Gaussian basis sets for use in correlated molecular calculations. XI. Pseudopotential-based and all-electron relativistic basis sets for alkali metal (K–Fr) and alkaline earth (Ca–Ra) elements

New correlation consistent basis sets based on pseudopotential (PP) Hamiltonians have been developed from double- to quintuple-zeta quality for the late alkali (K–Fr) and alkaline earth (Ca–Ra) metals. These are accompanied by new all-electron basis sets of double- to quadruple-zeta quality that hav...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 147; no. 24; pp. 244106 - 244117
Main Authors Hill, J. Grant, Peterson, Kirk A.
Format Journal Article
LanguageEnglish
Published United States American Institute of Physics 28.12.2017
Online AccessGet full text

Cover

Loading…
Abstract New correlation consistent basis sets based on pseudopotential (PP) Hamiltonians have been developed from double- to quintuple-zeta quality for the late alkali (K–Fr) and alkaline earth (Ca–Ra) metals. These are accompanied by new all-electron basis sets of double- to quadruple-zeta quality that have been contracted for use with both Douglas-Kroll-Hess (DKH) and eXact 2-Component (X2C) scalar relativistic Hamiltonians. Sets for valence correlation (ms), cc-pVnZ-PP and cc-pVnZ-(DK,DK3/X2C), in addition to outer-core correlation [valence + (m−1)sp], cc-p(w)CVnZ-PP and cc-pwCVnZ-(DK,DK3/X2C), are reported. The –PP sets have been developed for use with small-core PPs [I. S. Lim et al., J. Chem. Phys. 122, 104103 (2005) and I. S. Lim et al., J. Chem. Phys. 124, 034107 (2006)], while the all-electron sets utilized second-order DKH Hamiltonians for 4s and 5s elements and third-order DKH for 6s and 7s. The accuracy of the basis sets is assessed through benchmark calculations at the coupled-cluster level of theory for both atomic and molecular properties. Not surprisingly, it is found that outer-core correlation is vital for accurate calculation of the thermodynamic and spectroscopic properties of diatomic molecules containing these elements.
AbstractList New correlation consistent basis sets based on pseudopotential (PP) Hamiltonians have been developed from double- to quintuple-zeta quality for the late alkali (K–Fr) and alkaline earth (Ca–Ra) metals. These are accompanied by new all-electron basis sets of double- to quadruple-zeta quality that have been contracted for use with both Douglas-Kroll-Hess (DKH) and eXact 2-Component (X2C) scalar relativistic Hamiltonians. Sets for valence correlation (ms), cc-pVnZ-PP and cc-pVnZ-(DK,DK3/X2C), in addition to outer-core correlation [valence + (m−1)sp], cc-p(w)CVnZ-PP and cc-pwCVnZ-(DK,DK3/X2C), are reported. The –PP sets have been developed for use with small-core PPs [I. S. Lim et al., J. Chem. Phys. 122, 104103 (2005) and I. S. Lim et al., J. Chem. Phys. 124, 034107 (2006)], while the all-electron sets utilized second-order DKH Hamiltonians for 4s and 5s elements and third-order DKH for 6s and 7s. The accuracy of the basis sets is assessed through benchmark calculations at the coupled-cluster level of theory for both atomic and molecular properties. Not surprisingly, it is found that outer-core correlation is vital for accurate calculation of the thermodynamic and spectroscopic properties of diatomic molecules containing these elements.
New correlation consistent basis sets based on pseudopotential (PP) Hamiltonians have been developed from double- to quintuple-zeta quality for the late alkali (K-Fr) and alkaline earth (Ca-Ra) metals. These are accompanied by new all-electron basis sets of double- to quadruple-zeta quality that have been contracted for use with both Douglas-Kroll-Hess (DKH) and eXact 2-Component (X2C) scalar relativistic Hamiltonians. Sets for valence correlation (ms), cc-pVnZ-PP and cc-pVnZ-(DK,DK3/X2C), in addition to outer-core correlation [valence + (m-1)sp], cc-p(w)CVnZ-PP and cc-pwCVnZ-(DK,DK3/X2C), are reported. The -PP sets have been developed for use with small-core PPs [I. S. Lim et al., J. Chem. Phys. 122, 104103 (2005) and I. S. Lim et al., J. Chem. Phys. 124, 034107 (2006)], while the all-electron sets utilized second-order DKH Hamiltonians for 4s and 5s elements and third-order DKH for 6s and 7s. The accuracy of the basis sets is assessed through benchmark calculations at the coupled-cluster level of theory for both atomic and molecular properties. Not surprisingly, it is found that outer-core correlation is vital for accurate calculation of the thermodynamic and spectroscopic properties of diatomic molecules containing these elements.
New correlation consistent basis sets based on pseudopotential (PP) Hamiltonians have been developed from double- to quintuple-zeta quality for the late alkali (K-Fr) and alkaline earth (Ca-Ra) metals. These are accompanied by new all-electron basis sets of double- to quadruple-zeta quality that have been contracted for use with both Douglas-Kroll-Hess (DKH) and eXact 2-Component (X2C) scalar relativistic Hamiltonians. Sets for valence correlation (ms), cc-pVnZ-PP and cc-pVnZ-(DK,DK3/X2C), in addition to outer-core correlation [valence + (m-1)sp], cc-p(w)CVnZ-PP and cc-pwCVnZ-(DK,DK3/X2C), are reported. The -PP sets have been developed for use with small-core PPs [I. S. Lim et al., J. Chem. Phys. 122, 104103 (2005) and I. S. Lim et al., J. Chem. Phys. 124, 034107 (2006)], while the all-electron sets utilized second-order DKH Hamiltonians for 4s and 5s elements and third-order DKH for 6s and 7s. The accuracy of the basis sets is assessed through benchmark calculations at the coupled-cluster level of theory for both atomic and molecular properties. Not surprisingly, it is found that outer-core correlation is vital for accurate calculation of the thermodynamic and spectroscopic properties of diatomic molecules containing these elements.New correlation consistent basis sets based on pseudopotential (PP) Hamiltonians have been developed from double- to quintuple-zeta quality for the late alkali (K-Fr) and alkaline earth (Ca-Ra) metals. These are accompanied by new all-electron basis sets of double- to quadruple-zeta quality that have been contracted for use with both Douglas-Kroll-Hess (DKH) and eXact 2-Component (X2C) scalar relativistic Hamiltonians. Sets for valence correlation (ms), cc-pVnZ-PP and cc-pVnZ-(DK,DK3/X2C), in addition to outer-core correlation [valence + (m-1)sp], cc-p(w)CVnZ-PP and cc-pwCVnZ-(DK,DK3/X2C), are reported. The -PP sets have been developed for use with small-core PPs [I. S. Lim et al., J. Chem. Phys. 122, 104103 (2005) and I. S. Lim et al., J. Chem. Phys. 124, 034107 (2006)], while the all-electron sets utilized second-order DKH Hamiltonians for 4s and 5s elements and third-order DKH for 6s and 7s. The accuracy of the basis sets is assessed through benchmark calculations at the coupled-cluster level of theory for both atomic and molecular properties. Not surprisingly, it is found that outer-core correlation is vital for accurate calculation of the thermodynamic and spectroscopic properties of diatomic molecules containing these elements.
Author Peterson, Kirk A.
Hill, J. Grant
Author_xml – sequence: 1
  givenname: J. Grant
  surname: Hill
  fullname: Hill, J. Grant
  email: grant.hill@sheffield.ac.uk, kipeters@wsu.edu
  organization: Department of Chemistry, University of Sheffield
– sequence: 2
  givenname: Kirk A.
  surname: Peterson
  fullname: Peterson, Kirk A.
  email: grant.hill@sheffield.ac.uk, kipeters@wsu.edu
  organization: Department of Chemistry, Washington State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29289120$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1414607$$D View this record in Osti.gov
BookMark eNp9kU1uFDEQhS0URCaBBRdAFqsZpJ7Y7j_3EkUkREQCoSzYtWrc1YrBbQ8uNxI77sCVOAknwZOZsIgQC8uW3vdelfVO2JEPHhl7LsVaiqY8k-taSFHr9hFbSKG7om06ccQWQihZdI1ojtkJ0WchhGxV9YQdq07pTiqxYL8uYSay4PkGyBInTMTHEPlMyK3nJsSIDhIOfAoOzewgcgNu90g2eFrzT1dr_oFwHsI2JPTJgityWHaAz8e5ArMxxeD5XZT9ZilZ83AguC_gLJ8wgePLd79__LyIq0PETvHIEWK65ctzyOJHWPGcO-WB9JQ9HsERPjvcp-zm4s3N-dvi-v3l1fnr68JUlU7FOCKUelNDp6VBOYzKSFUOpVZthViiqkVjMOsGK9EN3WjGphS6Nlqo0cjylL3cx4a8f0_GJjS3Jniff9fLSlaNaDO03EPbGL7OSKmfLBl0DjyGmXrZ6VLVTat36IsDOm8mHPpttBPE7_19OxlY7QETA1HE8S8iRb9rvpf9ofnMnj1g8353FaUI1v3T8WrvoHvyP_F_ACuzwMc
CODEN JCPSA6
CitedBy_id crossref_primary_10_1021_acs_jpca_3c01676
crossref_primary_10_1088_1361_6455_ad5e25
crossref_primary_10_1016_j_jqsrt_2022_108467
crossref_primary_10_1021_acs_jpca_2c06998
crossref_primary_10_1063_5_0225865
crossref_primary_10_1021_acs_jpca_1c10801
crossref_primary_10_1021_acs_jpclett_3c02565
crossref_primary_10_1063_5_0217685
crossref_primary_10_1063_5_0047521
crossref_primary_10_1088_1367_2630_abd50d
crossref_primary_10_1039_D0CP02697B
crossref_primary_10_1021_acs_jpclett_1c01726
crossref_primary_10_1039_D3CP04200F
crossref_primary_10_1021_acs_jctc_4c00471
crossref_primary_10_1080_00268976_2023_2266064
crossref_primary_10_1021_acs_jpca_4c05454
crossref_primary_10_1021_acs_inorgchem_0c01651
crossref_primary_10_1063_5_0207127
crossref_primary_10_1021_acs_jpca_2c00521
crossref_primary_10_1039_C9CP03914G
crossref_primary_10_1021_acs_jctc_0c00546
crossref_primary_10_1021_acs_jpcb_7b10005
crossref_primary_10_1088_1361_6455_accf70
crossref_primary_10_1021_acs_jpca_0c10543
crossref_primary_10_1021_acs_jpca_2c04446
crossref_primary_10_1021_acs_jctc_3c00812
crossref_primary_10_1021_acs_jpca_2c07952
crossref_primary_10_1021_acs_cgd_2c00560
crossref_primary_10_1021_acs_jpca_2c05096
crossref_primary_10_1103_PhysRevA_111_033114
crossref_primary_10_1016_j_chemphys_2021_111316
crossref_primary_10_1039_D3NJ02103C
crossref_primary_10_1021_acs_jpca_8b07139
crossref_primary_10_1063_5_0022058
crossref_primary_10_1063_5_0135929
crossref_primary_10_1039_D4CP01975J
crossref_primary_10_1103_PhysRevA_108_L021302
crossref_primary_10_1002_jcc_27456
crossref_primary_10_1016_j_jqsrt_2021_107947
crossref_primary_10_1063_5_0052958
crossref_primary_10_1002_wcms_1536
crossref_primary_10_1063_5_0094598
crossref_primary_10_1021_acs_jpca_9b11741
crossref_primary_10_1103_PhysRevA_107_043323
crossref_primary_10_1002_ejic_202500031
crossref_primary_10_1063_5_0239463
crossref_primary_10_1016_j_jqsrt_2020_107000
crossref_primary_10_1063_5_0013101
crossref_primary_10_1103_PhysRevResearch_5_L032021
crossref_primary_10_1021_acs_jctc_3c00408
crossref_primary_10_1021_acs_jpca_4c02879
crossref_primary_10_1103_PhysRevA_106_L041301
crossref_primary_10_1016_j_jfluchem_2023_110210
crossref_primary_10_1103_PhysRevA_106_L020801
crossref_primary_10_1002_jcc_27129
crossref_primary_10_1016_j_saa_2022_121679
crossref_primary_10_1021_acs_inorgchem_1c01765
crossref_primary_10_1080_00268976_2018_1440018
crossref_primary_10_1021_acs_jpca_0c05224
crossref_primary_10_1088_2516_1075_ac54c4
crossref_primary_10_1039_D2CP02485C
crossref_primary_10_1016_j_ijms_2024_117201
crossref_primary_10_1002_slct_202200763
crossref_primary_10_1039_D4CP00723A
crossref_primary_10_1016_j_jqsrt_2023_108852
crossref_primary_10_1002_qua_25968
crossref_primary_10_1016_j_jqsrt_2024_108996
crossref_primary_10_1063_5_0014805
crossref_primary_10_1063_5_0002162
crossref_primary_10_1126_sciadv_adr8256
crossref_primary_10_3847_1538_4357_ac9f35
crossref_primary_10_1088_1402_4896_ab852a
crossref_primary_10_1063_5_0063611
crossref_primary_10_1080_00268976_2023_2232051
crossref_primary_10_1103_PhysRevA_107_032822
crossref_primary_10_1063_5_0026876
crossref_primary_10_1007_s00894_021_04829_7
crossref_primary_10_1007_s00894_022_05331_4
crossref_primary_10_1063_1_5129583
crossref_primary_10_1039_C9NJ06391A
crossref_primary_10_1103_PhysRevA_106_032804
crossref_primary_10_1039_D2CP03561H
crossref_primary_10_1021_acs_jpca_0c03432
crossref_primary_10_1063_5_0062098
crossref_primary_10_1021_acs_jpca_1c04506
crossref_primary_10_3847_1538_4357_ad9c7a
crossref_primary_10_1021_acs_jpca_9b00952
crossref_primary_10_1007_s00894_019_4094_4
crossref_primary_10_1021_acs_joc_2c02001
crossref_primary_10_1080_00268976_2023_2237614
crossref_primary_10_1021_acs_jctc_0c00713
crossref_primary_10_1039_C8CP03434F
crossref_primary_10_1103_PhysRevA_103_022802
crossref_primary_10_1039_D1CP03146E
crossref_primary_10_1021_acs_jpca_2c06438
crossref_primary_10_1063_5_0217762
crossref_primary_10_1103_PhysRevLett_126_023003
crossref_primary_10_1021_acs_jpca_1c02422
crossref_primary_10_1039_D2CP05020J
crossref_primary_10_1073_pnas_2303586120
crossref_primary_10_1039_D3CP01464A
crossref_primary_10_1063_5_0005081
crossref_primary_10_1039_D0CP05105E
crossref_primary_10_1088_1674_1056_ad20de
crossref_primary_10_1021_acs_jctc_4c00558
crossref_primary_10_1021_acs_jpcc_9b11868
crossref_primary_10_1038_s41598_021_90004_0
crossref_primary_10_1063_5_0019010
crossref_primary_10_1016_j_cplett_2020_137763
crossref_primary_10_1021_acs_jpca_3c01880
crossref_primary_10_1134_S0030400X1911016X
crossref_primary_10_1021_acs_jpca_3c02056
crossref_primary_10_1016_j_jqsrt_2022_108144
crossref_primary_10_1063_1_5099580
crossref_primary_10_1103_PhysRevA_109_022812
crossref_primary_10_1093_mnras_staa4041
crossref_primary_10_1039_D3FD00110E
crossref_primary_10_1002_chem_202304068
crossref_primary_10_1063_1_5052653
crossref_primary_10_3390_nano12203700
crossref_primary_10_1021_acs_jctc_4c00172
crossref_primary_10_1021_acs_jctc_8b00461
crossref_primary_10_1103_PhysRevA_104_052213
crossref_primary_10_1016_j_jqsrt_2019_106632
crossref_primary_10_1016_j_comptc_2020_112792
crossref_primary_10_1103_PhysRevA_104_042816
crossref_primary_10_1021_acs_jctc_1c01036
crossref_primary_10_1021_acs_jpca_1c08069
crossref_primary_10_1039_D1CP01341F
crossref_primary_10_1103_PhysRevA_107_062802
crossref_primary_10_3390_molecules29184356
crossref_primary_10_1016_j_saa_2021_120274
crossref_primary_10_1063_5_0082309
crossref_primary_10_1063_5_0173313
crossref_primary_10_1016_j_jqsrt_2020_106948
crossref_primary_10_1063_1_5121006
crossref_primary_10_3389_fchem_2022_880804
crossref_primary_10_1016_j_jnucmat_2019_01_036
crossref_primary_10_1016_j_jqsrt_2024_109014
crossref_primary_10_1007_s00894_020_04365_w
crossref_primary_10_1063_5_0244318
crossref_primary_10_1021_acs_jpcc_1c02710
crossref_primary_10_1016_j_jqsrt_2020_107233
crossref_primary_10_1039_D3CP04040B
crossref_primary_10_1021_acs_jpca_1c08631
crossref_primary_10_1021_acs_jctc_0c00082
crossref_primary_10_1063_1_5071457
crossref_primary_10_1103_PhysRevA_110_022811
crossref_primary_10_1080_00268976_2018_1559957
crossref_primary_10_1021_jacs_4c03198
crossref_primary_10_1002_qua_26453
crossref_primary_10_1063_5_0163509
crossref_primary_10_1063_1_5037346
crossref_primary_10_1103_PhysRevA_104_012814
crossref_primary_10_1103_PhysRevA_109_052814
crossref_primary_10_1039_D1CP02466C
crossref_primary_10_1039_D3CP03777K
crossref_primary_10_1016_j_jms_2023_111736
crossref_primary_10_1021_acsomega_3c02195
crossref_primary_10_1021_acs_jpcb_3c08302
crossref_primary_10_1016_j_jqsrt_2021_107648
crossref_primary_10_1021_acs_jpca_3c06388
crossref_primary_10_1021_acs_jpclett_0c00518
crossref_primary_10_1063_5_0124062
crossref_primary_10_1039_C8CP05550E
Cites_doi 10.1103/physrevlett.59.1274
10.1002/qua.560400611
10.1103/physrev.41.721
10.1063/1.473863
10.1063/1.555698
10.1103/physrevlett.113.255301
10.1039/b802322k
10.1007/s00214-005-0028-6
10.1021/acs.jctc.7b00593
10.1063/1.470645
10.1063/1.4893989
10.1103/physrevlett.80.684
10.1103/physreva.94.050701
10.1063/1.1856451
10.1007/s00214-003-0537-0
10.1016/0009-2614(85)87200-6
10.1063/1.470245
10.1103/physreva.70.062501
10.1063/1.4959280
10.1103/physrevlett.79.1245
10.1016/j.comptc.2017.06.001
10.1063/1.3613639
10.1007/s00214-010-0764-0
10.1039/c7cp00836h
10.1063/1.3495681
10.1016/j.cplett.2006.09.029
10.1063/1.445347
10.1002/9781119356059
10.1063/1.1390515
10.1063/1.2137315
10.1063/1.456153
10.1063/1.2148945
10.1021/jp026283u
10.1016/s0009-2614(98)00111-0
10.1002/wcms.82
10.1038/199804a0
10.1080/00268976.2013.802818
10.1021/jp905057q
10.1016/0092-640x(73)90020-x
10.1016/0009-2614(84)87031-1
10.1063/1.448975
10.1103/physreva.62.022503
10.1039/b508541a
10.1007/s00214-013-1434-9
10.1021/j100592a010
10.1063/1.438587
10.1016/0009-2614(82)83029-7
10.1103/physreva.89.053416
10.1063/1.462569
10.1063/1.1386413
10.1063/1.1726255
10.1063/1.450535
10.1063/1.451917
10.1103/physrevlett.88.067901
10.1039/tf9615700921
10.1002/qua.24355
10.1063/1.1622923
10.1021/ic990506m
10.1021/ct8000409
10.1063/1.1329891
10.1080/0026897031000094498
10.1103/physrevlett.113.023004
10.1063/1.1520138
10.1002/wcms.1123
10.1006/jcht.1997.0206
10.1016/j.jms.2012.12.004
10.1007/s00214-008-0476-x
10.1002/(sici)1097-461x(2000)77:2<516::aid-qua2>3.0.co;2-u
10.1007/s00214-011-1081-y
10.1063/1.481648
10.1063/1.4916903
10.1088/0022-3700/11/19/005
ContentType Journal Article
Copyright Author(s)
Copyright_xml – notice: Author(s)
DBID AJDQP
AAYXX
CITATION
NPM
7X8
OTOTI
DOI 10.1063/1.5010587
DatabaseName AIP Open Access Journals
CrossRef
PubMed
MEDLINE - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: AJDQP
  name: AIP Open Access Journals
  url: https://publishing.aip.org/librarians/open-access-policy
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
ExternalDocumentID 1414607
29289120
10_1063_1_5010587
jcp
Genre Journal Article
GrantInformation_xml – fundername: RCUK | Engineering and Physical Sciences Research Council
  grantid: EP/N02253X/1
  funderid: http://dx.doi.org/10.13039/501100000266
– fundername: U.S. Department of Energy
  grantid: DE-FG02-12ER16329
  funderid: http://dx.doi.org/10.13039/100000015
GroupedDBID ---
-DZ
-ET
-~X
123
1UP
2-P
29K
4.4
53G
5VS
85S
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABPPZ
ABRJW
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJDQP
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D-I
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
TN5
TWZ
UPT
WH7
YQT
YZZ
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
NPM
7X8
0ZJ
ABPTK
AGIHO
OTOTI
UE8
ZHY
ID FETCH-LOGICAL-c448t-ffea38b5a981ce1df2c123d38274ee3e2506ceb5ace409d9fcf63085c802fc13
IEDL.DBID AJDQP
ISSN 0021-9606
1089-7690
IngestDate Fri May 19 02:30:37 EDT 2023
Thu Jul 10 21:58:05 EDT 2025
Wed Feb 19 02:41:42 EST 2025
Sun Jul 06 05:08:07 EDT 2025
Thu Apr 24 23:09:17 EDT 2025
Fri Jun 21 00:15:03 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
License 0021-9606/2017/147(24)/244106/12/$0.00
All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c448t-ffea38b5a981ce1df2c123d38274ee3e2506ceb5ace409d9fcf63085c802fc13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE
FG02-12ER16329; SC0008501
ORCID 0000-0002-6457-5837
0000-0003-4901-3235
0000000264575837
0000000349013235
OpenAccessLink http://dx.doi.org/10.1063/1.5010587
PMID 29289120
PQID 1983256787
PQPubID 23479
PageCount 12
ParticipantIDs pubmed_primary_29289120
crossref_primary_10_1063_1_5010587
proquest_miscellaneous_1983256787
scitation_primary_10_1063_1_5010587
crossref_citationtrail_10_1063_1_5010587
osti_scitechconnect_1414607
PublicationCentury 2000
PublicationDate 2017-12-28
PublicationDateYYYYMMDD 2017-12-28
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-28
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of chemical physics
PublicationTitleAlternate J Chem Phys
PublicationYear 2017
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Andersson, Sandström, Kiyan, Hanstorp, Pegg (c45) 2000; 62
Blaudeau, Brozell, Matsika, Zhang, Pitzer (c39) 2000; 77
Karton, Martin (c54) 2006; 115
Amiot, Crozet, Vergès (c57) 1985; 121
Dunham (c53) 1932; 41
Koput, Peterson (c8) 2002; 106
Schiller, Bakalov, Korobov (c12) 2014; 113
Dunning (c6) 1989; 90
Bross, Peterson (c35) 2014; 133
Tsai, Freeland, Vogels, Boesten, Verhaar, Heinzen (c59) 1997; 79
Halkier, Helgaker, Jørgensen, Klopper, Koch, Olsen, Wilson (c56) 1998; 286
Hill, Peterson (c32) 2014; 141
Huntelaar, Cordfunke (c67) 1997; 29
Bergmann, Vitanov, Shore (c16) 2015; 142
Kendall, Dunning, Harrison (c49) 1992; 96
Iron, Oren, Martin (c71) 2003; 101
Woon, Dunning (c41) 1995; 103
Kopp, Åslund, Edvinsson, Lindgren (c64) 1965; 30
Lim, Schwerdtfeger (c50) 2004; 70
Scheer, Thøgersen, Bilodeau, Brodie, Haugen, Andersen, Kristensen, Andersen (c47) 1998; 80
Dyall (c21) 2009; 113
Kutzelnigg, Liu (c27) 2005; 123
Desclaux (c51) 1973; 12
Feller, Peterson (c72) 2006; 430
Weigend, Ahlrichs (c25) 2005; 7
Li, Feng, Sun, Zhang, Fan, Peterson, Xie, Schaefer (c9) 2013; 111
Krems (c10) 2008; 10
Molony, Gregory, Ji, Lu, Köppinger, Le Sueur, Blackley, Hutson, Cornish (c13) 2014; 113
Minenkov, Bistoni, Riplinger, Auer, Neese, Cavallo (c70) 2017; 19
Hay, Wadt (c23) 1985; 82
Christiansen (c40) 2000; 112
Frey, Breyer, Holop (c46) 1978; 11
Andreev, Letokhov, Mishin (c43) 1987; 59
Bulewicz, Phillips, Sugden (c61) 1961; 57
Werner, Knowles, Knizia, Manby, Schütz (c31) 2012; 2
Almlöf, Taylor (c38) 1987; 86
Jensen (c1) 2013; 3
Feller, Peterson, Hill (c4) 2011; 135
Flores, Vassen, Knoop (c15) 2016; 94
Pollak, Weigend (c29) 2017; 13
Lim, Stoll, Schwerdtfeger (c19) 2006; 124
Crepin, Verges, Amiot (c75) 1984; 112
Helgaker, Klopper, Koch, Noga (c55) 1997; 106
Hill (c2) 2013; 113
Yang, Nelson, Stwalley (c60) 1983; 78
Ehlert, Blue, Green, Margrave (c68) 1964; 41
Ermler, Ross, Christiansen (c17) 1991; 40
Tsuchiya, Abe, Nakajima, Hirao (c34) 2001; 115
Ram, Bernath (c63) 2013; 283
Amiot, Vergès, Fellows (c77) 1995; 103
Lim, Schwerdtfeger, Metz, Stoll (c18) 2005; 122
Raab, Weickenmeier, Demtröder (c74) 1982; 88
DeMille (c11) 2002; 88
Blue, Green, Ehlert, Margrave (c66) 1963; 199
Bauschlicher, Langhoff, Partridge (c69) 1986; 84
Vasilyev (c5) 2017; 1115
Veryazov, Widmark, Roos (c20) 2004; 111
Landau, Eliav, Ishikawa, Kaldor (c48) 2001; 115
Peterson, Dunning (c42) 2002; 117
Peterson (c37) 2003; 119
Pedley, Marshall (c65) 1983; 12
Peng, Reiher (c28) 2012; 131
Lu, Peterson (c33) 2016; 145
Kornath, Zoermer, Ludwig (c58) 1999; 38
Weigend, Baldes (c26) 2010; 133
de Jong, Harrison, Dixon (c52) 2001; 114
Prascher, Woon, Peterson, Dunning, Wilson (c7) 2011; 128
Zhelyazkova, Cournol, Wall, Matsushima, Hudson, Hinds, Tarbutt, Sauer (c14) 2014; 89
Roy, Hay, Martin (c24) 2008; 4
Numrich, Truhlar (c76) 1975; 79
Noro, Sekiya, Koga (c22) 2008; 121
Höning, Czajkowski, Stock, Demtröder (c73) 1979; 71
(2023062605464625200_c41) 1995; 103
(2023062605464625200_c37) 2003; 119
(2023062605464625200_c40) 2000; 112
(2023062605464625200_c75) 1984; 112
(2023062605464625200_c1) 2013; 3
(2023062605464625200_c77) 1995; 103
(2023062605464625200_c67) 1997; 29
(2023062605464625200_c55) 1997; 106
(2023062605464625200_c69) 1986; 84
(2023062605464625200_c13) 2014; 113
(2023062605464625200_c17) 1991; 40
(2023062605464625200_c38) 1987; 86
(2023062605464625200_c66) 1963; 199
Smith (2023062605464625200_c36) 1973
(2023062605464625200_c43) 1987; 59
(2023062605464625200_c24) 2008; 4
(2023062605464625200_c65) 1983; 12
(2023062605464625200_c12) 2014; 113
(2023062605464625200_c16) 2015; 142
(2023062605464625200_c59) 1997; 79
(2023062605464625200_c10) 2008; 10
(2023062605464625200_c28) 2012; 131
(2023062605464625200_c4) 2011; 135
(2023062605464625200_c51) 1973; 12
(2023062605464625200_c6) 1989; 90
(2023062605464625200_c56) 1998; 286
(2023062605464625200_c35) 2014; 133
(2023062605464625200_c44) 2015
(2023062605464625200_c23) 1985; 82
2023062605464625200_c30
(2023062605464625200_c57) 1985; 121
(2023062605464625200_c21) 2009; 113
Parrill (2023062605464625200_c3) 2017
(2023062605464625200_c15) 2016; 94
(2023062605464625200_c32) 2014; 141
(2023062605464625200_c63) 2013; 283
(2023062605464625200_c71) 2003; 101
(2023062605464625200_c5) 2017; 1115
(2023062605464625200_c33) 2016; 145
(2023062605464625200_c52) 2001; 114
(2023062605464625200_c61) 1961; 57
(2023062605464625200_c19) 2006; 124
(2023062605464625200_c46) 1978; 11
(2023062605464625200_c25) 2005; 7
(2023062605464625200_c47) 1998; 80
2023062605464625200_c78
(2023062605464625200_c8) 2002; 106
(2023062605464625200_c53) 1932; 41
(2023062605464625200_c64) 1965; 30
(2023062605464625200_c60) 1983; 78
(2023062605464625200_c72) 2006; 430
(2023062605464625200_c7) 2011; 128
(2023062605464625200_c48) 2001; 115
(2023062605464625200_c73) 1979; 71
(2023062605464625200_c42) 2002; 117
(2023062605464625200_c14) 2014; 89
(2023062605464625200_c58) 1999; 38
(2023062605464625200_c31) 2012; 2
(2023062605464625200_c45) 2000; 62
(2023062605464625200_c34) 2001; 115
(2023062605464625200_c22) 2008; 121
(2023062605464625200_c18) 2005; 122
(2023062605464625200_c2) 2013; 113
(2023062605464625200_c74) 1982; 88
(2023062605464625200_c76) 1975; 79
(2023062605464625200_c26) 2010; 133
(2023062605464625200_c9) 2013; 111
(2023062605464625200_c20) 2004; 111
(2023062605464625200_c54) 2006; 115
(2023062605464625200_c27) 2005; 123
(2023062605464625200_c68) 1964; 41
(2023062605464625200_c11) 2002; 88
(2023062605464625200_c50) 2004; 70
(2023062605464625200_c29) 2017; 13
(2023062605464625200_c49) 1992; 96
(2023062605464625200_c39) 2000; 77
(2023062605464625200_c70) 2017; 19
(2023062605464625200_c62) 2013
References_xml – volume: 112
  start-page: 10
  year: 1984
  ident: c75
  publication-title: Chem. Phys. Lett.
– volume: 117
  start-page: 10548
  year: 2002
  ident: c42
  publication-title: J. Chem. Phys.
– volume: 62
  start-page: 22503
  year: 2000
  ident: c45
  publication-title: Phys. Rev. A
– volume: 12
  start-page: 967
  year: 1983
  ident: c65
  publication-title: J. Phys. Chem. Ref. Data
– volume: 135
  start-page: 044102
  year: 2011
  ident: c4
  publication-title: J. Chem. Phys.
– volume: 123
  start-page: 241102
  year: 2005
  ident: c27
  publication-title: J. Chem. Phys.
– volume: 111
  start-page: 345
  year: 2004
  ident: c20
  publication-title: Theor. Chem. Acc.: Theory, Comput., Model.
– volume: 12
  start-page: 311
  year: 1973
  ident: c51
  publication-title: At. Data Nucl. Data Tables
– volume: 78
  start-page: 4541
  year: 1983
  ident: c60
  publication-title: J. Chem. Phys.
– volume: 94
  start-page: 50701
  year: 2016
  ident: c15
  publication-title: Phys. Rev. A
– volume: 80
  start-page: 684
  year: 1998
  ident: c47
  publication-title: Phys. Rev. Lett.
– volume: 199
  start-page: 804
  year: 1963
  ident: c66
  publication-title: Nature
– volume: 145
  start-page: 054111
  year: 2016
  ident: c33
  publication-title: J. Chem. Phys.
– volume: 115
  start-page: 4463
  year: 2001
  ident: c34
  publication-title: J. Chem. Phys.
– volume: 103
  start-page: 3350
  year: 1995
  ident: c77
  publication-title: J. Chem. Phys.
– volume: 4
  start-page: 1029
  year: 2008
  ident: c24
  publication-title: J. Chem. Theory Comput.
– volume: 114
  start-page: 48
  year: 2001
  ident: c52
  publication-title: J. Chem. Phys.
– volume: 7
  start-page: 3297
  year: 2005
  ident: c25
  publication-title: Phys. Chem. Chem. Phys.
– volume: 71
  start-page: 2138
  year: 1979
  ident: c73
  publication-title: J. Chem. Phys.
– volume: 113
  start-page: 21
  year: 2013
  ident: c2
  publication-title: Int. J. Quantum Chem.
– volume: 112
  start-page: 10070
  year: 2000
  ident: c40
  publication-title: J. Chem. Phys.
– volume: 124
  start-page: 034107
  year: 2006
  ident: c19
  publication-title: J. Chem. Phys.
– volume: 106
  start-page: 9595
  year: 2002
  ident: c8
  publication-title: J. Phys. Chem. A
– volume: 88
  start-page: 67901
  year: 2002
  ident: c11
  publication-title: Phys. Rev. Lett.
– volume: 119
  start-page: 11099
  year: 2003
  ident: c37
  publication-title: J. Chem. Phys.
– volume: 40
  start-page: 829
  year: 1991
  ident: c17
  publication-title: Int. J. Quantum Chem.
– volume: 115
  start-page: 2389
  year: 2001
  ident: c48
  publication-title: J. Chem. Phys.
– volume: 41
  start-page: 721
  year: 1932
  ident: c53
  publication-title: Phys. Rev.
– volume: 90
  start-page: 1007
  year: 1989
  ident: c6
  publication-title: J. Chem. Phys.
– volume: 141
  start-page: 094106
  year: 2014
  ident: c32
  publication-title: J. Chem. Phys.
– volume: 111
  start-page: 2292
  year: 2013
  ident: c9
  publication-title: Mol. Phys.
– volume: 1115
  start-page: 1
  year: 2017
  ident: c5
  publication-title: Comput. Theor. Chem.
– volume: 106
  start-page: 9639
  year: 1997
  ident: c55
  publication-title: J. Chem. Phys.
– volume: 41
  start-page: 2250
  year: 1964
  ident: c68
  publication-title: J. Chem. Phys.
– volume: 115
  start-page: 330
  year: 2006
  ident: c54
  publication-title: Theor. Chem. Acc.
– volume: 82
  start-page: 299
  year: 1985
  ident: c23
  publication-title: J. Chem. Phys.
– volume: 122
  start-page: 104103
  year: 2005
  ident: c18
  publication-title: J. Chem. Phys.
– volume: 19
  start-page: 9374
  year: 2017
  ident: c70
  publication-title: Phys. Chem. Chem. Phys.
– volume: 283
  start-page: 18
  year: 2013
  ident: c63
  publication-title: J. Mol. Spectrosc.
– volume: 113
  start-page: 255301
  year: 2014
  ident: c13
  publication-title: Phys. Rev. Lett.
– volume: 77
  start-page: 516
  year: 2000
  ident: c39
  publication-title: Int. J. Quantum Chem.
– volume: 133
  start-page: 1434
  year: 2014
  ident: c35
  publication-title: Theor. Chem. Acc.
– volume: 113
  start-page: 23004
  year: 2014
  ident: c12
  publication-title: Phys. Rev. Lett.
– volume: 142
  start-page: 170901
  year: 2015
  ident: c16
  publication-title: J. Chem. Phys.
– volume: 11
  start-page: L589
  year: 1978
  ident: c46
  publication-title: J. Phys. B: At. Mol. Phys.
– volume: 30
  start-page: 321
  year: 1965
  ident: c64
  publication-title: Ark Fys
– volume: 2
  start-page: 242
  year: 2012
  ident: c31
  publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci.
– volume: 96
  start-page: 6796
  year: 1992
  ident: c49
  publication-title: J. Chem. Phys.
– volume: 286
  start-page: 243
  year: 1998
  ident: c56
  publication-title: Chem. Phys. Lett.
– volume: 79
  start-page: 2745
  year: 1975
  ident: c76
  publication-title: J. Phys. Chem.
– volume: 131
  start-page: 1081
  year: 2012
  ident: c28
  publication-title: Theor. Chem. Acc.
– volume: 103
  start-page: 4572
  year: 1995
  ident: c41
  publication-title: J. Chem. Phys.
– volume: 133
  start-page: 174102
  year: 2010
  ident: c26
  publication-title: J. Chem. Phys.
– volume: 101
  start-page: 1345
  year: 2003
  ident: c71
  publication-title: Mol. Phys.
– volume: 38
  start-page: 4696
  year: 1999
  ident: c58
  publication-title: Inorg. Chem.
– volume: 84
  start-page: 901
  year: 1986
  ident: c69
  publication-title: J. Chem. Phys.
– volume: 59
  start-page: 1274
  year: 1987
  ident: c43
  publication-title: Phys. Rev. Lett.
– volume: 57
  start-page: 921
  year: 1961
  ident: c61
  publication-title: Trans. Faraday Soc.
– volume: 430
  start-page: 459
  year: 2006
  ident: c72
  publication-title: Chem. Phys. Lett.
– volume: 86
  start-page: 4070
  year: 1987
  ident: c38
  publication-title: J. Chem. Phys.
– volume: 10
  start-page: 4079
  year: 2008
  ident: c10
  publication-title: Phys. Chem. Chem. Phys.
– volume: 29
  start-page: 817
  year: 1997
  ident: c67
  publication-title: J. Chem. Thermodyn.
– volume: 70
  start-page: 062501
  year: 2004
  ident: c50
  publication-title: Phys. Rev. A
– volume: 88
  start-page: 377
  year: 1982
  ident: c74
  publication-title: Chem. Phys. Lett.
– volume: 13
  start-page: 3696
  year: 2017
  ident: c29
  publication-title: J. Chem. Theory Comput.
– volume: 121
  start-page: 289
  year: 2008
  ident: c22
  publication-title: Theor. Chem. Acc.
– volume: 128
  start-page: 69
  year: 2011
  ident: c7
  publication-title: Theor. Chem. Acc.
– volume: 89
  start-page: 53416
  year: 2014
  ident: c14
  publication-title: Phys. Rev. A
– volume: 79
  start-page: 1245
  year: 1997
  ident: c59
  publication-title: Phys. Rev. Lett.
– volume: 3
  start-page: 273
  year: 2013
  ident: c1
  publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci.
– volume: 121
  start-page: 390
  year: 1985
  ident: c57
  publication-title: Chem. Phys. Lett.
– volume: 113
  start-page: 12638
  year: 2009
  ident: c21
  publication-title: J. Phys. Chem. A
– volume: 59
  start-page: 1274
  year: 1987
  ident: 2023062605464625200_c43
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.59.1274
– volume: 40
  start-page: 829
  year: 1991
  ident: 2023062605464625200_c17
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.560400611
– volume: 41
  start-page: 721
  year: 1932
  ident: 2023062605464625200_c53
  publication-title: Phys. Rev.
  doi: 10.1103/physrev.41.721
– volume: 106
  start-page: 9639
  year: 1997
  ident: 2023062605464625200_c55
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.473863
– volume: 12
  start-page: 967
  year: 1983
  ident: 2023062605464625200_c65
  publication-title: J. Phys. Chem. Ref. Data
  doi: 10.1063/1.555698
– volume: 113
  start-page: 255301
  year: 2014
  ident: 2023062605464625200_c13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.113.255301
– volume: 10
  start-page: 4079
  year: 2008
  ident: 2023062605464625200_c10
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b802322k
– volume: 115
  start-page: 330
  year: 2006
  ident: 2023062605464625200_c54
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-005-0028-6
– volume: 30
  start-page: 321
  year: 1965
  ident: 2023062605464625200_c64
  publication-title: Ark Fys
– volume: 13
  start-page: 3696
  year: 2017
  ident: 2023062605464625200_c29
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.7b00593
– ident: 2023062605464625200_c30
– volume: 103
  start-page: 4572
  year: 1995
  ident: 2023062605464625200_c41
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.470645
– volume: 141
  start-page: 094106
  year: 2014
  ident: 2023062605464625200_c32
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4893989
– volume: 80
  start-page: 684
  year: 1998
  ident: 2023062605464625200_c47
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.80.684
– volume: 94
  start-page: 50701
  year: 2016
  ident: 2023062605464625200_c15
  publication-title: Phys. Rev. A
  doi: 10.1103/physreva.94.050701
– volume: 122
  start-page: 104103
  year: 2005
  ident: 2023062605464625200_c18
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1856451
– volume: 111
  start-page: 345
  year: 2004
  ident: 2023062605464625200_c20
  publication-title: Theor. Chem. Acc.: Theory, Comput., Model.
  doi: 10.1007/s00214-003-0537-0
– volume: 121
  start-page: 390
  year: 1985
  ident: 2023062605464625200_c57
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(85)87200-6
– volume: 103
  start-page: 3350
  year: 1995
  ident: 2023062605464625200_c77
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.470245
– volume: 70
  start-page: 062501
  year: 2004
  ident: 2023062605464625200_c50
  publication-title: Phys. Rev. A
  doi: 10.1103/physreva.70.062501
– volume: 145
  start-page: 054111
  year: 2016
  ident: 2023062605464625200_c33
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4959280
– volume: 79
  start-page: 1245
  year: 1997
  ident: 2023062605464625200_c59
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.79.1245
– volume: 1115
  start-page: 1
  year: 2017
  ident: 2023062605464625200_c5
  publication-title: Comput. Theor. Chem.
  doi: 10.1016/j.comptc.2017.06.001
– year: 2015
  ident: 2023062605464625200_c44
– volume: 135
  start-page: 044102
  year: 2011
  ident: 2023062605464625200_c4
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3613639
– volume: 128
  start-page: 69
  year: 2011
  ident: 2023062605464625200_c7
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-010-0764-0
– volume: 19
  start-page: 9374
  year: 2017
  ident: 2023062605464625200_c70
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c7cp00836h
– volume: 133
  start-page: 174102
  year: 2010
  ident: 2023062605464625200_c26
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3495681
– volume: 430
  start-page: 459
  year: 2006
  ident: 2023062605464625200_c72
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2006.09.029
– volume: 78
  start-page: 4541
  year: 1983
  ident: 2023062605464625200_c60
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.445347
– start-page: 93
  volume-title: Review in Computational Chemistry
  year: 2017
  ident: 2023062605464625200_c3
  doi: 10.1002/9781119356059
– volume: 115
  start-page: 4463
  year: 2001
  ident: 2023062605464625200_c34
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1390515
– volume: 123
  start-page: 241102
  year: 2005
  ident: 2023062605464625200_c27
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2137315
– volume: 90
  start-page: 1007
  year: 1989
  ident: 2023062605464625200_c6
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.456153
– volume: 124
  start-page: 034107
  year: 2006
  ident: 2023062605464625200_c19
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2148945
– volume: 106
  start-page: 9595
  year: 2002
  ident: 2023062605464625200_c8
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp026283u
– volume-title: Molecular Spectra and Molecular Structure: IV. Constants of Diatomic Molecules
  year: 2013
  ident: 2023062605464625200_c62
– volume: 286
  start-page: 243
  year: 1998
  ident: 2023062605464625200_c56
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/s0009-2614(98)00111-0
– volume: 2
  start-page: 242
  year: 2012
  ident: 2023062605464625200_c31
  publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci.
  doi: 10.1002/wcms.82
– volume: 199
  start-page: 804
  year: 1963
  ident: 2023062605464625200_c66
  publication-title: Nature
  doi: 10.1038/199804a0
– volume: 111
  start-page: 2292
  year: 2013
  ident: 2023062605464625200_c9
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2013.802818
– volume: 113
  start-page: 12638
  year: 2009
  ident: 2023062605464625200_c21
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp905057q
– volume: 12
  start-page: 311
  year: 1973
  ident: 2023062605464625200_c51
  publication-title: At. Data Nucl. Data Tables
  doi: 10.1016/0092-640x(73)90020-x
– volume: 112
  start-page: 10
  year: 1984
  ident: 2023062605464625200_c75
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(84)87031-1
– volume: 82
  start-page: 299
  year: 1985
  ident: 2023062605464625200_c23
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448975
– volume: 62
  start-page: 22503
  year: 2000
  ident: 2023062605464625200_c45
  publication-title: Phys. Rev. A
  doi: 10.1103/physreva.62.022503
– ident: 2023062605464625200_c78
– volume: 7
  start-page: 3297
  year: 2005
  ident: 2023062605464625200_c25
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b508541a
– volume: 133
  start-page: 1434
  year: 2014
  ident: 2023062605464625200_c35
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-013-1434-9
– volume: 79
  start-page: 2745
  year: 1975
  ident: 2023062605464625200_c76
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100592a010
– volume: 71
  start-page: 2138
  year: 1979
  ident: 2023062605464625200_c73
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.438587
– volume: 88
  start-page: 377
  year: 1982
  ident: 2023062605464625200_c74
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(82)83029-7
– volume: 89
  start-page: 53416
  year: 2014
  ident: 2023062605464625200_c14
  publication-title: Phys. Rev. A
  doi: 10.1103/physreva.89.053416
– volume: 96
  start-page: 6796
  year: 1992
  ident: 2023062605464625200_c49
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.462569
– volume: 115
  start-page: 2389
  year: 2001
  ident: 2023062605464625200_c48
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1386413
– volume: 41
  start-page: 2250
  year: 1964
  ident: 2023062605464625200_c68
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1726255
– volume: 84
  start-page: 901
  year: 1986
  ident: 2023062605464625200_c69
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.450535
– start-page: 164
  year: 1973
  ident: 2023062605464625200_c36
– volume: 86
  start-page: 4070
  year: 1987
  ident: 2023062605464625200_c38
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.451917
– volume: 88
  start-page: 67901
  year: 2002
  ident: 2023062605464625200_c11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.88.067901
– volume: 57
  start-page: 921
  year: 1961
  ident: 2023062605464625200_c61
  publication-title: Trans. Faraday Soc.
  doi: 10.1039/tf9615700921
– volume: 113
  start-page: 21
  year: 2013
  ident: 2023062605464625200_c2
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.24355
– volume: 119
  start-page: 11099
  year: 2003
  ident: 2023062605464625200_c37
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1622923
– volume: 38
  start-page: 4696
  year: 1999
  ident: 2023062605464625200_c58
  publication-title: Inorg. Chem.
  doi: 10.1021/ic990506m
– volume: 4
  start-page: 1029
  year: 2008
  ident: 2023062605464625200_c24
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct8000409
– volume: 114
  start-page: 48
  year: 2001
  ident: 2023062605464625200_c52
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1329891
– volume: 101
  start-page: 1345
  year: 2003
  ident: 2023062605464625200_c71
  publication-title: Mol. Phys.
  doi: 10.1080/0026897031000094498
– volume: 113
  start-page: 23004
  year: 2014
  ident: 2023062605464625200_c12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.113.023004
– volume: 117
  start-page: 10548
  year: 2002
  ident: 2023062605464625200_c42
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1520138
– volume: 3
  start-page: 273
  year: 2013
  ident: 2023062605464625200_c1
  publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci.
  doi: 10.1002/wcms.1123
– volume: 29
  start-page: 817
  year: 1997
  ident: 2023062605464625200_c67
  publication-title: J. Chem. Thermodyn.
  doi: 10.1006/jcht.1997.0206
– volume: 283
  start-page: 18
  year: 2013
  ident: 2023062605464625200_c63
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/j.jms.2012.12.004
– volume: 121
  start-page: 289
  year: 2008
  ident: 2023062605464625200_c22
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-008-0476-x
– volume: 77
  start-page: 516
  year: 2000
  ident: 2023062605464625200_c39
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/(sici)1097-461x(2000)77:2<516::aid-qua2>3.0.co;2-u
– volume: 131
  start-page: 1081
  year: 2012
  ident: 2023062605464625200_c28
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-011-1081-y
– volume: 112
  start-page: 10070
  year: 2000
  ident: 2023062605464625200_c40
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.481648
– volume: 142
  start-page: 170901
  year: 2015
  ident: 2023062605464625200_c16
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4916903
– volume: 11
  start-page: L589
  year: 1978
  ident: 2023062605464625200_c46
  publication-title: J. Phys. B: At. Mol. Phys.
  doi: 10.1088/0022-3700/11/19/005
SSID ssj0001724
Score 2.6274192
Snippet New correlation consistent basis sets based on pseudopotential (PP) Hamiltonians have been developed from double- to quintuple-zeta quality for the late alkali...
SourceID osti
proquest
pubmed
crossref
scitation
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 244106
Title Gaussian basis sets for use in correlated molecular calculations. XI. Pseudopotential-based and all-electron relativistic basis sets for alkali metal (K–Fr) and alkaline earth (Ca–Ra) elements
URI http://dx.doi.org/10.1063/1.5010587
https://www.ncbi.nlm.nih.gov/pubmed/29289120
https://www.proquest.com/docview/1983256787
https://www.osti.gov/biblio/1414607
Volume 147
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtRADLbKVqhwQFAoLIXKUA7bQ5b8NzlWW5ZSKCpQpL1FE4-jVqRJ1cly5h14JZ6EJ8GzSVYFtRKHnOxkInlmvs-yZz6AV6nNKfJU1je7u06oyHdSTey4uVv4ucopWhyPPvoYH3wND2fRbAW2b6jgx8FrbxxZFcdk9xas-kKOkwGs7h3ufzpebriCwd1ly55jCXl_gdDVl_-CnUEty-c6SnkX1gR42hr4FZiZ3od7HT_EvTagD2CFq3VYm_SybOtwe9GzSeYh_Hqr5saegUSBojODhhuDwkFxbhjPKiQrvFEKl9R43ovgooSEOsUuM8bZuzEeG57r-qJubN-QKh2LaxpVJU9ZOr1MDraHXr4v7nX-d0BVfhM6j-csTB5H73__-Dm93Ok-YS0Voyyo5hRHEyXGz2oHuW1bN4_gZPrmZHLgdKIMDkkm1zhFwSpI8kiliUfs6cInAT8dJJLeMgcslComFjuxpI46LaiIA-F1lLh-QV6wAYOqrvgJoJbNpRB-6lslcspDFbGkKxTmHGodFckQRn3Isj4oVjejzBaF8zjIvKyL7hBeLl0v2ls6rnPatHHPbISZTsk2ElEjuY-AhSvWF_10yCSitmyiKq7nJvNS2fUiAXXxedzOk-UgfioJq-e7Q9heTpyb_-Dpf3ltwh3fcgfPnpt_BoPmcs7Phfk0-ZbM_P2jD1-2uhXwBwEOAnU
linkProvider American Institute of Physics
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZgK7RwQFAoLOVhHoftwdu8mxyrhWX7VEGLtLfIGU_UhTSJ6oQz_4G_xC_hlzDOYymoSBxyshNbGdvfN_LMfIy9iYxPkUS0v9HaE54ER0QKUFiJlTqJTMBv0qNPToP5J-9w6S-72ByTC0OT0BO5KptL_M9Q7nY_UGTEOevyd8GBwN21J77Rdwz3brIN8saDcMA29g_ffjhbH8WEzl0ZZlsYqt6XFrr68h-ANChoY11HNu-wIUFSezt-BYBm99jdjjny_Xam99kNzDfZcNoLtm2yW000J-gH7Md7WWuTHckJpFaaa6w0J3bKa418lXMwkhwZsUzFL3p5XE7Ggk7LS0_48mDCzzTWqiiLykQUyUwYxFNc5vRkmegFdHibDvO1qfj894Ay-0JEn18gcXw-Pvr57fvscqf7hGnJkdNWq875eCqp8aPc4dgGtOuHbDF7t5jORSfXIIB8vEqkKUo3THwZhTagrVIHCBaVG5Lji-gika0AkNoByalUUQpp4BLjg9ByUrDdLTbIixwfM67o2EmJuTpGoxwST_pIjgx4CXpK-Wk4YuPeZHFvFKOokcXNlXrgxnbcWXfEXq27lm39jus6bRu7x8bCCOdgQoygIq-IYMSi1pf9cojJouZCReZY1Dq2IzoPfYJ76vOoXSfrQZyIXFnbsUbs9Xrh_HsGT_6r1ws2nC9OjuPjg9OjbXbbMQzDNtn1T9mguqzxGfGjKnne7YJfcAQN4g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gaussian+basis+sets+for+use+in+correlated+molecular+calculations.+XI.+Pseudopotential-based+and+all-electron+relativistic+basis+sets+for+alkali+metal+%28K%E2%80%93Fr%29+and+alkaline+earth+%28Ca%E2%80%93Ra%29+elements&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Hill%2C+J.+Grant&rft.au=Peterson%2C+Kirk+A.&rft.date=2017-12-28&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=147&rft.issue=24&rft_id=info:doi/10.1063%2F1.5010587&rft.externalDocID=jcp
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon