ABTLG ABXSQ ACAHQ ACCFJ ACCMX ACCZN ACFBH ACGFO ACGFS ACHIC ACPOU ACPRK ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHXOZ AIAGR AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DOOOF DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ UB1 V8K VOH W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XSW ZCA ZY4 ZZTAW ~02 ~IA ~KM ~WT AAYXX ABSQW AGHNM AGUYK CITATION 7QG 7SN 7SS 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 P64 RC3 OTOTI |
ID | FETCH-LOGICAL-c4490-ac607e70dd2d7130e5f9962f4db4c5c316ba17deaa8bdb9278a08a8ba7d3ee3 |
IEDL.DBID | DR2 |
ISSN | 0269-8463 |
IngestDate | Thu Dec 05 06:24:09 EST 2024 Fri Jul 25 20:52:55 EDT 2025 Thu Apr 24 22:59:23 EDT 2025 Tue Jul 01 01:15:53 EDT 2025 Wed Jan 22 16:24:26 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4490-ac607e70dd2d7130e5f9962f4db4c5c316ba17deaa8bdb9278a08a8ba7d3ee3 |
Notes | Handling Editor Pablo García‐Palacios ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE Laboratory Directed Research and Development (LDRD) Program LLNL-JRNL-829275 AC52-07NA27344; 21-ERD-045; 22-LW-022; SCW1632 USDOE National Nuclear Security Administration (NNSA) USDOE Office of Science (SC), Biological and Environmental Research (BER) |
ORCID | 0000-0003-0239-1976 0000-0002-4439-2398 0000-0001-9269-289X 0000-0002-2819-3292 0000-0002-9215-0289 0000-0001-7059-472X 0000000244392398 000000019269289X 000000017059472X 0000000302391976 0000000292150289 0000000228193292 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.14040 |
PQID | 2673583164 |
PQPubID | 1066355 |
PageCount | 19 |
ParticipantIDs | osti_scitechconnect_1856644 proquest_journals_2673583164 crossref_primary_10_1111_1365_2435_14040 crossref_citationtrail_10_1111_1365_2435_14040 wiley_primary_10_1111_1365_2435_14040_FEC14040 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2022 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: United States |
PublicationTitle | Functional ecology |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc British Ecological Society; Wiley |
Publisher_xml | – sequence: 0 name: British Ecological Society; Wiley – name: Wiley Subscription Services, Inc |
References | 1993; 25 2013; 3 2015; 72 2019; 10 2019; 12 2020; 17 2020; 14 2020; 13 2020; 11 2015; 80 1992; 56 2022; 28 2014; 20 2015; 130 2022; 164 2018; 9 2018; 8 2018; 330 2009; 92 2021; 156 2015; 81 2010; 114 2015; 88 2013; 118 2019; 25 2021; 152 2015; 91 2021; 793 2018; 618 2008; 113 2014; 121 2014; 11 2019; 9 2019; 3 2018; 106 2020; 143 2002; 8 2011; 75 2020; 149 2015; 528 2016; 93 2018; 21 2018; 20 2018; 24 2016; 11 2012; 50 2012; 196 2016; 7 2010; 48 2021; 55 2019; 46 2018; 115 2020; 26 2008; 40 2007; 88 2018; 120 1993; 7 2021; 27 2017; 8 2013; 22 2020; 363 2020; 62 2013; 23 2018; 126 2016; 103 2017; 110 2008; 72 2017; 355 2017; 114 2013; 19 2020; 7 2020; 6 2014; 5 2014; 4 2018; 139 2021; 752 2013; 94 2018; 137 2021; 591 2021; 230 1997; 191 2019; 351 2009; 23 2018; 141 2021; 7 2015; 5 2011; 338 2021; 2 2006; 12 2016; 406 2018; 423 2016; 409 2020; 584 2019; 260 2020; 108 2018; 69 2019; 263 2022; 157 2021; 14 2021; 16 2021; 15 2021; 12 2022 2021; 17 2017; 12 2019; 135 2020; 117 2011; 43 2014 2003; 300 2019; 133 2017; 105 e_1_2_11_70_1 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_78_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_74_1 e_1_2_11_97_1 e_1_2_11_13_1 e_1_2_11_118_1 e_1_2_11_29_1 e_1_2_11_125_1 e_1_2_11_4_1 e_1_2_11_106_1 e_1_2_11_48_1 e_1_2_11_121_1 e_1_2_11_102_1 e_1_2_11_81_1 e_1_2_11_20_1 e_1_2_11_66_1 e_1_2_11_47_1 e_1_2_11_89_1 e_1_2_11_24_1 e_1_2_11_62_1 e_1_2_11_129_1 e_1_2_11_8_1 e_1_2_11_43_1 e_1_2_11_85_1 e_1_2_11_17_1 e_1_2_11_117_1 e_1_2_11_59_1 e_1_2_11_113_1 e_1_2_11_132_1 e_1_2_11_50_1 e_1_2_11_92_1 e_1_2_11_31_1 e_1_2_11_77_1 e_1_2_11_58_1 e_1_2_11_119_1 e_1_2_11_35_1 e_1_2_11_73_1 e_1_2_11_12_1 e_1_2_11_54_1 e_1_2_11_96_1 e_1_2_11_103_1 e_1_2_11_126_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_122_1 e_1_2_11_61_1 e_1_2_11_80_1 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_88_1 e_1_2_11_107_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_84_1 e_1_2_11_114_1 e_1_2_11_16_1 e_1_2_11_110_1 e_1_2_11_39_1 e_1_2_11_133_1 e_1_2_11_72_1 e_1_2_11_91_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_99_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_76_1 e_1_2_11_95_1 e_1_2_11_11_1 e_1_2_11_6_1 e_1_2_11_104_1 e_1_2_11_27_1 e_1_2_11_127_1 e_1_2_11_2_1 e_1_2_11_100_1 e_1_2_11_123_1 e_1_2_11_83_1 e_1_2_11_60_1 e_1_2_11_45_1 e_1_2_11_68_1 e_1_2_11_41_1 e_1_2_11_87_1 e_1_2_11_108_1 e_1_2_11_22_1 e_1_2_11_64_1 e_1_2_11_115_1 e_1_2_11_15_1 e_1_2_11_111_1 e_1_2_11_134_1 e_1_2_11_38_1 e_1_2_11_19_1 Reed S. C. (e_1_2_11_93_1) 2020 e_1_2_11_130_1 e_1_2_11_94_1 e_1_2_11_71_1 e_1_2_11_90_1 e_1_2_11_10_1 e_1_2_11_56_1 e_1_2_11_79_1 e_1_2_11_14_1 e_1_2_11_52_1 e_1_2_11_98_1 e_1_2_11_33_1 e_1_2_11_75_1 e_1_2_11_7_1 e_1_2_11_105_1 e_1_2_11_128_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_101_1 e_1_2_11_124_1 e_1_2_11_120_1 e_1_2_11_82_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_67_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_86_1 e_1_2_11_109_1 e_1_2_11_18_1 e_1_2_11_116_1 e_1_2_11_37_1 e_1_2_11_112_1 e_1_2_11_131_1 |
References_xml | – volume: 12 issue: 2 year: 2017 article-title: SoilGrids250m: Global gridded soil information based on machine learning publication-title: PLoS One – volume: 584 start-page: 234 issue: 7820 year: 2020 end-page: 237 article-title: Soil carbon loss by experimental warming in a tropical forest publication-title: Nature – year: 2022 article-title: Hyphae move matter and microbes to mineral microsites: Integrating the hyphosphere into conceptual models of soil organic matter stabilization publication-title: Global Change Biology – volume: 11 start-page: 6329 issue: 1 year: 2020 article-title: Iron mineral dissolution releases iron and associated organic carbon during permafrost thaw publication-title: Nature Communications – volume: 88 start-page: 390 year: 2015 end-page: 402 article-title: Contribution of sorption, DOC transport and microbial interactions to the C age of a soil organic carbon profile: Insights from a calibrated process model publication-title: Soil Biology and Biochemistry – volume: 14 start-page: 1 issue: 1 year: 2020 end-page: 9 article-title: Defining trait‐based microbial strategies with consequences for soil carbon cycling under climate change publication-title: The ISME Journal – volume: 12 start-page: 2336 issue: 12 year: 2006 end-page: 2351 article-title: Potential carbon release from permafrost soils of Northeastern Siberia publication-title: Global Change Biology – volume: 118 start-page: 783 issue: 2 year: 2013 end-page: 794 article-title: Field‐quantified responses of tropical rainforest aboveground productivity to increasing CO2 and climatic stress, 1997–2009 publication-title: Journal of Geophysical Research: Biogeosciences – volume: 793 start-page: 148569 year: 2021 article-title: Soil organic carbon response to global environmental change depends on its distribution between mineral‐associated and particulate organic matter: A meta‐analysis publication-title: Science of the Total Environment – volume: 23 start-page: 255 issue: 1 year: 2013 end-page: 272 article-title: Development of microbial‐enzyme‐mediated decomposition model parameters through steady‐state and dynamic analyses publication-title: Ecological Applications – volume: 11 issue: 1 year: 2016 article-title: Mapping and analysing cropland use intensity from a NPP perspective publication-title: Environmental Research Letters – volume: 300 start-page: 1560 issue: 5625 year: 2003 end-page: 1563 article-title: Climate‐driven increases in global terrestrial net primary production from 1982 to 1999 publication-title: Science – volume: 591 start-page: 599 issue: 7851 year: 2021 end-page: 603 article-title: A trade‐off between plant and soil carbon storage under elevated CO publication-title: Nature – volume: 157 start-page: 1 issue: 1 year: 2022 end-page: 13 article-title: Rock weathering controls the potential for soil carbon storage at a continental scale publication-title: Biogeochemistry – volume: 24 start-page: 1762 issue: 4 year: 2018 end-page: 1770 article-title: Nitrogen‐rich microbial products provide new organo‐mineral associations for the stabilization of soil organic matter publication-title: Global Change Biology – year: 2014 – volume: 25 start-page: 12 issue: 1 year: 2019 end-page: 24 article-title: Pathways of mineral‐associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry publication-title: Global Change Biology – volume: 139 start-page: 103 issue: 2 year: 2018 end-page: 122 article-title: Minerals in the rhizosphere: Overlooked mediators of soil nitrogen availability to plants and microbes publication-title: Biogeochemistry – volume: 21 start-page: 349 issue: 2 year: 2018 end-page: 359 article-title: Mineral‐associated soil carbon is resistant to drought but sensitive to legumes and microbial biomass in an Australian grassland publication-title: Ecosystems – volume: 55 start-page: 13345 issue: 19 year: 2021 end-page: 13355 article-title: Root carbon interaction with soil minerals is dynamic, leaving a legacy of microbially derived residues publication-title: Environmental Science & Technology – volume: 20 start-page: 1174 issue: 4 year: 2014 end-page: 1190 article-title: Priming effect and microbial diversity in ecosystem functioning and response to global change: A modeling approach using the SYMPHONY model publication-title: Global Change Biology – volume: 27 start-page: 5341 issue: 20 year: 2021 end-page: 5355 article-title: Long‐term geothermal warming reduced stocks of carbon but not nitrogen in a subarctic forest soil publication-title: Global Change Biology – volume: 92 start-page: 41 issue: 1 year: 2009 end-page: 59 article-title: A comparative study of dissolved organic carbon transport and stabilization in California forest and grassland soils publication-title: Biogeochemistry – volume: 7 start-page: 323 year: 2016 article-title: Belowground response to drought in a tropical forest soil. II. Change in microbial function impacts carbon composition publication-title: Frontiers in Microbiology – volume: 141 start-page: 109 issue: 2 year: 2018 end-page: 123 article-title: Multiple models and experiments underscore large uncertainty in soil carbon dynamics publication-title: Biogeochemistry – volume: 126 start-page: 76 year: 2018 end-page: 81 article-title: The afterlife effects of fungal morphology: Contrasting decomposition rates between diffuse and rhizomorphic necromass publication-title: Soil Biology and Biochemistry – volume: 50 start-page: 167 year: 2012 end-page: 173 article-title: Severe drought conditions modify the microbial community structure, size and activity in amended and unamended soils publication-title: Soil Biology and Biochemistry – volume: 103 start-page: 138 year: 2016 end-page: 148 article-title: Substrate quality influences organic matter accumulation in the soil silt and clay fraction publication-title: Soil Biology and Biochemistry – volume: 9 start-page: 18030 issue: 1 year: 2019 article-title: Tropical forest soil carbon stocks do not increase despite 15 years of doubled litter inputs publication-title: Scientific Reports – volume: 330 start-page: 107 year: 2018 end-page: 116 article-title: Distinct bioenergetic signatures in particulate versus mineral‐associated soil organic matter publication-title: Geoderma – volume: 69 start-page: 613 issue: 4 year: 2018 end-page: 624 article-title: Organic matter coatings of soil minerals affect adsorptive interactions with phenolic and amino acids publication-title: European Journal of Soil Science – volume: 11 start-page: 6103 issue: 1 year: 2020 article-title: Organo–organic and organo–mineral interfaces in soil at the nanometer scale publication-title: Nature Communications – volume: 7 start-page: 112 issue: 1 year: 2020 article-title: Harmonized global maps of above and belowground biomass carbon density in the year 2010 publication-title: Scientific Data – volume: 133 start-page: 16 year: 2019 end-page: 27 article-title: Biological and mineralogical controls over cycling of low molecular weight organic compounds along a soil chronosequence publication-title: Soil Biology and Biochemistry – volume: 114 start-page: 9326 issue: 35 year: 2017 end-page: 9331 article-title: Temperature increase reduces global yields of major crops in four independent estimates publication-title: Proceedings of the National Academy of Sciences – volume: 6 start-page: 115 issue: 1 year: 2020 end-page: 129 article-title: Depletion of soil carbon and aggregation after strong warming of a subarctic Andosol under forest and grassland cover publication-title: SOIL – volume: 91 start-page: fiv095 issue: 8 year: 2015 article-title: Long‐term warming alters richness and composition of taxonomic and functional groups of arctic fungi publication-title: FEMS Microbiology Ecology – volume: 156 start-page: 5 issue: 1 year: 2021 end-page: 17 article-title: Divergent controls of soil organic carbon between observations and process‐based models publication-title: Biogeochemistry – volume: 26 start-page: 669 issue: 2 year: 2020 end-page: 681 article-title: Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity publication-title: Global Change Biology – volume: 72 start-page: 1370 issue: 5 year: 2008 end-page: 1374 article-title: Full‐inversion tillage and organic carbon distribution in soil profiles: A meta‐analysis publication-title: Soil Science Society of America Journal – volume: 17 start-page: 3367 issue: 13 year: 2020 end-page: 3383 article-title: From fibrous plant residues to mineral‐associated organic carbon – The fate of organic matter in Arctic permafrost soils publication-title: Biogeosciences – volume: 4 start-page: 822 issue: 9 year: 2014 end-page: 827 article-title: Warming‐related increases in soil CO efflux are explained by increased below‐ground carbon flux publication-title: Nature Climate Change – volume: 26 start-page: 5277 issue: 9 year: 2020 end-page: 5289 article-title: Elevated temperature increases the accumulation of microbial necromass nitrogen in soil via increasing microbial turnover publication-title: Global Change Biology – volume: 137 start-page: 379 issue: 3 year: 2018 end-page: 393 article-title: Incorporation of shoot versus root‐derived 13C and 15N into mineral‐associated organic matter fractions: Results of a soil slurry incubation with dual‐labelled plant material publication-title: Biogeochemistry – volume: 3 start-page: 395 year: 2013 end-page: 398 article-title: The temperature response of soil microbial efficiency and its feedback to climate publication-title: Nature Climate Change – volume: 5 start-page: 588 issue: 6 year: 2015 end-page: 595 article-title: Mineral protection of soil carbon counteracted by root exudates publication-title: Nature Climate Change – volume: 351 start-page: 250 year: 2019 end-page: 260 article-title: Initial microaggregate formation: Association of microorganisms to montmorillonite‐goethite aggregates under wetting and drying cycles publication-title: Geoderma – volume: 11 start-page: 3684 issue: 1 year: 2020 article-title: Microbial diversity drives carbon use efficiency in a model soil publication-title: Nature Communications – volume: 752 start-page: 142333 year: 2021 article-title: Soil carbon and associated bacterial community shifts driven by fine root traits along a chronosequence of Moso bamboo ( ) plantations in subtropical China publication-title: Science of the Total Environment – volume: 24 start-page: 1563 issue: 4 year: 2018 end-page: 1579 article-title: Carbon cycle confidence and uncertainty: Exploring variation among soil biogeochemical models publication-title: Global Change Biology – volume: 406 start-page: 277 issue: 1 year: 2016 end-page: 293 article-title: Patterns of woody plant‐derived soil carbon losses and persistence after brush management in a semi‐arid grassland publication-title: Plant and Soil – volume: 263 start-page: 68 year: 2019 end-page: 84 article-title: Root‐driven weathering impacts on mineral‐organic associations in deep soils over pedogenic time scales publication-title: Geochimica Et Cosmochimica Acta – volume: 17 start-page: 100263 year: 2021 article-title: The effects of warming on root exudation and associated soil N transformation depend on soil nutrient availability publication-title: Rhizosphere – volume: 7 start-page: eabd3176 issue: 16 year: 2021 article-title: Plant rhizodeposition: A key factor for soil organic matter formation in stable fractions publication-title: Science Advances – volume: 56 start-page: 777 issue: 3 year: 1992 end-page: 783 article-title: Particulate soil organic‐matter changes across a grassland cultivation sequence publication-title: Soil Science Society of America Journal – volume: 355 start-page: 1420 issue: 6332 year: 2017 end-page: 1423 article-title: The whole‐soil carbon flux in response to warming publication-title: Science – volume: 15 start-page: 2081 issue: 7 year: 2021 end-page: 2091 article-title: Soil microbial diversity–biomass relationships are driven by soil carbon content across global biomes publication-title: The ISME Journal – volume: 81 start-page: 311 year: 2015 end-page: 322 article-title: Microbial contribution to SOM quantity and quality in density fractions of temperate arable soils publication-title: Soil Biology and Biochemistry – volume: 16 issue: 5 year: 2021 article-title: Arctic tundra shrubification: A review of mechanisms and impacts on ecosystem carbon balance publication-title: Environmental Research Letters – volume: 24 start-page: 1 issue: 1 year: 2018 end-page: 12 article-title: Carbon input by roots into the soil: Quantification of rhizodeposition from root to ecosystem scale publication-title: Global Change Biology – volume: 5 start-page: 81 issue: 1 year: 2014 end-page: 91 article-title: Global soil carbon: Understanding and managing the largest terrestrial carbon pool publication-title: Carbon Management – volume: 19 start-page: 2158 issue: 7 year: 2013 end-page: 2167 article-title: Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming publication-title: Global Change Biology – volume: 88 start-page: 1386 issue: 6 year: 2007 end-page: 1394 article-title: Microbial stress‐response physiology and its implications for ecosystem function publication-title: Ecology – volume: 7 start-page: 811 issue: 4 year: 1993 end-page: 841 article-title: Terrestrial ecosystem production: A process model based on global satellite and surface data publication-title: Global Biogeochemical Cycles – volume: 114 start-page: 168 issue: 1 year: 2010 end-page: 182 article-title: MODIS collection 5 global land cover: Algorithm refinements and characterization of new datasets publication-title: Remote Sensing of Environment – volume: 48 start-page: 713 issue: 8 year: 2010 end-page: 719 article-title: Formation of organo‐mineral complexes as affected by particle size, pH, and dry–wet cycles publication-title: Soil Research – volume: 7 issue: 28 year: 2021 article-title: Warming and elevated ozone induce tradeoffs between fine roots and mycorrhizal fungi and stimulate organic carbon decomposition. publication-title: Advances – volume: 108 start-page: 528 issue: 2 year: 2020 end-page: 545 article-title: Plant economic strategies of grassland species control soil carbon dynamics through rhizodeposition publication-title: Journal of Ecology – volume: 7 start-page: 13630 issue: 1 year: 2016 article-title: Direct evidence for microbial‐derived soil organic matter formation and its ecophysiological controls publication-title: Nature Communications – volume: 5 start-page: 2947 issue: 1 year: 2014 article-title: Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils publication-title: Nature Communications – volume: 135 start-page: 144 year: 2019 end-page: 153 article-title: Microbial carbon and nitrogen cycling responses to drought and temperature in differently managed mountain grasslands publication-title: Soil Biology and Biochemistry – volume: 26 start-page: 261 issue: 1 year: 2020 end-page: 273 article-title: Conceptualizing soil organic matter into particulate and mineral‐associated forms to address global change in the 21st century publication-title: Global Change Biology – volume: 409 start-page: 1 issue: 1 year: 2016 end-page: 17 article-title: Rhizodeposition under drought and consequences for soil communities and ecosystem resilience publication-title: Plant and Soil – volume: 23 start-page: GB4008 year: 2009 article-title: Carbon and nitrogen balances for six shrublands across Europe publication-title: Global Biogeochemical Cycles – volume: 13 start-page: 4413 issue: 9 year: 2020 end-page: 4434 article-title: Stoichiometrically coupled carbon and nitrogen cycling in the MIcrobial‐MIneral Carbon Stabilization model version 1.0 (MIMICS‐CN v1.0) publication-title: Geoscientific Model Development – volume: 94 start-page: 726 issue: 3 year: 2013 end-page: 738 article-title: Responses of ecosystem carbon cycle to experimental warming: A meta‐analysis publication-title: Ecology – volume: 19 start-page: 252 issue: 1 year: 2013 end-page: 263 article-title: Does declining carbon‐use efficiency explain thermal acclimation of soil respiration with warming? publication-title: Global Change Biology – volume: 260 start-page: 161 year: 2019 end-page: 176 article-title: Mineralogy dictates the initial mechanism of microbial necromass association publication-title: Geochimica Et Cosmochimica Acta – volume: 22 start-page: 1095 issue: 10 year: 2013 end-page: 1105 article-title: Altered root traits due to elevated CO : A meta‐analysis publication-title: Global Ecology and Biogeography – volume: 28 start-page: 1178 issue: 3 year: 2022 end-page: 1196 article-title: Beyond bulk: Density fractions explain heterogeneity in global soil carbon abundance and persistence publication-title: Global Change Biology – volume: 46 start-page: 14486 issue: 24 year: 2019 end-page: 14495 article-title: Arctic soil governs whether climate change drives global losses or gains in soil carbon publication-title: Geophysical Research Letters – volume: 75 start-page: 3135 issue: 11 year: 2011 end-page: 3154 article-title: Stabilization of extracellular polymeric substances ( ) by adsorption to and coprecipitation with Al forms publication-title: Geochimica Et Cosmochimica Acta – volume: 25 start-page: 1317 year: 1993 end-page: 1329 article-title: Simulation of carbon and nitrogen transformations in soil: Mineralization publication-title: Soil Biology & Biochemistry – volume: 152 start-page: 127 issue: 2 year: 2021 end-page: 142 article-title: How much carbon can be added to soil by sorption? publication-title: Biogeochemistry – volume: 120 start-page: 246 year: 2018 end-page: 259 article-title: The root of the matter: Linking root traits and soil organic matter stabilization processes publication-title: Soil Biology and Biochemistry – volume: 230 start-page: 1856 issue: 5 year: 2021 end-page: 1867 article-title: Fine‐root functional trait responses to experimental warming: A global meta‐analysis publication-title: New Phytologist – volume: 14 start-page: 295 issue: 5 year: 2021 end-page: 300 article-title: Different climate sensitivity of particulate and mineral‐associated soil organic matter publication-title: Nature Geoscience – volume: 115 start-page: 4051 issue: 16 year: 2018 end-page: 4056 article-title: Shifting plant species composition in response to climate change stabilizes grassland primary production publication-title: Proceedings of the National Academy of Sciences – volume: 12 start-page: 989 issue: 12 year: 2019 end-page: 994 article-title: Soil carbon storage informed by particulate and mineral‐associated organic matter publication-title: Nature Geoscience – volume: 19 start-page: 988 issue: 4 year: 2013 end-page: 995 article-title: The Microbial Efficiency‐Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? publication-title: Global Change Biology – volume: 93 start-page: 38 year: 2016 end-page: 49 article-title: The decomposition of ectomycorrhizal fungal necromass publication-title: Soil Biology and Biochemistry – volume: 110 start-page: 68 year: 2017 end-page: 78 article-title: Changes in substrate availability drive carbon cycle response to chronic warming publication-title: Soil Biology and Biochemistry – volume: 196 start-page: 79 issue: 1 year: 2012 end-page: 91 article-title: Environmental and stoichiometric controls on microbial carbon‐use efficiency in soils publication-title: New Phytologist – volume: 8 start-page: 1194 issue: 12 year: 2002 end-page: 1204 article-title: Effects of nutrition and soil warming on stemwood production in a boreal Norway spruce stand publication-title: Global Change Biology – volume: 80 start-page: 324 year: 2015 end-page: 340 article-title: How air‐drying and rewetting modify soil organic matter characteristics: An assessment to improve data interpretation and inference publication-title: Soil Biology and Biochemistry – volume: 338 start-page: 143 issue: 1 year: 2011 end-page: 158 article-title: Deep soil organic matter—A key but poorly understood component of terrestrial C cycle publication-title: Plant and Soil – volume: 8 start-page: 1223 issue: 1 year: 2017 article-title: Microbial community‐level regulation explains soil carbon responses to long‐term litter manipulations publication-title: Nature Communications – volume: 363 start-page: 114160 year: 2020 article-title: Climate, carbon content, and soil texture control the independent formation and persistence of particulate and mineral‐associated organic matter in soil publication-title: Geoderma – volume: 7 start-page: eabd1343 issue: 21 year: 2021 article-title: Five years of whole‐soil warming led to loss of subsoil carbon stocks and increased CO efflux publication-title: Science Advances – volume: 20 start-page: 4444 issue: 12 year: 2018 end-page: 4460 article-title: Microbial community assembly differs across minerals in a rhizosphere microcosm publication-title: Environmental Microbiology – volume: 24 start-page: 3401 issue: 8 year: 2018 end-page: 3415 article-title: Temperature response of permafrost soil carbon is attenuated by mineral protection publication-title: Global Change Biology – volume: 2 start-page: 402 issue: 6 year: 2021 end-page: 421 article-title: Dynamic interactions at the mineral–organic matter interface publication-title: Nature Reviews Earth & Environment – volume: 55 start-page: 3389 issue: 5 year: 2021 end-page: 3398 article-title: Simple plant and microbial exudates destabilize mineral‐associated organic matter via multiple pathways publication-title: Environmental Science & Technology – volume: 423 start-page: 429 issue: 1 year: 2018 end-page: 442 article-title: Rhizodeposition under drought is controlled by root growth rate and rhizosphere water content publication-title: Plant and Soil – year: 2022 article-title: Supporting data for review article: Sokol, N.W., Whalen, E.D., Kallenbach, C., Pett‐Ridge, J., Georgiou, K. Global distribution, formation and fate of mineral‐associated soil organic matter under a changing climate–A trait‐based perspective [Data set] publication-title: Zenodo – volume: 62 start-page: 225 year: 2020 end-page: 252 – volume: 191 start-page: 77 issue: 1 year: 1997 end-page: 87 article-title: The capacity of soils to preserve organic C and N by their association with clay and silt particles publication-title: Plant and Soil – volume: 113 start-page: G03009 year: 2008 article-title: Chemical changes to nonaggregated particulate soil organic matter following grassland‐to‐woodland transition in a subtropical savanna publication-title: Journal of Geophysical Research Biogeosciences – volume: 164 start-page: 108466 year: 2022 article-title: Improved global‐scale predictions of soil carbon stocks with Millennial Version 2 publication-title: Soil Biology and Biochemistry – volume: 40 start-page: 2722 issue: 11 year: 2008 end-page: 2728 article-title: Patterns of substrate utilization during long‐term incubations at different temperatures publication-title: Soil Biology and Biochemistry – volume: 9 start-page: 3951 issue: 1 year: 2018 article-title: Nitrogen availability regulates topsoil carbon dynamics after permafrost thaw by altering microbial metabolic efficiency publication-title: Nature Communications – volume: 11 start-page: 3899 issue: 14 year: 2014 end-page: 3917 article-title: Integrating microbial physiology and physio‐chemical principles in soils with the MIcrobial‐MIneral Carbon Stabilization (MIMICS) model publication-title: Biogeosciences – volume: 4 start-page: 903 issue: 10 year: 2014 end-page: 906 article-title: Accelerated microbial turnover but constant growth efficiency with warming in soil publication-title: Nature Climate Change – volume: 135 start-page: 13 year: 2019 end-page: 19 article-title: Warming increases microbial residue contribution to soil organic carbon in an alpine meadow publication-title: Soil Biology and Biochemistry – volume: 8 start-page: 12696 issue: 1 year: 2018 article-title: Root exudate metabolomes change under drought and show limited capacity for recovery publication-title: Scientific Reports – volume: 156 start-page: 108189 year: 2021 article-title: Plant‐ or microbial‐derived? A review on the molecular composition of stabilized soil organic matter publication-title: Soil Biology and Biochemistry – volume: 17 start-page: 4007 issue: 15 year: 2020 end-page: 4023 article-title: Rainfall intensification increases the contribution of rewetting pulses to soil heterotrophic respiration publication-title: Biogeosciences – volume: 105 start-page: 1738 issue: 6 year: 2017 end-page: 1749 article-title: Soil carbon response to woody plant encroachment: Importance of spatial heterogeneity and deep soil storage publication-title: Journal of Ecology – volume: 72 start-page: 673 issue: 4 year: 2015 end-page: 689 article-title: General mechanisms of drought response and their application in drought resistance improvement in plants publication-title: Cellular and Molecular Life Sciences – volume: 27 start-page: 2633 issue: 12 year: 2021 end-page: 2644 article-title: Biological mechanisms may contribute to soil carbon saturation patterns publication-title: Global Change Biology – volume: 528 start-page: 60 issue: 7580 year: 2015 end-page: 68 article-title: The contentious nature of soil organic matter publication-title: Nature – volume: 106 start-page: 2176 issue: 6 year: 2018 end-page: 2189 article-title: Root responses to elevated CO2, warming and irrigation in a semi‐arid grassland: Integrating biomass, length and life span in a 5‐year field experiment publication-title: Journal of Ecology – volume: 117 start-page: 20438 issue: 34 year: 2020 end-page: 20446 article-title: Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw publication-title: Proceedings of the National Academy of Sciences – volume: 12 start-page: 245 year: 2021 article-title: Precipitation changes regulate plant and soil microbial biomass via plasticity in plant biomass allocation in grasslands: A meta‐analysis publication-title: Frontiers in Plant Science – volume: 130 start-page: 1 year: 2015 end-page: 140 article-title: Mineral‐organic associations: Formation, properties, and relevance in soil environments publication-title: Advances in Agronomy – volume: 10 start-page: 1914 year: 2019 article-title: Soil metatranscriptomes under long‐term experimental warming and drying: Fungi allocate resources to cell metabolic maintenance rather than decay publication-title: Frontiers in Microbiology – volume: 43 start-page: 1837 issue: 9 year: 2011 end-page: 1847 article-title: Changes in variability of soil moisture alter microbial community C and N resource use publication-title: Soil Biology and Biochemistry – volume: 4 start-page: 1099 year: 2014 end-page: 1102 article-title: Microbe‐driven turnover offsets mineral‐mediated storage of soil carbon under elevated CO publication-title: Nature Climate Change – volume: 121 start-page: 409 issue: 2 year: 2014 end-page: 424 article-title: Similar composition but differential stability of mineral retained organic matter across four classes of clay minerals publication-title: Biogeochemistry – volume: 143 start-page: 107742 year: 2020 article-title: Microbial extracellular polysaccharide production and aggregate stability controlled by switchgrass ( ) root biomass and soil water potential publication-title: Soil Biology and Biochemistry – volume: 3 start-page: 1309 issue: 9 year: 2019 end-page: 1320 article-title: A meta‐analysis of 1,119 manipulative experiments on terrestrial carbon‐cycling responses to global change publication-title: Nature Ecology & Evolution – volume: 618 start-page: 210 year: 2018 end-page: 218 article-title: Erosion‐induced losses of carbon, nitrogen, phosphorus and heavy metals from agricultural soils of contrasting organic matter management publication-title: Science of the Total Environment – volume: 149 start-page: 107935 year: 2020 article-title: Coarse mineral‐associated organic matter is a pivotal fraction for SOM formation and is sensitive to the quality of organic inputs publication-title: Soil Biology and Biochemistry – ident: e_1_2_11_45_1 doi: 10.1111/1365‐2745.13276 – ident: e_1_2_11_99_1 doi: 10.1007/s10533‐014‐0009‐8 – ident: e_1_2_11_83_1 doi: 10.5194/soil‐6‐115‐2020 – ident: e_1_2_11_108_1 doi: 10.1038/s41559‐019‐0958‐3 – ident: e_1_2_11_38_1 doi: 10.1038/nclimate2322 – ident: e_1_2_11_85_1 doi: 10.1016/j.soilbio.2017.03.002 – ident: e_1_2_11_112_1 doi: 10.1046/j.1365‐2486.2002.00546.x – ident: e_1_2_11_60_1 doi: 10.1038/nature16069 – ident: e_1_2_11_31_1 doi: 10.1016/j.gca.2019.07.030 – ident: e_1_2_11_72_1 doi: 10.1111/1365‐2745.12993 – ident: e_1_2_11_26_1 doi: 10.1029/2007JG000564 – ident: e_1_2_11_33_1 doi: 10.1093/femsec/fiv095 – ident: e_1_2_11_124_1 doi: 10.1111/1462‐2920.14366 – ident: e_1_2_11_71_1 doi: 10.1016/j.gca.2011.03.006 – ident: e_1_2_11_84_1 doi: 10.1016/j.soilbio.2018.02.016 – ident: e_1_2_11_73_1 doi: 10.1126/science.1082750 – ident: e_1_2_11_105_1 doi: 10.1016/j.scitotenv.2017.11.060 – ident: e_1_2_11_130_1 doi: 10.1016/j.scitotenv.2020.142333 – ident: e_1_2_11_75_1 doi: 10.1111/geb.12062 – ident: e_1_2_11_3_1 doi: 10.1016/j.soilbio.2021.108466 – ident: e_1_2_11_46_1 doi: 10.1007/s11104‐017‐3522‐4 – ident: e_1_2_11_51_1 doi: 10.1038/ncomms13630 – ident: e_1_2_11_63_1 doi: 10.1890/12‐0279.1 – ident: e_1_2_11_40_1 doi: 10.1016/j.geoderma.2019.114160 – ident: e_1_2_11_68_1 doi: 10.1111/j.1469‐8137.2012.04225.x – ident: e_1_2_11_12_1 doi: 10.1016/j.soilbio.2018.08.002 – ident: e_1_2_11_15_1 doi: 10.1038/s41561‐019‐0484‐6 – ident: e_1_2_11_106_1 doi: 10.1007/s10533‐021‐00859‐8 – ident: e_1_2_11_48_1 doi: 10.1073/pnas.1916387117 – ident: e_1_2_11_96_1 doi: 10.1007/s11104‐010‐0391‐5 – ident: e_1_2_11_30_1 doi: 10.1111/ejss.12562 – ident: e_1_2_11_54_1 doi: 10.1016/bs.agron.2014.10.005 – ident: e_1_2_11_119_1 doi: 10.1038/ncomms3947 – ident: e_1_2_11_115_1 doi: 10.1038/s41586‐021‐03306‐8 – ident: e_1_2_11_34_1 doi: 10.1111/gcb.14316 – ident: e_1_2_11_5_1 doi: 10.2136/sssaj2007.0342 – ident: e_1_2_11_50_1 doi: 10.1016/J.SOILBIO.2014.10.018 – ident: e_1_2_11_79_1 doi: 10.1038/s41467‐020‐20102‐6 – ident: e_1_2_11_78_1 doi: 10.1071/SR10029 – ident: e_1_2_11_16_1 doi: 10.1111/gcb.12113 – ident: e_1_2_11_87_1 doi: 10.1029/93GB02725 – ident: e_1_2_11_113_1 doi: 10.1007/s10533‐018‐0509‐z – ident: e_1_2_11_89_1 doi: 10.1007/s11104‐016‐3090‐z – ident: e_1_2_11_8_1 doi: 10.1029/2008GB003381 – ident: e_1_2_11_41_1 doi: 10.1038/nclimate2361 – ident: e_1_2_11_129_1 doi: 10.1016/j.geoderma.2018.05.024 – ident: e_1_2_11_66_1 doi: 10.1038/s41396‐019‐0510‐0 – ident: e_1_2_11_56_1 doi: 10.1016/j.geoderma.2019.05.001 – ident: e_1_2_11_55_1 doi: 10.1111/gcb.14009 – ident: e_1_2_11_92_1 doi: 10.1126/sciadv.abe9256 – ident: e_1_2_11_32_1 doi: 10.1038/s41598‐018‐30150‐0 – ident: e_1_2_11_103_1 doi: 10.1111/gcb.16073 – ident: e_1_2_11_27_1 doi: 10.1038/nclimate1796 – ident: e_1_2_11_22_1 doi: 10.1038/s41467‐020‐17502‐z – ident: e_1_2_11_98_1 doi: 10.1007/s10533‐008‐9249‐9 – ident: e_1_2_11_23_1 doi: 10.1111/j.1365‐2486.2006.01259.x – ident: e_1_2_11_18_1 doi: 10.1016/j.gca.2019.06.028 – ident: e_1_2_11_91_1 doi: 10.1111/gcb.14777 – ident: e_1_2_11_36_1 doi: 10.1038/s41467‐017‐01116‐z – ident: e_1_2_11_74_1 doi: 10.1021/acs.est.1c00300 – ident: e_1_2_11_88_1 doi: 10.5194/bg‐17‐3367‐2020 – ident: e_1_2_11_80_1 doi: 10.1111/gcb.13850 – ident: e_1_2_11_13_1 doi: 10.1038/s41467‐018‐06232‐y – ident: e_1_2_11_25_1 doi: 10.1016/j.soilbio.2015.10.017 – ident: e_1_2_11_109_1 doi: 10.1126/sciadv.abd1343 – ident: e_1_2_11_133_1 doi: 10.1073/pnas.1701762114 – ident: e_1_2_11_134_1 doi: 10.1111/1365‐2745.12770 – ident: e_1_2_11_17_1 doi: 10.1111/gcb.15584 – ident: e_1_2_11_69_1 doi: 10.1016/j.soilbio.2019.01.013 – ident: e_1_2_11_4_1 doi: 10.1016/j.soilbio.2015.06.008 – ident: e_1_2_11_64_1 doi: 10.1016/j.soilbio.2014.12.002 – ident: e_1_2_11_90_1 doi: 10.1126/science.aal1319 – ident: e_1_2_11_104_1 doi: 10.1016/j.soilbio.2020.107742 – ident: e_1_2_11_6_1 doi: 10.1016/j.soilbio.2021.108189 – ident: e_1_2_11_21_1 doi: 10.1016/j.soilbio.2019.04.004 – ident: e_1_2_11_95_1 doi: 10.3389/fmicb.2019.01914 – ident: e_1_2_11_39_1 doi: 10.1016/0038‐0717(93)90046‐E – ident: e_1_2_11_100_1 doi: 10.1038/s41598‐019‐54487‐2 – ident: e_1_2_11_62_1 doi: 10.1073/pnas.1700299114 – ident: e_1_2_11_11_1 doi: 10.1007/s10021‐017‐0152‐x – ident: e_1_2_11_125_1 – ident: e_1_2_11_44_1 doi: 10.1371/journal.pone.0169748 – ident: e_1_2_11_101_1 doi: 10.4155/cmt.13.77 – ident: e_1_2_11_110_1 doi: 10.1038/s41597‐020‐0444‐4 – ident: e_1_2_11_24_1 doi: 10.1007/s00018‐014‐1767‐0 – ident: e_1_2_11_29_1 doi: 10.1016/j.soilbio.2019.05.002 – ident: e_1_2_11_20_1 doi: 10.1007/s11104‐016‐2880‐7 – ident: e_1_2_11_2_1 doi: 10.1007/s10533‐021‐00759‐x – ident: e_1_2_11_14_1 doi: 10.1002/jgrg.20067 – ident: e_1_2_11_53_1 doi: 10.1038/s43017‐021‐00162‐y – ident: e_1_2_11_35_1 doi: 10.5281/zenodo.5987644 – ident: e_1_2_11_123_1 doi: 10.1111/gcb.15206 – ident: e_1_2_11_59_1 doi: 10.1111/gcb.14859 – ident: e_1_2_11_81_1 doi: 10.1111/gcb.15754 – ident: e_1_2_11_117_1 doi: 10.1111/gcb.12036 – ident: e_1_2_11_67_1 doi: 10.5194/bg‐17‐4007‐2020 – ident: e_1_2_11_47_1 doi: 10.1016/j.soilbio.2012.03.026 – ident: e_1_2_11_116_1 doi: 10.1016/j.soilbio.2011.04.020 – ident: e_1_2_11_122_1 doi: 10.1890/12‐0681.1 – ident: e_1_2_11_86_1 doi: 10.1038/s41467‐020‐19792‐9 – ident: e_1_2_11_57_1 doi: 10.5194/gmd‐13‐4413‐2020 – ident: e_1_2_11_77_1 doi: 10.1038/s41586‐020‐2566‐4 – ident: e_1_2_11_128_1 doi: 10.1029/2019GL085543 – ident: e_1_2_11_76_1 doi: 10.1088/1748‐9326/11/1/014008 – ident: e_1_2_11_121_1 doi: 10.1111/nph.17279 – ident: e_1_2_11_82_1 doi: 10.1111/gcb.12493 – ident: e_1_2_11_120_1 doi: 10.1016/j.rhisph.2020.100263 – ident: e_1_2_11_131_1 doi: 10.1111/gcb.12161 – ident: e_1_2_11_102_1 doi: 10.1890/06‐0219 – ident: e_1_2_11_42_1 doi: 10.1023/A:1004213929699 – ident: e_1_2_11_58_1 doi: 10.1007/s10533‐018‐0428‐z – ident: e_1_2_11_70_1 doi: 10.1088/1748‐9326/abf28b – ident: e_1_2_11_19_1 doi: 10.1016/j.soilbio.2016.08.014 – ident: e_1_2_11_126_1 doi: 10.5194/bg‐11‐3899‐2014 – ident: e_1_2_11_114_1 doi: 10.1038/nclimate2436 – ident: e_1_2_11_52_1 doi: 10.1038/nclimate2580 – ident: e_1_2_11_10_1 doi: 10.2136/sssaj1992.03615995005600030017x – ident: e_1_2_11_61_1 doi: 10.1021/acs.est.0c04592 – ident: e_1_2_11_28_1 doi: 10.1016/j.rse.2009.08.016 – ident: e_1_2_11_97_1 doi: 10.1016/j.soilbio.2020.107935 – ident: e_1_2_11_127_1 doi: 10.1111/gcb.13979 – ident: e_1_2_11_37_1 doi: 10.1007/s10533‐021‐00819‐2 – ident: e_1_2_11_65_1 doi: 10.1038/s41561‐021‐00744‐x – ident: e_1_2_11_94_1 doi: 10.1016/j.scitotenv.2021.148569 – ident: e_1_2_11_118_1 doi: 10.1126/sciadv.abd3176 – ident: e_1_2_11_132_1 doi: 10.3389/fpls.2021.614968 – start-page: 225 volume-title: Advances in Ecological Research year: 2020 ident: e_1_2_11_93_1 – ident: e_1_2_11_49_1 doi: 10.1007/s10533‐018‐0459‐5 – ident: e_1_2_11_43_1 doi: 10.1111/gcb.16023 – ident: e_1_2_11_107_1 doi: 10.1111/gcb.14482 – ident: e_1_2_11_111_1 doi: 10.1016/j.soilbio.2008.07.002 – ident: e_1_2_11_7_1 doi: 10.1038/s41396‐021‐00906‐0 – ident: e_1_2_11_9_1 doi: 10.3389/fmicb.2016.00323 |
SSID | ssj0009522 |
Score | 2.6709862 |
SecondaryResourceType | review_article |
Snippet | Soil organic matter (SOM) is the largest actively cycling reservoir of terrestrial carbon (C), and the majority of SOM in Earth's mineral soils (~65%) is... |
SourceID | osti proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1411 |
SubjectTerms | Agricultural land Boreal forests Carbon carbon cycle Carbon dioxide Climate change Climate effects Climate models Decomposition Earth Ecosystems ENVIRONMENTAL SCIENCES global synthesis Grasslands microbial traits Microorganisms mineral-associated organic matter Organic carbon Organic matter Planet formation plant traits Raw materials soil carbon Soil organic matter Soils Temperate forests trait framework Tundra |
Title | Global distribution, formation and fate of mineral‐associated soil organic matter under a changing climate: A trait‐based perspective |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.14040 https://www.proquest.com/docview/2673583164 https://www.osti.gov/biblio/1856644 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEF5aQ6GXpmlr6ryYQw89VEZeSSuptxBsQiCh9AG9LfsSmDp2sOVDeuq1t_7G_pLO7K4cx1BK6G2RtHowMzvfrGa-YexNWY1Eg24kqbnIklw7lVTGiYRXlRZomEJ4SV9eifMv-cXXossmpFqYwA-x2XAjy_DrNRm40qstIw_5Wejth8QQQ1E7HSFY9JFv0e6G_whc1Al62iyS-1Auz878e36pt0D7uoc5t5Grdz2TPaa7lw4ZJ9-G61YPzfcdPsf_-qrn7FkEpnAaNGmfPXLzF-xJaFV5i6OxiaP--K42DifExWH1kv0M_QPAEhdvbKP1DjbVkaDmFhqEtrBo4Hrq2a5___ilon44C6vFdAahzZSBa0_8CVTjtgQFvkAZ3SyY2RRPufdwCtTeosVbkCe2cHNXNvqKfZqMP5-dJ7HTQ2LyvE4TZURaujK1lluMmlNXNBiH8Sa3OjeFyUZCq1FpnVKVtrrmZaXSCseqtJlzWZ_15ou5e81Alw71DSGHxWi7cQ1eUJiRxVvXXPG8GbBhJ2VpIgk6vexMdsEQCUCSAKQXwIC93Uy4Cfwff7_0kNRGInQh_l1DiUqmlQiIBILOATvqtEnGZWIluSizosLPw9NBLf71EDkZn_nBwUMnHLKnnEo3_A7SEeu1y7U7RkDV6hP2mOcfTrzl_AHhjRdM |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELaqoAouQIGK0JbOgQMHNtp4d727vVVVokAfByhSb5ZfK0VNk6rZHuipV278Rn4JM7aTppUQQr1ZWtvr1cx4vvF6vmHsQ1n1RYNuJKm5yJJcO5VUxomEV5UWaJhCeEkfn4jR9_zLWXG2kgsT-CGWB25kGX6_JgOnA-kVKw8XtNDd94giBsP2J1TX24dVX_kK8W74k8BFnaCvzSK9D93meTDBPc_UmaGF3UOdq9jVO5_hC2YWyw53Ts57163umZsHjI6P-66X7HnEprAflGmDrbnpK7YeqlX-wNbAxNbm4C49DgfE_WH-mv0MJQTAEh1vrKT1CZYJkqCmFhpEtzBr4GLsCa9_3_5SUUWchflsPIFQacrAhef-BEpzuwIFPkcZPS2YyRgfuT3YB6pw0eIU5IwtXN5ljr5h34aD04NREos9JCbP6zRRRqSlK1NrucXAOXVFg6EYb3Krc1OYrC-06pfWKVVpq2teViqtsK1KmzmXbbLOdDZ1bxno0qHKIeqwGHA3rsEOhelbnLrmiudNl_UWYpYm8qDTYidyEQ-RACQJQHoBdNnH5YDLQAHy965bpDcS0QtR8Bq6q2RaiZhIIO7ssu2FOsm4U8wlF2VWVPh5-Djoxb9eIoeDA994978DdtnT0enxkTz6fHK4xZ5xyuTwB0rbrNNeXbsdxFetfu8N6A-3MBqQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5VQUW98GxFaIE5cOCAI2dtr9fcqjZRKVAhHlJvq31KEWkSNe4BTly58Rv5Jcw-nKaVEKp6W8neta2Z2flmPfMNIS9rPmQO3UjWUFZkpbIy49qyjHKuGBomY0HSH07Y0dfy-LTqsgl9LUzkh1gduHnLCPu1N_CFcWtGHvOz0NsPPEMMRu13SpZzr9iHn-ga7278kUBZk6GrLRK7j0_mubbAFcfUm6OBXQGd69A1-J7xfaK6t44pJ98GF60a6B_XCB1v9VkPyL2ETGE_qtJDsmFnj8hm7FX5HUcjnUY7o8viOJyQdoflY_IrNhAA48l4Ux-t17AqjwQ5M-AQ28Lcwdkk0F3_-flbJgWxBpbzyRRinykNZ4H5E3yR2zlICBXK6GdBTyd4yb6BffD9LVpcwrtiA4vLutFt8nk8-nJwlKVWD5kuyybPpGZ5bevcGGowbM5t5TAQo640qtSVLoZMyWFtrJRcGdXQmsuc41jWprC22CG92XxmnxBQtUWFQ8xhMNx21uENlR4aXLqhkpauTwadlIVOLOj-Zaeii4a8AIQXgAgC6JNXqwmLSADy71t3vdoIxC6egFf7TCXdCkREDFFnn-x12iTSPrEUlNVFxfHz8HJUi_89RIxHB2Hw9KYTXpC7Hw_H4v3bk3e7ZIv6Mo5wmrRHeu35hX2G4KpVz4P5_AVqRBlI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+distribution%2C+formation+and+fate+of+mineral%E2%80%90associated+soil+organic+matter+under+a+changing+climate%3A+A+trait%E2%80%90based+perspective&rft.jtitle=Functional+ecology&rft.au=Sokol%2C+Noah+W&rft.au=Whalen%2C+Emily+D&rft.au=Jilling%2C+Andrea&rft.au=Kallenbach%2C+Cynthia&rft.date=2022-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=36&rft.issue=6&rft.spage=1411&rft.epage=1429&rft_id=info:doi/10.1111%2F1365-2435.14040&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon |