Global distribution, formation and fate of mineral‐associated soil organic matter under a changing climate: A trait‐based perspective

Soil organic matter (SOM) is the largest actively cycling reservoir of terrestrial carbon (C), and the majority of SOM in Earth's mineral soils (~65%) is mineral‐associated organic matter (MAOM). Thus, the formation and fate of MAOM can exert substantial influence on the global C cycle. To pred...

Full description

Saved in:
Bibliographic Details
Published inFunctional ecology Vol. 36; no. 6; pp. 1411 - 1429
Main Authors Sokol, Noah W., Whalen, Emily D., Jilling, Andrea, Kallenbach, Cynthia, Pett‐Ridge, Jennifer, Georgiou, Katerina
Format Journal Article
LanguageEnglish
Published London Wiley Subscription Services, Inc 01.06.2022
British Ecological Society; Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Soil organic matter (SOM) is the largest actively cycling reservoir of terrestrial carbon (C), and the majority of SOM in Earth's mineral soils (~65%) is mineral‐associated organic matter (MAOM). Thus, the formation and fate of MAOM can exert substantial influence on the global C cycle. To predict future changes to Earth's climate, it is critical to mechanistically understand the processes by which MAOM is formed and decomposed, and to accurately represent this process‐based understanding in biogeochemical and Earth system models. In this review, we use a trait‐based framework to synthesize the interacting roles of plants, soil micro‐organisms, and the mineral matrix in regulating MAOM formation and decomposition. Our proposed framework differentiates between plant and microbial traits that influence total OM inputs to the soil (‘feedstock traits’) versus traits that influence the proportion of OM inputs that are ultimately incorporated into MAOM (‘MAOM formation traits’). We discuss how these feedstock and MAOM formation traits may be altered by warming, altered precipitation and elevated carbon dioxide. At a planetary scale, these feedstock and MAOM formation traits help shape the distribution of MAOM across Earth's biomes, and modulate biome‐specific responses of MAOM to climate change. We leverage a global synthesis of MAOM measurements to provide estimates of the total amount of MAOM‐C globally (~840–1540 Pg C; 34%–51% of total terrestrial organic C), and its distribution across Earth's biomes. We show that MAOM‐C concentration is highest in temperate forests and grasslands, and lowest in shrublands and savannas. Grasslands and croplands have the highest proportion of soil organic carbon (SOC) in the MAOM fraction (i.e. the MAOM‐C:SOC ratio), while boreal forests and tundra have the lowest MAOM‐C:SOC ratio. Drawing on our trait framework, we then review experimental data and posit the effects of climate change on MAOM pools in different biomes. We conclude by discussing how MAOM is integrated into soil C models, and how feedstock and MAOM formation traits may be included in these models. We also summarize the projected fate of MAOM under climate change scenarios (Representative Concentration Pathways 4.5 and 8.5) and discuss key model uncertainties. Read the free Plain Language Summary for this article on the Journal blog. Read the free Plain Language Summary for this article on the Journal blog.
AbstractList Soil organic matter (SOM) is the largest actively cycling reservoir of terrestrial carbon (C), and the majority of SOM in Earth's mineral soils (~65%) is mineral‐associated organic matter (MAOM). Thus, the formation and fate of MAOM can exert substantial influence on the global C cycle. To predict future changes to Earth's climate, it is critical to mechanistically understand the processes by which MAOM is formed and decomposed, and to accurately represent this process‐based understanding in biogeochemical and Earth system models. In this review, we use a trait‐based framework to synthesize the interacting roles of plants, soil micro‐organisms, and the mineral matrix in regulating MAOM formation and decomposition. Our proposed framework differentiates between plant and microbial traits that influence total OM inputs to the soil (‘feedstock traits’) versus traits that influence the proportion of OM inputs that are ultimately incorporated into MAOM (‘MAOM formation traits’). We discuss how these feedstock and MAOM formation traits may be altered by warming, altered precipitation and elevated carbon dioxide. At a planetary scale, these feedstock and MAOM formation traits help shape the distribution of MAOM across Earth's biomes, and modulate biome‐specific responses of MAOM to climate change. We leverage a global synthesis of MAOM measurements to provide estimates of the total amount of MAOM‐C globally (~840–1540 Pg C; 34%–51% of total terrestrial organic C), and its distribution across Earth's biomes. We show that MAOM‐C concentration is highest in temperate forests and grasslands, and lowest in shrublands and savannas. Grasslands and croplands have the highest proportion of soil organic carbon (SOC) in the MAOM fraction (i.e. the MAOM‐C:SOC ratio), while boreal forests and tundra have the lowest MAOM‐C:SOC ratio. Drawing on our trait framework, we then review experimental data and posit the effects of climate change on MAOM pools in different biomes. We conclude by discussing how MAOM is integrated into soil C models, and how feedstock and MAOM formation traits may be included in these models. We also summarize the projected fate of MAOM under climate change scenarios (Representative Concentration Pathways 4.5 and 8.5) and discuss key model uncertainties. Read the free Plain Language Summary for this article on the Journal blog.
Soil organic matter (SOM) is the largest actively cycling reservoir of terrestrial carbon (C), and the majority of SOM in Earth's mineral soils (~65%) is mineral-associated organic matter (MAOM). Thus, the formation and fate of MAOM can exert substantial influence on the global C cycle. To predict future changes to Earth's climate, it is critical to mechanistically understand the processes by which MAOM is formed and decomposed, and to accurately represent this process-based understanding in biogeochemical and Earth system models. In this review, we use a trait-based framework to synthesize the interacting roles of plants, soil micro-organisms, and the mineral matrix in regulating MAOM formation and decomposition. Our proposed framework differentiates between plant and microbial traits that influence total OM inputs to the soil (‘feedstock traits’) versus traits that influence the proportion of OM inputs that are ultimately incorporated into MAOM (‘MAOM formation traits’). We discuss how these feedstock and MAOM formation traits may be altered by warming, altered precipitation and elevated carbon dioxide. At a planetary scale, these feedstock and MAOM formation traits help shape the distribution of MAOM across Earth's biomes, and modulate biome-specific responses of MAOM to climate change. We leverage a global synthesis of MAOM measurements to provide estimates of the total amount of MAOM-C globally (~840–1540 Pg C; 34%–51% of total terrestrial organic C), and its distribution across Earth's biomes. We show that MAOM-C concentration is highest in temperate forests and grasslands, and lowest in shrublands and savannas. Grasslands and croplands have the highest proportion of soil organic carbon (SOC) in the MAOM fraction (i.e. the MAOM-C:SOC ratio), while boreal forests and tundra have the lowest MAOM-C:SOC ratio. Drawing on our trait framework, we then review experimental data and posit the effects of climate change on MAOM pools in different biomes. We conclude by discussing how MAOM is integrated into soil C models, and how feedstock and MAOM formation traits may be included in these models. We also summarize the projected fate of MAOM under climate change scenarios (Representative Concentration Pathways 4.5 and 8.5) and discuss key model uncertainties.
Soil organic matter (SOM) is the largest actively cycling reservoir of terrestrial carbon (C), and the majority of SOM in Earth's mineral soils (~65%) is mineral‐associated organic matter (MAOM). Thus, the formation and fate of MAOM can exert substantial influence on the global C cycle. To predict future changes to Earth's climate, it is critical to mechanistically understand the processes by which MAOM is formed and decomposed, and to accurately represent this process‐based understanding in biogeochemical and Earth system models.In this review, we use a trait‐based framework to synthesize the interacting roles of plants, soil micro‐organisms, and the mineral matrix in regulating MAOM formation and decomposition. Our proposed framework differentiates between plant and microbial traits that influence total OM inputs to the soil (‘feedstock traits’) versus traits that influence the proportion of OM inputs that are ultimately incorporated into MAOM (‘MAOM formation traits’). We discuss how these feedstock and MAOM formation traits may be altered by warming, altered precipitation and elevated carbon dioxide.At a planetary scale, these feedstock and MAOM formation traits help shape the distribution of MAOM across Earth's biomes, and modulate biome‐specific responses of MAOM to climate change. We leverage a global synthesis of MAOM measurements to provide estimates of the total amount of MAOM‐C globally (~840–1540 Pg C; 34%–51% of total terrestrial organic C), and its distribution across Earth's biomes. We show that MAOM‐C concentration is highest in temperate forests and grasslands, and lowest in shrublands and savannas. Grasslands and croplands have the highest proportion of soil organic carbon (SOC) in the MAOM fraction (i.e. the MAOM‐C:SOC ratio), while boreal forests and tundra have the lowest MAOM‐C:SOC ratio. Drawing on our trait framework, we then review experimental data and posit the effects of climate change on MAOM pools in different biomes.We conclude by discussing how MAOM is integrated into soil C models, and how feedstock and MAOM formation traits may be included in these models. We also summarize the projected fate of MAOM under climate change scenarios (Representative Concentration Pathways 4.5 and 8.5) and discuss key model uncertainties.Read the free Plain Language Summary for this article on the Journal blog.
Soil organic matter (SOM) is the largest actively cycling reservoir of terrestrial carbon (C), and the majority of SOM in Earth's mineral soils (~65%) is mineral‐associated organic matter (MAOM). Thus, the formation and fate of MAOM can exert substantial influence on the global C cycle. To predict future changes to Earth's climate, it is critical to mechanistically understand the processes by which MAOM is formed and decomposed, and to accurately represent this process‐based understanding in biogeochemical and Earth system models. In this review, we use a trait‐based framework to synthesize the interacting roles of plants, soil micro‐organisms, and the mineral matrix in regulating MAOM formation and decomposition. Our proposed framework differentiates between plant and microbial traits that influence total OM inputs to the soil (‘feedstock traits’) versus traits that influence the proportion of OM inputs that are ultimately incorporated into MAOM (‘MAOM formation traits’). We discuss how these feedstock and MAOM formation traits may be altered by warming, altered precipitation and elevated carbon dioxide. At a planetary scale, these feedstock and MAOM formation traits help shape the distribution of MAOM across Earth's biomes, and modulate biome‐specific responses of MAOM to climate change. We leverage a global synthesis of MAOM measurements to provide estimates of the total amount of MAOM‐C globally (~840–1540 Pg C; 34%–51% of total terrestrial organic C), and its distribution across Earth's biomes. We show that MAOM‐C concentration is highest in temperate forests and grasslands, and lowest in shrublands and savannas. Grasslands and croplands have the highest proportion of soil organic carbon (SOC) in the MAOM fraction (i.e. the MAOM‐C:SOC ratio), while boreal forests and tundra have the lowest MAOM‐C:SOC ratio. Drawing on our trait framework, we then review experimental data and posit the effects of climate change on MAOM pools in different biomes. We conclude by discussing how MAOM is integrated into soil C models, and how feedstock and MAOM formation traits may be included in these models. We also summarize the projected fate of MAOM under climate change scenarios (Representative Concentration Pathways 4.5 and 8.5) and discuss key model uncertainties. Read the free Plain Language Summary for this article on the Journal blog. Read the free Plain Language Summary for this article on the Journal blog.
Author Pett‐Ridge, Jennifer
Whalen, Emily D.
Jilling, Andrea
Sokol, Noah W.
Georgiou, Katerina
Kallenbach, Cynthia
Author_xml – sequence: 1
  givenname: Noah W.
  orcidid: 0000-0003-0239-1976
  surname: Sokol
  fullname: Sokol, Noah W.
  email: sokol1@llnl.gov
  organization: Lawrence Livermore National Laboratory
– sequence: 2
  givenname: Emily D.
  orcidid: 0000-0001-9269-289X
  surname: Whalen
  fullname: Whalen, Emily D.
  organization: University of New Hampshire
– sequence: 3
  givenname: Andrea
  orcidid: 0000-0002-9215-0289
  surname: Jilling
  fullname: Jilling, Andrea
  organization: Oklahoma State University
– sequence: 4
  givenname: Cynthia
  orcidid: 0000-0001-7059-472X
  surname: Kallenbach
  fullname: Kallenbach, Cynthia
  organization: McGill University
– sequence: 5
  givenname: Jennifer
  orcidid: 0000-0002-4439-2398
  surname: Pett‐Ridge
  fullname: Pett‐Ridge, Jennifer
  organization: University of California Merced
– sequence: 6
  givenname: Katerina
  orcidid: 0000-0002-2819-3292
  surname: Georgiou
  fullname: Georgiou, Katerina
  email: georgiou1@llnl.gov
  organization: Lawrence Livermore National Laboratory
BackLink https://www.osti.gov/biblio/1856644$$D View this record in Osti.gov
BookMark eNqFUbFu2zAQJYoUqJ1kzkq0axWTEkVJ3QwjcQoE6JDuxIk8OQwU0iXpFN6yZus39ktC2UWHLOFwPBzfu3e8Nycnzjsk5IKzS57PgleyLkpR1ZdcMME-kNn_ygmZsVJ2RStk9YnMY3xgjHV1Wc7Iy3r0PYzU2JiC7XfJeveVDj48wpRScIYOkJD6gT5ahwHGv89_IEavbS4bGr0dqQ8bcFbTTEoY6M6ZHIHqe3Ab6zZUjzY_4Te6pCmATblFDzGztxjiFnWyT3hGPg4wRjz_d5-Su-urn6ub4vbH-vtqeVtoITpWgJaswYYZU5qGVwzroetkOQjTC13risseeGMQoO1N35VNC6zNOTSmQqxOyedjVx-TVVHbhPpee-fyEIq3tZRCZNCXI2gb_K8dxqQe_C64PJUqZVPVbVaZUIsjSgcfY8BBbUP-ZtgrztRkiZoMUJMB6mBJZtRvGFn_sOdpK-P7vN92xP17Mur6anXkvQL-daRL
CitedBy_id crossref_primary_10_1016_j_jenvman_2024_123950
crossref_primary_10_1016_j_soilbio_2022_108811
crossref_primary_10_1016_j_agee_2024_109073
crossref_primary_10_1016_j_agee_2025_109475
crossref_primary_10_1002_fee_2724
crossref_primary_10_1016_j_soilbio_2024_109589
crossref_primary_10_1002_jpln_202200217
crossref_primary_10_1088_1748_9326_acfa12
crossref_primary_10_1016_j_catena_2024_107814
crossref_primary_10_1002_ldr_5350
crossref_primary_10_3389_fsoil_2024_1481275
crossref_primary_10_1038_s41467_023_40768_y
crossref_primary_10_1111_gcb_16413
crossref_primary_10_1016_j_geodrs_2023_e00678
crossref_primary_10_1007_s11368_023_03664_y
crossref_primary_10_1016_j_jhazmat_2024_136671
crossref_primary_10_1021_acs_est_4c00028
crossref_primary_10_5194_soil_10_349_2024
crossref_primary_10_1016_j_soilbio_2024_109457
crossref_primary_10_1016_j_eehl_2024_03_001
crossref_primary_10_1021_acs_est_2c07274
crossref_primary_10_1016_j_soilbio_2024_109695
crossref_primary_10_1016_j_ecolmodel_2024_110835
crossref_primary_10_1016_j_scitotenv_2023_165793
crossref_primary_10_1007_s11430_024_1359_9
crossref_primary_10_1007_s11104_023_06308_9
crossref_primary_10_1016_j_jclepro_2024_144106
crossref_primary_10_1016_j_apsoil_2024_105346
crossref_primary_10_1007_s00374_023_01755_z
crossref_primary_10_1016_j_rser_2024_115032
crossref_primary_10_1007_s10533_024_01160_0
crossref_primary_10_1016_j_agee_2024_109053
crossref_primary_10_1038_s41558_024_02087_y
crossref_primary_10_2139_ssrn_4846467
crossref_primary_10_1007_s10533_023_01061_8
crossref_primary_10_1016_j_soilbio_2023_109288
crossref_primary_10_1038_s41467_025_57354_z
crossref_primary_10_5194_bg_20_1559_2023
crossref_primary_10_1016_j_soilbio_2024_109367
crossref_primary_10_1016_j_ecolind_2023_110614
crossref_primary_10_1016_j_foreco_2024_122161
crossref_primary_10_3390_biology13110852
crossref_primary_10_1016_j_catena_2022_106785
crossref_primary_10_1139_er_2022_0129
crossref_primary_10_1016_j_agee_2024_108998
crossref_primary_10_1016_j_geoderma_2024_117030
crossref_primary_10_1016_j_scitotenv_2023_168525
crossref_primary_10_1016_j_soilbio_2024_109518
crossref_primary_10_1016_j_scitotenv_2025_178511
crossref_primary_10_1038_s41561_024_01384_7
crossref_primary_10_1016_j_geoderma_2024_116869
crossref_primary_10_1111_ejss_13536
crossref_primary_10_1016_j_geoderma_2023_116671
crossref_primary_10_1016_j_chemgeo_2025_122714
crossref_primary_10_1007_s10533_024_01162_y
crossref_primary_10_1016_j_geoderma_2023_116432
crossref_primary_10_1038_s41467_024_55765_y
crossref_primary_10_1016_j_fecs_2024_100291
crossref_primary_10_1016_j_still_2024_106323
crossref_primary_10_1029_2023JG007474
crossref_primary_10_1007_s11104_023_06030_6
crossref_primary_10_1111_nph_19560
crossref_primary_10_1016_j_geoderma_2024_117001
crossref_primary_10_3390_f15122255
crossref_primary_10_1016_j_scitotenv_2023_166977
crossref_primary_10_1016_j_soilbio_2023_109145
crossref_primary_10_1111_ejss_13527
crossref_primary_10_1038_s41561_023_01354_5
crossref_primary_10_1111_nph_18914
crossref_primary_10_1016_j_scitotenv_2024_173814
crossref_primary_10_3390_agriculture14081290
crossref_primary_10_1016_j_jenvman_2023_119480
crossref_primary_10_1021_acs_analchem_4c00184
crossref_primary_10_1038_s41467_023_38700_5
crossref_primary_10_1139_cjss_2023_0118
crossref_primary_10_1038_s43247_024_01771_3
crossref_primary_10_1016_j_catena_2025_108838
crossref_primary_10_1016_j_soilbio_2023_109152
crossref_primary_10_1111_1365_2435_14028
crossref_primary_10_1007_s10533_024_01181_9
crossref_primary_10_1007_s42729_024_02038_8
crossref_primary_10_1002_sd_3000
crossref_primary_10_3390_biomass4040070
crossref_primary_10_1016_j_envint_2023_108393
crossref_primary_10_1016_j_apsoil_2024_105301
crossref_primary_10_1016_j_geoderma_2024_116811
crossref_primary_10_1111_gcb_16921
crossref_primary_10_1016_j_still_2023_105770
crossref_primary_10_1016_j_scitotenv_2024_178133
crossref_primary_10_1016_j_egg_2024_100279
crossref_primary_10_1360_SSTe_2024_0003
crossref_primary_10_1016_j_foreco_2023_120848
crossref_primary_10_36783_18069657rbcs20230065
crossref_primary_10_1002_sae2_70017
crossref_primary_10_3390_microorganisms12020337
crossref_primary_10_1093_ismeco_ycae173
crossref_primary_10_1016_j_catena_2024_108444
crossref_primary_10_1016_j_agee_2023_108497
crossref_primary_10_1111_ejss_13586
crossref_primary_10_5194_soil_10_307_2024
crossref_primary_10_1016_j_geoderma_2024_116943
crossref_primary_10_1093_nsr_nwae178
crossref_primary_10_1016_j_geodrs_2024_e00885
crossref_primary_10_1038_s41467_024_53947_2
crossref_primary_10_1002_jpln_202300080
crossref_primary_10_1016_j_seh_2024_100123
crossref_primary_10_1016_j_soilbio_2024_109672
crossref_primary_10_1016_j_soilbio_2024_109390
crossref_primary_10_1007_s43979_023_00076_2
Cites_doi 10.1111/1365‐2745.13276
10.1007/s10533‐014‐0009‐8
10.5194/soil‐6‐115‐2020
10.1038/s41559‐019‐0958‐3
10.1038/nclimate2322
10.1016/j.soilbio.2017.03.002
10.1046/j.1365‐2486.2002.00546.x
10.1038/nature16069
10.1016/j.gca.2019.07.030
10.1111/1365‐2745.12993
10.1029/2007JG000564
10.1093/femsec/fiv095
10.1111/1462‐2920.14366
10.1016/j.gca.2011.03.006
10.1016/j.soilbio.2018.02.016
10.1126/science.1082750
10.1016/j.scitotenv.2017.11.060
10.1016/j.scitotenv.2020.142333
10.1111/geb.12062
10.1016/j.soilbio.2021.108466
10.1007/s11104‐017‐3522‐4
10.1038/ncomms13630
10.1890/12‐0279.1
10.1016/j.geoderma.2019.114160
10.1111/j.1469‐8137.2012.04225.x
10.1016/j.soilbio.2018.08.002
10.1038/s41561‐019‐0484‐6
10.1007/s10533‐021‐00859‐8
10.1073/pnas.1916387117
10.1007/s11104‐010‐0391‐5
10.1111/ejss.12562
10.1016/bs.agron.2014.10.005
10.1038/ncomms3947
10.1038/s41586‐021‐03306‐8
10.1111/gcb.14316
10.2136/sssaj2007.0342
10.1016/J.SOILBIO.2014.10.018
10.1038/s41467‐020‐20102‐6
10.1071/SR10029
10.1111/gcb.12113
10.1029/93GB02725
10.1007/s10533‐018‐0509‐z
10.1007/s11104‐016‐3090‐z
10.1029/2008GB003381
10.1038/nclimate2361
10.1016/j.geoderma.2018.05.024
10.1038/s41396‐019‐0510‐0
10.1016/j.geoderma.2019.05.001
10.1111/gcb.14009
10.1126/sciadv.abe9256
10.1038/s41598‐018‐30150‐0
10.1111/gcb.16073
10.1038/nclimate1796
10.1038/s41467‐020‐17502‐z
10.1007/s10533‐008‐9249‐9
10.1111/j.1365‐2486.2006.01259.x
10.1016/j.gca.2019.06.028
10.1111/gcb.14777
10.1038/s41467‐017‐01116‐z
10.1021/acs.est.1c00300
10.5194/bg‐17‐3367‐2020
10.1111/gcb.13850
10.1038/s41467‐018‐06232‐y
10.1016/j.soilbio.2015.10.017
10.1126/sciadv.abd1343
10.1073/pnas.1701762114
10.1111/1365‐2745.12770
10.1111/gcb.15584
10.1016/j.soilbio.2019.01.013
10.1016/j.soilbio.2015.06.008
10.1016/j.soilbio.2014.12.002
10.1126/science.aal1319
10.1016/j.soilbio.2020.107742
10.1016/j.soilbio.2021.108189
10.1016/j.soilbio.2019.04.004
10.3389/fmicb.2019.01914
10.1016/0038‐0717(93)90046‐E
10.1038/s41598‐019‐54487‐2
10.1073/pnas.1700299114
10.1007/s10021‐017‐0152‐x
10.1371/journal.pone.0169748
10.4155/cmt.13.77
10.1038/s41597‐020‐0444‐4
10.1007/s00018‐014‐1767‐0
10.1016/j.soilbio.2019.05.002
10.1007/s11104‐016‐2880‐7
10.1007/s10533‐021‐00759‐x
10.1002/jgrg.20067
10.1038/s43017‐021‐00162‐y
10.5281/zenodo.5987644
10.1111/gcb.15206
10.1111/gcb.14859
10.1111/gcb.15754
10.1111/gcb.12036
10.5194/bg‐17‐4007‐2020
10.1016/j.soilbio.2012.03.026
10.1016/j.soilbio.2011.04.020
10.1890/12‐0681.1
10.1038/s41467‐020‐19792‐9
10.5194/gmd‐13‐4413‐2020
10.1038/s41586‐020‐2566‐4
10.1029/2019GL085543
10.1088/1748‐9326/11/1/014008
10.1111/nph.17279
10.1111/gcb.12493
10.1016/j.rhisph.2020.100263
10.1111/gcb.12161
10.1890/06‐0219
10.1023/A:1004213929699
10.1007/s10533‐018‐0428‐z
10.1088/1748‐9326/abf28b
10.1016/j.soilbio.2016.08.014
10.5194/bg‐11‐3899‐2014
10.1038/nclimate2436
10.1038/nclimate2580
10.2136/sssaj1992.03615995005600030017x
10.1021/acs.est.0c04592
10.1016/j.rse.2009.08.016
10.1016/j.soilbio.2020.107935
10.1111/gcb.13979
10.1007/s10533‐021‐00819‐2
10.1038/s41561‐021‐00744‐x
10.1016/j.scitotenv.2021.148569
10.1126/sciadv.abd3176
10.3389/fpls.2021.614968
10.1007/s10533‐018‐0459‐5
10.1111/gcb.16023
10.1111/gcb.14482
10.1016/j.soilbio.2008.07.002
10.1038/s41396‐021‐00906‐0
10.3389/fmicb.2016.00323
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA
2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
CorporateAuthor_xml – sequence: 0
  name: Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
DBID 24P
AAYXX
CITATION
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
OTOTI
DOI 10.1111/1365-2435.14040
DatabaseName Wiley Online Library Open Access
CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
OSTI.GOV
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Animal Behavior Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef

Entomology Abstracts

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
EISSN 1365-2435
EndPage 1429
ExternalDocumentID 1856644
10_1111_1365_2435_14040
FEC14040
Genre reviewArticle
GrantInformation_xml – fundername: University of New Hampshire (Dissertation Year Fellowship)
– fundername: U.S. Department of Energy, Office of Biological and Environmental Research, Genomic Science Program
  funderid: SCW1632
– fundername: Lawrence Livermore National Laboratory (LLNL) LDRD Program
  funderid: 21‐ERD‐045; 22‐LW‐022
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1OC
24P
29H
2AX
2WC
31~
33P
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAISJ
AAKGQ
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABLJU
ABPLY
ABPVW
ABTAH
ABTLG
ABXSQ
ACAHQ
ACCFJ
ACCMX
ACCZN
ACFBH
ACGFO
ACGFS
ACHIC
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHXOZ
AIAGR
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
UB1
V8K
VOH
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XSW
ZCA
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAYXX
ABSQW
AGHNM
AGUYK
CITATION
7QG
7SN
7SS
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
P64
RC3
OTOTI
ID FETCH-LOGICAL-c4490-ac607e70dd2d7130e5f9962f4db4c5c316ba17deaa8bdb9278a08a8ba7d3ee3
IEDL.DBID DR2
ISSN 0269-8463
IngestDate Thu Dec 05 06:24:09 EST 2024
Fri Jul 25 20:52:55 EDT 2025
Thu Apr 24 22:59:23 EDT 2025
Tue Jul 01 01:15:53 EDT 2025
Wed Jan 22 16:24:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4490-ac607e70dd2d7130e5f9962f4db4c5c316ba17deaa8bdb9278a08a8ba7d3ee3
Notes Handling Editor
Pablo García‐Palacios
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE Laboratory Directed Research and Development (LDRD) Program
LLNL-JRNL-829275
AC52-07NA27344; 21-ERD-045; 22-LW-022; SCW1632
USDOE National Nuclear Security Administration (NNSA)
USDOE Office of Science (SC), Biological and Environmental Research (BER)
ORCID 0000-0003-0239-1976
0000-0002-4439-2398
0000-0001-9269-289X
0000-0002-2819-3292
0000-0002-9215-0289
0000-0001-7059-472X
0000000244392398
000000019269289X
000000017059472X
0000000302391976
0000000292150289
0000000228193292
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.14040
PQID 2673583164
PQPubID 1066355
PageCount 19
ParticipantIDs osti_scitechconnect_1856644
proquest_journals_2673583164
crossref_primary_10_1111_1365_2435_14040
crossref_citationtrail_10_1111_1365_2435_14040
wiley_primary_10_1111_1365_2435_14040_FEC14040
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2022
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
PublicationTitle Functional ecology
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
British Ecological Society; Wiley
Publisher_xml – sequence: 0
  name: British Ecological Society; Wiley
– name: Wiley Subscription Services, Inc
References 1993; 25
2013; 3
2015; 72
2019; 10
2019; 12
2020; 17
2020; 14
2020; 13
2020; 11
2015; 80
1992; 56
2022; 28
2014; 20
2015; 130
2022; 164
2018; 9
2018; 8
2018; 330
2009; 92
2021; 156
2015; 81
2010; 114
2015; 88
2013; 118
2019; 25
2021; 152
2015; 91
2021; 793
2018; 618
2008; 113
2014; 121
2014; 11
2019; 9
2019; 3
2018; 106
2020; 143
2002; 8
2011; 75
2020; 149
2015; 528
2016; 93
2018; 21
2018; 20
2018; 24
2016; 11
2012; 50
2012; 196
2016; 7
2010; 48
2021; 55
2019; 46
2018; 115
2020; 26
2008; 40
2007; 88
2018; 120
1993; 7
2021; 27
2017; 8
2013; 22
2020; 363
2020; 62
2013; 23
2018; 126
2016; 103
2017; 110
2008; 72
2017; 355
2017; 114
2013; 19
2020; 7
2020; 6
2014; 5
2014; 4
2018; 139
2021; 752
2013; 94
2018; 137
2021; 591
2021; 230
1997; 191
2019; 351
2009; 23
2018; 141
2021; 7
2015; 5
2011; 338
2021; 2
2006; 12
2016; 406
2018; 423
2016; 409
2020; 584
2019; 260
2020; 108
2018; 69
2019; 263
2022; 157
2021; 14
2021; 16
2021; 15
2021; 12
2022
2021; 17
2017; 12
2019; 135
2020; 117
2011; 43
2014
2003; 300
2019; 133
2017; 105
e_1_2_11_70_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_97_1
e_1_2_11_13_1
e_1_2_11_118_1
e_1_2_11_29_1
e_1_2_11_125_1
e_1_2_11_4_1
e_1_2_11_106_1
e_1_2_11_48_1
e_1_2_11_121_1
e_1_2_11_102_1
e_1_2_11_81_1
e_1_2_11_20_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_89_1
e_1_2_11_24_1
e_1_2_11_62_1
e_1_2_11_129_1
e_1_2_11_8_1
e_1_2_11_43_1
e_1_2_11_85_1
e_1_2_11_17_1
e_1_2_11_117_1
e_1_2_11_59_1
e_1_2_11_113_1
e_1_2_11_132_1
e_1_2_11_50_1
e_1_2_11_92_1
e_1_2_11_31_1
e_1_2_11_77_1
e_1_2_11_58_1
e_1_2_11_119_1
e_1_2_11_35_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_54_1
e_1_2_11_96_1
e_1_2_11_103_1
e_1_2_11_126_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_122_1
e_1_2_11_61_1
e_1_2_11_80_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_88_1
e_1_2_11_107_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_84_1
e_1_2_11_114_1
e_1_2_11_16_1
e_1_2_11_110_1
e_1_2_11_39_1
e_1_2_11_133_1
e_1_2_11_72_1
e_1_2_11_91_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_99_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_76_1
e_1_2_11_95_1
e_1_2_11_11_1
e_1_2_11_6_1
e_1_2_11_104_1
e_1_2_11_27_1
e_1_2_11_127_1
e_1_2_11_2_1
e_1_2_11_100_1
e_1_2_11_123_1
e_1_2_11_83_1
e_1_2_11_60_1
e_1_2_11_45_1
e_1_2_11_68_1
e_1_2_11_41_1
e_1_2_11_87_1
e_1_2_11_108_1
e_1_2_11_22_1
e_1_2_11_64_1
e_1_2_11_115_1
e_1_2_11_15_1
e_1_2_11_111_1
e_1_2_11_134_1
e_1_2_11_38_1
e_1_2_11_19_1
Reed S. C. (e_1_2_11_93_1) 2020
e_1_2_11_130_1
e_1_2_11_94_1
e_1_2_11_71_1
e_1_2_11_90_1
e_1_2_11_10_1
e_1_2_11_56_1
e_1_2_11_79_1
e_1_2_11_14_1
e_1_2_11_52_1
e_1_2_11_98_1
e_1_2_11_33_1
e_1_2_11_75_1
e_1_2_11_7_1
e_1_2_11_105_1
e_1_2_11_128_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_101_1
e_1_2_11_124_1
e_1_2_11_120_1
e_1_2_11_82_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_86_1
e_1_2_11_109_1
e_1_2_11_18_1
e_1_2_11_116_1
e_1_2_11_37_1
e_1_2_11_112_1
e_1_2_11_131_1
References_xml – volume: 12
  issue: 2
  year: 2017
  article-title: SoilGrids250m: Global gridded soil information based on machine learning
  publication-title: PLoS One
– volume: 584
  start-page: 234
  issue: 7820
  year: 2020
  end-page: 237
  article-title: Soil carbon loss by experimental warming in a tropical forest
  publication-title: Nature
– year: 2022
  article-title: Hyphae move matter and microbes to mineral microsites: Integrating the hyphosphere into conceptual models of soil organic matter stabilization
  publication-title: Global Change Biology
– volume: 11
  start-page: 6329
  issue: 1
  year: 2020
  article-title: Iron mineral dissolution releases iron and associated organic carbon during permafrost thaw
  publication-title: Nature Communications
– volume: 88
  start-page: 390
  year: 2015
  end-page: 402
  article-title: Contribution of sorption, DOC transport and microbial interactions to the C age of a soil organic carbon profile: Insights from a calibrated process model
  publication-title: Soil Biology and Biochemistry
– volume: 14
  start-page: 1
  issue: 1
  year: 2020
  end-page: 9
  article-title: Defining trait‐based microbial strategies with consequences for soil carbon cycling under climate change
  publication-title: The ISME Journal
– volume: 12
  start-page: 2336
  issue: 12
  year: 2006
  end-page: 2351
  article-title: Potential carbon release from permafrost soils of Northeastern Siberia
  publication-title: Global Change Biology
– volume: 118
  start-page: 783
  issue: 2
  year: 2013
  end-page: 794
  article-title: Field‐quantified responses of tropical rainforest aboveground productivity to increasing CO2 and climatic stress, 1997–2009
  publication-title: Journal of Geophysical Research: Biogeosciences
– volume: 793
  start-page: 148569
  year: 2021
  article-title: Soil organic carbon response to global environmental change depends on its distribution between mineral‐associated and particulate organic matter: A meta‐analysis
  publication-title: Science of the Total Environment
– volume: 23
  start-page: 255
  issue: 1
  year: 2013
  end-page: 272
  article-title: Development of microbial‐enzyme‐mediated decomposition model parameters through steady‐state and dynamic analyses
  publication-title: Ecological Applications
– volume: 11
  issue: 1
  year: 2016
  article-title: Mapping and analysing cropland use intensity from a NPP perspective
  publication-title: Environmental Research Letters
– volume: 300
  start-page: 1560
  issue: 5625
  year: 2003
  end-page: 1563
  article-title: Climate‐driven increases in global terrestrial net primary production from 1982 to 1999
  publication-title: Science
– volume: 591
  start-page: 599
  issue: 7851
  year: 2021
  end-page: 603
  article-title: A trade‐off between plant and soil carbon storage under elevated CO
  publication-title: Nature
– volume: 157
  start-page: 1
  issue: 1
  year: 2022
  end-page: 13
  article-title: Rock weathering controls the potential for soil carbon storage at a continental scale
  publication-title: Biogeochemistry
– volume: 24
  start-page: 1762
  issue: 4
  year: 2018
  end-page: 1770
  article-title: Nitrogen‐rich microbial products provide new organo‐mineral associations for the stabilization of soil organic matter
  publication-title: Global Change Biology
– year: 2014
– volume: 25
  start-page: 12
  issue: 1
  year: 2019
  end-page: 24
  article-title: Pathways of mineral‐associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry
  publication-title: Global Change Biology
– volume: 139
  start-page: 103
  issue: 2
  year: 2018
  end-page: 122
  article-title: Minerals in the rhizosphere: Overlooked mediators of soil nitrogen availability to plants and microbes
  publication-title: Biogeochemistry
– volume: 21
  start-page: 349
  issue: 2
  year: 2018
  end-page: 359
  article-title: Mineral‐associated soil carbon is resistant to drought but sensitive to legumes and microbial biomass in an Australian grassland
  publication-title: Ecosystems
– volume: 55
  start-page: 13345
  issue: 19
  year: 2021
  end-page: 13355
  article-title: Root carbon interaction with soil minerals is dynamic, leaving a legacy of microbially derived residues
  publication-title: Environmental Science & Technology
– volume: 20
  start-page: 1174
  issue: 4
  year: 2014
  end-page: 1190
  article-title: Priming effect and microbial diversity in ecosystem functioning and response to global change: A modeling approach using the SYMPHONY model
  publication-title: Global Change Biology
– volume: 27
  start-page: 5341
  issue: 20
  year: 2021
  end-page: 5355
  article-title: Long‐term geothermal warming reduced stocks of carbon but not nitrogen in a subarctic forest soil
  publication-title: Global Change Biology
– volume: 92
  start-page: 41
  issue: 1
  year: 2009
  end-page: 59
  article-title: A comparative study of dissolved organic carbon transport and stabilization in California forest and grassland soils
  publication-title: Biogeochemistry
– volume: 7
  start-page: 323
  year: 2016
  article-title: Belowground response to drought in a tropical forest soil. II. Change in microbial function impacts carbon composition
  publication-title: Frontiers in Microbiology
– volume: 141
  start-page: 109
  issue: 2
  year: 2018
  end-page: 123
  article-title: Multiple models and experiments underscore large uncertainty in soil carbon dynamics
  publication-title: Biogeochemistry
– volume: 126
  start-page: 76
  year: 2018
  end-page: 81
  article-title: The afterlife effects of fungal morphology: Contrasting decomposition rates between diffuse and rhizomorphic necromass
  publication-title: Soil Biology and Biochemistry
– volume: 50
  start-page: 167
  year: 2012
  end-page: 173
  article-title: Severe drought conditions modify the microbial community structure, size and activity in amended and unamended soils
  publication-title: Soil Biology and Biochemistry
– volume: 103
  start-page: 138
  year: 2016
  end-page: 148
  article-title: Substrate quality influences organic matter accumulation in the soil silt and clay fraction
  publication-title: Soil Biology and Biochemistry
– volume: 9
  start-page: 18030
  issue: 1
  year: 2019
  article-title: Tropical forest soil carbon stocks do not increase despite 15 years of doubled litter inputs
  publication-title: Scientific Reports
– volume: 330
  start-page: 107
  year: 2018
  end-page: 116
  article-title: Distinct bioenergetic signatures in particulate versus mineral‐associated soil organic matter
  publication-title: Geoderma
– volume: 69
  start-page: 613
  issue: 4
  year: 2018
  end-page: 624
  article-title: Organic matter coatings of soil minerals affect adsorptive interactions with phenolic and amino acids
  publication-title: European Journal of Soil Science
– volume: 11
  start-page: 6103
  issue: 1
  year: 2020
  article-title: Organo–organic and organo–mineral interfaces in soil at the nanometer scale
  publication-title: Nature Communications
– volume: 7
  start-page: 112
  issue: 1
  year: 2020
  article-title: Harmonized global maps of above and belowground biomass carbon density in the year 2010
  publication-title: Scientific Data
– volume: 133
  start-page: 16
  year: 2019
  end-page: 27
  article-title: Biological and mineralogical controls over cycling of low molecular weight organic compounds along a soil chronosequence
  publication-title: Soil Biology and Biochemistry
– volume: 114
  start-page: 9326
  issue: 35
  year: 2017
  end-page: 9331
  article-title: Temperature increase reduces global yields of major crops in four independent estimates
  publication-title: Proceedings of the National Academy of Sciences
– volume: 6
  start-page: 115
  issue: 1
  year: 2020
  end-page: 129
  article-title: Depletion of soil carbon and aggregation after strong warming of a subarctic Andosol under forest and grassland cover
  publication-title: SOIL
– volume: 91
  start-page: fiv095
  issue: 8
  year: 2015
  article-title: Long‐term warming alters richness and composition of taxonomic and functional groups of arctic fungi
  publication-title: FEMS Microbiology Ecology
– volume: 156
  start-page: 5
  issue: 1
  year: 2021
  end-page: 17
  article-title: Divergent controls of soil organic carbon between observations and process‐based models
  publication-title: Biogeochemistry
– volume: 26
  start-page: 669
  issue: 2
  year: 2020
  end-page: 681
  article-title: Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity
  publication-title: Global Change Biology
– volume: 72
  start-page: 1370
  issue: 5
  year: 2008
  end-page: 1374
  article-title: Full‐inversion tillage and organic carbon distribution in soil profiles: A meta‐analysis
  publication-title: Soil Science Society of America Journal
– volume: 17
  start-page: 3367
  issue: 13
  year: 2020
  end-page: 3383
  article-title: From fibrous plant residues to mineral‐associated organic carbon – The fate of organic matter in Arctic permafrost soils
  publication-title: Biogeosciences
– volume: 4
  start-page: 822
  issue: 9
  year: 2014
  end-page: 827
  article-title: Warming‐related increases in soil CO efflux are explained by increased below‐ground carbon flux
  publication-title: Nature Climate Change
– volume: 26
  start-page: 5277
  issue: 9
  year: 2020
  end-page: 5289
  article-title: Elevated temperature increases the accumulation of microbial necromass nitrogen in soil via increasing microbial turnover
  publication-title: Global Change Biology
– volume: 137
  start-page: 379
  issue: 3
  year: 2018
  end-page: 393
  article-title: Incorporation of shoot versus root‐derived 13C and 15N into mineral‐associated organic matter fractions: Results of a soil slurry incubation with dual‐labelled plant material
  publication-title: Biogeochemistry
– volume: 3
  start-page: 395
  year: 2013
  end-page: 398
  article-title: The temperature response of soil microbial efficiency and its feedback to climate
  publication-title: Nature Climate Change
– volume: 5
  start-page: 588
  issue: 6
  year: 2015
  end-page: 595
  article-title: Mineral protection of soil carbon counteracted by root exudates
  publication-title: Nature Climate Change
– volume: 351
  start-page: 250
  year: 2019
  end-page: 260
  article-title: Initial microaggregate formation: Association of microorganisms to montmorillonite‐goethite aggregates under wetting and drying cycles
  publication-title: Geoderma
– volume: 11
  start-page: 3684
  issue: 1
  year: 2020
  article-title: Microbial diversity drives carbon use efficiency in a model soil
  publication-title: Nature Communications
– volume: 752
  start-page: 142333
  year: 2021
  article-title: Soil carbon and associated bacterial community shifts driven by fine root traits along a chronosequence of Moso bamboo ( ) plantations in subtropical China
  publication-title: Science of the Total Environment
– volume: 24
  start-page: 1563
  issue: 4
  year: 2018
  end-page: 1579
  article-title: Carbon cycle confidence and uncertainty: Exploring variation among soil biogeochemical models
  publication-title: Global Change Biology
– volume: 406
  start-page: 277
  issue: 1
  year: 2016
  end-page: 293
  article-title: Patterns of woody plant‐derived soil carbon losses and persistence after brush management in a semi‐arid grassland
  publication-title: Plant and Soil
– volume: 263
  start-page: 68
  year: 2019
  end-page: 84
  article-title: Root‐driven weathering impacts on mineral‐organic associations in deep soils over pedogenic time scales
  publication-title: Geochimica Et Cosmochimica Acta
– volume: 17
  start-page: 100263
  year: 2021
  article-title: The effects of warming on root exudation and associated soil N transformation depend on soil nutrient availability
  publication-title: Rhizosphere
– volume: 7
  start-page: eabd3176
  issue: 16
  year: 2021
  article-title: Plant rhizodeposition: A key factor for soil organic matter formation in stable fractions
  publication-title: Science Advances
– volume: 56
  start-page: 777
  issue: 3
  year: 1992
  end-page: 783
  article-title: Particulate soil organic‐matter changes across a grassland cultivation sequence
  publication-title: Soil Science Society of America Journal
– volume: 355
  start-page: 1420
  issue: 6332
  year: 2017
  end-page: 1423
  article-title: The whole‐soil carbon flux in response to warming
  publication-title: Science
– volume: 15
  start-page: 2081
  issue: 7
  year: 2021
  end-page: 2091
  article-title: Soil microbial diversity–biomass relationships are driven by soil carbon content across global biomes
  publication-title: The ISME Journal
– volume: 81
  start-page: 311
  year: 2015
  end-page: 322
  article-title: Microbial contribution to SOM quantity and quality in density fractions of temperate arable soils
  publication-title: Soil Biology and Biochemistry
– volume: 16
  issue: 5
  year: 2021
  article-title: Arctic tundra shrubification: A review of mechanisms and impacts on ecosystem carbon balance
  publication-title: Environmental Research Letters
– volume: 24
  start-page: 1
  issue: 1
  year: 2018
  end-page: 12
  article-title: Carbon input by roots into the soil: Quantification of rhizodeposition from root to ecosystem scale
  publication-title: Global Change Biology
– volume: 5
  start-page: 81
  issue: 1
  year: 2014
  end-page: 91
  article-title: Global soil carbon: Understanding and managing the largest terrestrial carbon pool
  publication-title: Carbon Management
– volume: 19
  start-page: 2158
  issue: 7
  year: 2013
  end-page: 2167
  article-title: Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming
  publication-title: Global Change Biology
– volume: 88
  start-page: 1386
  issue: 6
  year: 2007
  end-page: 1394
  article-title: Microbial stress‐response physiology and its implications for ecosystem function
  publication-title: Ecology
– volume: 7
  start-page: 811
  issue: 4
  year: 1993
  end-page: 841
  article-title: Terrestrial ecosystem production: A process model based on global satellite and surface data
  publication-title: Global Biogeochemical Cycles
– volume: 114
  start-page: 168
  issue: 1
  year: 2010
  end-page: 182
  article-title: MODIS collection 5 global land cover: Algorithm refinements and characterization of new datasets
  publication-title: Remote Sensing of Environment
– volume: 48
  start-page: 713
  issue: 8
  year: 2010
  end-page: 719
  article-title: Formation of organo‐mineral complexes as affected by particle size, pH, and dry–wet cycles
  publication-title: Soil Research
– volume: 7
  issue: 28
  year: 2021
  article-title: Warming and elevated ozone induce tradeoffs between fine roots and mycorrhizal fungi and stimulate organic carbon decomposition.
  publication-title: Advances
– volume: 108
  start-page: 528
  issue: 2
  year: 2020
  end-page: 545
  article-title: Plant economic strategies of grassland species control soil carbon dynamics through rhizodeposition
  publication-title: Journal of Ecology
– volume: 7
  start-page: 13630
  issue: 1
  year: 2016
  article-title: Direct evidence for microbial‐derived soil organic matter formation and its ecophysiological controls
  publication-title: Nature Communications
– volume: 5
  start-page: 2947
  issue: 1
  year: 2014
  article-title: Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils
  publication-title: Nature Communications
– volume: 135
  start-page: 144
  year: 2019
  end-page: 153
  article-title: Microbial carbon and nitrogen cycling responses to drought and temperature in differently managed mountain grasslands
  publication-title: Soil Biology and Biochemistry
– volume: 26
  start-page: 261
  issue: 1
  year: 2020
  end-page: 273
  article-title: Conceptualizing soil organic matter into particulate and mineral‐associated forms to address global change in the 21st century
  publication-title: Global Change Biology
– volume: 409
  start-page: 1
  issue: 1
  year: 2016
  end-page: 17
  article-title: Rhizodeposition under drought and consequences for soil communities and ecosystem resilience
  publication-title: Plant and Soil
– volume: 23
  start-page: GB4008
  year: 2009
  article-title: Carbon and nitrogen balances for six shrublands across Europe
  publication-title: Global Biogeochemical Cycles
– volume: 13
  start-page: 4413
  issue: 9
  year: 2020
  end-page: 4434
  article-title: Stoichiometrically coupled carbon and nitrogen cycling in the MIcrobial‐MIneral Carbon Stabilization model version 1.0 (MIMICS‐CN v1.0)
  publication-title: Geoscientific Model Development
– volume: 94
  start-page: 726
  issue: 3
  year: 2013
  end-page: 738
  article-title: Responses of ecosystem carbon cycle to experimental warming: A meta‐analysis
  publication-title: Ecology
– volume: 19
  start-page: 252
  issue: 1
  year: 2013
  end-page: 263
  article-title: Does declining carbon‐use efficiency explain thermal acclimation of soil respiration with warming?
  publication-title: Global Change Biology
– volume: 260
  start-page: 161
  year: 2019
  end-page: 176
  article-title: Mineralogy dictates the initial mechanism of microbial necromass association
  publication-title: Geochimica Et Cosmochimica Acta
– volume: 22
  start-page: 1095
  issue: 10
  year: 2013
  end-page: 1105
  article-title: Altered root traits due to elevated CO : A meta‐analysis
  publication-title: Global Ecology and Biogeography
– volume: 28
  start-page: 1178
  issue: 3
  year: 2022
  end-page: 1196
  article-title: Beyond bulk: Density fractions explain heterogeneity in global soil carbon abundance and persistence
  publication-title: Global Change Biology
– volume: 46
  start-page: 14486
  issue: 24
  year: 2019
  end-page: 14495
  article-title: Arctic soil governs whether climate change drives global losses or gains in soil carbon
  publication-title: Geophysical Research Letters
– volume: 75
  start-page: 3135
  issue: 11
  year: 2011
  end-page: 3154
  article-title: Stabilization of extracellular polymeric substances ( ) by adsorption to and coprecipitation with Al forms
  publication-title: Geochimica Et Cosmochimica Acta
– volume: 25
  start-page: 1317
  year: 1993
  end-page: 1329
  article-title: Simulation of carbon and nitrogen transformations in soil: Mineralization
  publication-title: Soil Biology & Biochemistry
– volume: 152
  start-page: 127
  issue: 2
  year: 2021
  end-page: 142
  article-title: How much carbon can be added to soil by sorption?
  publication-title: Biogeochemistry
– volume: 120
  start-page: 246
  year: 2018
  end-page: 259
  article-title: The root of the matter: Linking root traits and soil organic matter stabilization processes
  publication-title: Soil Biology and Biochemistry
– volume: 230
  start-page: 1856
  issue: 5
  year: 2021
  end-page: 1867
  article-title: Fine‐root functional trait responses to experimental warming: A global meta‐analysis
  publication-title: New Phytologist
– volume: 14
  start-page: 295
  issue: 5
  year: 2021
  end-page: 300
  article-title: Different climate sensitivity of particulate and mineral‐associated soil organic matter
  publication-title: Nature Geoscience
– volume: 115
  start-page: 4051
  issue: 16
  year: 2018
  end-page: 4056
  article-title: Shifting plant species composition in response to climate change stabilizes grassland primary production
  publication-title: Proceedings of the National Academy of Sciences
– volume: 12
  start-page: 989
  issue: 12
  year: 2019
  end-page: 994
  article-title: Soil carbon storage informed by particulate and mineral‐associated organic matter
  publication-title: Nature Geoscience
– volume: 19
  start-page: 988
  issue: 4
  year: 2013
  end-page: 995
  article-title: The Microbial Efficiency‐Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter?
  publication-title: Global Change Biology
– volume: 93
  start-page: 38
  year: 2016
  end-page: 49
  article-title: The decomposition of ectomycorrhizal fungal necromass
  publication-title: Soil Biology and Biochemistry
– volume: 110
  start-page: 68
  year: 2017
  end-page: 78
  article-title: Changes in substrate availability drive carbon cycle response to chronic warming
  publication-title: Soil Biology and Biochemistry
– volume: 196
  start-page: 79
  issue: 1
  year: 2012
  end-page: 91
  article-title: Environmental and stoichiometric controls on microbial carbon‐use efficiency in soils
  publication-title: New Phytologist
– volume: 8
  start-page: 1194
  issue: 12
  year: 2002
  end-page: 1204
  article-title: Effects of nutrition and soil warming on stemwood production in a boreal Norway spruce stand
  publication-title: Global Change Biology
– volume: 80
  start-page: 324
  year: 2015
  end-page: 340
  article-title: How air‐drying and rewetting modify soil organic matter characteristics: An assessment to improve data interpretation and inference
  publication-title: Soil Biology and Biochemistry
– volume: 338
  start-page: 143
  issue: 1
  year: 2011
  end-page: 158
  article-title: Deep soil organic matter—A key but poorly understood component of terrestrial C cycle
  publication-title: Plant and Soil
– volume: 8
  start-page: 1223
  issue: 1
  year: 2017
  article-title: Microbial community‐level regulation explains soil carbon responses to long‐term litter manipulations
  publication-title: Nature Communications
– volume: 363
  start-page: 114160
  year: 2020
  article-title: Climate, carbon content, and soil texture control the independent formation and persistence of particulate and mineral‐associated organic matter in soil
  publication-title: Geoderma
– volume: 7
  start-page: eabd1343
  issue: 21
  year: 2021
  article-title: Five years of whole‐soil warming led to loss of subsoil carbon stocks and increased CO efflux
  publication-title: Science Advances
– volume: 20
  start-page: 4444
  issue: 12
  year: 2018
  end-page: 4460
  article-title: Microbial community assembly differs across minerals in a rhizosphere microcosm
  publication-title: Environmental Microbiology
– volume: 24
  start-page: 3401
  issue: 8
  year: 2018
  end-page: 3415
  article-title: Temperature response of permafrost soil carbon is attenuated by mineral protection
  publication-title: Global Change Biology
– volume: 2
  start-page: 402
  issue: 6
  year: 2021
  end-page: 421
  article-title: Dynamic interactions at the mineral–organic matter interface
  publication-title: Nature Reviews Earth & Environment
– volume: 55
  start-page: 3389
  issue: 5
  year: 2021
  end-page: 3398
  article-title: Simple plant and microbial exudates destabilize mineral‐associated organic matter via multiple pathways
  publication-title: Environmental Science & Technology
– volume: 423
  start-page: 429
  issue: 1
  year: 2018
  end-page: 442
  article-title: Rhizodeposition under drought is controlled by root growth rate and rhizosphere water content
  publication-title: Plant and Soil
– year: 2022
  article-title: Supporting data for review article: Sokol, N.W., Whalen, E.D., Kallenbach, C., Pett‐Ridge, J., Georgiou, K. Global distribution, formation and fate of mineral‐associated soil organic matter under a changing climate–A trait‐based perspective [Data set]
  publication-title: Zenodo
– volume: 62
  start-page: 225
  year: 2020
  end-page: 252
– volume: 191
  start-page: 77
  issue: 1
  year: 1997
  end-page: 87
  article-title: The capacity of soils to preserve organic C and N by their association with clay and silt particles
  publication-title: Plant and Soil
– volume: 113
  start-page: G03009
  year: 2008
  article-title: Chemical changes to nonaggregated particulate soil organic matter following grassland‐to‐woodland transition in a subtropical savanna
  publication-title: Journal of Geophysical Research Biogeosciences
– volume: 164
  start-page: 108466
  year: 2022
  article-title: Improved global‐scale predictions of soil carbon stocks with Millennial Version 2
  publication-title: Soil Biology and Biochemistry
– volume: 40
  start-page: 2722
  issue: 11
  year: 2008
  end-page: 2728
  article-title: Patterns of substrate utilization during long‐term incubations at different temperatures
  publication-title: Soil Biology and Biochemistry
– volume: 9
  start-page: 3951
  issue: 1
  year: 2018
  article-title: Nitrogen availability regulates topsoil carbon dynamics after permafrost thaw by altering microbial metabolic efficiency
  publication-title: Nature Communications
– volume: 11
  start-page: 3899
  issue: 14
  year: 2014
  end-page: 3917
  article-title: Integrating microbial physiology and physio‐chemical principles in soils with the MIcrobial‐MIneral Carbon Stabilization (MIMICS) model
  publication-title: Biogeosciences
– volume: 4
  start-page: 903
  issue: 10
  year: 2014
  end-page: 906
  article-title: Accelerated microbial turnover but constant growth efficiency with warming in soil
  publication-title: Nature Climate Change
– volume: 135
  start-page: 13
  year: 2019
  end-page: 19
  article-title: Warming increases microbial residue contribution to soil organic carbon in an alpine meadow
  publication-title: Soil Biology and Biochemistry
– volume: 8
  start-page: 12696
  issue: 1
  year: 2018
  article-title: Root exudate metabolomes change under drought and show limited capacity for recovery
  publication-title: Scientific Reports
– volume: 156
  start-page: 108189
  year: 2021
  article-title: Plant‐ or microbial‐derived? A review on the molecular composition of stabilized soil organic matter
  publication-title: Soil Biology and Biochemistry
– volume: 17
  start-page: 4007
  issue: 15
  year: 2020
  end-page: 4023
  article-title: Rainfall intensification increases the contribution of rewetting pulses to soil heterotrophic respiration
  publication-title: Biogeosciences
– volume: 105
  start-page: 1738
  issue: 6
  year: 2017
  end-page: 1749
  article-title: Soil carbon response to woody plant encroachment: Importance of spatial heterogeneity and deep soil storage
  publication-title: Journal of Ecology
– volume: 72
  start-page: 673
  issue: 4
  year: 2015
  end-page: 689
  article-title: General mechanisms of drought response and their application in drought resistance improvement in plants
  publication-title: Cellular and Molecular Life Sciences
– volume: 27
  start-page: 2633
  issue: 12
  year: 2021
  end-page: 2644
  article-title: Biological mechanisms may contribute to soil carbon saturation patterns
  publication-title: Global Change Biology
– volume: 528
  start-page: 60
  issue: 7580
  year: 2015
  end-page: 68
  article-title: The contentious nature of soil organic matter
  publication-title: Nature
– volume: 106
  start-page: 2176
  issue: 6
  year: 2018
  end-page: 2189
  article-title: Root responses to elevated CO2, warming and irrigation in a semi‐arid grassland: Integrating biomass, length and life span in a 5‐year field experiment
  publication-title: Journal of Ecology
– volume: 117
  start-page: 20438
  issue: 34
  year: 2020
  end-page: 20446
  article-title: Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw
  publication-title: Proceedings of the National Academy of Sciences
– volume: 12
  start-page: 245
  year: 2021
  article-title: Precipitation changes regulate plant and soil microbial biomass via plasticity in plant biomass allocation in grasslands: A meta‐analysis
  publication-title: Frontiers in Plant Science
– volume: 130
  start-page: 1
  year: 2015
  end-page: 140
  article-title: Mineral‐organic associations: Formation, properties, and relevance in soil environments
  publication-title: Advances in Agronomy
– volume: 10
  start-page: 1914
  year: 2019
  article-title: Soil metatranscriptomes under long‐term experimental warming and drying: Fungi allocate resources to cell metabolic maintenance rather than decay
  publication-title: Frontiers in Microbiology
– volume: 43
  start-page: 1837
  issue: 9
  year: 2011
  end-page: 1847
  article-title: Changes in variability of soil moisture alter microbial community C and N resource use
  publication-title: Soil Biology and Biochemistry
– volume: 4
  start-page: 1099
  year: 2014
  end-page: 1102
  article-title: Microbe‐driven turnover offsets mineral‐mediated storage of soil carbon under elevated CO
  publication-title: Nature Climate Change
– volume: 121
  start-page: 409
  issue: 2
  year: 2014
  end-page: 424
  article-title: Similar composition but differential stability of mineral retained organic matter across four classes of clay minerals
  publication-title: Biogeochemistry
– volume: 143
  start-page: 107742
  year: 2020
  article-title: Microbial extracellular polysaccharide production and aggregate stability controlled by switchgrass ( ) root biomass and soil water potential
  publication-title: Soil Biology and Biochemistry
– volume: 3
  start-page: 1309
  issue: 9
  year: 2019
  end-page: 1320
  article-title: A meta‐analysis of 1,119 manipulative experiments on terrestrial carbon‐cycling responses to global change
  publication-title: Nature Ecology & Evolution
– volume: 618
  start-page: 210
  year: 2018
  end-page: 218
  article-title: Erosion‐induced losses of carbon, nitrogen, phosphorus and heavy metals from agricultural soils of contrasting organic matter management
  publication-title: Science of the Total Environment
– volume: 149
  start-page: 107935
  year: 2020
  article-title: Coarse mineral‐associated organic matter is a pivotal fraction for SOM formation and is sensitive to the quality of organic inputs
  publication-title: Soil Biology and Biochemistry
– ident: e_1_2_11_45_1
  doi: 10.1111/1365‐2745.13276
– ident: e_1_2_11_99_1
  doi: 10.1007/s10533‐014‐0009‐8
– ident: e_1_2_11_83_1
  doi: 10.5194/soil‐6‐115‐2020
– ident: e_1_2_11_108_1
  doi: 10.1038/s41559‐019‐0958‐3
– ident: e_1_2_11_38_1
  doi: 10.1038/nclimate2322
– ident: e_1_2_11_85_1
  doi: 10.1016/j.soilbio.2017.03.002
– ident: e_1_2_11_112_1
  doi: 10.1046/j.1365‐2486.2002.00546.x
– ident: e_1_2_11_60_1
  doi: 10.1038/nature16069
– ident: e_1_2_11_31_1
  doi: 10.1016/j.gca.2019.07.030
– ident: e_1_2_11_72_1
  doi: 10.1111/1365‐2745.12993
– ident: e_1_2_11_26_1
  doi: 10.1029/2007JG000564
– ident: e_1_2_11_33_1
  doi: 10.1093/femsec/fiv095
– ident: e_1_2_11_124_1
  doi: 10.1111/1462‐2920.14366
– ident: e_1_2_11_71_1
  doi: 10.1016/j.gca.2011.03.006
– ident: e_1_2_11_84_1
  doi: 10.1016/j.soilbio.2018.02.016
– ident: e_1_2_11_73_1
  doi: 10.1126/science.1082750
– ident: e_1_2_11_105_1
  doi: 10.1016/j.scitotenv.2017.11.060
– ident: e_1_2_11_130_1
  doi: 10.1016/j.scitotenv.2020.142333
– ident: e_1_2_11_75_1
  doi: 10.1111/geb.12062
– ident: e_1_2_11_3_1
  doi: 10.1016/j.soilbio.2021.108466
– ident: e_1_2_11_46_1
  doi: 10.1007/s11104‐017‐3522‐4
– ident: e_1_2_11_51_1
  doi: 10.1038/ncomms13630
– ident: e_1_2_11_63_1
  doi: 10.1890/12‐0279.1
– ident: e_1_2_11_40_1
  doi: 10.1016/j.geoderma.2019.114160
– ident: e_1_2_11_68_1
  doi: 10.1111/j.1469‐8137.2012.04225.x
– ident: e_1_2_11_12_1
  doi: 10.1016/j.soilbio.2018.08.002
– ident: e_1_2_11_15_1
  doi: 10.1038/s41561‐019‐0484‐6
– ident: e_1_2_11_106_1
  doi: 10.1007/s10533‐021‐00859‐8
– ident: e_1_2_11_48_1
  doi: 10.1073/pnas.1916387117
– ident: e_1_2_11_96_1
  doi: 10.1007/s11104‐010‐0391‐5
– ident: e_1_2_11_30_1
  doi: 10.1111/ejss.12562
– ident: e_1_2_11_54_1
  doi: 10.1016/bs.agron.2014.10.005
– ident: e_1_2_11_119_1
  doi: 10.1038/ncomms3947
– ident: e_1_2_11_115_1
  doi: 10.1038/s41586‐021‐03306‐8
– ident: e_1_2_11_34_1
  doi: 10.1111/gcb.14316
– ident: e_1_2_11_5_1
  doi: 10.2136/sssaj2007.0342
– ident: e_1_2_11_50_1
  doi: 10.1016/J.SOILBIO.2014.10.018
– ident: e_1_2_11_79_1
  doi: 10.1038/s41467‐020‐20102‐6
– ident: e_1_2_11_78_1
  doi: 10.1071/SR10029
– ident: e_1_2_11_16_1
  doi: 10.1111/gcb.12113
– ident: e_1_2_11_87_1
  doi: 10.1029/93GB02725
– ident: e_1_2_11_113_1
  doi: 10.1007/s10533‐018‐0509‐z
– ident: e_1_2_11_89_1
  doi: 10.1007/s11104‐016‐3090‐z
– ident: e_1_2_11_8_1
  doi: 10.1029/2008GB003381
– ident: e_1_2_11_41_1
  doi: 10.1038/nclimate2361
– ident: e_1_2_11_129_1
  doi: 10.1016/j.geoderma.2018.05.024
– ident: e_1_2_11_66_1
  doi: 10.1038/s41396‐019‐0510‐0
– ident: e_1_2_11_56_1
  doi: 10.1016/j.geoderma.2019.05.001
– ident: e_1_2_11_55_1
  doi: 10.1111/gcb.14009
– ident: e_1_2_11_92_1
  doi: 10.1126/sciadv.abe9256
– ident: e_1_2_11_32_1
  doi: 10.1038/s41598‐018‐30150‐0
– ident: e_1_2_11_103_1
  doi: 10.1111/gcb.16073
– ident: e_1_2_11_27_1
  doi: 10.1038/nclimate1796
– ident: e_1_2_11_22_1
  doi: 10.1038/s41467‐020‐17502‐z
– ident: e_1_2_11_98_1
  doi: 10.1007/s10533‐008‐9249‐9
– ident: e_1_2_11_23_1
  doi: 10.1111/j.1365‐2486.2006.01259.x
– ident: e_1_2_11_18_1
  doi: 10.1016/j.gca.2019.06.028
– ident: e_1_2_11_91_1
  doi: 10.1111/gcb.14777
– ident: e_1_2_11_36_1
  doi: 10.1038/s41467‐017‐01116‐z
– ident: e_1_2_11_74_1
  doi: 10.1021/acs.est.1c00300
– ident: e_1_2_11_88_1
  doi: 10.5194/bg‐17‐3367‐2020
– ident: e_1_2_11_80_1
  doi: 10.1111/gcb.13850
– ident: e_1_2_11_13_1
  doi: 10.1038/s41467‐018‐06232‐y
– ident: e_1_2_11_25_1
  doi: 10.1016/j.soilbio.2015.10.017
– ident: e_1_2_11_109_1
  doi: 10.1126/sciadv.abd1343
– ident: e_1_2_11_133_1
  doi: 10.1073/pnas.1701762114
– ident: e_1_2_11_134_1
  doi: 10.1111/1365‐2745.12770
– ident: e_1_2_11_17_1
  doi: 10.1111/gcb.15584
– ident: e_1_2_11_69_1
  doi: 10.1016/j.soilbio.2019.01.013
– ident: e_1_2_11_4_1
  doi: 10.1016/j.soilbio.2015.06.008
– ident: e_1_2_11_64_1
  doi: 10.1016/j.soilbio.2014.12.002
– ident: e_1_2_11_90_1
  doi: 10.1126/science.aal1319
– ident: e_1_2_11_104_1
  doi: 10.1016/j.soilbio.2020.107742
– ident: e_1_2_11_6_1
  doi: 10.1016/j.soilbio.2021.108189
– ident: e_1_2_11_21_1
  doi: 10.1016/j.soilbio.2019.04.004
– ident: e_1_2_11_95_1
  doi: 10.3389/fmicb.2019.01914
– ident: e_1_2_11_39_1
  doi: 10.1016/0038‐0717(93)90046‐E
– ident: e_1_2_11_100_1
  doi: 10.1038/s41598‐019‐54487‐2
– ident: e_1_2_11_62_1
  doi: 10.1073/pnas.1700299114
– ident: e_1_2_11_11_1
  doi: 10.1007/s10021‐017‐0152‐x
– ident: e_1_2_11_125_1
– ident: e_1_2_11_44_1
  doi: 10.1371/journal.pone.0169748
– ident: e_1_2_11_101_1
  doi: 10.4155/cmt.13.77
– ident: e_1_2_11_110_1
  doi: 10.1038/s41597‐020‐0444‐4
– ident: e_1_2_11_24_1
  doi: 10.1007/s00018‐014‐1767‐0
– ident: e_1_2_11_29_1
  doi: 10.1016/j.soilbio.2019.05.002
– ident: e_1_2_11_20_1
  doi: 10.1007/s11104‐016‐2880‐7
– ident: e_1_2_11_2_1
  doi: 10.1007/s10533‐021‐00759‐x
– ident: e_1_2_11_14_1
  doi: 10.1002/jgrg.20067
– ident: e_1_2_11_53_1
  doi: 10.1038/s43017‐021‐00162‐y
– ident: e_1_2_11_35_1
  doi: 10.5281/zenodo.5987644
– ident: e_1_2_11_123_1
  doi: 10.1111/gcb.15206
– ident: e_1_2_11_59_1
  doi: 10.1111/gcb.14859
– ident: e_1_2_11_81_1
  doi: 10.1111/gcb.15754
– ident: e_1_2_11_117_1
  doi: 10.1111/gcb.12036
– ident: e_1_2_11_67_1
  doi: 10.5194/bg‐17‐4007‐2020
– ident: e_1_2_11_47_1
  doi: 10.1016/j.soilbio.2012.03.026
– ident: e_1_2_11_116_1
  doi: 10.1016/j.soilbio.2011.04.020
– ident: e_1_2_11_122_1
  doi: 10.1890/12‐0681.1
– ident: e_1_2_11_86_1
  doi: 10.1038/s41467‐020‐19792‐9
– ident: e_1_2_11_57_1
  doi: 10.5194/gmd‐13‐4413‐2020
– ident: e_1_2_11_77_1
  doi: 10.1038/s41586‐020‐2566‐4
– ident: e_1_2_11_128_1
  doi: 10.1029/2019GL085543
– ident: e_1_2_11_76_1
  doi: 10.1088/1748‐9326/11/1/014008
– ident: e_1_2_11_121_1
  doi: 10.1111/nph.17279
– ident: e_1_2_11_82_1
  doi: 10.1111/gcb.12493
– ident: e_1_2_11_120_1
  doi: 10.1016/j.rhisph.2020.100263
– ident: e_1_2_11_131_1
  doi: 10.1111/gcb.12161
– ident: e_1_2_11_102_1
  doi: 10.1890/06‐0219
– ident: e_1_2_11_42_1
  doi: 10.1023/A:1004213929699
– ident: e_1_2_11_58_1
  doi: 10.1007/s10533‐018‐0428‐z
– ident: e_1_2_11_70_1
  doi: 10.1088/1748‐9326/abf28b
– ident: e_1_2_11_19_1
  doi: 10.1016/j.soilbio.2016.08.014
– ident: e_1_2_11_126_1
  doi: 10.5194/bg‐11‐3899‐2014
– ident: e_1_2_11_114_1
  doi: 10.1038/nclimate2436
– ident: e_1_2_11_52_1
  doi: 10.1038/nclimate2580
– ident: e_1_2_11_10_1
  doi: 10.2136/sssaj1992.03615995005600030017x
– ident: e_1_2_11_61_1
  doi: 10.1021/acs.est.0c04592
– ident: e_1_2_11_28_1
  doi: 10.1016/j.rse.2009.08.016
– ident: e_1_2_11_97_1
  doi: 10.1016/j.soilbio.2020.107935
– ident: e_1_2_11_127_1
  doi: 10.1111/gcb.13979
– ident: e_1_2_11_37_1
  doi: 10.1007/s10533‐021‐00819‐2
– ident: e_1_2_11_65_1
  doi: 10.1038/s41561‐021‐00744‐x
– ident: e_1_2_11_94_1
  doi: 10.1016/j.scitotenv.2021.148569
– ident: e_1_2_11_118_1
  doi: 10.1126/sciadv.abd3176
– ident: e_1_2_11_132_1
  doi: 10.3389/fpls.2021.614968
– start-page: 225
  volume-title: Advances in Ecological Research
  year: 2020
  ident: e_1_2_11_93_1
– ident: e_1_2_11_49_1
  doi: 10.1007/s10533‐018‐0459‐5
– ident: e_1_2_11_43_1
  doi: 10.1111/gcb.16023
– ident: e_1_2_11_107_1
  doi: 10.1111/gcb.14482
– ident: e_1_2_11_111_1
  doi: 10.1016/j.soilbio.2008.07.002
– ident: e_1_2_11_7_1
  doi: 10.1038/s41396‐021‐00906‐0
– ident: e_1_2_11_9_1
  doi: 10.3389/fmicb.2016.00323
SSID ssj0009522
Score 2.6709862
SecondaryResourceType review_article
Snippet Soil organic matter (SOM) is the largest actively cycling reservoir of terrestrial carbon (C), and the majority of SOM in Earth's mineral soils (~65%) is...
SourceID osti
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1411
SubjectTerms Agricultural land
Boreal forests
Carbon
carbon cycle
Carbon dioxide
Climate change
Climate effects
Climate models
Decomposition
Earth
Ecosystems
ENVIRONMENTAL SCIENCES
global synthesis
Grasslands
microbial traits
Microorganisms
mineral-associated organic matter
Organic carbon
Organic matter
Planet formation
plant traits
Raw materials
soil carbon
Soil organic matter
Soils
Temperate forests
trait framework
Tundra
Title Global distribution, formation and fate of mineral‐associated soil organic matter under a changing climate: A trait‐based perspective
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.14040
https://www.proquest.com/docview/2673583164
https://www.osti.gov/biblio/1856644
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEF5aQ6GXpmlr6ryYQw89VEZeSSuptxBsQiCh9AG9LfsSmDp2sOVDeuq1t_7G_pLO7K4cx1BK6G2RtHowMzvfrGa-YexNWY1Eg24kqbnIklw7lVTGiYRXlRZomEJ4SV9eifMv-cXXossmpFqYwA-x2XAjy_DrNRm40qstIw_5Wejth8QQQ1E7HSFY9JFv0e6G_whc1Al62iyS-1Auz878e36pt0D7uoc5t5Grdz2TPaa7lw4ZJ9-G61YPzfcdPsf_-qrn7FkEpnAaNGmfPXLzF-xJaFV5i6OxiaP--K42DifExWH1kv0M_QPAEhdvbKP1DjbVkaDmFhqEtrBo4Hrq2a5___ilon44C6vFdAahzZSBa0_8CVTjtgQFvkAZ3SyY2RRPufdwCtTeosVbkCe2cHNXNvqKfZqMP5-dJ7HTQ2LyvE4TZURaujK1lluMmlNXNBiH8Sa3OjeFyUZCq1FpnVKVtrrmZaXSCseqtJlzWZ_15ou5e81Alw71DSGHxWi7cQ1eUJiRxVvXXPG8GbBhJ2VpIgk6vexMdsEQCUCSAKQXwIC93Uy4Cfwff7_0kNRGInQh_l1DiUqmlQiIBILOATvqtEnGZWIluSizosLPw9NBLf71EDkZn_nBwUMnHLKnnEo3_A7SEeu1y7U7RkDV6hP2mOcfTrzl_AHhjRdM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELaqoAouQIGK0JbOgQMHNtp4d727vVVVokAfByhSb5ZfK0VNk6rZHuipV278Rn4JM7aTppUQQr1ZWtvr1cx4vvF6vmHsQ1n1RYNuJKm5yJJcO5VUxomEV5UWaJhCeEkfn4jR9_zLWXG2kgsT-CGWB25kGX6_JgOnA-kVKw8XtNDd94giBsP2J1TX24dVX_kK8W74k8BFnaCvzSK9D93meTDBPc_UmaGF3UOdq9jVO5_hC2YWyw53Ts57163umZsHjI6P-66X7HnEprAflGmDrbnpK7YeqlX-wNbAxNbm4C49DgfE_WH-mv0MJQTAEh1vrKT1CZYJkqCmFhpEtzBr4GLsCa9_3_5SUUWchflsPIFQacrAhef-BEpzuwIFPkcZPS2YyRgfuT3YB6pw0eIU5IwtXN5ljr5h34aD04NREos9JCbP6zRRRqSlK1NrucXAOXVFg6EYb3Krc1OYrC-06pfWKVVpq2teViqtsK1KmzmXbbLOdDZ1bxno0qHKIeqwGHA3rsEOhelbnLrmiudNl_UWYpYm8qDTYidyEQ-RACQJQHoBdNnH5YDLQAHy965bpDcS0QtR8Bq6q2RaiZhIIO7ssu2FOsm4U8wlF2VWVPh5-Djoxb9eIoeDA994978DdtnT0enxkTz6fHK4xZ5xyuTwB0rbrNNeXbsdxFetfu8N6A-3MBqQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5VQUW98GxFaIE5cOCAI2dtr9fcqjZRKVAhHlJvq31KEWkSNe4BTly58Rv5Jcw-nKaVEKp6W8neta2Z2flmPfMNIS9rPmQO3UjWUFZkpbIy49qyjHKuGBomY0HSH07Y0dfy-LTqsgl9LUzkh1gduHnLCPu1N_CFcWtGHvOz0NsPPEMMRu13SpZzr9iHn-ga7278kUBZk6GrLRK7j0_mubbAFcfUm6OBXQGd69A1-J7xfaK6t44pJ98GF60a6B_XCB1v9VkPyL2ETGE_qtJDsmFnj8hm7FX5HUcjnUY7o8viOJyQdoflY_IrNhAA48l4Ux-t17AqjwQ5M-AQ28Lcwdkk0F3_-flbJgWxBpbzyRRinykNZ4H5E3yR2zlICBXK6GdBTyd4yb6BffD9LVpcwrtiA4vLutFt8nk8-nJwlKVWD5kuyybPpGZ5bevcGGowbM5t5TAQo640qtSVLoZMyWFtrJRcGdXQmsuc41jWprC22CG92XxmnxBQtUWFQ8xhMNx21uENlR4aXLqhkpauTwadlIVOLOj-Zaeii4a8AIQXgAgC6JNXqwmLSADy71t3vdoIxC6egFf7TCXdCkREDFFnn-x12iTSPrEUlNVFxfHz8HJUi_89RIxHB2Hw9KYTXpC7Hw_H4v3bk3e7ZIv6Mo5wmrRHeu35hX2G4KpVz4P5_AVqRBlI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+distribution%2C+formation+and+fate+of+mineral%E2%80%90associated+soil+organic+matter+under+a+changing+climate%3A+A+trait%E2%80%90based+perspective&rft.jtitle=Functional+ecology&rft.au=Sokol%2C+Noah+W&rft.au=Whalen%2C+Emily+D&rft.au=Jilling%2C+Andrea&rft.au=Kallenbach%2C+Cynthia&rft.date=2022-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=36&rft.issue=6&rft.spage=1411&rft.epage=1429&rft_id=info:doi/10.1111%2F1365-2435.14040&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon