ARTS: autonomous research topic selection system using word embeddings and network analysis
The materials science research process has become increasingly autonomous due to the remarkable progress in artificial intelligence. However, autonomous research topic selection (ARTS) has not yet been fully explored due to the difficulty of estimating its promise and the lack of previous research....
Saved in:
Published in | Machine learning: science and technology Vol. 3; no. 2; pp. 25005 - 25018 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
01.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The materials science research process has become increasingly autonomous due to the remarkable progress in artificial intelligence. However, autonomous research topic selection (ARTS) has not yet been fully explored due to the difficulty of estimating its promise and the lack of previous research. This paper introduces an ARTS system that autonomously selects potential research topics that are likely to reveal new scientific facts yet have not been the subject of much previous research by analyzing vast numbers of articles. Potential research topics are selected by analyzing the difference between two research concept networks constructed from research information in articles: one that represents the promise of research topics and is constructed from word embeddings, and one that represents known facts and past research activities and is constructed from statistical information on the appearance patterns of research concepts. The ARTS system is also equipped with functions to search and visualize information about selected research topics to assist in the final determination of a research topic by a scientist. We developed the ARTS system using approximately 100 00 articles published in the Computational Materials Science journal. The results of our evaluation demonstrated that research topics studied after 2016 could be generated autonomously from an analysis of the articles published before 2015. This suggests that potential research topics can be effectively selected by using the ARTS system. |
---|---|
AbstractList | The materials science research process has become increasingly autonomous due to the remarkable progress in artificial intelligence. However, autonomous research topic selection (ARTS) has not yet been fully explored due to the difficulty of estimating its promise and the lack of previous research. This paper introduces an ARTS system that autonomously selects potential research topics that are likely to reveal new scientific facts yet have not been the subject of much previous research by analyzing vast numbers of articles. Potential research topics are selected by analyzing the difference between two research concept networks constructed from research information in articles: one that represents the promise of research topics and is constructed from word embeddings, and one that represents known facts and past research activities and is constructed from statistical information on the appearance patterns of research concepts. The ARTS system is also equipped with functions to search and visualize information about selected research topics to assist in the final determination of a research topic by a scientist. We developed the ARTS system using approximately 100 00 articles published in the Computational Materials Science journal. The results of our evaluation demonstrated that research topics studied after 2016 could be generated autonomously from an analysis of the articles published before 2015. This suggests that potential research topics can be effectively selected by using the ARTS system. |
Author | Morita, Hidekazu Hayashi, Takayuki Teruya, Eri Takeuchi, Tadashi Ono, Kanta |
Author_xml | – sequence: 1 givenname: Eri orcidid: 0000-0002-7601-6987 surname: Teruya fullname: Teruya, Eri organization: Hitachi, Ltd , 6-6, Marunouchi 1-chome, Chiyoda-ku, Tokyo 100-8280, Japan – sequence: 2 givenname: Tadashi surname: Takeuchi fullname: Takeuchi, Tadashi organization: Hitachi, Ltd , 6-6, Marunouchi 1-chome, Chiyoda-ku, Tokyo 100-8280, Japan – sequence: 3 givenname: Hidekazu surname: Morita fullname: Morita, Hidekazu organization: Hitachi, Ltd , 6-6, Marunouchi 1-chome, Chiyoda-ku, Tokyo 100-8280, Japan – sequence: 4 givenname: Takayuki surname: Hayashi fullname: Hayashi, Takayuki organization: Hitachi, Ltd , 6-6, Marunouchi 1-chome, Chiyoda-ku, Tokyo 100-8280, Japan – sequence: 5 givenname: Kanta orcidid: 0000-0002-3285-9093 surname: Ono fullname: Ono, Kanta organization: Osaka University Department of Applied Physics, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan |
BookMark | eNp9kM1LAzEQxYNUsNbePQY8eHE1H026660Uv6AgaD15CNnsrG7d3axJFul_b0pFRdTTzDzeGx6_fTRobQsIHVJySkmanjHJWcKo4GfaSAr5Dhp-SoNv-x4ae78ihDBBuWBkiB5nd8v7c6z7YFvb2N5jBx60M8842K4y2EMNJlS2xX7tAzS491X7hN-sKzA0ORRFPD3WbYFbCFF-ibuu177yB2i31LWH8cccoYfLi-X8OlncXt3MZ4vETCZpSEqQVOYgcsm0ZDyXpSSQ0WlmJtM8LfIpZIZQxgwUmolpmnIQlAoNjAiRp8BH6Gj7t3P2tQcf1Mr2LpbwiknBOc0yMYkusnUZZ713UKrOVY12a0WJ2lBUG0xqg0ltKcaI_BExVdAbGMHpqv4veLwNVrb7KtPUsRpXTEX8hAjVFWV0nvzi_PPxO1hrlRk |
CODEN | MLSTCK |
CitedBy_id | crossref_primary_10_20960_angiologia_00552 crossref_primary_10_1038_s41562_023_01648_z |
Cites_doi | 10.1162/tacl_a_00051 10.14778/2809974.2809991 10.1038/s42254-021-00314-5 10.1038/s41586-020-2442-2 10.1038/s41524-017-0056-5 10.1038/s41578-020-00255-y 10.1126/science.aax1566 10.1038/s41524-019-0221-0 10.1021/acscentsci.7b00303 10.1146/annurev-matsci-070218-010015 10.1109/DSMP47368.2020.9204220 10.1038/s41586-019-1335-8 10.5555/2999792.2999959 10.1103/PhysRevX.7.021024 10.1021/acs.nanolett.8b05196 10.1073/pnas.1914370116 10.1016/j.vacuum.2017.09.041 10.1016/j.isci.2020.101922 10.1007/s00170-016-9566-4 10.1109/ACCESS.2020.2966228 10.1016/j.commatsci.2009.04.047 10.1021/acs.jcim.6b00207 10.1093/biosci/biw115 10.1038/s41586-018-0337-2 10.1016/j.md.2016.04.001 10.1007/s00170-016-8997-2 10.1038/srep02810 10.1038/nature25978 10.3115/1557769.1557817 10.1109/ICSAI53574.2021.9664140 10.1038/s41586-021-03213-y 10.3115/v1/P14-5010 10.1063/5.0043300 10.1038/s41524-020-00406-3 10.1080/14686996.2018.1500852 10.1063/5.0020370 10.1075/li.30.1.03nad 10.1016/j.commatsci.2018.07.038 10.5555/2976040.2976203 |
ContentType | Journal Article |
Copyright | 2022 The Author(s). Published by IOP Publishing Ltd 2022 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Author(s). Published by IOP Publishing Ltd – notice: 2022 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- M2P P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.1088/2632-2153/ac61eb |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Science Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2632-2153 |
ExternalDocumentID | 10_1088_2632_2153_ac61eb mlstac61eb |
GrantInformation_xml | – fundername: JST-Mirai Program |
GroupedDBID | 88I ABHWH ABUWG ACHIP AFKRA AKPSB ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ CCPQU CJUJL DWQXO EBS GNUQQ GROUPED_DOAJ HCIFZ IOP K7- M2P M~E N5L O3W OK1 PIMPY TSCCA AAYXX CITATION PHGZM PHGZT 3V. 7XB 8FE 8FG 8FK JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c448t-fe616be5b62a623b6f60e9179c47b8db7e9c0122ceda257883e5115ae2055b8e3 |
IEDL.DBID | O3W |
ISSN | 2632-2153 |
IngestDate | Sun Jul 13 03:05:31 EDT 2025 Tue Jul 01 01:08:55 EDT 2025 Thu Apr 24 22:57:05 EDT 2025 Wed Aug 21 03:33:31 EDT 2024 Tue Apr 26 23:14:25 EDT 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c448t-fe616be5b62a623b6f60e9179c47b8db7e9c0122ceda257883e5115ae2055b8e3 |
Notes | MLST-100460.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3285-9093 0000-0002-7601-6987 |
OpenAccessLink | https://iopscience.iop.org/article/10.1088/2632-2153/ac61eb |
PQID | 2653319954 |
PQPubID | 4916454 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1088_2632_2153_ac61eb iop_journals_10_1088_2632_2153_ac61eb proquest_journals_2653319954 crossref_citationtrail_10_1088_2632_2153_ac61eb |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol |
PublicationTitle | Machine learning: science and technology |
PublicationTitleAbbrev | MLST |
PublicationTitleAlternate | Mach. Learn.: Sci. Technol |
PublicationYear | 2022 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Cui (mlstac61ebbib41) 2017; 90 Burger (mlstac61ebbib1) 2020; 583 Wan (mlstac61ebbib17) 2019; 19 Snow (mlstac61ebbib55) 2004 Karniadakis (mlstac61ebbib52) 2021; 3 Cui (mlstac61ebbib40) 2017; 88 Greenhill (mlstac61ebbib9) 2020; 8 Batra (mlstac61ebbib7) 2021; 6 Segler (mlstac61ebbib18) 2018; 555 Miller (mlstac61ebbib54) 1998 Shenghong (mlstac61ebbib11) 2017; 7 Dunn (mlstac61ebbib15) 2020; 6 Ramshaw (mlstac61ebbib34) 1999 Mikolov (mlstac61ebbib27) 2013 Coley (mlstac61ebbib19) 2019; 365 Laura (mlstac61ebbib51) 2019 Erik (mlstac61ebbib56) 2007 Mintz (mlstac61ebbib31) 2009 Frazier (mlstac61ebbib10) 2016 Wang (mlstac61ebbib57) 2015 Devlin (mlstac61ebbib46) 2018 Elliott (mlstac61ebbib30) 2016; 66 Ueno (mlstac61ebbib12) 2016; 4 Swain (mlstac61ebbib33) 2016; 56 Ramprasad (mlstac61ebbib2) 2017; 3 Tanaka (mlstac61ebbib4) 2018 Shin (mlstac61ebbib37) 2015; vol 8 Tshitoyan (mlstac61ebbib22) 2019; 571 Mikolov (mlstac61ebbib26) 2013 Onishi (mlstac61ebbib35) 2018; 19 Schmidt (mlstac61ebbib3) 2019; 5 Liu (mlstac61ebbib20) 2017; 3 Nadeau (mlstac61ebbib32) 2007; 30 Zhang (mlstac61ebbib58) 2021 Chen (mlstac61ebbib42) 2017; 146 Radford (mlstac61ebbib47) 2018 Pilania (mlstac61ebbib16) 2013; 3 Shetty (mlstac61ebbib25) 2021; 24 Osakabe (mlstac61ebbib21) 2020 Morgan (mlstac61ebbib6) 2020; 50 Lovasz-Bukvova (mlstac61ebbib28) 2009; 9 Greydanus (mlstac61ebbib50) 2019; 32 Brown (mlstac61ebbib49) 2020 Willard (mlstac61ebbib53) 2021 Shields (mlstac61ebbib13) 2021; 590 Oka (mlstac61ebbib44) 2018; 154 Radford (mlstac61ebbib48) 2019; 1 Krenn (mlstac61ebbib23) 2020 mlstac61ebbib38 mlstac61ebbib39 Vasudevan (mlstac61ebbib5) 2021; 129 Shimizu (mlstac61ebbib14) 2020; 8 Manning (mlstac61ebbib36) 2014 Xu (mlstac61ebbib43) 2009; 46 Bojanowski (mlstac61ebbib45) 2017; 5 Brodiuk (mlstac61ebbib24) 2020 Acs (mlstac61ebbib29) 2015 Butler (mlstac61ebbib8) 2018; 559 |
References_xml | – year: 2013 ident: mlstac61ebbib26 article-title: Efficient estimation of word representations in vector space – start-page: 1 year: 2021 ident: mlstac61ebbib53 article-title: Integrating scientific knowledge with machine learning for engineering and environmental systems – volume: 5 start-page: 135 year: 2017 ident: mlstac61ebbib45 article-title: Enriching word vectors with subword information publication-title: Trans. Assoc. Comput. Linguist. doi: 10.1162/tacl_a_00051 – volume: vol 8 start-page: p 1310 year: 2015 ident: mlstac61ebbib37 article-title: Incremental knowledge base construction using deepdive doi: 10.14778/2809974.2809991 – year: 2018 ident: mlstac61ebbib46 article-title: Bert: pre-training of deep bidirectional transformers for language understanding – volume: 3 start-page: 422 year: 2021 ident: mlstac61ebbib52 article-title: Physics-informed machine learning publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-021-00314-5 – volume: 583 start-page: 237 year: 2020 ident: mlstac61ebbib1 article-title: A mobile robotic chemist publication-title: Nature doi: 10.1038/s41586-020-2442-2 – volume: 3 start-page: 1 year: 2017 ident: mlstac61ebbib2 article-title: Machine learning in materials informatics: recent applications and prospects publication-title: npj Comput. Mater. doi: 10.1038/s41524-017-0056-5 – volume: 6 start-page: 655 year: 2021 ident: mlstac61ebbib7 article-title: Emerging materials intelligence ecosystems propelled by machine learning publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-020-00255-y – start-page: pp 147 year: 2015 ident: mlstac61ebbib57 article-title: Concept hierarchy extraction from textbooks – volume: 365 start-page: 6453 year: 2019 ident: mlstac61ebbib19 article-title: A robotic platform for flow synthesis of organic compounds informed by ai planning publication-title: Science doi: 10.1126/science.aax1566 – volume: 5 start-page: 1 year: 2019 ident: mlstac61ebbib3 article-title: Recent advances and applications of machine learning in solid-state materials science publication-title: npj Comput. Mater. doi: 10.1038/s41524-019-0221-0 – year: 2020 ident: mlstac61ebbib21 article-title: Hitachi materials informatics analytics platform assisting rapid development – year: 1998 ident: mlstac61ebbib54 – volume: 9 start-page: 29 year: 2009 ident: mlstac61ebbib28 article-title: Research as a process: a comparison between different research approaches publication-title: Sprouts: Work. Pap. Inf. Syst. – ident: mlstac61ebbib38 article-title: Neo4j – volume: 3 start-page: 1103 year: 2017 ident: mlstac61ebbib20 article-title: Retrosynthetic reaction prediction using neural sequence-to-sequence models publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.7b00303 – volume: 50 start-page: 71 year: 2020 ident: mlstac61ebbib6 article-title: Opportunities and challenges for machine learning in materials science publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-070218-010015 – start-page: pp 157 year: 1999 ident: mlstac61ebbib34 – start-page: 366 year: 2020 ident: mlstac61ebbib24 article-title: Embedding technique and network analysis of scientific innovations emergence in an arxiv-based concept network doi: 10.1109/DSMP47368.2020.9204220 – start-page: pp 45 year: 2016 ident: mlstac61ebbib10 – volume: 571 start-page: 95 year: 2019 ident: mlstac61ebbib22 article-title: Unsupervised word embeddings capture latent knowledge from materials science literature publication-title: Nature doi: 10.1038/s41586-019-1335-8 – start-page: 3111 year: 2013 ident: mlstac61ebbib27 article-title: Distributed representations of words and phrases and their compositionality doi: 10.5555/2999792.2999959 – volume: 7 year: 2017 ident: mlstac61ebbib11 article-title: Designing nanostructures for phonon transport via bayesian optimization publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.7.021024 – volume: 19 start-page: 3387 year: 2019 ident: mlstac61ebbib17 article-title: Materials discovery and properties prediction in thermal transport via materials informatics: a mini review publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b05196 – start-page: 1910 year: 2020 ident: mlstac61ebbib23 article-title: Predicting research trends with semantic and neural networks with an application in quantum physics doi: 10.1073/pnas.1914370116 – year: 2015 ident: mlstac61ebbib29 – volume: 146 start-page: 142 year: 2017 ident: mlstac61ebbib42 article-title: Modeling and simulation of dynamic recrystallization behavior for 42CrMo steel by an extended cellular automaton method publication-title: Vacuum doi: 10.1016/j.vacuum.2017.09.041 – volume: 24 year: 2021 ident: mlstac61ebbib25 article-title: Automated knowledge extraction from polymer literature using natural language processing publication-title: Iscience doi: 10.1016/j.isci.2020.101922 – volume: 90 start-page: 2477 year: 2017 ident: mlstac61ebbib41 article-title: Finite element analysis on axial-pushed incremental warm rolling process of spline shaft with 42crmo steel and relevant improvement publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-016-9566-4 – volume: 8 start-page: 13937 year: 2020 ident: mlstac61ebbib9 article-title: Bayesian optimization for adaptive experimental design: a review publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2966228 – start-page: pp 1003 year: 2009 ident: mlstac61ebbib31 article-title: Distant supervision for relation extraction without labeled data – volume: 46 start-page: 860 year: 2009 ident: mlstac61ebbib43 article-title: Two semi-empirical approaches for the prediction of oxide ionic conductivities in ABO3 perovskites publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2009.04.047 – volume: 56 start-page: 1894 year: 2016 ident: mlstac61ebbib33 article-title: Chemdata extractor: a toolkit for automated extraction of chemical information from the scientific literature publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.6b00207 – volume: 66 start-page: 880 year: 2016 ident: mlstac61ebbib30 article-title: Conceptions of good science in our data-rich world publication-title: BioScience doi: 10.1093/biosci/biw115 – year: 2018 ident: mlstac61ebbib47 – ident: mlstac61ebbib39 article-title: Computational materials science – volume: 559 start-page: 547 year: 2018 ident: mlstac61ebbib8 article-title: Machine learning for molecular and materials science publication-title: Nature doi: 10.1038/s41586-018-0337-2 – volume: 4 start-page: 18 year: 2016 ident: mlstac61ebbib12 article-title: Combo: an efficient bayesian optimization library for materials science publication-title: Mater. Discovery doi: 10.1016/j.md.2016.04.001 – volume: 88 start-page: 2621 year: 2017 ident: mlstac61ebbib40 article-title: Deformation mechanism and performance improvement of spline shaft with 42CrMo steel by axial-infeed incremental rolling process publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-016-8997-2 – volume: 3 start-page: 1 year: 2013 ident: mlstac61ebbib16 article-title: Accelerating materials property predictions using machine learning publication-title: Sci. Rep. doi: 10.1038/srep02810 – volume: 555 start-page: 604 year: 2018 ident: mlstac61ebbib18 article-title: Planning chemical syntheses with deep neural networks and symbolic AI publication-title: Nature doi: 10.1038/nature25978 – start-page: 165 year: 2007 ident: mlstac61ebbib56 article-title: Extracting hypernym pairs from the web doi: 10.3115/1557769.1557817 – start-page: 1 year: 2021 ident: mlstac61ebbib58 article-title: Automatic hypernym-hyponym relation extraction with wordnet projection doi: 10.1109/ICSAI53574.2021.9664140 – volume: 1 start-page: 9 year: 2019 ident: mlstac61ebbib48 article-title: Language models are unsupervised multitask learners publication-title: OpenAI blog – volume: 590 start-page: 89 year: 2021 ident: mlstac61ebbib13 article-title: Bayesian reaction optimization as a tool for chemical synthesis publication-title: Nature doi: 10.1038/s41586-021-03213-y – year: 2020 ident: mlstac61ebbib49 article-title: Language models are few-shot learners – start-page: 55 year: 2014 ident: mlstac61ebbib36 article-title: The stanford corenlp natural language processing toolkit doi: 10.3115/v1/P14-5010 – volume: 129 year: 2021 ident: mlstac61ebbib5 article-title: Machine learning for materials design and discovery publication-title: J. Appl. Phys. doi: 10.1063/5.0043300 – volume: 6 start-page: 138 year: 2020 ident: mlstac61ebbib15 article-title: Benchmarking materials property prediction methods: the matbench test set and automatminer reference algorithm publication-title: npj Comput. Mater. doi: 10.1038/s41524-020-00406-3 – year: 2018 ident: mlstac61ebbib4 – volume: 19 start-page: 649 year: 2018 ident: mlstac61ebbib35 article-title: Relation extraction with weakly supervised learning based on process-structure-property-performance reciprocity publication-title: Sci. Technol. Adv. Mater. doi: 10.1080/14686996.2018.1500852 – year: 2019 ident: mlstac61ebbib51 article-title: Informed machine learning–a taxonomy and survey of integrating knowledge into learning systems – volume: 8 year: 2020 ident: mlstac61ebbib14 article-title: Autonomous materials synthesis by machine learning and robotics publication-title: APL Mater. doi: 10.1063/5.0020370 – volume: 30 start-page: 3 year: 2007 ident: mlstac61ebbib32 article-title: A survey of named entity recognition and classification publication-title: Lingvist. Investig. doi: 10.1075/li.30.1.03nad – volume: 154 start-page: 91 year: 2018 ident: mlstac61ebbib44 article-title: Density functional theory-based ab initio molecular dynamics simulation of ionic conduction in N-/F-doped ZrO2 under epitaxial strain publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2018.07.038 – volume: 32 start-page: 15379 year: 2019 ident: mlstac61ebbib50 article-title: Hamiltonian neural networks – start-page: 1297 year: 2004 ident: mlstac61ebbib55 article-title: Learning syntactic patterns for automatic hypernym discovery doi: 10.5555/2976040.2976203 |
SSID | ssj0002513520 |
Score | 2.2198539 |
Snippet | The materials science research process has become increasingly autonomous due to the remarkable progress in artificial intelligence. However, autonomous... |
SourceID | proquest crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 25005 |
SubjectTerms | Artificial intelligence information extraction materials informatics Materials science natural language processing Network analysis relation extraction text mining word embedding |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwEA5ue_HF3-J0Sh70wYfSLm1j5ouobAzBIepg4ENI0lQHW1tth_--lzbdGMLeCr1CueTuvrtLvkPokoVMEeWZ1qCQThARBn7Q047sQuYmKWNRyd35PKLDcfA0CSe24JbbY5W1TywddZQqUyN3CQVgYu4TB3fZt2OmRpnuqh2h0UAtcMEMkq_WQ3_08rqsskD0BoTh2f4kWJRr-MkdiHO-KxSFH1qLR41pmv1zymWkGeyhHQsR8X21pvtoSycHaLcev4CtNR6iD8Cib7dYLApzMQEyeGyZe75wkWZThfNyxg0oHld8zdgccv_Ev5BvYj2XOir7TlgkEU6q0-DwXHGUHKHxoP_-OHTsrARHQYJVOLGmXSp1KCkRgGgkjamnIRXrqeBGMsOh3FOmi6Z0JIyVMl8D1AqFJl4YSqb9Y9RM0kSfIAxJmKeI8ARgtSCMA0YAk2hf-VKyWEjSRm6tMa4skbiZZzHjZUObMW50zI2OeaXjNrpefpFVJBobZK9gEbi1pHyDHF6Tm8_ygvuccAPqvJBnUdxGnXolV3KrfXS6-fUZ2ibmqkNZcemgZvGz0OcAQAp5YXfZHzJh2cU priority: 102 providerName: ProQuest |
Title | ARTS: autonomous research topic selection system using word embeddings and network analysis |
URI | https://iopscience.iop.org/article/10.1088/2632-2153/ac61eb https://www.proquest.com/docview/2653319954 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5RWFh4Iwql8gADQ2jqJMaFCVBLQYJWPEQlBst2HEAqaUVTsfHbOSduEQJVLJGHcxydY993Pt93AHs84ppq34YGpfLCmHLcB33jqTp6bopxHufcndc3rP0QXvWi3hycTHNhBkO39R9isyAKLlToLsTxmmUY99BSBTWpGb6yBAsBZ9x6Xp3gcXrAgoYbwYXvQpN_dfxhiko43K_9ODcyrRVYcuiQnBbfsgpzJl2D5UnlBeIW4jo8IQy9OyZynNmcBHTeiSPteSHZYPiqySgvb4M6JwVVM7H325_JB7qaxLwpE-chJyLTmKTFRXBsF_QkG_DQat6ftz1XJsHT6FtlXmJYnSkTKUYlghnFEuYb9MIaOjxS3NInN7QNoGkTS7tAeWAQZUXSUD-KFDfBJsyng9RsAUH_y9dU-hJhWhglIacIR0ygA6V4IhUtQ22iMaEdh7gtZdEXeSybc2F1LKyORaHjMhxMewwL_owZsvs4CcItotEMOfJD7q0_ykQgqLB4zo_EME7KUJnM5LccZYhtbUp6uP3PkXZgkdp0h_zUpQLz2fvY7CIIyVQVSrx1UYWFs-ZN97aau_L4vOx08Xn92azmP-MXAu3ciQ |
linkProvider | IOP Publishing |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4BPcCFtjzE8mh9gAOHaIOTGG8lhFDb7cIuXAAJiYOxHadFgiSQrKr-KX4jM3mwQpX2trdI66yUeXi-8Xi-AdiVkbTc-lQa1MYLYy5xH_SdZw4wczNCyrji7jy_EIPr8OwmupmDl7YXhq5VtntitVHHmaUz8i4XCEyonzg8zp88mhpF1dV2hEZtFkP37y-mbMXR6Q_U7x7n_Z9X3wdeM1XAs5iKlF7ixIEwLjKCa4z9RiTCd5i09Gx4aCSxDfcs1ZusizXZswwcgpJIO-5HkZEuwP-dhw9hEPTIo2T_19uZDmIFxDN-Uw1F_-0SG7qHUTXoaivw899Fv_n7LP8vBFRxrf8JlhtAyk5qC_oMcy5dgY_tsAfW-P4q3CLyvfzG9LikNohsXLCGJ-gPK7P83rKimqiDamY1OzSjK_W_GYmKuUfj4qrKxXQas7S-e47PNSPKGlzPRIbrsJBmqdsAhimfb7n2NSLDMEpCyREBucAGxshEG96BbisxZRvacpqe8aCq8rmUimSsSMaqlnEH9t_eyGvKjilr91AJqvHbYso69m7d40NRqkBxRRDSj1QeJx3YbjU5WTex2s3pP3-FxcHV-UiNTi-GW7DEqcmiOuvZhoXyeex2EPqU5ktlbwzuZm3gr4vcFSg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5aQbz4FqtVc9CDh7Xb7Cam3kQt9VUFLRY8hCSbVaHdFrvFv-8km1aKUrzlMEuWyWO-ycx8g9Ahp1wTHdrQoFRBnBAO92BoAlUDz00xzhPH3XnfYs12fNOhHd_n1NXC9Af-6j-BYUEUXKjQJ8TxqmUYD8BSRVWpWc2mTifpPFqgEWO2d8ND9DJ5ZAHjDQAj9OHJvz6eMkfzMOWvO9kZmsYqWvYIEZ8X_7OG5ky2jlbG3RewP4wb6BWg6NMZlqPc1iWAA489cc87zvuDD42HrsUN6B0XdM3Y5ri_4S9wN7HpKZO4sBOWWYKzIhkcxgVFySZqN66eL5qBb5UQaPCv8iA1rMaUoYoRCYBGsZSFBjyxuo5PFbcUynVtg2jaJNIeUh4ZQFpUGhJSqriJtlAp62dmG2HwwUJNZCgBqsU0jTkBSGIiHSnFU6lIGVXHGhPa84jbdhZd4eLZnAurY2F1LAodl9Hx5ItBwaExQ_YIFkH4gzScIYen5HrdYS4iQYTFdCEVsCfKqDJeyR85wgDf2rL0eOefMx2gxcfLhri7bt3uoiViqx_cI0wFlfLPkdkDTJKrfbfvvgEeYNrJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ARTS%3A+autonomous+research+topic+selection+system+using+word+embeddings+and+network+analysis&rft.jtitle=Machine+learning%3A+science+and+technology&rft.au=Teruya%2C+Eri&rft.au=Takeuchi%2C+Tadashi&rft.au=Morita%2C+Hidekazu&rft.au=Hayashi%2C+Takayuki&rft.date=2022-06-01&rft.pub=IOP+Publishing&rft.eissn=2632-2153&rft.volume=3&rft.issue=2&rft_id=info:doi/10.1088%2F2632-2153%2Fac61eb&rft.externalDocID=mlstac61eb |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2632-2153&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2632-2153&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2632-2153&client=summon |