Gaussian basis sets for use in correlated molecular calculations. XI. Pseudopotential-based and all-electron relativistic basis sets for alkali metal (K–Fr) and alkaline earth (Ca–Ra) elements
New correlation consistent basis sets based on pseudopotential (PP) Hamiltonians have been developed from double- to quintuple-zeta quality for the late alkali (K–Fr) and alkaline earth (Ca–Ra) metals. These are accompanied by new all-electron basis sets of double- to quadruple-zeta quality that hav...
Saved in:
Published in | The Journal of chemical physics Vol. 147; no. 24; pp. 244106 - 244117 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Institute of Physics
28.12.2017
|
Online Access | Get full text |
Cover
Loading…
Abstract | New correlation consistent basis sets based on pseudopotential (PP) Hamiltonians have been developed from double- to quintuple-zeta quality for the late alkali (K–Fr) and alkaline earth (Ca–Ra) metals. These are accompanied by new all-electron basis sets of double- to quadruple-zeta quality that have been contracted for use with both Douglas-Kroll-Hess (DKH) and eXact 2-Component (X2C) scalar relativistic Hamiltonians. Sets for valence correlation (ms), cc-pVnZ-PP and cc-pVnZ-(DK,DK3/X2C), in addition to outer-core correlation [valence + (m−1)sp], cc-p(w)CVnZ-PP and cc-pwCVnZ-(DK,DK3/X2C), are reported. The –PP sets have been developed for use with small-core PPs [I. S. Lim et al., J. Chem. Phys. 122, 104103 (2005) and I. S. Lim et al., J. Chem. Phys. 124, 034107 (2006)], while the all-electron sets utilized second-order DKH Hamiltonians for 4s and 5s elements and third-order DKH for 6s and 7s. The accuracy of the basis sets is assessed through benchmark calculations at the coupled-cluster level of theory for both atomic and molecular properties. Not surprisingly, it is found that outer-core correlation is vital for accurate calculation of the thermodynamic and spectroscopic properties of diatomic molecules containing these elements. |
---|---|
AbstractList | New correlation consistent basis sets based on pseudopotential (PP) Hamiltonians have been developed from double- to quintuple-zeta quality for the late alkali (K–Fr) and alkaline earth (Ca–Ra) metals. These are accompanied by new all-electron basis sets of double- to quadruple-zeta quality that have been contracted for use with both Douglas-Kroll-Hess (DKH) and eXact 2-Component (X2C) scalar relativistic Hamiltonians. Sets for valence correlation (ms), cc-pVnZ-PP and cc-pVnZ-(DK,DK3/X2C), in addition to outer-core correlation [valence + (m−1)sp], cc-p(w)CVnZ-PP and cc-pwCVnZ-(DK,DK3/X2C), are reported. The –PP sets have been developed for use with small-core PPs [I. S. Lim et al., J. Chem. Phys. 122, 104103 (2005) and I. S. Lim et al., J. Chem. Phys. 124, 034107 (2006)], while the all-electron sets utilized second-order DKH Hamiltonians for 4s and 5s elements and third-order DKH for 6s and 7s. The accuracy of the basis sets is assessed through benchmark calculations at the coupled-cluster level of theory for both atomic and molecular properties. Not surprisingly, it is found that outer-core correlation is vital for accurate calculation of the thermodynamic and spectroscopic properties of diatomic molecules containing these elements. New correlation consistent basis sets based on pseudopotential (PP) Hamiltonians have been developed from double- to quintuple-zeta quality for the late alkali (K-Fr) and alkaline earth (Ca-Ra) metals. These are accompanied by new all-electron basis sets of double- to quadruple-zeta quality that have been contracted for use with both Douglas-Kroll-Hess (DKH) and eXact 2-Component (X2C) scalar relativistic Hamiltonians. Sets for valence correlation (ms), cc-pVnZ-PP and cc-pVnZ-(DK,DK3/X2C), in addition to outer-core correlation [valence + (m-1)sp], cc-p(w)CVnZ-PP and cc-pwCVnZ-(DK,DK3/X2C), are reported. The -PP sets have been developed for use with small-core PPs [I. S. Lim et al., J. Chem. Phys. 122, 104103 (2005) and I. S. Lim et al., J. Chem. Phys. 124, 034107 (2006)], while the all-electron sets utilized second-order DKH Hamiltonians for 4s and 5s elements and third-order DKH for 6s and 7s. The accuracy of the basis sets is assessed through benchmark calculations at the coupled-cluster level of theory for both atomic and molecular properties. Not surprisingly, it is found that outer-core correlation is vital for accurate calculation of the thermodynamic and spectroscopic properties of diatomic molecules containing these elements. New correlation consistent basis sets based on pseudopotential (PP) Hamiltonians have been developed from double- to quintuple-zeta quality for the late alkali (K-Fr) and alkaline earth (Ca-Ra) metals. These are accompanied by new all-electron basis sets of double- to quadruple-zeta quality that have been contracted for use with both Douglas-Kroll-Hess (DKH) and eXact 2-Component (X2C) scalar relativistic Hamiltonians. Sets for valence correlation (ms), cc-pVnZ-PP and cc-pVnZ-(DK,DK3/X2C), in addition to outer-core correlation [valence + (m-1)sp], cc-p(w)CVnZ-PP and cc-pwCVnZ-(DK,DK3/X2C), are reported. The -PP sets have been developed for use with small-core PPs [I. S. Lim et al., J. Chem. Phys. 122, 104103 (2005) and I. S. Lim et al., J. Chem. Phys. 124, 034107 (2006)], while the all-electron sets utilized second-order DKH Hamiltonians for 4s and 5s elements and third-order DKH for 6s and 7s. The accuracy of the basis sets is assessed through benchmark calculations at the coupled-cluster level of theory for both atomic and molecular properties. Not surprisingly, it is found that outer-core correlation is vital for accurate calculation of the thermodynamic and spectroscopic properties of diatomic molecules containing these elements.New correlation consistent basis sets based on pseudopotential (PP) Hamiltonians have been developed from double- to quintuple-zeta quality for the late alkali (K-Fr) and alkaline earth (Ca-Ra) metals. These are accompanied by new all-electron basis sets of double- to quadruple-zeta quality that have been contracted for use with both Douglas-Kroll-Hess (DKH) and eXact 2-Component (X2C) scalar relativistic Hamiltonians. Sets for valence correlation (ms), cc-pVnZ-PP and cc-pVnZ-(DK,DK3/X2C), in addition to outer-core correlation [valence + (m-1)sp], cc-p(w)CVnZ-PP and cc-pwCVnZ-(DK,DK3/X2C), are reported. The -PP sets have been developed for use with small-core PPs [I. S. Lim et al., J. Chem. Phys. 122, 104103 (2005) and I. S. Lim et al., J. Chem. Phys. 124, 034107 (2006)], while the all-electron sets utilized second-order DKH Hamiltonians for 4s and 5s elements and third-order DKH for 6s and 7s. The accuracy of the basis sets is assessed through benchmark calculations at the coupled-cluster level of theory for both atomic and molecular properties. Not surprisingly, it is found that outer-core correlation is vital for accurate calculation of the thermodynamic and spectroscopic properties of diatomic molecules containing these elements. |
Author | Peterson, Kirk A. Hill, J. Grant |
Author_xml | – sequence: 1 givenname: J. Grant surname: Hill fullname: Hill, J. Grant email: grant.hill@sheffield.ac.uk, kipeters@wsu.edu organization: Department of Chemistry, University of Sheffield – sequence: 2 givenname: Kirk A. surname: Peterson fullname: Peterson, Kirk A. email: grant.hill@sheffield.ac.uk, kipeters@wsu.edu organization: Department of Chemistry, Washington State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29289120$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1414607$$D View this record in Osti.gov |
BookMark | eNp9kU1uFDEQhS0URCaBBRdAFqsZpJ7Y7j_3EkUkREQCoSzYtWrc1YrBbQ8uNxI77sCVOAknwZOZsIgQC8uW3vdelfVO2JEPHhl7LsVaiqY8k-taSFHr9hFbSKG7om06ccQWQihZdI1ojtkJ0WchhGxV9YQdq07pTiqxYL8uYSay4PkGyBInTMTHEPlMyK3nJsSIDhIOfAoOzewgcgNu90g2eFrzT1dr_oFwHsI2JPTJgityWHaAz8e5ArMxxeD5XZT9ZilZ83AguC_gLJ8wgePLd79__LyIq0PETvHIEWK65ctzyOJHWPGcO-WB9JQ9HsERPjvcp-zm4s3N-dvi-v3l1fnr68JUlU7FOCKUelNDp6VBOYzKSFUOpVZthViiqkVjMOsGK9EN3WjGphS6Nlqo0cjylL3cx4a8f0_GJjS3Jniff9fLSlaNaDO03EPbGL7OSKmfLBl0DjyGmXrZ6VLVTat36IsDOm8mHPpttBPE7_19OxlY7QETA1HE8S8iRb9rvpf9ofnMnj1g8353FaUI1v3T8WrvoHvyP_F_ACuzwMc |
CODEN | JCPSA6 |
CitedBy_id | crossref_primary_10_1021_acs_jpca_3c01676 crossref_primary_10_1088_1361_6455_ad5e25 crossref_primary_10_1016_j_jqsrt_2022_108467 crossref_primary_10_1021_acs_jpca_2c06998 crossref_primary_10_1063_5_0225865 crossref_primary_10_1021_acs_jpca_1c10801 crossref_primary_10_1021_acs_jpclett_3c02565 crossref_primary_10_1063_5_0217685 crossref_primary_10_1063_5_0047521 crossref_primary_10_1088_1367_2630_abd50d crossref_primary_10_1039_D0CP02697B crossref_primary_10_1021_acs_jpclett_1c01726 crossref_primary_10_1039_D3CP04200F crossref_primary_10_1021_acs_jctc_4c00471 crossref_primary_10_1080_00268976_2023_2266064 crossref_primary_10_1021_acs_jpca_4c05454 crossref_primary_10_1021_acs_inorgchem_0c01651 crossref_primary_10_1063_5_0207127 crossref_primary_10_1021_acs_jpca_2c00521 crossref_primary_10_1039_C9CP03914G crossref_primary_10_1021_acs_jctc_0c00546 crossref_primary_10_1021_acs_jpcb_7b10005 crossref_primary_10_1088_1361_6455_accf70 crossref_primary_10_1021_acs_jpca_0c10543 crossref_primary_10_1021_acs_jpca_2c04446 crossref_primary_10_1021_acs_jctc_3c00812 crossref_primary_10_1021_acs_jpca_2c07952 crossref_primary_10_1021_acs_cgd_2c00560 crossref_primary_10_1021_acs_jpca_2c05096 crossref_primary_10_1103_PhysRevA_111_033114 crossref_primary_10_1016_j_chemphys_2021_111316 crossref_primary_10_1039_D3NJ02103C crossref_primary_10_1021_acs_jpca_8b07139 crossref_primary_10_1063_5_0022058 crossref_primary_10_1063_5_0135929 crossref_primary_10_1039_D4CP01975J crossref_primary_10_1103_PhysRevA_108_L021302 crossref_primary_10_1002_jcc_27456 crossref_primary_10_1016_j_jqsrt_2021_107947 crossref_primary_10_1063_5_0052958 crossref_primary_10_1002_wcms_1536 crossref_primary_10_1063_5_0094598 crossref_primary_10_1021_acs_jpca_9b11741 crossref_primary_10_1103_PhysRevA_107_043323 crossref_primary_10_1002_ejic_202500031 crossref_primary_10_1063_5_0239463 crossref_primary_10_1016_j_jqsrt_2020_107000 crossref_primary_10_1063_5_0013101 crossref_primary_10_1103_PhysRevResearch_5_L032021 crossref_primary_10_1021_acs_jctc_3c00408 crossref_primary_10_1021_acs_jpca_4c02879 crossref_primary_10_1103_PhysRevA_106_L041301 crossref_primary_10_1016_j_jfluchem_2023_110210 crossref_primary_10_1103_PhysRevA_106_L020801 crossref_primary_10_1002_jcc_27129 crossref_primary_10_1016_j_saa_2022_121679 crossref_primary_10_1021_acs_inorgchem_1c01765 crossref_primary_10_1080_00268976_2018_1440018 crossref_primary_10_1021_acs_jpca_0c05224 crossref_primary_10_1088_2516_1075_ac54c4 crossref_primary_10_1039_D2CP02485C crossref_primary_10_1016_j_ijms_2024_117201 crossref_primary_10_1002_slct_202200763 crossref_primary_10_1039_D4CP00723A crossref_primary_10_1016_j_jqsrt_2023_108852 crossref_primary_10_1002_qua_25968 crossref_primary_10_1016_j_jqsrt_2024_108996 crossref_primary_10_1063_5_0014805 crossref_primary_10_1063_5_0002162 crossref_primary_10_1126_sciadv_adr8256 crossref_primary_10_3847_1538_4357_ac9f35 crossref_primary_10_1088_1402_4896_ab852a crossref_primary_10_1063_5_0063611 crossref_primary_10_1080_00268976_2023_2232051 crossref_primary_10_1103_PhysRevA_107_032822 crossref_primary_10_1063_5_0026876 crossref_primary_10_1007_s00894_021_04829_7 crossref_primary_10_1007_s00894_022_05331_4 crossref_primary_10_1063_1_5129583 crossref_primary_10_1039_C9NJ06391A crossref_primary_10_1103_PhysRevA_106_032804 crossref_primary_10_1039_D2CP03561H crossref_primary_10_1021_acs_jpca_0c03432 crossref_primary_10_1063_5_0062098 crossref_primary_10_1021_acs_jpca_1c04506 crossref_primary_10_3847_1538_4357_ad9c7a crossref_primary_10_1021_acs_jpca_9b00952 crossref_primary_10_1007_s00894_019_4094_4 crossref_primary_10_1021_acs_joc_2c02001 crossref_primary_10_1080_00268976_2023_2237614 crossref_primary_10_1021_acs_jctc_0c00713 crossref_primary_10_1039_C8CP03434F crossref_primary_10_1103_PhysRevA_103_022802 crossref_primary_10_1039_D1CP03146E crossref_primary_10_1021_acs_jpca_2c06438 crossref_primary_10_1063_5_0217762 crossref_primary_10_1103_PhysRevLett_126_023003 crossref_primary_10_1021_acs_jpca_1c02422 crossref_primary_10_1039_D2CP05020J crossref_primary_10_1073_pnas_2303586120 crossref_primary_10_1039_D3CP01464A crossref_primary_10_1063_5_0005081 crossref_primary_10_1039_D0CP05105E crossref_primary_10_1088_1674_1056_ad20de crossref_primary_10_1021_acs_jctc_4c00558 crossref_primary_10_1021_acs_jpcc_9b11868 crossref_primary_10_1038_s41598_021_90004_0 crossref_primary_10_1063_5_0019010 crossref_primary_10_1016_j_cplett_2020_137763 crossref_primary_10_1021_acs_jpca_3c01880 crossref_primary_10_1134_S0030400X1911016X crossref_primary_10_1021_acs_jpca_3c02056 crossref_primary_10_1016_j_jqsrt_2022_108144 crossref_primary_10_1063_1_5099580 crossref_primary_10_1103_PhysRevA_109_022812 crossref_primary_10_1093_mnras_staa4041 crossref_primary_10_1039_D3FD00110E crossref_primary_10_1002_chem_202304068 crossref_primary_10_1063_1_5052653 crossref_primary_10_3390_nano12203700 crossref_primary_10_1021_acs_jctc_4c00172 crossref_primary_10_1021_acs_jctc_8b00461 crossref_primary_10_1103_PhysRevA_104_052213 crossref_primary_10_1016_j_jqsrt_2019_106632 crossref_primary_10_1016_j_comptc_2020_112792 crossref_primary_10_1103_PhysRevA_104_042816 crossref_primary_10_1021_acs_jctc_1c01036 crossref_primary_10_1021_acs_jpca_1c08069 crossref_primary_10_1039_D1CP01341F crossref_primary_10_1103_PhysRevA_107_062802 crossref_primary_10_3390_molecules29184356 crossref_primary_10_1016_j_saa_2021_120274 crossref_primary_10_1063_5_0082309 crossref_primary_10_1063_5_0173313 crossref_primary_10_1016_j_jqsrt_2020_106948 crossref_primary_10_1063_1_5121006 crossref_primary_10_3389_fchem_2022_880804 crossref_primary_10_1016_j_jnucmat_2019_01_036 crossref_primary_10_1016_j_jqsrt_2024_109014 crossref_primary_10_1007_s00894_020_04365_w crossref_primary_10_1063_5_0244318 crossref_primary_10_1021_acs_jpcc_1c02710 crossref_primary_10_1016_j_jqsrt_2020_107233 crossref_primary_10_1039_D3CP04040B crossref_primary_10_1021_acs_jpca_1c08631 crossref_primary_10_1021_acs_jctc_0c00082 crossref_primary_10_1063_1_5071457 crossref_primary_10_1103_PhysRevA_110_022811 crossref_primary_10_1080_00268976_2018_1559957 crossref_primary_10_1021_jacs_4c03198 crossref_primary_10_1002_qua_26453 crossref_primary_10_1063_5_0163509 crossref_primary_10_1063_1_5037346 crossref_primary_10_1103_PhysRevA_104_012814 crossref_primary_10_1103_PhysRevA_109_052814 crossref_primary_10_1039_D1CP02466C crossref_primary_10_1039_D3CP03777K crossref_primary_10_1016_j_jms_2023_111736 crossref_primary_10_1021_acsomega_3c02195 crossref_primary_10_1021_acs_jpcb_3c08302 crossref_primary_10_1016_j_jqsrt_2021_107648 crossref_primary_10_1021_acs_jpca_3c06388 crossref_primary_10_1021_acs_jpclett_0c00518 crossref_primary_10_1063_5_0124062 crossref_primary_10_1039_C8CP05550E |
Cites_doi | 10.1103/physrevlett.59.1274 10.1002/qua.560400611 10.1103/physrev.41.721 10.1063/1.473863 10.1063/1.555698 10.1103/physrevlett.113.255301 10.1039/b802322k 10.1007/s00214-005-0028-6 10.1021/acs.jctc.7b00593 10.1063/1.470645 10.1063/1.4893989 10.1103/physrevlett.80.684 10.1103/physreva.94.050701 10.1063/1.1856451 10.1007/s00214-003-0537-0 10.1016/0009-2614(85)87200-6 10.1063/1.470245 10.1103/physreva.70.062501 10.1063/1.4959280 10.1103/physrevlett.79.1245 10.1016/j.comptc.2017.06.001 10.1063/1.3613639 10.1007/s00214-010-0764-0 10.1039/c7cp00836h 10.1063/1.3495681 10.1016/j.cplett.2006.09.029 10.1063/1.445347 10.1002/9781119356059 10.1063/1.1390515 10.1063/1.2137315 10.1063/1.456153 10.1063/1.2148945 10.1021/jp026283u 10.1016/s0009-2614(98)00111-0 10.1002/wcms.82 10.1038/199804a0 10.1080/00268976.2013.802818 10.1021/jp905057q 10.1016/0092-640x(73)90020-x 10.1016/0009-2614(84)87031-1 10.1063/1.448975 10.1103/physreva.62.022503 10.1039/b508541a 10.1007/s00214-013-1434-9 10.1021/j100592a010 10.1063/1.438587 10.1016/0009-2614(82)83029-7 10.1103/physreva.89.053416 10.1063/1.462569 10.1063/1.1386413 10.1063/1.1726255 10.1063/1.450535 10.1063/1.451917 10.1103/physrevlett.88.067901 10.1039/tf9615700921 10.1002/qua.24355 10.1063/1.1622923 10.1021/ic990506m 10.1021/ct8000409 10.1063/1.1329891 10.1080/0026897031000094498 10.1103/physrevlett.113.023004 10.1063/1.1520138 10.1002/wcms.1123 10.1006/jcht.1997.0206 10.1016/j.jms.2012.12.004 10.1007/s00214-008-0476-x 10.1002/(sici)1097-461x(2000)77:2<516::aid-qua2>3.0.co;2-u 10.1007/s00214-011-1081-y 10.1063/1.481648 10.1063/1.4916903 10.1088/0022-3700/11/19/005 |
ContentType | Journal Article |
Copyright | Author(s) |
Copyright_xml | – notice: Author(s) |
DBID | AJDQP AAYXX CITATION NPM 7X8 OTOTI |
DOI | 10.1063/1.5010587 |
DatabaseName | AIP Open Access Journals CrossRef PubMed MEDLINE - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: AJDQP name: AIP Open Access Journals url: https://publishing.aip.org/librarians/open-access-policy sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1089-7690 |
ExternalDocumentID | 1414607 29289120 10_1063_1_5010587 jcp |
Genre | Journal Article |
GrantInformation_xml | – fundername: RCUK | Engineering and Physical Sciences Research Council grantid: EP/N02253X/1 funderid: http://dx.doi.org/10.13039/501100000266 – fundername: U.S. Department of Energy grantid: DE-FG02-12ER16329 funderid: http://dx.doi.org/10.13039/100000015 |
GroupedDBID | --- -DZ -ET -~X 123 1UP 2-P 29K 4.4 53G 5VS 85S AAAAW AABDS AAEUA AAPUP AAYIH ABPPZ ABRJW ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJDQP AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D-I DU5 EBS EJD ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS TN5 TWZ UPT WH7 YQT YZZ ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION NPM 7X8 0ZJ ABPTK AGIHO OTOTI UE8 ZHY |
ID | FETCH-LOGICAL-c448t-ffea38b5a981ce1df2c123d38274ee3e2506ceb5ace409d9fcf63085c802fc13 |
IEDL.DBID | AJDQP |
ISSN | 0021-9606 1089-7690 |
IngestDate | Fri May 19 02:30:37 EDT 2023 Thu Jul 10 21:58:05 EDT 2025 Wed Feb 19 02:41:42 EST 2025 Sun Jul 06 05:08:07 EDT 2025 Thu Apr 24 23:09:17 EDT 2025 Fri Jun 21 00:15:03 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
License | 0021-9606/2017/147(24)/244106/12/$0.00 All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c448t-ffea38b5a981ce1df2c123d38274ee3e2506ceb5ace409d9fcf63085c802fc13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE FG02-12ER16329; SC0008501 |
ORCID | 0000-0002-6457-5837 0000-0003-4901-3235 0000000264575837 0000000349013235 |
OpenAccessLink | http://dx.doi.org/10.1063/1.5010587 |
PMID | 29289120 |
PQID | 1983256787 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmed_primary_29289120 crossref_primary_10_1063_1_5010587 proquest_miscellaneous_1983256787 scitation_primary_10_1063_1_5010587 crossref_citationtrail_10_1063_1_5010587 osti_scitechconnect_1414607 |
PublicationCentury | 2000 |
PublicationDate | 2017-12-28 |
PublicationDateYYYYMMDD | 2017-12-28 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of chemical physics |
PublicationTitleAlternate | J Chem Phys |
PublicationYear | 2017 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Andersson, Sandström, Kiyan, Hanstorp, Pegg (c45) 2000; 62 Blaudeau, Brozell, Matsika, Zhang, Pitzer (c39) 2000; 77 Karton, Martin (c54) 2006; 115 Amiot, Crozet, Vergès (c57) 1985; 121 Dunham (c53) 1932; 41 Koput, Peterson (c8) 2002; 106 Schiller, Bakalov, Korobov (c12) 2014; 113 Dunning (c6) 1989; 90 Bross, Peterson (c35) 2014; 133 Tsai, Freeland, Vogels, Boesten, Verhaar, Heinzen (c59) 1997; 79 Halkier, Helgaker, Jørgensen, Klopper, Koch, Olsen, Wilson (c56) 1998; 286 Hill, Peterson (c32) 2014; 141 Huntelaar, Cordfunke (c67) 1997; 29 Bergmann, Vitanov, Shore (c16) 2015; 142 Kendall, Dunning, Harrison (c49) 1992; 96 Iron, Oren, Martin (c71) 2003; 101 Woon, Dunning (c41) 1995; 103 Kopp, Åslund, Edvinsson, Lindgren (c64) 1965; 30 Lim, Schwerdtfeger (c50) 2004; 70 Scheer, Thøgersen, Bilodeau, Brodie, Haugen, Andersen, Kristensen, Andersen (c47) 1998; 80 Dyall (c21) 2009; 113 Kutzelnigg, Liu (c27) 2005; 123 Desclaux (c51) 1973; 12 Feller, Peterson (c72) 2006; 430 Weigend, Ahlrichs (c25) 2005; 7 Li, Feng, Sun, Zhang, Fan, Peterson, Xie, Schaefer (c9) 2013; 111 Krems (c10) 2008; 10 Molony, Gregory, Ji, Lu, Köppinger, Le Sueur, Blackley, Hutson, Cornish (c13) 2014; 113 Minenkov, Bistoni, Riplinger, Auer, Neese, Cavallo (c70) 2017; 19 Hay, Wadt (c23) 1985; 82 Christiansen (c40) 2000; 112 Frey, Breyer, Holop (c46) 1978; 11 Andreev, Letokhov, Mishin (c43) 1987; 59 Bulewicz, Phillips, Sugden (c61) 1961; 57 Werner, Knowles, Knizia, Manby, Schütz (c31) 2012; 2 Almlöf, Taylor (c38) 1987; 86 Jensen (c1) 2013; 3 Feller, Peterson, Hill (c4) 2011; 135 Flores, Vassen, Knoop (c15) 2016; 94 Pollak, Weigend (c29) 2017; 13 Lim, Stoll, Schwerdtfeger (c19) 2006; 124 Crepin, Verges, Amiot (c75) 1984; 112 Helgaker, Klopper, Koch, Noga (c55) 1997; 106 Hill (c2) 2013; 113 Yang, Nelson, Stwalley (c60) 1983; 78 Ehlert, Blue, Green, Margrave (c68) 1964; 41 Ermler, Ross, Christiansen (c17) 1991; 40 Tsuchiya, Abe, Nakajima, Hirao (c34) 2001; 115 Ram, Bernath (c63) 2013; 283 Amiot, Vergès, Fellows (c77) 1995; 103 Lim, Schwerdtfeger, Metz, Stoll (c18) 2005; 122 Raab, Weickenmeier, Demtröder (c74) 1982; 88 DeMille (c11) 2002; 88 Blue, Green, Ehlert, Margrave (c66) 1963; 199 Bauschlicher, Langhoff, Partridge (c69) 1986; 84 Vasilyev (c5) 2017; 1115 Veryazov, Widmark, Roos (c20) 2004; 111 Landau, Eliav, Ishikawa, Kaldor (c48) 2001; 115 Peterson, Dunning (c42) 2002; 117 Peterson (c37) 2003; 119 Pedley, Marshall (c65) 1983; 12 Peng, Reiher (c28) 2012; 131 Lu, Peterson (c33) 2016; 145 Kornath, Zoermer, Ludwig (c58) 1999; 38 Weigend, Baldes (c26) 2010; 133 de Jong, Harrison, Dixon (c52) 2001; 114 Prascher, Woon, Peterson, Dunning, Wilson (c7) 2011; 128 Zhelyazkova, Cournol, Wall, Matsushima, Hudson, Hinds, Tarbutt, Sauer (c14) 2014; 89 Roy, Hay, Martin (c24) 2008; 4 Numrich, Truhlar (c76) 1975; 79 Noro, Sekiya, Koga (c22) 2008; 121 Höning, Czajkowski, Stock, Demtröder (c73) 1979; 71 (2023062605464625200_c41) 1995; 103 (2023062605464625200_c37) 2003; 119 (2023062605464625200_c40) 2000; 112 (2023062605464625200_c75) 1984; 112 (2023062605464625200_c1) 2013; 3 (2023062605464625200_c77) 1995; 103 (2023062605464625200_c67) 1997; 29 (2023062605464625200_c55) 1997; 106 (2023062605464625200_c69) 1986; 84 (2023062605464625200_c13) 2014; 113 (2023062605464625200_c17) 1991; 40 (2023062605464625200_c38) 1987; 86 (2023062605464625200_c66) 1963; 199 Smith (2023062605464625200_c36) 1973 (2023062605464625200_c43) 1987; 59 (2023062605464625200_c24) 2008; 4 (2023062605464625200_c65) 1983; 12 (2023062605464625200_c12) 2014; 113 (2023062605464625200_c16) 2015; 142 (2023062605464625200_c59) 1997; 79 (2023062605464625200_c10) 2008; 10 (2023062605464625200_c28) 2012; 131 (2023062605464625200_c4) 2011; 135 (2023062605464625200_c51) 1973; 12 (2023062605464625200_c6) 1989; 90 (2023062605464625200_c56) 1998; 286 (2023062605464625200_c35) 2014; 133 (2023062605464625200_c44) 2015 (2023062605464625200_c23) 1985; 82 2023062605464625200_c30 (2023062605464625200_c57) 1985; 121 (2023062605464625200_c21) 2009; 113 Parrill (2023062605464625200_c3) 2017 (2023062605464625200_c15) 2016; 94 (2023062605464625200_c32) 2014; 141 (2023062605464625200_c63) 2013; 283 (2023062605464625200_c71) 2003; 101 (2023062605464625200_c5) 2017; 1115 (2023062605464625200_c33) 2016; 145 (2023062605464625200_c52) 2001; 114 (2023062605464625200_c61) 1961; 57 (2023062605464625200_c19) 2006; 124 (2023062605464625200_c46) 1978; 11 (2023062605464625200_c25) 2005; 7 (2023062605464625200_c47) 1998; 80 2023062605464625200_c78 (2023062605464625200_c8) 2002; 106 (2023062605464625200_c53) 1932; 41 (2023062605464625200_c64) 1965; 30 (2023062605464625200_c60) 1983; 78 (2023062605464625200_c72) 2006; 430 (2023062605464625200_c7) 2011; 128 (2023062605464625200_c48) 2001; 115 (2023062605464625200_c73) 1979; 71 (2023062605464625200_c42) 2002; 117 (2023062605464625200_c14) 2014; 89 (2023062605464625200_c58) 1999; 38 (2023062605464625200_c31) 2012; 2 (2023062605464625200_c45) 2000; 62 (2023062605464625200_c34) 2001; 115 (2023062605464625200_c22) 2008; 121 (2023062605464625200_c18) 2005; 122 (2023062605464625200_c2) 2013; 113 (2023062605464625200_c74) 1982; 88 (2023062605464625200_c76) 1975; 79 (2023062605464625200_c26) 2010; 133 (2023062605464625200_c9) 2013; 111 (2023062605464625200_c20) 2004; 111 (2023062605464625200_c54) 2006; 115 (2023062605464625200_c27) 2005; 123 (2023062605464625200_c68) 1964; 41 (2023062605464625200_c11) 2002; 88 (2023062605464625200_c50) 2004; 70 (2023062605464625200_c29) 2017; 13 (2023062605464625200_c49) 1992; 96 (2023062605464625200_c39) 2000; 77 (2023062605464625200_c70) 2017; 19 (2023062605464625200_c62) 2013 |
References_xml | – volume: 112 start-page: 10 year: 1984 ident: c75 publication-title: Chem. Phys. Lett. – volume: 117 start-page: 10548 year: 2002 ident: c42 publication-title: J. Chem. Phys. – volume: 62 start-page: 22503 year: 2000 ident: c45 publication-title: Phys. Rev. A – volume: 12 start-page: 967 year: 1983 ident: c65 publication-title: J. Phys. Chem. Ref. Data – volume: 135 start-page: 044102 year: 2011 ident: c4 publication-title: J. Chem. Phys. – volume: 123 start-page: 241102 year: 2005 ident: c27 publication-title: J. Chem. Phys. – volume: 111 start-page: 345 year: 2004 ident: c20 publication-title: Theor. Chem. Acc.: Theory, Comput., Model. – volume: 12 start-page: 311 year: 1973 ident: c51 publication-title: At. Data Nucl. Data Tables – volume: 78 start-page: 4541 year: 1983 ident: c60 publication-title: J. Chem. Phys. – volume: 94 start-page: 50701 year: 2016 ident: c15 publication-title: Phys. Rev. A – volume: 80 start-page: 684 year: 1998 ident: c47 publication-title: Phys. Rev. Lett. – volume: 199 start-page: 804 year: 1963 ident: c66 publication-title: Nature – volume: 145 start-page: 054111 year: 2016 ident: c33 publication-title: J. Chem. Phys. – volume: 115 start-page: 4463 year: 2001 ident: c34 publication-title: J. Chem. Phys. – volume: 103 start-page: 3350 year: 1995 ident: c77 publication-title: J. Chem. Phys. – volume: 4 start-page: 1029 year: 2008 ident: c24 publication-title: J. Chem. Theory Comput. – volume: 114 start-page: 48 year: 2001 ident: c52 publication-title: J. Chem. Phys. – volume: 7 start-page: 3297 year: 2005 ident: c25 publication-title: Phys. Chem. Chem. Phys. – volume: 71 start-page: 2138 year: 1979 ident: c73 publication-title: J. Chem. Phys. – volume: 113 start-page: 21 year: 2013 ident: c2 publication-title: Int. J. Quantum Chem. – volume: 112 start-page: 10070 year: 2000 ident: c40 publication-title: J. Chem. Phys. – volume: 124 start-page: 034107 year: 2006 ident: c19 publication-title: J. Chem. Phys. – volume: 106 start-page: 9595 year: 2002 ident: c8 publication-title: J. Phys. Chem. A – volume: 88 start-page: 67901 year: 2002 ident: c11 publication-title: Phys. Rev. Lett. – volume: 119 start-page: 11099 year: 2003 ident: c37 publication-title: J. Chem. Phys. – volume: 40 start-page: 829 year: 1991 ident: c17 publication-title: Int. J. Quantum Chem. – volume: 115 start-page: 2389 year: 2001 ident: c48 publication-title: J. Chem. Phys. – volume: 41 start-page: 721 year: 1932 ident: c53 publication-title: Phys. Rev. – volume: 90 start-page: 1007 year: 1989 ident: c6 publication-title: J. Chem. Phys. – volume: 141 start-page: 094106 year: 2014 ident: c32 publication-title: J. Chem. Phys. – volume: 111 start-page: 2292 year: 2013 ident: c9 publication-title: Mol. Phys. – volume: 1115 start-page: 1 year: 2017 ident: c5 publication-title: Comput. Theor. Chem. – volume: 106 start-page: 9639 year: 1997 ident: c55 publication-title: J. Chem. Phys. – volume: 41 start-page: 2250 year: 1964 ident: c68 publication-title: J. Chem. Phys. – volume: 115 start-page: 330 year: 2006 ident: c54 publication-title: Theor. Chem. Acc. – volume: 82 start-page: 299 year: 1985 ident: c23 publication-title: J. Chem. Phys. – volume: 122 start-page: 104103 year: 2005 ident: c18 publication-title: J. Chem. Phys. – volume: 19 start-page: 9374 year: 2017 ident: c70 publication-title: Phys. Chem. Chem. Phys. – volume: 283 start-page: 18 year: 2013 ident: c63 publication-title: J. Mol. Spectrosc. – volume: 113 start-page: 255301 year: 2014 ident: c13 publication-title: Phys. Rev. Lett. – volume: 77 start-page: 516 year: 2000 ident: c39 publication-title: Int. J. Quantum Chem. – volume: 133 start-page: 1434 year: 2014 ident: c35 publication-title: Theor. Chem. Acc. – volume: 113 start-page: 23004 year: 2014 ident: c12 publication-title: Phys. Rev. Lett. – volume: 142 start-page: 170901 year: 2015 ident: c16 publication-title: J. Chem. Phys. – volume: 11 start-page: L589 year: 1978 ident: c46 publication-title: J. Phys. B: At. Mol. Phys. – volume: 30 start-page: 321 year: 1965 ident: c64 publication-title: Ark Fys – volume: 2 start-page: 242 year: 2012 ident: c31 publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci. – volume: 96 start-page: 6796 year: 1992 ident: c49 publication-title: J. Chem. Phys. – volume: 286 start-page: 243 year: 1998 ident: c56 publication-title: Chem. Phys. Lett. – volume: 79 start-page: 2745 year: 1975 ident: c76 publication-title: J. Phys. Chem. – volume: 131 start-page: 1081 year: 2012 ident: c28 publication-title: Theor. Chem. Acc. – volume: 103 start-page: 4572 year: 1995 ident: c41 publication-title: J. Chem. Phys. – volume: 133 start-page: 174102 year: 2010 ident: c26 publication-title: J. Chem. Phys. – volume: 101 start-page: 1345 year: 2003 ident: c71 publication-title: Mol. Phys. – volume: 38 start-page: 4696 year: 1999 ident: c58 publication-title: Inorg. Chem. – volume: 84 start-page: 901 year: 1986 ident: c69 publication-title: J. Chem. Phys. – volume: 59 start-page: 1274 year: 1987 ident: c43 publication-title: Phys. Rev. Lett. – volume: 57 start-page: 921 year: 1961 ident: c61 publication-title: Trans. Faraday Soc. – volume: 430 start-page: 459 year: 2006 ident: c72 publication-title: Chem. Phys. Lett. – volume: 86 start-page: 4070 year: 1987 ident: c38 publication-title: J. Chem. Phys. – volume: 10 start-page: 4079 year: 2008 ident: c10 publication-title: Phys. Chem. Chem. Phys. – volume: 29 start-page: 817 year: 1997 ident: c67 publication-title: J. Chem. Thermodyn. – volume: 70 start-page: 062501 year: 2004 ident: c50 publication-title: Phys. Rev. A – volume: 88 start-page: 377 year: 1982 ident: c74 publication-title: Chem. Phys. Lett. – volume: 13 start-page: 3696 year: 2017 ident: c29 publication-title: J. Chem. Theory Comput. – volume: 121 start-page: 289 year: 2008 ident: c22 publication-title: Theor. Chem. Acc. – volume: 128 start-page: 69 year: 2011 ident: c7 publication-title: Theor. Chem. Acc. – volume: 89 start-page: 53416 year: 2014 ident: c14 publication-title: Phys. Rev. A – volume: 79 start-page: 1245 year: 1997 ident: c59 publication-title: Phys. Rev. Lett. – volume: 3 start-page: 273 year: 2013 ident: c1 publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci. – volume: 121 start-page: 390 year: 1985 ident: c57 publication-title: Chem. Phys. Lett. – volume: 113 start-page: 12638 year: 2009 ident: c21 publication-title: J. Phys. Chem. A – volume: 59 start-page: 1274 year: 1987 ident: 2023062605464625200_c43 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.59.1274 – volume: 40 start-page: 829 year: 1991 ident: 2023062605464625200_c17 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.560400611 – volume: 41 start-page: 721 year: 1932 ident: 2023062605464625200_c53 publication-title: Phys. Rev. doi: 10.1103/physrev.41.721 – volume: 106 start-page: 9639 year: 1997 ident: 2023062605464625200_c55 publication-title: J. Chem. Phys. doi: 10.1063/1.473863 – volume: 12 start-page: 967 year: 1983 ident: 2023062605464625200_c65 publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.555698 – volume: 113 start-page: 255301 year: 2014 ident: 2023062605464625200_c13 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.113.255301 – volume: 10 start-page: 4079 year: 2008 ident: 2023062605464625200_c10 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b802322k – volume: 115 start-page: 330 year: 2006 ident: 2023062605464625200_c54 publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-005-0028-6 – volume: 30 start-page: 321 year: 1965 ident: 2023062605464625200_c64 publication-title: Ark Fys – volume: 13 start-page: 3696 year: 2017 ident: 2023062605464625200_c29 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.7b00593 – ident: 2023062605464625200_c30 – volume: 103 start-page: 4572 year: 1995 ident: 2023062605464625200_c41 publication-title: J. Chem. Phys. doi: 10.1063/1.470645 – volume: 141 start-page: 094106 year: 2014 ident: 2023062605464625200_c32 publication-title: J. Chem. Phys. doi: 10.1063/1.4893989 – volume: 80 start-page: 684 year: 1998 ident: 2023062605464625200_c47 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.80.684 – volume: 94 start-page: 50701 year: 2016 ident: 2023062605464625200_c15 publication-title: Phys. Rev. A doi: 10.1103/physreva.94.050701 – volume: 122 start-page: 104103 year: 2005 ident: 2023062605464625200_c18 publication-title: J. Chem. Phys. doi: 10.1063/1.1856451 – volume: 111 start-page: 345 year: 2004 ident: 2023062605464625200_c20 publication-title: Theor. Chem. Acc.: Theory, Comput., Model. doi: 10.1007/s00214-003-0537-0 – volume: 121 start-page: 390 year: 1985 ident: 2023062605464625200_c57 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(85)87200-6 – volume: 103 start-page: 3350 year: 1995 ident: 2023062605464625200_c77 publication-title: J. Chem. Phys. doi: 10.1063/1.470245 – volume: 70 start-page: 062501 year: 2004 ident: 2023062605464625200_c50 publication-title: Phys. Rev. A doi: 10.1103/physreva.70.062501 – volume: 145 start-page: 054111 year: 2016 ident: 2023062605464625200_c33 publication-title: J. Chem. Phys. doi: 10.1063/1.4959280 – volume: 79 start-page: 1245 year: 1997 ident: 2023062605464625200_c59 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.79.1245 – volume: 1115 start-page: 1 year: 2017 ident: 2023062605464625200_c5 publication-title: Comput. Theor. Chem. doi: 10.1016/j.comptc.2017.06.001 – year: 2015 ident: 2023062605464625200_c44 – volume: 135 start-page: 044102 year: 2011 ident: 2023062605464625200_c4 publication-title: J. Chem. Phys. doi: 10.1063/1.3613639 – volume: 128 start-page: 69 year: 2011 ident: 2023062605464625200_c7 publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-010-0764-0 – volume: 19 start-page: 9374 year: 2017 ident: 2023062605464625200_c70 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c7cp00836h – volume: 133 start-page: 174102 year: 2010 ident: 2023062605464625200_c26 publication-title: J. Chem. Phys. doi: 10.1063/1.3495681 – volume: 430 start-page: 459 year: 2006 ident: 2023062605464625200_c72 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2006.09.029 – volume: 78 start-page: 4541 year: 1983 ident: 2023062605464625200_c60 publication-title: J. Chem. Phys. doi: 10.1063/1.445347 – start-page: 93 volume-title: Review in Computational Chemistry year: 2017 ident: 2023062605464625200_c3 doi: 10.1002/9781119356059 – volume: 115 start-page: 4463 year: 2001 ident: 2023062605464625200_c34 publication-title: J. Chem. Phys. doi: 10.1063/1.1390515 – volume: 123 start-page: 241102 year: 2005 ident: 2023062605464625200_c27 publication-title: J. Chem. Phys. doi: 10.1063/1.2137315 – volume: 90 start-page: 1007 year: 1989 ident: 2023062605464625200_c6 publication-title: J. Chem. Phys. doi: 10.1063/1.456153 – volume: 124 start-page: 034107 year: 2006 ident: 2023062605464625200_c19 publication-title: J. Chem. Phys. doi: 10.1063/1.2148945 – volume: 106 start-page: 9595 year: 2002 ident: 2023062605464625200_c8 publication-title: J. Phys. Chem. A doi: 10.1021/jp026283u – volume-title: Molecular Spectra and Molecular Structure: IV. Constants of Diatomic Molecules year: 2013 ident: 2023062605464625200_c62 – volume: 286 start-page: 243 year: 1998 ident: 2023062605464625200_c56 publication-title: Chem. Phys. Lett. doi: 10.1016/s0009-2614(98)00111-0 – volume: 2 start-page: 242 year: 2012 ident: 2023062605464625200_c31 publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci. doi: 10.1002/wcms.82 – volume: 199 start-page: 804 year: 1963 ident: 2023062605464625200_c66 publication-title: Nature doi: 10.1038/199804a0 – volume: 111 start-page: 2292 year: 2013 ident: 2023062605464625200_c9 publication-title: Mol. Phys. doi: 10.1080/00268976.2013.802818 – volume: 113 start-page: 12638 year: 2009 ident: 2023062605464625200_c21 publication-title: J. Phys. Chem. A doi: 10.1021/jp905057q – volume: 12 start-page: 311 year: 1973 ident: 2023062605464625200_c51 publication-title: At. Data Nucl. Data Tables doi: 10.1016/0092-640x(73)90020-x – volume: 112 start-page: 10 year: 1984 ident: 2023062605464625200_c75 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(84)87031-1 – volume: 82 start-page: 299 year: 1985 ident: 2023062605464625200_c23 publication-title: J. Chem. Phys. doi: 10.1063/1.448975 – volume: 62 start-page: 22503 year: 2000 ident: 2023062605464625200_c45 publication-title: Phys. Rev. A doi: 10.1103/physreva.62.022503 – ident: 2023062605464625200_c78 – volume: 7 start-page: 3297 year: 2005 ident: 2023062605464625200_c25 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b508541a – volume: 133 start-page: 1434 year: 2014 ident: 2023062605464625200_c35 publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-013-1434-9 – volume: 79 start-page: 2745 year: 1975 ident: 2023062605464625200_c76 publication-title: J. Phys. Chem. doi: 10.1021/j100592a010 – volume: 71 start-page: 2138 year: 1979 ident: 2023062605464625200_c73 publication-title: J. Chem. Phys. doi: 10.1063/1.438587 – volume: 88 start-page: 377 year: 1982 ident: 2023062605464625200_c74 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(82)83029-7 – volume: 89 start-page: 53416 year: 2014 ident: 2023062605464625200_c14 publication-title: Phys. Rev. A doi: 10.1103/physreva.89.053416 – volume: 96 start-page: 6796 year: 1992 ident: 2023062605464625200_c49 publication-title: J. Chem. Phys. doi: 10.1063/1.462569 – volume: 115 start-page: 2389 year: 2001 ident: 2023062605464625200_c48 publication-title: J. Chem. Phys. doi: 10.1063/1.1386413 – volume: 41 start-page: 2250 year: 1964 ident: 2023062605464625200_c68 publication-title: J. Chem. Phys. doi: 10.1063/1.1726255 – volume: 84 start-page: 901 year: 1986 ident: 2023062605464625200_c69 publication-title: J. Chem. Phys. doi: 10.1063/1.450535 – start-page: 164 year: 1973 ident: 2023062605464625200_c36 – volume: 86 start-page: 4070 year: 1987 ident: 2023062605464625200_c38 publication-title: J. Chem. Phys. doi: 10.1063/1.451917 – volume: 88 start-page: 67901 year: 2002 ident: 2023062605464625200_c11 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.88.067901 – volume: 57 start-page: 921 year: 1961 ident: 2023062605464625200_c61 publication-title: Trans. Faraday Soc. doi: 10.1039/tf9615700921 – volume: 113 start-page: 21 year: 2013 ident: 2023062605464625200_c2 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.24355 – volume: 119 start-page: 11099 year: 2003 ident: 2023062605464625200_c37 publication-title: J. Chem. Phys. doi: 10.1063/1.1622923 – volume: 38 start-page: 4696 year: 1999 ident: 2023062605464625200_c58 publication-title: Inorg. Chem. doi: 10.1021/ic990506m – volume: 4 start-page: 1029 year: 2008 ident: 2023062605464625200_c24 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct8000409 – volume: 114 start-page: 48 year: 2001 ident: 2023062605464625200_c52 publication-title: J. Chem. Phys. doi: 10.1063/1.1329891 – volume: 101 start-page: 1345 year: 2003 ident: 2023062605464625200_c71 publication-title: Mol. Phys. doi: 10.1080/0026897031000094498 – volume: 113 start-page: 23004 year: 2014 ident: 2023062605464625200_c12 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.113.023004 – volume: 117 start-page: 10548 year: 2002 ident: 2023062605464625200_c42 publication-title: J. Chem. Phys. doi: 10.1063/1.1520138 – volume: 3 start-page: 273 year: 2013 ident: 2023062605464625200_c1 publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci. doi: 10.1002/wcms.1123 – volume: 29 start-page: 817 year: 1997 ident: 2023062605464625200_c67 publication-title: J. Chem. Thermodyn. doi: 10.1006/jcht.1997.0206 – volume: 283 start-page: 18 year: 2013 ident: 2023062605464625200_c63 publication-title: J. Mol. Spectrosc. doi: 10.1016/j.jms.2012.12.004 – volume: 121 start-page: 289 year: 2008 ident: 2023062605464625200_c22 publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-008-0476-x – volume: 77 start-page: 516 year: 2000 ident: 2023062605464625200_c39 publication-title: Int. J. Quantum Chem. doi: 10.1002/(sici)1097-461x(2000)77:2<516::aid-qua2>3.0.co;2-u – volume: 131 start-page: 1081 year: 2012 ident: 2023062605464625200_c28 publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-011-1081-y – volume: 112 start-page: 10070 year: 2000 ident: 2023062605464625200_c40 publication-title: J. Chem. Phys. doi: 10.1063/1.481648 – volume: 142 start-page: 170901 year: 2015 ident: 2023062605464625200_c16 publication-title: J. Chem. Phys. doi: 10.1063/1.4916903 – volume: 11 start-page: L589 year: 1978 ident: 2023062605464625200_c46 publication-title: J. Phys. B: At. Mol. Phys. doi: 10.1088/0022-3700/11/19/005 |
SSID | ssj0001724 |
Score | 2.6274192 |
Snippet | New correlation consistent basis sets based on pseudopotential (PP) Hamiltonians have been developed from double- to quintuple-zeta quality for the late alkali... |
SourceID | osti proquest pubmed crossref scitation |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 244106 |
Title | Gaussian basis sets for use in correlated molecular calculations. XI. Pseudopotential-based and all-electron relativistic basis sets for alkali metal (K–Fr) and alkaline earth (Ca–Ra) elements |
URI | http://dx.doi.org/10.1063/1.5010587 https://www.ncbi.nlm.nih.gov/pubmed/29289120 https://www.proquest.com/docview/1983256787 https://www.osti.gov/biblio/1414607 |
Volume | 147 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtRADLbKVqhwQFAoLIXKUA7bQ5b8NzlWW5ZSKCpQpL1FE4-jVqRJ1cly5h14JZ6EJ8GzSVYFtRKHnOxkInlmvs-yZz6AV6nNKfJU1je7u06oyHdSTey4uVv4ucopWhyPPvoYH3wND2fRbAW2b6jgx8FrbxxZFcdk9xas-kKOkwGs7h3ufzpebriCwd1ly55jCXl_gdDVl_-CnUEty-c6SnkX1gR42hr4FZiZ3od7HT_EvTagD2CFq3VYm_SybOtwe9GzSeYh_Hqr5saegUSBojODhhuDwkFxbhjPKiQrvFEKl9R43ovgooSEOsUuM8bZuzEeG57r-qJubN-QKh2LaxpVJU9ZOr1MDraHXr4v7nX-d0BVfhM6j-csTB5H73__-Dm93Ok-YS0Voyyo5hRHEyXGz2oHuW1bN4_gZPrmZHLgdKIMDkkm1zhFwSpI8kiliUfs6cInAT8dJJLeMgcslComFjuxpI46LaiIA-F1lLh-QV6wAYOqrvgJoJbNpRB-6lslcspDFbGkKxTmHGodFckQRn3Isj4oVjejzBaF8zjIvKyL7hBeLl0v2ls6rnPatHHPbISZTsk2ElEjuY-AhSvWF_10yCSitmyiKq7nJvNS2fUiAXXxedzOk-UgfioJq-e7Q9heTpyb_-Dpf3ltwh3fcgfPnpt_BoPmcs7Phfk0-ZbM_P2jD1-2uhXwBwEOAnU |
linkProvider | American Institute of Physics |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZgK7RwQFAoLOVhHoftwdu8mxyrhWX7VEGLtLfIGU_UhTSJ6oQz_4G_xC_hlzDOYymoSBxyshNbGdvfN_LMfIy9iYxPkUS0v9HaE54ER0QKUFiJlTqJTMBv0qNPToP5J-9w6S-72ByTC0OT0BO5KptL_M9Q7nY_UGTEOevyd8GBwN21J77Rdwz3brIN8saDcMA29g_ffjhbH8WEzl0ZZlsYqt6XFrr68h-ANChoY11HNu-wIUFSezt-BYBm99jdjjny_Xam99kNzDfZcNoLtm2yW000J-gH7Md7WWuTHckJpFaaa6w0J3bKa418lXMwkhwZsUzFL3p5XE7Ggk7LS0_48mDCzzTWqiiLykQUyUwYxFNc5vRkmegFdHibDvO1qfj894Ay-0JEn18gcXw-Pvr57fvscqf7hGnJkdNWq875eCqp8aPc4dgGtOuHbDF7t5jORSfXIIB8vEqkKUo3THwZhTagrVIHCBaVG5Lji-gika0AkNoByalUUQpp4BLjg9ByUrDdLTbIixwfM67o2EmJuTpGoxwST_pIjgx4CXpK-Wk4YuPeZHFvFKOokcXNlXrgxnbcWXfEXq27lm39jus6bRu7x8bCCOdgQoygIq-IYMSi1pf9cojJouZCReZY1Dq2IzoPfYJ76vOoXSfrQZyIXFnbsUbs9Xrh_HsGT_6r1ws2nC9OjuPjg9OjbXbbMQzDNtn1T9mguqzxGfGjKnne7YJfcAQN4g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gaussian+basis+sets+for+use+in+correlated+molecular+calculations.+XI.+Pseudopotential-based+and+all-electron+relativistic+basis+sets+for+alkali+metal+%28K%E2%80%93Fr%29+and+alkaline+earth+%28Ca%E2%80%93Ra%29+elements&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Hill%2C+J.+Grant&rft.au=Peterson%2C+Kirk+A.&rft.date=2017-12-28&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=147&rft.issue=24&rft_id=info:doi/10.1063%2F1.5010587&rft.externalDocID=jcp |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |