Mechanism and application of exosomes in the wound healing process in diabetes mellitus
•The process of wound healing and the factors affecting the delayed healing of diabetic wounds.•Exosomes promote the recovery of important cellular functions in the process of diabetic wound healing, such as endothelial cells, fibroblasts, macrophages, and keratinocytes.•Exosomes promote diabetic wo...
Saved in:
Published in | Diabetes research and clinical practice Vol. 187; p. 109882 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier B.V
01.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The process of wound healing and the factors affecting the delayed healing of diabetic wounds.•Exosomes promote the recovery of important cellular functions in the process of diabetic wound healing, such as endothelial cells, fibroblasts, macrophages, and keratinocytes.•Exosomes promote diabetic wound healing by inhibiting inflammation, promoting angiogenesis and collagen deposition.•The molecular mechanism of exosomal proteins, miRNAs, lncRNA and circRNA in diabetic wound healing.•The mechanism and application of exosomes combined with various hydrogels, dressings in diabetic wound healing.
Poor wound healing can seriously affect the health of patients with diabetes and result in a heavy medical burden. Recently, exosomes have been considered the key substances involved in the healing of diabetic wounds. The important cells related to the process of diabetic wound healing include endothelial cells (ECs), fibroblasts, macrophages, and keratinocytes. Accumulating evidence indicates that exosomes participate in intercellular communication by regulating the expression of biologically functional molecules and modulating the aforementioned cells through various pathways, thereby promoting angiogenesis, collagen synthesis as well as inhibiting inflammation. This article reviews the mechanism of exosomes in the aforementioned cells and their role in diabetic wound healing. This review further discusses the combined use of exosomes and hydrogels or dressings to prolong the residence time of exosomes in wounds. A better understanding of the mechanism through which exosomes participate in wound healing in diabetes and its impact on the wound healing process may provide insights into the future treatment of diabetic wounds. |
---|---|
AbstractList | Poor wound healing can seriously affect the health of patients with diabetes and result in a heavy medical burden. Recently, exosomes have been considered the key substances involved in the healing of diabetic wounds. The important cells related to the process of diabetic wound healing include endothelial cells (ECs), fibroblasts, macrophages, and keratinocytes. Accumulating evidence indicates that exosomes participate in intercellular communication by regulating the expression of biologically functional molecules and modulating the aforementioned cells through various pathways, thereby promoting angiogenesis, collagen synthesis as well as inhibiting inflammation. This article reviews the mechanism of exosomes in the aforementioned cells and their role in diabetic wound healing. This review further discusses the combined use of exosomes and hydrogels or dressings to prolong the residence time of exosomes in wounds. A better understanding of the mechanism through which exosomes participate in wound healing in diabetes and its impact on the wound healing process may provide insights into the future treatment of diabetic wounds. •The process of wound healing and the factors affecting the delayed healing of diabetic wounds.•Exosomes promote the recovery of important cellular functions in the process of diabetic wound healing, such as endothelial cells, fibroblasts, macrophages, and keratinocytes.•Exosomes promote diabetic wound healing by inhibiting inflammation, promoting angiogenesis and collagen deposition.•The molecular mechanism of exosomal proteins, miRNAs, lncRNA and circRNA in diabetic wound healing.•The mechanism and application of exosomes combined with various hydrogels, dressings in diabetic wound healing. Poor wound healing can seriously affect the health of patients with diabetes and result in a heavy medical burden. Recently, exosomes have been considered the key substances involved in the healing of diabetic wounds. The important cells related to the process of diabetic wound healing include endothelial cells (ECs), fibroblasts, macrophages, and keratinocytes. Accumulating evidence indicates that exosomes participate in intercellular communication by regulating the expression of biologically functional molecules and modulating the aforementioned cells through various pathways, thereby promoting angiogenesis, collagen synthesis as well as inhibiting inflammation. This article reviews the mechanism of exosomes in the aforementioned cells and their role in diabetic wound healing. This review further discusses the combined use of exosomes and hydrogels or dressings to prolong the residence time of exosomes in wounds. A better understanding of the mechanism through which exosomes participate in wound healing in diabetes and its impact on the wound healing process may provide insights into the future treatment of diabetic wounds. Poor wound healing can seriously affect the health of patients with diabetes and result in a heavy medical burden. Recently, exosomes have been considered the key substances involved in the healing of diabetic wounds. The important cells related to the process of diabetic wound healing include endothelial cells (ECs), fibroblasts, macrophages, and keratinocytes. Accumulating evidence indicates that exosomes participate in intercellular communication by regulating the expression of biologically functional molecules and modulating the aforementioned cells through various pathways, thereby promoting angiogenesis, collagen synthesis as well as inhibiting inflammation. This article reviews the mechanism of exosomes in the aforementioned cells and their role in diabetic wound healing. This review further discusses the combined use of exosomes and hydrogels or dressings to prolong the residence time of exosomes in wounds. A better understanding of the mechanism through which exosomes participate in wound healing in diabetes and its impact on the wound healing process may provide insights into the future treatment of diabetic wounds.Poor wound healing can seriously affect the health of patients with diabetes and result in a heavy medical burden. Recently, exosomes have been considered the key substances involved in the healing of diabetic wounds. The important cells related to the process of diabetic wound healing include endothelial cells (ECs), fibroblasts, macrophages, and keratinocytes. Accumulating evidence indicates that exosomes participate in intercellular communication by regulating the expression of biologically functional molecules and modulating the aforementioned cells through various pathways, thereby promoting angiogenesis, collagen synthesis as well as inhibiting inflammation. This article reviews the mechanism of exosomes in the aforementioned cells and their role in diabetic wound healing. This review further discusses the combined use of exosomes and hydrogels or dressings to prolong the residence time of exosomes in wounds. A better understanding of the mechanism through which exosomes participate in wound healing in diabetes and its impact on the wound healing process may provide insights into the future treatment of diabetic wounds. |
ArticleNumber | 109882 |
Author | Li, Danyang Wu, Na |
Author_xml | – sequence: 1 givenname: Danyang surname: Li fullname: Li, Danyang organization: Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, People’s Republic of China – sequence: 2 givenname: Na surname: Wu fullname: Wu, Na email: 3441535223@qq.com organization: Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, People’s Republic of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35487341$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1PGzEQhq0KVALtTyjaYy8Jtte7doRQhRBtkUC9tOrRmtizjcOundreFv59nQ84cKEnWzPPOxo9c0wOfPBIyAdGZ4yy9mw1sw4WEdOMU85Lba4Uf0MmTEk-VZzLAzIpnNr-j8hxSitKaVuL5i05qhuhZC3YhPy8Q7ME79JQgbcVrNe9M5Bd8FXoKnwIKQyYKuervMTqbxgLtETonf9VrWMwmLbNzS6YCzhg37s8pnfksIM-4fv9e0J-fL7-fvV1evvty83V5e3UCKHytOuENG1jOWPG1MixEw1dtHIObakBQENrlNYgKmE4SGnndQettGxuO9FCfUI-7uaWZX6PmLIeXDJlCfAYxqR52yhecyZYQU_36LgY0Op1dAPER_0kowDNDjAxpBSxe0YY1RvpeqX30vVGut5JL7nzFznj8tZhjuD6V9Ofdmksmv44jDoZh96gdRFN1ja4VydcvJhgyn3KGft7fPyP_D-O-7Yw |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2024_130989 crossref_primary_10_1021_acsabm_4c00992 crossref_primary_10_22467_jwmr_2023_02817 crossref_primary_10_1093_burnst_tkae078 crossref_primary_10_1177_20417314221114273 crossref_primary_10_1208_s12249_023_02704_7 crossref_primary_10_4239_wjd_v15_i11_2177 crossref_primary_10_3390_cells12131738 crossref_primary_10_3389_fbioe_2023_1301362 crossref_primary_10_1007_s12195_024_00816_z crossref_primary_10_1016_j_bioactmat_2023_05_002 crossref_primary_10_3390_ijms231810421 crossref_primary_10_1016_j_bbrc_2023_149271 crossref_primary_10_1002_smll_202306721 crossref_primary_10_1016_j_mtbio_2024_101359 crossref_primary_10_1016_j_biopha_2024_117386 crossref_primary_10_3390_gels9050381 crossref_primary_10_3389_fbioe_2023_1322514 crossref_primary_10_12968_bjcn_2022_27_Sup6_S12 crossref_primary_10_3390_biomedicines10092226 crossref_primary_10_1080_14786419_2024_2352144 crossref_primary_10_3390_cosmetics11050154 crossref_primary_10_1016_j_ijbiomac_2024_131220 crossref_primary_10_1186_s13287_025_04205_9 crossref_primary_10_1016_j_mtbio_2024_101186 crossref_primary_10_1002_adtp_202400016 crossref_primary_10_1016_j_giant_2024_100251 crossref_primary_10_1007_s12015_023_10571_9 crossref_primary_10_1016_j_mtbio_2023_100556 crossref_primary_10_3390_pharmaceutics15102437 crossref_primary_10_1007_s11033_023_08782_x crossref_primary_10_1016_j_heliyon_2025_e42723 crossref_primary_10_1016_j_reth_2025_02_002 crossref_primary_10_2147_IJN_S463296 crossref_primary_10_3389_fendo_2024_1398382 crossref_primary_10_1021_acs_jproteome_4c00352 crossref_primary_10_1093_asjof_ojad064 crossref_primary_10_1016_j_jddst_2024_106395 crossref_primary_10_1093_burnst_tkae015 crossref_primary_10_1007_s00109_023_02357_w crossref_primary_10_1016_j_envres_2023_117087 crossref_primary_10_1016_j_ijbiomac_2024_132384 crossref_primary_10_1186_s12951_023_01923_1 crossref_primary_10_3390_polym15234542 crossref_primary_10_1016_j_abb_2023_109822 crossref_primary_10_1016_j_jddst_2024_105903 crossref_primary_10_1016_j_tice_2024_102302 crossref_primary_10_1007_s12015_024_10791_7 crossref_primary_10_2147_IJN_S387382 crossref_primary_10_3389_fbioe_2022_1083640 crossref_primary_10_3389_fendo_2023_1146991 crossref_primary_10_1016_j_jconrel_2023_03_013 crossref_primary_10_1248_cpb_c24_00117 crossref_primary_10_12968_jowc_2023_32_Sup4b_S1 crossref_primary_10_1002_adma_202212000 crossref_primary_10_4239_wjd_v13_i11_949 crossref_primary_10_1016_j_mtbio_2022_100522 crossref_primary_10_2147_IJN_S436350 crossref_primary_10_1016_j_yexcr_2025_114483 crossref_primary_10_1016_j_saa_2023_123176 crossref_primary_10_3390_ijms241411873 crossref_primary_10_1021_acsabm_4c00569 crossref_primary_10_3389_fimmu_2023_1142088 crossref_primary_10_1016_j_tice_2023_102252 crossref_primary_10_3390_ijms25010485 crossref_primary_10_1016_j_jid_2024_05_007 crossref_primary_10_3390_bioengineering10101140 crossref_primary_10_1016_j_bbcan_2024_189177 crossref_primary_10_1016_j_cej_2024_149493 crossref_primary_10_1016_j_ijbiomac_2024_139206 crossref_primary_10_1002_biot_202300596 crossref_primary_10_1021_acs_biomac_4c00845 crossref_primary_10_1186_s40824_023_00433_3 crossref_primary_10_1039_D3TB02158K crossref_primary_10_1016_j_jddst_2024_105832 |
Cites_doi | 10.1016/j.diabres.2019.107843 10.1097/01.prs.0000222562.60260.f9 10.1126/scitranslmed.3002614 10.1002/dmrr.2239 10.1038/s41434-018-0037-4 10.1097/00129334-200511000-00014 10.1097/01.prs.0000225430.42531.c2 10.1080/21691401.2019.1669617 10.15252/embj.201592484 10.1126/science.aau6977 10.1080/15384101.2021.1894813 |
ContentType | Journal Article |
Copyright | 2022 The Author(s) Copyright © 2022 The Author(s). Published by Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2022 The Author(s) – notice: Copyright © 2022 The Author(s). Published by Elsevier B.V. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.diabres.2022.109882 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1872-8227 |
ExternalDocumentID | 35487341 10_1016_j_diabres_2022_109882 S0168822722006957 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5RE 5VS 6PF 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABFNM ABGSF ABJNI ABMAC ABMZM ABUDA ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX ADVLN AEBSH AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HDZ HMK HMO HVGLF HZ~ IHE J1W KOM LZ1 M29 M41 MO0 N9A O-L O9- OAUVE OB0 ON- OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SEL SES SEW SPCBC SSH SSU SSZ T5K WUQ X7M Z5R ZGI ~G- 6I. AACTN AAFTH AAIAV ABLVK ABYKQ AFKWA AHPSJ AJBFU AJOXV AMFUW DOVZS EFLBG LCYCR RIG ZA5 AAYXX AFCTW AGRNS CITATION NPM 7X8 |
ID | FETCH-LOGICAL-c448t-ff47c65d211cc3e2ef450b679a6d21aaa503e7dcee84c2a77d93fa67d19df46a3 |
IEDL.DBID | .~1 |
ISSN | 0168-8227 1872-8227 |
IngestDate | Fri Jul 11 13:09:11 EDT 2025 Wed Feb 19 02:26:20 EST 2025 Thu Apr 24 23:11:18 EDT 2025 Tue Jul 01 01:02:52 EDT 2025 Fri Feb 23 02:38:19 EST 2024 Tue Aug 26 16:32:24 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Exosomes Mechanism Diabetic wound healing |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2022 The Author(s). Published by Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c448t-ff47c65d211cc3e2ef450b679a6d21aaa503e7dcee84c2a77d93fa67d19df46a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0168822722006957 |
PMID | 35487341 |
PQID | 2658232141 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2658232141 pubmed_primary_35487341 crossref_primary_10_1016_j_diabres_2022_109882 crossref_citationtrail_10_1016_j_diabres_2022_109882 elsevier_sciencedirect_doi_10_1016_j_diabres_2022_109882 elsevier_clinicalkey_doi_10_1016_j_diabres_2022_109882 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2022 2022-05-00 2022-May 20220501 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
PublicationDecade | 2020 |
PublicationPlace | Ireland |
PublicationPlace_xml | – name: Ireland |
PublicationTitle | Diabetes research and clinical practice |
PublicationTitleAlternate | Diabetes Res Clin Pract |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Shiekh, Singh, Kumar (b0415) 2020; 249 Li, Talcott, Zhai, Kruger, Li (b0155) 2005; 18 Lan, Huang, Wu, Wu, Chen (b0225) 2016; 169 Chen, Shi, Fu, Liu, Shi, Zhang (b0360) 2020; 24 Broughton, Janis, Attinger (b0130) 2006; 117 Chen, Qin, Chen, Hu, Wang, Shen (b0295) 2021; 45 Xu, Bai, Cao, Liu, Fang, Du (b0040) 2020; 13 Trebaul, Chan, Midwood (b0305) 2007; 35 Katzmann, Babst, Emr (b0075) 2001; 106 Jeppesen, Hvam, Primdahl-Bengtson, Boysen, Whitehead, Dyrskjøt (b0105) 2014; 3 Tandara, Mustoe (b0275) 2004; 28 Li, Wang, Tian, Wei, Zhao, Shi (b0245) 2019; 47 Hu, Lan (b0270) 2016; 84 Wang, Chopp, Szalad, Lu, Zhang, Wang (b0385) 2020; 69 Beanes, Dang, Soo, Ting (b0325) 2003; 5 Xiong, Chen, Yu, Yan, Zhou, Cao (b0345) 2020; 12 Guo, Dipietro (b0115) 2010; 89 Geiger, Walker, Nissen (b0230) 2015; 467 Shi, Qian, Liu, Sun, Wang, Liu (b0395) 2017; 8 Wang, Wu, Peng, Zhao, Qin, Zhang (b0045) 2021; 19 Lauwers, Wang, Gallardo, Van der Kant, Michiels, Swerts (b0095) 2018; 71 Zhang, Jiang, Huang, Wu, Pu, Xu (b0160) 2021; 12 Long, Rojo, Wen, Bharara, Jiang, Zhang (b0260) 2016; 65 Kurkinen, Vaheri, Roberts, Stenman (b0300) 1980; 43 Shafei, Khanmohammadi, Heidari, Ghanbari, Taghdiri, Farzamfar (b0060) 2020; 108 Losi, Briganti, Errico, Lisella, Sanguinetti, Chiellini (b0335) 2013; 9 Wei, Zhong, Yang, Shu, Xiao, Gong (b0285) 2020; 8 Martino, Tortelli, Mochizuki, Traub, Ben-David, Kuhn (b0330) 2011; 3 Fan, Li, Szalad, Wang, Pan, Zhang (b0380) 2020; 63 Kalluri, LeBleu (b0015) 2020; 367 Loots, Lamme, Mekkes, Bos, Middelkoop (b0185) 1999; 291 Chen, Rao, Ren, Hu, Tan, Hu (b0340) 2018; 8 Xu, Wang, Guan, Tang, He, Zhang (b0400) 2018; 117 Zykova, Jenssen, Berdal, Olsen, Myklebust, Seljelid (b0135) 2000; 49 Bannon, Wood, Restivo, Campbell, Hardman, Mace (b0120) 2013; 6 Zou, Lai, Zhang, Zheng, Xing, Li (b0100) 2019; 6 Lan, Wu, Huang, Wu, Chen (b0140) 2013; 62 Liu, Yu, Xie, Wang, Ye, Zhu (b0215) 2020; 11 Yoo, Kwon (b0150) 2013; 2013 Xiao, Xiao, Miao, Wang, Chen, Fan (b0425) 2021; 12 Zhang, Chen, Hu, Niu, Liu, Zhang (b0165) 2016; 12 Li, Xie, Lian, Shi, Han, Zhang (b0265) 2018; 50 Han, Cao, Liu, Yang, Qi, Xu (b0355) 2022; 183 Dalirfardouei, Jamialahmadi, Jafarian, Mahdipour (b0210) 2019; 13 Clore, Cohen, Diegelmann (b0310) 1979; 161 Xiong, Chen, Yan, Zhou, Endo, Liu (b0055) 2020; 16 Wang, Wang, Xu, Zhang, Lin, Gao (b0065) 2019; 9 Colombo, Moita, van Niel, Kowal, Vigneron, Benaroch (b0090) 2013; 126 Wang, Liang, Wang, Yao, Guo, Yuan (b0390) 2019; 8 Zhang, Zhang, Gao, Chang, Chen, Mei (b0410) 2021; 120 Suga, Rennert, Rodrigues, Sorkin, Glotzbach, Januszyk (b0170) 2014; 32 Xu, Ouyang, He, Qu, Han, Duan (b0350) 2020; 24 Bainbridge (b0175) 2013; 22 Yager, Nwomeh (b0235) 1999; 7 Loot, Kenter, Au, van Galen, Middelkoop, Bos (b0145) 2002; 81 Sen (b0280) 2009; 17 Newsholme, Cruzat, Keane, Carlessi, de Bittencourt (b0255) 2016; 473 Hurley (b0080) 2015; 34 Shiekh, Singh, Kumar (b0420) 2020; 31 Boniakowski, Kimball, Jacobs, Kunkel, Gallagher (b0205) 2017; 199 Lan, Liu, Fang, Wen, Wu (b0220) 2008; 159 Phinney, Pittenger (b0020) 2017; 35 Song, Li, He, Qu, Jiang, Li (b0025) 2019; 9 Barros, Carneiro, Machado, Melo (b0110) 2018; 9 Tesfaye, Selvarajah (b0365) 2012; 28 Kobayashi, Ebisawa, Kambe, Kasai, Suga, Nakamura (b0190) 2018; 80 Saeedi, Petersohn, Salpea, Malanda, Karuranga, Unwin (b0005) 2019; 157 Ge, Mu, Ba, Li, Jiang, Xia (b0035) 2020; 477 Ti, Hao, Tong, Liu, Dong, Zheng (b0050) 2015; 13 Cameron, Cotter (b0375) 1997; 46 Zhao, Zhang, Zhang, Lu, Zhang, Lu (b0320) 2021; 30 Walker, Nissen, Geiger (b0180) 2018; 70 Guo, Tao, Yin, Qi, Yuan, Zhang (b0195) 2017; 7 Meszaros, Reichner, Albina (b0240) 2000; 165 Henne, Buchkovich, Emr (b0085) 2011; 21 Castañeda-Delgado (b0010) 2018; 25 Wu, Gao, Yao, Ge (b0030) 2019; 10 Xu, Rai, Chen, Suwakulsiri, Greening, Simpson (b0070) 2018; 15 Efron, Frankel, Lazarou, Wasserkrug, Barbul (b0250) 1990; 48 Monteiro-Soares, Boyko, Ribeiro, Ribeiro, Dinis-Ribeiro (b0370) 2012; 28 Yang, Chen, Pan, Li, Shen (b0405) 2020; 15 Witte, Barbul (b0200) 1997; 77 Han, Wu, Li, Sahal, Ji, Zhang (b0315) 2021; 20 Hu, Tao, Chen, Xiong, Xue, Hu (b0290) 2021; 19 Broughton, Janis, Attinger (b0125) 2006; 117 Meszaros (10.1016/j.diabres.2022.109882_b0240) 2000; 165 Lauwers (10.1016/j.diabres.2022.109882_b0095) 2018; 71 Yager (10.1016/j.diabres.2022.109882_b0235) 1999; 7 Shiekh (10.1016/j.diabres.2022.109882_b0420) 2020; 31 Loots (10.1016/j.diabres.2022.109882_b0185) 1999; 291 Walker (10.1016/j.diabres.2022.109882_b0180) 2018; 70 Trebaul (10.1016/j.diabres.2022.109882_b0305) 2007; 35 Dalirfardouei (10.1016/j.diabres.2022.109882_b0210) 2019; 13 Castañeda-Delgado (10.1016/j.diabres.2022.109882_b0010) 2018; 25 Xu (10.1016/j.diabres.2022.109882_b0040) 2020; 13 Zou (10.1016/j.diabres.2022.109882_b0100) 2019; 6 Lan (10.1016/j.diabres.2022.109882_b0140) 2013; 62 Ge (10.1016/j.diabres.2022.109882_b0035) 2020; 477 Sen (10.1016/j.diabres.2022.109882_b0280) 2009; 17 Fan (10.1016/j.diabres.2022.109882_b0380) 2020; 63 Geiger (10.1016/j.diabres.2022.109882_b0230) 2015; 467 Zhang (10.1016/j.diabres.2022.109882_b0160) 2021; 12 Newsholme (10.1016/j.diabres.2022.109882_b0255) 2016; 473 Barros (10.1016/j.diabres.2022.109882_b0110) 2018; 9 Kobayashi (10.1016/j.diabres.2022.109882_b0190) 2018; 80 Yoo (10.1016/j.diabres.2022.109882_b0150) 2013; 2013 Song (10.1016/j.diabres.2022.109882_b0025) 2019; 9 Liu (10.1016/j.diabres.2022.109882_b0215) 2020; 11 Beanes (10.1016/j.diabres.2022.109882_b0325) 2003; 5 Xu (10.1016/j.diabres.2022.109882_b0400) 2018; 117 Wu (10.1016/j.diabres.2022.109882_b0030) 2019; 10 Broughton (10.1016/j.diabres.2022.109882_b0130) 2006; 117 Saeedi (10.1016/j.diabres.2022.109882_b0005) 2019; 157 Kalluri (10.1016/j.diabres.2022.109882_b0015) 2020; 367 Hurley (10.1016/j.diabres.2022.109882_b0080) 2015; 34 Lan (10.1016/j.diabres.2022.109882_b0220) 2008; 159 Li (10.1016/j.diabres.2022.109882_b0155) 2005; 18 Henne (10.1016/j.diabres.2022.109882_b0085) 2011; 21 Bannon (10.1016/j.diabres.2022.109882_b0120) 2013; 6 Zhao (10.1016/j.diabres.2022.109882_b0320) 2021; 30 Bainbridge (10.1016/j.diabres.2022.109882_b0175) 2013; 22 Lan (10.1016/j.diabres.2022.109882_b0225) 2016; 169 Ti (10.1016/j.diabres.2022.109882_b0050) 2015; 13 Guo (10.1016/j.diabres.2022.109882_b0115) 2010; 89 Han (10.1016/j.diabres.2022.109882_b0355) 2022; 183 Cameron (10.1016/j.diabres.2022.109882_b0375) 1997; 46 Katzmann (10.1016/j.diabres.2022.109882_b0075) 2001; 106 Tandara (10.1016/j.diabres.2022.109882_b0275) 2004; 28 Han (10.1016/j.diabres.2022.109882_b0315) 2021; 20 Jeppesen (10.1016/j.diabres.2022.109882_b0105) 2014; 3 Witte (10.1016/j.diabres.2022.109882_b0200) 1997; 77 Hu (10.1016/j.diabres.2022.109882_b0270) 2016; 84 Losi (10.1016/j.diabres.2022.109882_b0335) 2013; 9 Chen (10.1016/j.diabres.2022.109882_b0340) 2018; 8 Clore (10.1016/j.diabres.2022.109882_b0310) 1979; 161 Loot (10.1016/j.diabres.2022.109882_b0145) 2002; 81 Li (10.1016/j.diabres.2022.109882_b0265) 2018; 50 Xiao (10.1016/j.diabres.2022.109882_b0425) 2021; 12 Li (10.1016/j.diabres.2022.109882_b0245) 2019; 47 Zykova (10.1016/j.diabres.2022.109882_b0135) 2000; 49 Monteiro-Soares (10.1016/j.diabres.2022.109882_b0370) 2012; 28 Xu (10.1016/j.diabres.2022.109882_b0070) 2018; 15 Zhang (10.1016/j.diabres.2022.109882_b0410) 2021; 120 Efron (10.1016/j.diabres.2022.109882_b0250) 1990; 48 Long (10.1016/j.diabres.2022.109882_b0260) 2016; 65 Kurkinen (10.1016/j.diabres.2022.109882_b0300) 1980; 43 Chen (10.1016/j.diabres.2022.109882_b0360) 2020; 24 Zhang (10.1016/j.diabres.2022.109882_b0165) 2016; 12 Suga (10.1016/j.diabres.2022.109882_b0170) 2014; 32 Chen (10.1016/j.diabres.2022.109882_b0295) 2021; 45 Wang (10.1016/j.diabres.2022.109882_b0045) 2021; 19 Wang (10.1016/j.diabres.2022.109882_b0390) 2019; 8 Boniakowski (10.1016/j.diabres.2022.109882_b0205) 2017; 199 Shi (10.1016/j.diabres.2022.109882_b0395) 2017; 8 Guo (10.1016/j.diabres.2022.109882_b0195) 2017; 7 Phinney (10.1016/j.diabres.2022.109882_b0020) 2017; 35 Xiong (10.1016/j.diabres.2022.109882_b0345) 2020; 12 Xiong (10.1016/j.diabres.2022.109882_b0055) 2020; 16 Hu (10.1016/j.diabres.2022.109882_b0290) 2021; 19 Broughton (10.1016/j.diabres.2022.109882_b0125) 2006; 117 Martino (10.1016/j.diabres.2022.109882_b0330) 2011; 3 Shafei (10.1016/j.diabres.2022.109882_b0060) 2020; 108 Wei (10.1016/j.diabres.2022.109882_b0285) 2020; 8 Xu (10.1016/j.diabres.2022.109882_b0350) 2020; 24 Yang (10.1016/j.diabres.2022.109882_b0405) 2020; 15 Wang (10.1016/j.diabres.2022.109882_b0065) 2019; 9 Tesfaye (10.1016/j.diabres.2022.109882_b0365) 2012; 28 Shiekh (10.1016/j.diabres.2022.109882_b0415) 2020; 249 Colombo (10.1016/j.diabres.2022.109882_b0090) 2013; 126 Wang (10.1016/j.diabres.2022.109882_b0385) 2020; 69 |
References_xml | – volume: 11 year: 2020 ident: b0215 article-title: Melatonin-stimulated MSC-derived exosomes improve diabetic wound healing through regulating macrophage M1 and M2 polarization by targeting the PTEN/AKT pathway publication-title: STEM CELL RES THER – volume: 80 year: 2018 ident: b0190 article-title: < Editors' Choice > Effects of exosomes derived from the induced pluripotent stem cells on skin wound healing publication-title: NAGOYA J MED SCI – volume: 20 start-page: 616 year: 2021 end-page: 629 ident: b0315 article-title: Exosomes derived from autologous dermal fibroblasts promote diabetic cutaneous wound healing through the Akt/β-catenin pathway publication-title: CELL CYCLE. – volume: 9 year: 2019 ident: b0065 article-title: Engineering Bioactive Self-Healing Antibacterial Exosomes Hydrogel for Promoting Chronic Diabetic Wound Healing and Complete Skin Regeneration publication-title: THERANOSTICS – volume: 12 year: 2021 ident: b0160 article-title: Exosomes derived from adipose-derived stem cells overexpressing glyoxalase-1 protect endothelial cells and enhance angiogenesis in type 2 diabetic mice with limb ischemia publication-title: STEM CELL RES THER – volume: 24 year: 2020 ident: b0350 article-title: Inhibition of exosomal miR-24-3p in diabetes restores angiogenesis and facilitates wound repair via targeting PIK3R3 publication-title: J CELL MOL MED – volume: 19 year: 2021 ident: b0045 article-title: Hypoxia adipose stem cell-derived exosomes promote high-quality healing of diabetic wound involves activation of PI3K/Akt pathways publication-title: J Nanobiotechnology – volume: 34 start-page: 2398 year: 2015 end-page: 2407 ident: b0080 article-title: ESCRTs are everywhere publication-title: EMBO J. – volume: 46 year: 1997 ident: b0375 article-title: Metabolic and vascular factors in the pathogenesis of diabetic neuropathy publication-title: Diabetes – volume: 126 year: 2013 ident: b0090 article-title: Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles publication-title: J CELL SCI – volume: 12 year: 2016 ident: b0165 article-title: Exosomes Derived from Human Endothelial Progenitor Cells Accelerate Cutaneous Wound Healing by Promoting Angiogenesis Through Erk1/2 Signaling publication-title: INT J BIOL SCI – volume: 117 year: 2006 ident: b0130 article-title: The basic science of wound healing publication-title: PLAST RECONSTR SURG – volume: 161 year: 1979 ident: b0310 article-title: Quantitation of collagen types I and III during wound healing in rat skin publication-title: Proc Soc Exp Biol Med – volume: 169 year: 2016 ident: b0225 article-title: High-glucose environment increased thrombospondin-1 expression in keratinocytes via DNA hypomethylation publication-title: TRANSL RES – volume: 28 year: 2012 ident: b0370 article-title: Predictive factors for diabetic foot ulceration: a systematic review publication-title: Diabetes Metab Res Rev – volume: 50 year: 2018 ident: b0265 article-title: Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model publication-title: EXP MOL MED – volume: 477 year: 2020 ident: b0035 article-title: Hepatocellular carcinoma-derived exosomes in organotropic metastasis, recurrence and early diagnosis application publication-title: CANCER LETT – volume: 89 year: 2010 ident: b0115 article-title: Factors affecting wound healing publication-title: J DENT RES – volume: 28 year: 2004 ident: b0275 article-title: Oxygen in wound healing–more than a nutrient publication-title: WORLD J SURG – volume: 47 start-page: 3793 year: 2019 end-page: 3803 ident: b0245 article-title: Macrophage-derived exosomes accelerate wound healing through their anti-inflammation effects in a diabetic rat model publication-title: Artif Cells Nanomed Biotechnol. – volume: 13 year: 2019 ident: b0210 article-title: Promising effects of exosomes isolated from menstrual blood-derived mesenchymal stem cell on wound-healing process in diabetic mouse model publication-title: J Tissue Eng Regen Med – volume: 15 year: 2020 ident: b0405 article-title: Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomes Combined Pluronic F127 Hydrogel Promote Chronic Diabetic Wound Healing and Complete Skin Regeneration publication-title: Int J Nanomedicine – volume: 13 year: 2020 ident: b0040 article-title: miRNA-221-3p in Endothelial Progenitor Cell-Derived Exosomes Accelerates Skin Wound Healing in Diabetic Mice publication-title: Diabetes Metab Syndr Obes – volume: 35 year: 2007 ident: b0305 article-title: Regulation of fibroblast migration by tenascin-C publication-title: Biochem Soc Trans – volume: 108 year: 2020 ident: b0060 article-title: Exosome loaded alginate hydrogel promotes tissue regeneration in full-thickness skin wounds: An in vivo study publication-title: J BIOMED MATER RES A – volume: 8 year: 2020 ident: b0285 article-title: Exosomes derived from human amniotic epithelial cells accelerate diabetic wound healing via PI3K-AKT-mTOR-mediated promotion in angiogenesis and fibroblast function. Burns publication-title: Trauma – volume: 9 year: 2018 ident: b0110 article-title: Exosomes and Immune Response in Cancer: Friends or Foes? publication-title: FRONT IMMUNOL – volume: 6 year: 2013 ident: b0120 article-title: Diabetes induces stable intrinsic changes to myeloid cells that contribute to chronic inflammation during wound healing in mice publication-title: DIS MODEL MECH – volume: 165 year: 2000 ident: b0240 article-title: Macrophage-induced neutrophil apoptosis publication-title: J IMMUNOL – volume: 117 year: 2018 ident: b0400 article-title: Wound healing effects of a Curcuma zedoaria polysaccharide with platelet-rich plasma exosomes assembled on chitosan/silk hydrogel sponge in a diabetic rat model publication-title: INT J BIOL MACROMOL – volume: 291 year: 1999 ident: b0185 article-title: Cultured fibroblasts from chronic diabetic wounds on the lower extremity (non-insulin-dependent diabetes mellitus) show disturbed proliferation publication-title: ARCH DERMATOL RES – volume: 70 year: 2018 ident: b0180 article-title: Migratory, metabolic and functional alterations of fibrocytes in type 2 diabetes publication-title: IUBMB Life – volume: 10 year: 2019 ident: b0030 article-title: Roles of Exosomes Derived From Immune Cells in Cardiovascular Diseases publication-title: FRONT IMMUNOL – volume: 18 start-page: 501 year: 2005 end-page: 502 ident: b0155 article-title: The role of therapeutic angiogenesis in tissue repair and regeneration publication-title: ADV SKIN WOUND CARE – volume: 157 start-page: 107843 year: 2019 ident: b0005 article-title: Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition publication-title: Diabetes Res Clin Pract. – volume: 49 year: 2000 ident: b0135 article-title: Altered cytokine and nitric oxide secretion in vitro by macrophages from diabetic type II-like db/db mice publication-title: Diabetes – volume: 8 year: 2018 ident: b0340 article-title: Exosomal DMBT1 from human urine-derived stem cells facilitates diabetic wound repair by promoting angiogenesis publication-title: THERANOSTICS – volume: 77 year: 1997 ident: b0200 article-title: General principles of wound healing publication-title: Surg Clin North Am – volume: 9 year: 2013 ident: b0335 article-title: Fibrin-based scaffold incorporating VEGF- and bFGF-loaded nanoparticles stimulates wound healing in diabetic mice publication-title: ACTA BIOMATER – volume: 6 year: 2019 ident: b0100 article-title: Exosome Release Is Regulated by mTORC1 publication-title: Adv Sci (Weinh) – volume: 5 year: 2003 ident: b0325 article-title: Skin repair and scar formation: the central role of TGF-beta publication-title: EXPERT REV MOL MED – volume: 3 year: 2011 ident: b0330 article-title: Engineering the growth factor microenvironment with fibronectin domains to promote wound and bone tissue healing publication-title: SCI TRANSL MED – volume: 199 year: 2017 ident: b0205 article-title: Macrophage-Mediated Inflammation in Normal and Diabetic Wound Healing publication-title: J IMMUNOL – volume: 13 year: 2015 ident: b0050 article-title: LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b publication-title: J TRANSL MED – volume: 32 year: 2014 ident: b0170 article-title: Tracking the elusive fibrocyte: identification and characterization of collagen-producing hematopoietic lineage cells during murine wound healing publication-title: STEM CELLS – volume: 16 year: 2020 ident: b0055 article-title: Circulating Exosomal miR-20b-5p Inhibition Restores Wnt9b Signaling and Reverses Diabetes-Associated Impaired Wound Healing publication-title: SMALL – volume: 8 year: 2017 ident: b0395 article-title: GMSC-Derived Exosomes Combined with a Chitosan/Silk Hydrogel Sponge Accelerates Wound Healing in a Diabetic Rat Skin Defect Model publication-title: FRONT PHYSIOL – volume: 71 year: 2018 ident: b0095 article-title: Hsp90 Mediates Membrane Deformation and Exosome Release publication-title: MOL CELL – volume: 8 year: 2019 ident: b0390 article-title: The fabrication of a highly efficient self-healing hydrogel from natural biopolymers loaded with exosomes for the synergistic promotion of severe wound healing publication-title: Biomater Sci – volume: 473 year: 2016 ident: b0255 article-title: Molecular mechanisms of ROS production and oxidative stress in diabetes publication-title: BIOCHEM J – volume: 7 year: 1999 ident: b0235 article-title: The proteolytic environment of chronic wounds publication-title: WOUND REPAIR REGEN – volume: 69 year: 2020 ident: b0385 article-title: Exosomes Derived From Schwann Cells Ameliorate Peripheral Neuropathy in Type 2 Diabetic Mice publication-title: Diabetes – volume: 120 year: 2021 ident: b0410 article-title: Preparation of exosomes encapsulated nanohydrogel for accelerating wound healing of diabetic rats by promoting angiogenesis publication-title: Mater Sci Eng C Mater Biol Appl – volume: 62 year: 2013 ident: b0140 article-title: High-glucose environment enhanced oxidative stress and increased interleukin-8 secretion from keratinocytes: new insights into impaired diabetic wound healing publication-title: Diabetes – volume: 43 start-page: 47 year: 1980 end-page: 51 ident: b0300 article-title: Sequential appearance of fibronectin and collagen in experimental granulation tissue publication-title: LAB INVEST – volume: 31 year: 2020 ident: b0420 article-title: Data supporting exosome laden oxygen releasing antioxidant and antibacterial cryogel wound dressing OxOBand alleviate diabetic and infectious wound healing publication-title: Data Brief – volume: 159 year: 2008 ident: b0220 article-title: Hyperglycaemic conditions decrease cultured keratinocyte mobility: implications for impaired wound healing in patients with diabetes publication-title: Br J Dermatol – volume: 7 year: 2017 ident: b0195 article-title: Exosomes derived from platelet-rich plasma promote the re-epithelization of chronic cutaneous wounds via activation of YAP in a diabetic rat model publication-title: THERANOSTICS – volume: 45 year: 2021 ident: b0295 article-title: Serum exosomes accelerate diabetic wound healing by promoting angiogenesis and ECM formation publication-title: CELL BIOL INT – volume: 30 year: 2021 ident: b0320 article-title: Human Exosomes Accelerate Cutaneous Wound Healing by Promoting Collagen Synthesis in a Diabetic Mouse Model publication-title: STEM CELLS DEV – volume: 467 year: 2015 ident: b0230 article-title: Human fibrocyte-derived exosomes accelerate wound healing in genetically diabetic mice publication-title: Biochem Biophys Res Commun – volume: 249 year: 2020 ident: b0415 article-title: Exosome laden oxygen releasing antioxidant and antibacterial cryogel wound dressing OxOBand alleviate diabetic and infectious wound healing publication-title: Biomaterials – volume: 19 year: 2021 ident: b0290 article-title: Exosomes derived from pioglitazone-pretreated MSCs accelerate diabetic wound healing through enhancing angiogenesis publication-title: J Nanobiotechnology – volume: 106 year: 2001 ident: b0075 article-title: Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I publication-title: Cell – volume: 3 year: 2014 ident: b0105 article-title: Comparative analysis of discrete exosome fractions obtained by differential centrifugation publication-title: J Extracell Vesicles – volume: 28 start-page: 8 year: 2012 end-page: 14 ident: b0365 article-title: Advances in the epidemiology, pathogenesis and management of diabetic peripheral neuropathy publication-title: Diabetes Metab Res Rev – volume: 12 year: 2021 ident: b0425 article-title: Human acellular amniotic membrane incorporating exosomes from adipose-derived mesenchymal stem cells promotes diabetic wound healing publication-title: STEM CELL RES THER – volume: 367 year: 2020 ident: b0015 article-title: The biology, function, and biomedical applications of exosomes publication-title: SCIENCE. – volume: 17 year: 2009 ident: b0280 article-title: Wound healing essentials: let there be oxygen publication-title: WOUND REPAIR REGEN – volume: 25 start-page: 401 year: 2018 ident: b0010 article-title: Diabetic complication could get a gene therapy boost publication-title: GENE THER. – volume: 15 year: 2018 ident: b0070 article-title: Extracellular vesicles in cancer - implications for future improvements in cancer care publication-title: NAT REV CLIN ONCOL – volume: 24 year: 2020 ident: b0360 article-title: Serum and exosomal hsa_circ_0000907 and hsa_circ_0057362 as novel biomarkers in the early diagnosis of diabetic foot ulcer publication-title: Eur Rev Med Pharmacol Sci – volume: 22 start-page: 410 year: 2013 end-page: 412 ident: b0175 article-title: Wound healing and the role of fibroblasts. J WOUND publication-title: CARE – volume: 84 year: 2016 ident: b0270 article-title: High-glucose environment disturbs the physiologic functions of keratinocytes: Focusing on diabetic wound healing publication-title: J DERMATOL SCI – volume: 65 year: 2016 ident: b0260 article-title: An Essential Role of NRF2 in Diabetic Wound Healing publication-title: Diabetes – volume: 63 year: 2020 ident: b0380 article-title: Mesenchymal stromal cell-derived exosomes ameliorate peripheral neuropathy in a mouse model of diabetes publication-title: Diabetologia – volume: 12 year: 2020 ident: b0345 article-title: Inhibition of circulating exosomal microRNA-15a-3p accelerates diabetic wound repair publication-title: Aging (Albany NY) – volume: 9 year: 2019 ident: b0025 article-title: M2 microglia-derived exosomes protect the mouse brain from ischemia-reperfusion injury via exosomal miR-124 publication-title: THERANOSTICS – volume: 81 year: 2002 ident: b0145 article-title: Fibroblasts derived from chronic diabetic ulcers differ in their response to stimulation with EGF, IGF-I, bFGF and PDGF-AB compared to controls publication-title: EUR J CELL BIOL – volume: 117 year: 2006 ident: b0125 article-title: Wound healing: an overview publication-title: PLAST RECONSTR SURG – volume: 48 year: 1990 ident: b0250 article-title: Wound healing and T-lymphocytes publication-title: J SURG RES – volume: 35 year: 2017 ident: b0020 article-title: Concise Review: MSC-Derived Exosomes for Cell-Free Therapy publication-title: STEM CELLS – volume: 2013 year: 2013 ident: b0150 article-title: Angiogenesis and its therapeutic opportunities publication-title: Mediators Inflamm – volume: 183 year: 2022 ident: b0355 article-title: Exosomal lncRNA KLF3-AS1 derived from bone marrow mesenchymal stem cells stimulates angiogenesis to promote diabetic cutaneous wound healing publication-title: Diabetes Res Clin Pract – volume: 21 year: 2011 ident: b0085 article-title: The ESCRT pathway publication-title: DEV CELL – volume: 19 issue: 150 year: 2021 ident: 10.1016/j.diabres.2022.109882_b0290 article-title: Exosomes derived from pioglitazone-pretreated MSCs accelerate diabetic wound healing through enhancing angiogenesis publication-title: J Nanobiotechnology – volume: 108 issue: 545–556 year: 2020 ident: 10.1016/j.diabres.2022.109882_b0060 article-title: Exosome loaded alginate hydrogel promotes tissue regeneration in full-thickness skin wounds: An in vivo study publication-title: J BIOMED MATER RES A – volume: 84 issue: 121–127 year: 2016 ident: 10.1016/j.diabres.2022.109882_b0270 article-title: High-glucose environment disturbs the physiologic functions of keratinocytes: Focusing on diabetic wound healing publication-title: J DERMATOL SCI – volume: 17 issue: 1–18 year: 2009 ident: 10.1016/j.diabres.2022.109882_b0280 article-title: Wound healing essentials: let there be oxygen publication-title: WOUND REPAIR REGEN – volume: 45 issue: 1976–1985 year: 2021 ident: 10.1016/j.diabres.2022.109882_b0295 article-title: Serum exosomes accelerate diabetic wound healing by promoting angiogenesis and ECM formation publication-title: CELL BIOL INT – volume: 5 issue: 1–22 year: 2003 ident: 10.1016/j.diabres.2022.109882_b0325 article-title: Skin repair and scar formation: the central role of TGF-beta publication-title: EXPERT REV MOL MED – volume: 21 issue: 77–91 year: 2011 ident: 10.1016/j.diabres.2022.109882_b0085 article-title: The ESCRT pathway publication-title: DEV CELL – volume: 12 issue: 255 year: 2021 ident: 10.1016/j.diabres.2022.109882_b0425 article-title: Human acellular amniotic membrane incorporating exosomes from adipose-derived mesenchymal stem cells promotes diabetic wound healing publication-title: STEM CELL RES THER – volume: 49 issue: 1451–1458 year: 2000 ident: 10.1016/j.diabres.2022.109882_b0135 article-title: Altered cytokine and nitric oxide secretion in vitro by macrophages from diabetic type II-like db/db mice publication-title: Diabetes – volume: 12 issue: 1472–1487 year: 2016 ident: 10.1016/j.diabres.2022.109882_b0165 article-title: Exosomes Derived from Human Endothelial Progenitor Cells Accelerate Cutaneous Wound Healing by Promoting Angiogenesis Through Erk1/2 Signaling publication-title: INT J BIOL SCI – volume: 8 issue: 1607–1623 year: 2018 ident: 10.1016/j.diabres.2022.109882_b0340 article-title: Exosomal DMBT1 from human urine-derived stem cells facilitates diabetic wound repair by promoting angiogenesis publication-title: THERANOSTICS – volume: 10 issue: 648 year: 2019 ident: 10.1016/j.diabres.2022.109882_b0030 article-title: Roles of Exosomes Derived From Immune Cells in Cardiovascular Diseases publication-title: FRONT IMMUNOL – volume: 7 issue: 433–441 year: 1999 ident: 10.1016/j.diabres.2022.109882_b0235 article-title: The proteolytic environment of chronic wounds publication-title: WOUND REPAIR REGEN – volume: 22 start-page: 410 issue: 407–408 year: 2013 ident: 10.1016/j.diabres.2022.109882_b0175 article-title: Wound healing and the role of fibroblasts. J WOUND publication-title: CARE – volume: 48 issue: 460–463 year: 1990 ident: 10.1016/j.diabres.2022.109882_b0250 article-title: Wound healing and T-lymphocytes publication-title: J SURG RES – volume: 46 issue: Suppl 2 year: 1997 ident: 10.1016/j.diabres.2022.109882_b0375 article-title: Metabolic and vascular factors in the pathogenesis of diabetic neuropathy publication-title: Diabetes – volume: 157 start-page: 107843 year: 2019 ident: 10.1016/j.diabres.2022.109882_b0005 article-title: Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition publication-title: Diabetes Res Clin Pract. doi: 10.1016/j.diabres.2019.107843 – volume: 165 issue: 435–441 year: 2000 ident: 10.1016/j.diabres.2022.109882_b0240 article-title: Macrophage-induced neutrophil apoptosis publication-title: J IMMUNOL – volume: 117 year: 2006 ident: 10.1016/j.diabres.2022.109882_b0125 article-title: Wound healing: an overview publication-title: PLAST RECONSTR SURG doi: 10.1097/01.prs.0000222562.60260.f9 – volume: 3 year: 2011 ident: 10.1016/j.diabres.2022.109882_b0330 article-title: Engineering the growth factor microenvironment with fibronectin domains to promote wound and bone tissue healing publication-title: SCI TRANSL MED doi: 10.1126/scitranslmed.3002614 – volume: 106 issue: 145–155 year: 2001 ident: 10.1016/j.diabres.2022.109882_b0075 article-title: Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I publication-title: Cell – volume: 35 issue: 851–858 year: 2017 ident: 10.1016/j.diabres.2022.109882_b0020 article-title: Concise Review: MSC-Derived Exosomes for Cell-Free Therapy publication-title: STEM CELLS – volume: 30 issue: 922–933 year: 2021 ident: 10.1016/j.diabres.2022.109882_b0320 article-title: Human Exosomes Accelerate Cutaneous Wound Healing by Promoting Collagen Synthesis in a Diabetic Mouse Model publication-title: STEM CELLS DEV – volume: 6 issue: 1434–1447 year: 2013 ident: 10.1016/j.diabres.2022.109882_b0120 article-title: Diabetes induces stable intrinsic changes to myeloid cells that contribute to chronic inflammation during wound healing in mice publication-title: DIS MODEL MECH – volume: 31 issue: 105671 year: 2020 ident: 10.1016/j.diabres.2022.109882_b0420 article-title: Data supporting exosome laden oxygen releasing antioxidant and antibacterial cryogel wound dressing OxOBand alleviate diabetic and infectious wound healing publication-title: Data Brief – volume: 28 start-page: 8 issue: Suppl 1 year: 2012 ident: 10.1016/j.diabres.2022.109882_b0365 article-title: Advances in the epidemiology, pathogenesis and management of diabetic peripheral neuropathy publication-title: Diabetes Metab Res Rev doi: 10.1002/dmrr.2239 – volume: 62 issue: 2530–2538 year: 2013 ident: 10.1016/j.diabres.2022.109882_b0140 article-title: High-glucose environment enhanced oxidative stress and increased interleukin-8 secretion from keratinocytes: new insights into impaired diabetic wound healing publication-title: Diabetes – volume: 25 start-page: 401 year: 2018 ident: 10.1016/j.diabres.2022.109882_b0010 article-title: Diabetic complication could get a gene therapy boost publication-title: GENE THER. doi: 10.1038/s41434-018-0037-4 – volume: 6 issue: 1801313 year: 2019 ident: 10.1016/j.diabres.2022.109882_b0100 article-title: Exosome Release Is Regulated by mTORC1 publication-title: Adv Sci (Weinh) – volume: 18 start-page: 501 issue: 491–500 year: 2005 ident: 10.1016/j.diabres.2022.109882_b0155 article-title: The role of therapeutic angiogenesis in tissue repair and regeneration publication-title: ADV SKIN WOUND CARE doi: 10.1097/00129334-200511000-00014 – volume: 249 issue: 120020 year: 2020 ident: 10.1016/j.diabres.2022.109882_b0415 article-title: Exosome laden oxygen releasing antioxidant and antibacterial cryogel wound dressing OxOBand alleviate diabetic and infectious wound healing publication-title: Biomaterials – volume: 24 issue: 8117–8126 year: 2020 ident: 10.1016/j.diabres.2022.109882_b0360 article-title: Serum and exosomal hsa_circ_0000907 and hsa_circ_0057362 as novel biomarkers in the early diagnosis of diabetic foot ulcer publication-title: Eur Rev Med Pharmacol Sci – volume: 117 year: 2006 ident: 10.1016/j.diabres.2022.109882_b0130 article-title: The basic science of wound healing publication-title: PLAST RECONSTR SURG doi: 10.1097/01.prs.0000225430.42531.c2 – volume: 89 issue: 219–229 year: 2010 ident: 10.1016/j.diabres.2022.109882_b0115 article-title: Factors affecting wound healing publication-title: J DENT RES – volume: 467 issue: 303–309 year: 2015 ident: 10.1016/j.diabres.2022.109882_b0230 article-title: Human fibrocyte-derived exosomes accelerate wound healing in genetically diabetic mice publication-title: Biochem Biophys Res Commun – volume: 9 issue: 730 year: 2018 ident: 10.1016/j.diabres.2022.109882_b0110 article-title: Exosomes and Immune Response in Cancer: Friends or Foes? publication-title: FRONT IMMUNOL – volume: 71 issue: 689–702 year: 2018 ident: 10.1016/j.diabres.2022.109882_b0095 article-title: Hsp90 Mediates Membrane Deformation and Exosome Release publication-title: MOL CELL – volume: 81 issue: 153–160 year: 2002 ident: 10.1016/j.diabres.2022.109882_b0145 article-title: Fibroblasts derived from chronic diabetic ulcers differ in their response to stimulation with EGF, IGF-I, bFGF and PDGF-AB compared to controls publication-title: EUR J CELL BIOL – volume: 77 issue: 509–528 year: 1997 ident: 10.1016/j.diabres.2022.109882_b0200 article-title: General principles of wound healing publication-title: Surg Clin North Am – volume: 3 issue: 25011 year: 2014 ident: 10.1016/j.diabres.2022.109882_b0105 article-title: Comparative analysis of discrete exosome fractions obtained by differential centrifugation publication-title: J Extracell Vesicles – volume: 24 issue: 13789–13803 year: 2020 ident: 10.1016/j.diabres.2022.109882_b0350 article-title: Inhibition of exosomal miR-24-3p in diabetes restores angiogenesis and facilitates wound repair via targeting PIK3R3 publication-title: J CELL MOL MED – volume: 69 issue: 749–759 year: 2020 ident: 10.1016/j.diabres.2022.109882_b0385 article-title: Exosomes Derived From Schwann Cells Ameliorate Peripheral Neuropathy in Type 2 Diabetic Mice publication-title: Diabetes – volume: 13 issue: 555–568 year: 2019 ident: 10.1016/j.diabres.2022.109882_b0210 article-title: Promising effects of exosomes isolated from menstrual blood-derived mesenchymal stem cell on wound-healing process in diabetic mouse model publication-title: J Tissue Eng Regen Med – volume: 8 issue: 313–324 year: 2019 ident: 10.1016/j.diabres.2022.109882_b0390 article-title: The fabrication of a highly efficient self-healing hydrogel from natural biopolymers loaded with exosomes for the synergistic promotion of severe wound healing publication-title: Biomater Sci – volume: 9 issue: 2910–2923 year: 2019 ident: 10.1016/j.diabres.2022.109882_b0025 article-title: M2 microglia-derived exosomes protect the mouse brain from ischemia-reperfusion injury via exosomal miR-124 publication-title: THERANOSTICS – volume: 183 issue: 109126 year: 2022 ident: 10.1016/j.diabres.2022.109882_b0355 article-title: Exosomal lncRNA KLF3-AS1 derived from bone marrow mesenchymal stem cells stimulates angiogenesis to promote diabetic cutaneous wound healing publication-title: Diabetes Res Clin Pract – volume: 13 issue: 308 year: 2015 ident: 10.1016/j.diabres.2022.109882_b0050 article-title: LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b publication-title: J TRANSL MED – volume: 9 issue: 7814–7821 year: 2013 ident: 10.1016/j.diabres.2022.109882_b0335 article-title: Fibrin-based scaffold incorporating VEGF- and bFGF-loaded nanoparticles stimulates wound healing in diabetic mice publication-title: ACTA BIOMATER – volume: 13 issue: 1259–1270 year: 2020 ident: 10.1016/j.diabres.2022.109882_b0040 article-title: miRNA-221-3p in Endothelial Progenitor Cell-Derived Exosomes Accelerates Skin Wound Healing in Diabetic Mice publication-title: Diabetes Metab Syndr Obes – volume: 35 issue: 695–697 year: 2007 ident: 10.1016/j.diabres.2022.109882_b0305 article-title: Regulation of fibroblast migration by tenascin-C publication-title: Biochem Soc Trans – volume: 47 start-page: 3793 year: 2019 ident: 10.1016/j.diabres.2022.109882_b0245 article-title: Macrophage-derived exosomes accelerate wound healing through their anti-inflammation effects in a diabetic rat model publication-title: Artif Cells Nanomed Biotechnol. doi: 10.1080/21691401.2019.1669617 – volume: 34 start-page: 2398 year: 2015 ident: 10.1016/j.diabres.2022.109882_b0080 article-title: ESCRTs are everywhere publication-title: EMBO J. doi: 10.15252/embj.201592484 – volume: 2013 issue: 127170 year: 2013 ident: 10.1016/j.diabres.2022.109882_b0150 article-title: Angiogenesis and its therapeutic opportunities publication-title: Mediators Inflamm – volume: 367 year: 2020 ident: 10.1016/j.diabres.2022.109882_b0015 article-title: The biology, function, and biomedical applications of exosomes publication-title: SCIENCE. doi: 10.1126/science.aau6977 – volume: 19 issue: 202 year: 2021 ident: 10.1016/j.diabres.2022.109882_b0045 article-title: Hypoxia adipose stem cell-derived exosomes promote high-quality healing of diabetic wound involves activation of PI3K/Akt pathways publication-title: J Nanobiotechnology – volume: 291 issue: 93–99 year: 1999 ident: 10.1016/j.diabres.2022.109882_b0185 article-title: Cultured fibroblasts from chronic diabetic wounds on the lower extremity (non-insulin-dependent diabetes mellitus) show disturbed proliferation publication-title: ARCH DERMATOL RES – volume: 28 issue: 294–300 year: 2004 ident: 10.1016/j.diabres.2022.109882_b0275 article-title: Oxygen in wound healing–more than a nutrient publication-title: WORLD J SURG – volume: 15 issue: 617–638 year: 2018 ident: 10.1016/j.diabres.2022.109882_b0070 article-title: Extracellular vesicles in cancer - implications for future improvements in cancer care publication-title: NAT REV CLIN ONCOL – volume: 199 issue: 17–24 year: 2017 ident: 10.1016/j.diabres.2022.109882_b0205 article-title: Macrophage-Mediated Inflammation in Normal and Diabetic Wound Healing publication-title: J IMMUNOL – volume: 7 issue: 81–96 year: 2017 ident: 10.1016/j.diabres.2022.109882_b0195 article-title: Exosomes derived from platelet-rich plasma promote the re-epithelization of chronic cutaneous wounds via activation of YAP in a diabetic rat model publication-title: THERANOSTICS – volume: 32 issue: 1347–1360 year: 2014 ident: 10.1016/j.diabres.2022.109882_b0170 article-title: Tracking the elusive fibrocyte: identification and characterization of collagen-producing hematopoietic lineage cells during murine wound healing publication-title: STEM CELLS – volume: 43 start-page: 47 year: 1980 ident: 10.1016/j.diabres.2022.109882_b0300 article-title: Sequential appearance of fibronectin and collagen in experimental granulation tissue publication-title: LAB INVEST – volume: 65 issue: 780–793 year: 2016 ident: 10.1016/j.diabres.2022.109882_b0260 article-title: An Essential Role of NRF2 in Diabetic Wound Healing publication-title: Diabetes – volume: 63 issue: 431–443 year: 2020 ident: 10.1016/j.diabres.2022.109882_b0380 article-title: Mesenchymal stromal cell-derived exosomes ameliorate peripheral neuropathy in a mouse model of diabetes publication-title: Diabetologia – volume: 80 issue: 141–153 year: 2018 ident: 10.1016/j.diabres.2022.109882_b0190 article-title: < Editors' Choice > Effects of exosomes derived from the induced pluripotent stem cells on skin wound healing publication-title: NAGOYA J MED SCI – volume: 120 issue: 111671 year: 2021 ident: 10.1016/j.diabres.2022.109882_b0410 article-title: Preparation of exosomes encapsulated nanohydrogel for accelerating wound healing of diabetic rats by promoting angiogenesis publication-title: Mater Sci Eng C Mater Biol Appl – volume: 161 issue: 337–340 year: 1979 ident: 10.1016/j.diabres.2022.109882_b0310 article-title: Quantitation of collagen types I and III during wound healing in rat skin publication-title: Proc Soc Exp Biol Med – volume: 159 issue: 1103–1115 year: 2008 ident: 10.1016/j.diabres.2022.109882_b0220 article-title: Hyperglycaemic conditions decrease cultured keratinocyte mobility: implications for impaired wound healing in patients with diabetes publication-title: Br J Dermatol – volume: 12 issue: 403 year: 2021 ident: 10.1016/j.diabres.2022.109882_b0160 article-title: Exosomes derived from adipose-derived stem cells overexpressing glyoxalase-1 protect endothelial cells and enhance angiogenesis in type 2 diabetic mice with limb ischemia publication-title: STEM CELL RES THER – volume: 28 issue: 574–600 year: 2012 ident: 10.1016/j.diabres.2022.109882_b0370 article-title: Predictive factors for diabetic foot ulceration: a systematic review publication-title: Diabetes Metab Res Rev – volume: 8 issue: 904 year: 2017 ident: 10.1016/j.diabres.2022.109882_b0395 article-title: GMSC-Derived Exosomes Combined with a Chitosan/Silk Hydrogel Sponge Accelerates Wound Healing in a Diabetic Rat Skin Defect Model publication-title: FRONT PHYSIOL – volume: 50 issue: 1–14 year: 2018 ident: 10.1016/j.diabres.2022.109882_b0265 article-title: Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model publication-title: EXP MOL MED – volume: 9 issue: 65–76 year: 2019 ident: 10.1016/j.diabres.2022.109882_b0065 article-title: Engineering Bioactive Self-Healing Antibacterial Exosomes Hydrogel for Promoting Chronic Diabetic Wound Healing and Complete Skin Regeneration publication-title: THERANOSTICS – volume: 126 issue: 5553–5565 year: 2013 ident: 10.1016/j.diabres.2022.109882_b0090 article-title: Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles publication-title: J CELL SCI – volume: 20 start-page: 616 year: 2021 ident: 10.1016/j.diabres.2022.109882_b0315 article-title: Exosomes derived from autologous dermal fibroblasts promote diabetic cutaneous wound healing through the Akt/β-catenin pathway publication-title: CELL CYCLE. doi: 10.1080/15384101.2021.1894813 – volume: 477 issue: 41–48 year: 2020 ident: 10.1016/j.diabres.2022.109882_b0035 article-title: Hepatocellular carcinoma-derived exosomes in organotropic metastasis, recurrence and early diagnosis application publication-title: CANCER LETT – volume: 117 issue: 102–107 year: 2018 ident: 10.1016/j.diabres.2022.109882_b0400 article-title: Wound healing effects of a Curcuma zedoaria polysaccharide with platelet-rich plasma exosomes assembled on chitosan/silk hydrogel sponge in a diabetic rat model publication-title: INT J BIOL MACROMOL – volume: 15 issue: 5911–5926 year: 2020 ident: 10.1016/j.diabres.2022.109882_b0405 article-title: Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomes Combined Pluronic F127 Hydrogel Promote Chronic Diabetic Wound Healing and Complete Skin Regeneration publication-title: Int J Nanomedicine – volume: 169 issue: 91–101 year: 2016 ident: 10.1016/j.diabres.2022.109882_b0225 article-title: High-glucose environment increased thrombospondin-1 expression in keratinocytes via DNA hypomethylation publication-title: TRANSL RES – volume: 8 issue: a20 year: 2020 ident: 10.1016/j.diabres.2022.109882_b0285 article-title: Exosomes derived from human amniotic epithelial cells accelerate diabetic wound healing via PI3K-AKT-mTOR-mediated promotion in angiogenesis and fibroblast function. Burns publication-title: Trauma – volume: 12 issue: 8968–8986 year: 2020 ident: 10.1016/j.diabres.2022.109882_b0345 article-title: Inhibition of circulating exosomal microRNA-15a-3p accelerates diabetic wound repair publication-title: Aging (Albany NY) – volume: 70 issue: 1122–1132 year: 2018 ident: 10.1016/j.diabres.2022.109882_b0180 article-title: Migratory, metabolic and functional alterations of fibrocytes in type 2 diabetes publication-title: IUBMB Life – volume: 16 issue: e1904044 year: 2020 ident: 10.1016/j.diabres.2022.109882_b0055 article-title: Circulating Exosomal miR-20b-5p Inhibition Restores Wnt9b Signaling and Reverses Diabetes-Associated Impaired Wound Healing publication-title: SMALL – volume: 11 issue: 259 year: 2020 ident: 10.1016/j.diabres.2022.109882_b0215 article-title: Melatonin-stimulated MSC-derived exosomes improve diabetic wound healing through regulating macrophage M1 and M2 polarization by targeting the PTEN/AKT pathway publication-title: STEM CELL RES THER – volume: 473 issue: 4527–4550 year: 2016 ident: 10.1016/j.diabres.2022.109882_b0255 article-title: Molecular mechanisms of ROS production and oxidative stress in diabetes publication-title: BIOCHEM J |
SSID | ssj0006345 |
Score | 2.6014729 |
SecondaryResourceType | review_article |
Snippet | •The process of wound healing and the factors affecting the delayed healing of diabetic wounds.•Exosomes promote the recovery of important cellular functions... Poor wound healing can seriously affect the health of patients with diabetes and result in a heavy medical burden. Recently, exosomes have been considered the... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 109882 |
SubjectTerms | Diabetic wound healing Exosomes Mechanism |
Title | Mechanism and application of exosomes in the wound healing process in diabetes mellitus |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0168822722006957 https://dx.doi.org/10.1016/j.diabres.2022.109882 https://www.ncbi.nlm.nih.gov/pubmed/35487341 https://www.proquest.com/docview/2658232141 |
Volume | 187 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF4hkFAvFZS2hBa0lbg6cdb78hFFoLQVXACRm7X2zkqJiB2RRHDitzMT2wkcEFUvlmzvyPbseOab3Xkwdqol2qBgfURoIpJGqSiPNUSuD2kwsrAaVgGyV3p4K_-M1GiLDdpcGAqrbHR_rdNX2rq50mu42ZuNx71rBCsID4UR5BWnijLKpTQk5d3nTZiHTmQdxqhtRKM3WTy9SZfWN9GrRTdRCCqsZK14zz69hz9Xduhij31uACQ_q99xn21B-YXtXjZb5Afs7hIomXc8n3JXev5qg5pXgcNTNa-mMOfjkiP044_UVYkTWkQTxmd11gDdbNdk-ZQqdi6W86_s9uL8ZjCMmu4JUYEu1yIKQZpCK48eXlEkICBIFefapE7jNeecihMwHo2klYVwxvg0CU4b3099kNol39h2WZVwyHjiIbVFkoIyueznzoENytIBYuFj02Gy5VlWNKXFqcPFfdbGkE2yhtUZsTqrWd1h3TXZrK6t8RGBbickaxNHUdVlqP0_IrRrwjfS9S-kv9qZz_DPo-0UV0K1xEEI3gT1eep32PdaJNafkZAjiADh6P8f_IN9orM6uPIn2148LOEYAdAiP1lJ-AnbOfv9d3j1AplsBVI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa6FNh2GfZe9tSAXd04sl4-FsWKdG1yWYv1JsiWBKRo7GBJ0P78kbGcbYeiwy4-SCZsUzL5UXwBfFECdVA0PiM0kQktZVblKmRuHMqoRW1U2AbIztTkQny7lJd7cNTnwlBYZZL9nUzfSus0MkrcHC3n89F3BCsID7nmZBWXUj-AfapOJQewf3hyOpntBLIqRBfJqExGBL8TeUZXB3TEiYYtWoqcU20lY_hdKuouCLpVRcdP4UnCkOywe81nsBea5_BwmrzkL-DHNFA-73y1YK7x7A8fNWsjC7ftql2EFZs3DNEfu6HGSowAI2oxtuwSB2iyP5ZlCyraud6sXsLF8dfzo0mWGihkNVpd6yxGoWslPRp5dV0EHqKQeaV06RSOOedkXgTtUU8aUXOntS-L6JT249JHoVzxCgZN24Q3wAofSlMXZZC6EuPKuWCiNHQJOfe5HoLoeWbrVF2cmlxc2z6M7MomVltite1YPYSDHdmyK69xH4HqF8T2uaMo7SwqgPsIzY7wrw32L6Sf-5W3-PORR8U1od3gTYjfOLV6Gg_hdbcldp9RkC2IGOHt_z_4EzyanE_P7NnJ7PQdPKaZLtbyPQzWPzfhA-KhdfUx7fdfhEQIAw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+and+application+of+exosomes+in+the+wound+healing+process+in+diabetes+mellitus&rft.jtitle=Diabetes+research+and+clinical+practice&rft.au=Li%2C+Danyang&rft.au=Wu%2C+Na&rft.date=2022-05-01&rft.pub=Elsevier+B.V&rft.issn=0168-8227&rft.volume=187&rft_id=info:doi/10.1016%2Fj.diabres.2022.109882&rft.externalDocID=S0168822722006957 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-8227&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-8227&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-8227&client=summon |