ARTS: autonomous research topic selection system using word embeddings and network analysis

The materials science research process has become increasingly autonomous due to the remarkable progress in artificial intelligence. However, autonomous research topic selection (ARTS) has not yet been fully explored due to the difficulty of estimating its promise and the lack of previous research....

Full description

Saved in:
Bibliographic Details
Published inMachine learning: science and technology Vol. 3; no. 2; pp. 25005 - 25018
Main Authors Teruya, Eri, Takeuchi, Tadashi, Morita, Hidekazu, Hayashi, Takayuki, Ono, Kanta
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The materials science research process has become increasingly autonomous due to the remarkable progress in artificial intelligence. However, autonomous research topic selection (ARTS) has not yet been fully explored due to the difficulty of estimating its promise and the lack of previous research. This paper introduces an ARTS system that autonomously selects potential research topics that are likely to reveal new scientific facts yet have not been the subject of much previous research by analyzing vast numbers of articles. Potential research topics are selected by analyzing the difference between two research concept networks constructed from research information in articles: one that represents the promise of research topics and is constructed from word embeddings, and one that represents known facts and past research activities and is constructed from statistical information on the appearance patterns of research concepts. The ARTS system is also equipped with functions to search and visualize information about selected research topics to assist in the final determination of a research topic by a scientist. We developed the ARTS system using approximately 100 00 articles published in the Computational Materials Science journal. The results of our evaluation demonstrated that research topics studied after 2016 could be generated autonomously from an analysis of the articles published before 2015. This suggests that potential research topics can be effectively selected by using the ARTS system.
AbstractList The materials science research process has become increasingly autonomous due to the remarkable progress in artificial intelligence. However, autonomous research topic selection (ARTS) has not yet been fully explored due to the difficulty of estimating its promise and the lack of previous research. This paper introduces an ARTS system that autonomously selects potential research topics that are likely to reveal new scientific facts yet have not been the subject of much previous research by analyzing vast numbers of articles. Potential research topics are selected by analyzing the difference between two research concept networks constructed from research information in articles: one that represents the promise of research topics and is constructed from word embeddings, and one that represents known facts and past research activities and is constructed from statistical information on the appearance patterns of research concepts. The ARTS system is also equipped with functions to search and visualize information about selected research topics to assist in the final determination of a research topic by a scientist. We developed the ARTS system using approximately 100 00 articles published in the Computational Materials Science journal. The results of our evaluation demonstrated that research topics studied after 2016 could be generated autonomously from an analysis of the articles published before 2015. This suggests that potential research topics can be effectively selected by using the ARTS system.
Author Morita, Hidekazu
Hayashi, Takayuki
Teruya, Eri
Takeuchi, Tadashi
Ono, Kanta
Author_xml – sequence: 1
  givenname: Eri
  orcidid: 0000-0002-7601-6987
  surname: Teruya
  fullname: Teruya, Eri
  organization: Hitachi, Ltd , 6-6, Marunouchi 1-chome, Chiyoda-ku, Tokyo 100-8280, Japan
– sequence: 2
  givenname: Tadashi
  surname: Takeuchi
  fullname: Takeuchi, Tadashi
  organization: Hitachi, Ltd , 6-6, Marunouchi 1-chome, Chiyoda-ku, Tokyo 100-8280, Japan
– sequence: 3
  givenname: Hidekazu
  surname: Morita
  fullname: Morita, Hidekazu
  organization: Hitachi, Ltd , 6-6, Marunouchi 1-chome, Chiyoda-ku, Tokyo 100-8280, Japan
– sequence: 4
  givenname: Takayuki
  surname: Hayashi
  fullname: Hayashi, Takayuki
  organization: Hitachi, Ltd , 6-6, Marunouchi 1-chome, Chiyoda-ku, Tokyo 100-8280, Japan
– sequence: 5
  givenname: Kanta
  orcidid: 0000-0002-3285-9093
  surname: Ono
  fullname: Ono, Kanta
  organization: Osaka University Department of Applied Physics, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
BookMark eNp9kM1LAzEQxYNUsNbePQY8eHE1H026660Uv6AgaD15CNnsrG7d3axJFul_b0pFRdTTzDzeGx6_fTRobQsIHVJySkmanjHJWcKo4GfaSAr5Dhp-SoNv-x4ae78ihDBBuWBkiB5nd8v7c6z7YFvb2N5jBx60M8842K4y2EMNJlS2xX7tAzS491X7hN-sKzA0ORRFPD3WbYFbCFF-ibuu177yB2i31LWH8cccoYfLi-X8OlncXt3MZ4vETCZpSEqQVOYgcsm0ZDyXpSSQ0WlmJtM8LfIpZIZQxgwUmolpmnIQlAoNjAiRp8BH6Gj7t3P2tQcf1Mr2LpbwiknBOc0yMYkusnUZZ713UKrOVY12a0WJ2lBUG0xqg0ltKcaI_BExVdAbGMHpqv4veLwNVrb7KtPUsRpXTEX8hAjVFWV0nvzi_PPxO1hrlRk
CODEN MLSTCK
CitedBy_id crossref_primary_10_20960_angiologia_00552
crossref_primary_10_1038_s41562_023_01648_z
Cites_doi 10.1162/tacl_a_00051
10.14778/2809974.2809991
10.1038/s42254-021-00314-5
10.1038/s41586-020-2442-2
10.1038/s41524-017-0056-5
10.1038/s41578-020-00255-y
10.1126/science.aax1566
10.1038/s41524-019-0221-0
10.1021/acscentsci.7b00303
10.1146/annurev-matsci-070218-010015
10.1109/DSMP47368.2020.9204220
10.1038/s41586-019-1335-8
10.5555/2999792.2999959
10.1103/PhysRevX.7.021024
10.1021/acs.nanolett.8b05196
10.1073/pnas.1914370116
10.1016/j.vacuum.2017.09.041
10.1016/j.isci.2020.101922
10.1007/s00170-016-9566-4
10.1109/ACCESS.2020.2966228
10.1016/j.commatsci.2009.04.047
10.1021/acs.jcim.6b00207
10.1093/biosci/biw115
10.1038/s41586-018-0337-2
10.1016/j.md.2016.04.001
10.1007/s00170-016-8997-2
10.1038/srep02810
10.1038/nature25978
10.3115/1557769.1557817
10.1109/ICSAI53574.2021.9664140
10.1038/s41586-021-03213-y
10.3115/v1/P14-5010
10.1063/5.0043300
10.1038/s41524-020-00406-3
10.1080/14686996.2018.1500852
10.1063/5.0020370
10.1075/li.30.1.03nad
10.1016/j.commatsci.2018.07.038
10.5555/2976040.2976203
ContentType Journal Article
Copyright 2022 The Author(s). Published by IOP Publishing Ltd
2022 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Author(s). Published by IOP Publishing Ltd
– notice: 2022 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M2P
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1088/2632-2153/ac61eb
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2632-2153
ExternalDocumentID 10_1088_2632_2153_ac61eb
mlstac61eb
GrantInformation_xml – fundername: JST-Mirai Program
GroupedDBID 88I
ABHWH
ABUWG
ACHIP
AFKRA
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CJUJL
DWQXO
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
IOP
K7-
M2P
M~E
N5L
O3W
OK1
PIMPY
TSCCA
AAYXX
CITATION
PHGZM
PHGZT
3V.
7XB
8FE
8FG
8FK
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c448t-fe616be5b62a623b6f60e9179c47b8db7e9c0122ceda257883e5115ae2055b8e3
IEDL.DBID O3W
ISSN 2632-2153
IngestDate Sun Jul 13 03:05:31 EDT 2025
Tue Jul 01 01:08:55 EDT 2025
Thu Apr 24 22:57:05 EDT 2025
Wed Aug 21 03:33:31 EDT 2024
Tue Apr 26 23:14:25 EDT 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c448t-fe616be5b62a623b6f60e9179c47b8db7e9c0122ceda257883e5115ae2055b8e3
Notes MLST-100460.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3285-9093
0000-0002-7601-6987
OpenAccessLink https://iopscience.iop.org/article/10.1088/2632-2153/ac61eb
PQID 2653319954
PQPubID 4916454
PageCount 14
ParticipantIDs crossref_primary_10_1088_2632_2153_ac61eb
iop_journals_10_1088_2632_2153_ac61eb
proquest_journals_2653319954
crossref_citationtrail_10_1088_2632_2153_ac61eb
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Machine learning: science and technology
PublicationTitleAbbrev MLST
PublicationTitleAlternate Mach. Learn.: Sci. Technol
PublicationYear 2022
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Cui (mlstac61ebbib41) 2017; 90
Burger (mlstac61ebbib1) 2020; 583
Wan (mlstac61ebbib17) 2019; 19
Snow (mlstac61ebbib55) 2004
Karniadakis (mlstac61ebbib52) 2021; 3
Cui (mlstac61ebbib40) 2017; 88
Greenhill (mlstac61ebbib9) 2020; 8
Batra (mlstac61ebbib7) 2021; 6
Segler (mlstac61ebbib18) 2018; 555
Miller (mlstac61ebbib54) 1998
Shenghong (mlstac61ebbib11) 2017; 7
Dunn (mlstac61ebbib15) 2020; 6
Ramshaw (mlstac61ebbib34) 1999
Mikolov (mlstac61ebbib27) 2013
Coley (mlstac61ebbib19) 2019; 365
Laura (mlstac61ebbib51) 2019
Erik (mlstac61ebbib56) 2007
Mintz (mlstac61ebbib31) 2009
Frazier (mlstac61ebbib10) 2016
Wang (mlstac61ebbib57) 2015
Devlin (mlstac61ebbib46) 2018
Elliott (mlstac61ebbib30) 2016; 66
Ueno (mlstac61ebbib12) 2016; 4
Swain (mlstac61ebbib33) 2016; 56
Ramprasad (mlstac61ebbib2) 2017; 3
Tanaka (mlstac61ebbib4) 2018
Shin (mlstac61ebbib37) 2015; vol 8
Tshitoyan (mlstac61ebbib22) 2019; 571
Mikolov (mlstac61ebbib26) 2013
Onishi (mlstac61ebbib35) 2018; 19
Schmidt (mlstac61ebbib3) 2019; 5
Liu (mlstac61ebbib20) 2017; 3
Nadeau (mlstac61ebbib32) 2007; 30
Zhang (mlstac61ebbib58) 2021
Chen (mlstac61ebbib42) 2017; 146
Radford (mlstac61ebbib47) 2018
Pilania (mlstac61ebbib16) 2013; 3
Shetty (mlstac61ebbib25) 2021; 24
Osakabe (mlstac61ebbib21) 2020
Morgan (mlstac61ebbib6) 2020; 50
Lovasz-Bukvova (mlstac61ebbib28) 2009; 9
Greydanus (mlstac61ebbib50) 2019; 32
Brown (mlstac61ebbib49) 2020
Willard (mlstac61ebbib53) 2021
Shields (mlstac61ebbib13) 2021; 590
Oka (mlstac61ebbib44) 2018; 154
Radford (mlstac61ebbib48) 2019; 1
Krenn (mlstac61ebbib23) 2020
mlstac61ebbib38
mlstac61ebbib39
Vasudevan (mlstac61ebbib5) 2021; 129
Shimizu (mlstac61ebbib14) 2020; 8
Manning (mlstac61ebbib36) 2014
Xu (mlstac61ebbib43) 2009; 46
Bojanowski (mlstac61ebbib45) 2017; 5
Brodiuk (mlstac61ebbib24) 2020
Acs (mlstac61ebbib29) 2015
Butler (mlstac61ebbib8) 2018; 559
References_xml – year: 2013
  ident: mlstac61ebbib26
  article-title: Efficient estimation of word representations in vector space
– start-page: 1
  year: 2021
  ident: mlstac61ebbib53
  article-title: Integrating scientific knowledge with machine learning for engineering and environmental systems
– volume: 5
  start-page: 135
  year: 2017
  ident: mlstac61ebbib45
  article-title: Enriching word vectors with subword information
  publication-title: Trans. Assoc. Comput. Linguist.
  doi: 10.1162/tacl_a_00051
– volume: vol 8
  start-page: p 1310
  year: 2015
  ident: mlstac61ebbib37
  article-title: Incremental knowledge base construction using deepdive
  doi: 10.14778/2809974.2809991
– year: 2018
  ident: mlstac61ebbib46
  article-title: Bert: pre-training of deep bidirectional transformers for language understanding
– volume: 3
  start-page: 422
  year: 2021
  ident: mlstac61ebbib52
  article-title: Physics-informed machine learning
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-021-00314-5
– volume: 583
  start-page: 237
  year: 2020
  ident: mlstac61ebbib1
  article-title: A mobile robotic chemist
  publication-title: Nature
  doi: 10.1038/s41586-020-2442-2
– volume: 3
  start-page: 1
  year: 2017
  ident: mlstac61ebbib2
  article-title: Machine learning in materials informatics: recent applications and prospects
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-017-0056-5
– volume: 6
  start-page: 655
  year: 2021
  ident: mlstac61ebbib7
  article-title: Emerging materials intelligence ecosystems propelled by machine learning
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-020-00255-y
– start-page: pp 147
  year: 2015
  ident: mlstac61ebbib57
  article-title: Concept hierarchy extraction from textbooks
– volume: 365
  start-page: 6453
  year: 2019
  ident: mlstac61ebbib19
  article-title: A robotic platform for flow synthesis of organic compounds informed by ai planning
  publication-title: Science
  doi: 10.1126/science.aax1566
– volume: 5
  start-page: 1
  year: 2019
  ident: mlstac61ebbib3
  article-title: Recent advances and applications of machine learning in solid-state materials science
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-019-0221-0
– year: 2020
  ident: mlstac61ebbib21
  article-title: Hitachi materials informatics analytics platform assisting rapid development
– year: 1998
  ident: mlstac61ebbib54
– volume: 9
  start-page: 29
  year: 2009
  ident: mlstac61ebbib28
  article-title: Research as a process: a comparison between different research approaches
  publication-title: Sprouts: Work. Pap. Inf. Syst.
– ident: mlstac61ebbib38
  article-title: Neo4j
– volume: 3
  start-page: 1103
  year: 2017
  ident: mlstac61ebbib20
  article-title: Retrosynthetic reaction prediction using neural sequence-to-sequence models
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.7b00303
– volume: 50
  start-page: 71
  year: 2020
  ident: mlstac61ebbib6
  article-title: Opportunities and challenges for machine learning in materials science
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-070218-010015
– start-page: pp 157
  year: 1999
  ident: mlstac61ebbib34
– start-page: 366
  year: 2020
  ident: mlstac61ebbib24
  article-title: Embedding technique and network analysis of scientific innovations emergence in an arxiv-based concept network
  doi: 10.1109/DSMP47368.2020.9204220
– start-page: pp 45
  year: 2016
  ident: mlstac61ebbib10
– volume: 571
  start-page: 95
  year: 2019
  ident: mlstac61ebbib22
  article-title: Unsupervised word embeddings capture latent knowledge from materials science literature
  publication-title: Nature
  doi: 10.1038/s41586-019-1335-8
– start-page: 3111
  year: 2013
  ident: mlstac61ebbib27
  article-title: Distributed representations of words and phrases and their compositionality
  doi: 10.5555/2999792.2999959
– volume: 7
  year: 2017
  ident: mlstac61ebbib11
  article-title: Designing nanostructures for phonon transport via bayesian optimization
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.7.021024
– volume: 19
  start-page: 3387
  year: 2019
  ident: mlstac61ebbib17
  article-title: Materials discovery and properties prediction in thermal transport via materials informatics: a mini review
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b05196
– start-page: 1910
  year: 2020
  ident: mlstac61ebbib23
  article-title: Predicting research trends with semantic and neural networks with an application in quantum physics
  doi: 10.1073/pnas.1914370116
– year: 2015
  ident: mlstac61ebbib29
– volume: 146
  start-page: 142
  year: 2017
  ident: mlstac61ebbib42
  article-title: Modeling and simulation of dynamic recrystallization behavior for 42CrMo steel by an extended cellular automaton method
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2017.09.041
– volume: 24
  year: 2021
  ident: mlstac61ebbib25
  article-title: Automated knowledge extraction from polymer literature using natural language processing
  publication-title: Iscience
  doi: 10.1016/j.isci.2020.101922
– volume: 90
  start-page: 2477
  year: 2017
  ident: mlstac61ebbib41
  article-title: Finite element analysis on axial-pushed incremental warm rolling process of spline shaft with 42crmo steel and relevant improvement
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-016-9566-4
– volume: 8
  start-page: 13937
  year: 2020
  ident: mlstac61ebbib9
  article-title: Bayesian optimization for adaptive experimental design: a review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2966228
– start-page: pp 1003
  year: 2009
  ident: mlstac61ebbib31
  article-title: Distant supervision for relation extraction without labeled data
– volume: 46
  start-page: 860
  year: 2009
  ident: mlstac61ebbib43
  article-title: Two semi-empirical approaches for the prediction of oxide ionic conductivities in ABO3 perovskites
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2009.04.047
– volume: 56
  start-page: 1894
  year: 2016
  ident: mlstac61ebbib33
  article-title: Chemdata extractor: a toolkit for automated extraction of chemical information from the scientific literature
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.6b00207
– volume: 66
  start-page: 880
  year: 2016
  ident: mlstac61ebbib30
  article-title: Conceptions of good science in our data-rich world
  publication-title: BioScience
  doi: 10.1093/biosci/biw115
– year: 2018
  ident: mlstac61ebbib47
– ident: mlstac61ebbib39
  article-title: Computational materials science
– volume: 559
  start-page: 547
  year: 2018
  ident: mlstac61ebbib8
  article-title: Machine learning for molecular and materials science
  publication-title: Nature
  doi: 10.1038/s41586-018-0337-2
– volume: 4
  start-page: 18
  year: 2016
  ident: mlstac61ebbib12
  article-title: Combo: an efficient bayesian optimization library for materials science
  publication-title: Mater. Discovery
  doi: 10.1016/j.md.2016.04.001
– volume: 88
  start-page: 2621
  year: 2017
  ident: mlstac61ebbib40
  article-title: Deformation mechanism and performance improvement of spline shaft with 42CrMo steel by axial-infeed incremental rolling process
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-016-8997-2
– volume: 3
  start-page: 1
  year: 2013
  ident: mlstac61ebbib16
  article-title: Accelerating materials property predictions using machine learning
  publication-title: Sci. Rep.
  doi: 10.1038/srep02810
– volume: 555
  start-page: 604
  year: 2018
  ident: mlstac61ebbib18
  article-title: Planning chemical syntheses with deep neural networks and symbolic AI
  publication-title: Nature
  doi: 10.1038/nature25978
– start-page: 165
  year: 2007
  ident: mlstac61ebbib56
  article-title: Extracting hypernym pairs from the web
  doi: 10.3115/1557769.1557817
– start-page: 1
  year: 2021
  ident: mlstac61ebbib58
  article-title: Automatic hypernym-hyponym relation extraction with wordnet projection
  doi: 10.1109/ICSAI53574.2021.9664140
– volume: 1
  start-page: 9
  year: 2019
  ident: mlstac61ebbib48
  article-title: Language models are unsupervised multitask learners
  publication-title: OpenAI blog
– volume: 590
  start-page: 89
  year: 2021
  ident: mlstac61ebbib13
  article-title: Bayesian reaction optimization as a tool for chemical synthesis
  publication-title: Nature
  doi: 10.1038/s41586-021-03213-y
– year: 2020
  ident: mlstac61ebbib49
  article-title: Language models are few-shot learners
– start-page: 55
  year: 2014
  ident: mlstac61ebbib36
  article-title: The stanford corenlp natural language processing toolkit
  doi: 10.3115/v1/P14-5010
– volume: 129
  year: 2021
  ident: mlstac61ebbib5
  article-title: Machine learning for materials design and discovery
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0043300
– volume: 6
  start-page: 138
  year: 2020
  ident: mlstac61ebbib15
  article-title: Benchmarking materials property prediction methods: the matbench test set and automatminer reference algorithm
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-020-00406-3
– year: 2018
  ident: mlstac61ebbib4
– volume: 19
  start-page: 649
  year: 2018
  ident: mlstac61ebbib35
  article-title: Relation extraction with weakly supervised learning based on process-structure-property-performance reciprocity
  publication-title: Sci. Technol. Adv. Mater.
  doi: 10.1080/14686996.2018.1500852
– year: 2019
  ident: mlstac61ebbib51
  article-title: Informed machine learning–a taxonomy and survey of integrating knowledge into learning systems
– volume: 8
  year: 2020
  ident: mlstac61ebbib14
  article-title: Autonomous materials synthesis by machine learning and robotics
  publication-title: APL Mater.
  doi: 10.1063/5.0020370
– volume: 30
  start-page: 3
  year: 2007
  ident: mlstac61ebbib32
  article-title: A survey of named entity recognition and classification
  publication-title: Lingvist. Investig.
  doi: 10.1075/li.30.1.03nad
– volume: 154
  start-page: 91
  year: 2018
  ident: mlstac61ebbib44
  article-title: Density functional theory-based ab initio molecular dynamics simulation of ionic conduction in N-/F-doped ZrO2 under epitaxial strain
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2018.07.038
– volume: 32
  start-page: 15379
  year: 2019
  ident: mlstac61ebbib50
  article-title: Hamiltonian neural networks
– start-page: 1297
  year: 2004
  ident: mlstac61ebbib55
  article-title: Learning syntactic patterns for automatic hypernym discovery
  doi: 10.5555/2976040.2976203
SSID ssj0002513520
Score 2.2198539
Snippet The materials science research process has become increasingly autonomous due to the remarkable progress in artificial intelligence. However, autonomous...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 25005
SubjectTerms Artificial intelligence
information extraction
materials informatics
Materials science
natural language processing
Network analysis
relation extraction
text mining
word embedding
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwEA5ue_HF3-J0Sh70wYfSLm1j5ouobAzBIepg4ENI0lQHW1tth_--lzbdGMLeCr1CueTuvrtLvkPokoVMEeWZ1qCQThARBn7Q047sQuYmKWNRyd35PKLDcfA0CSe24JbbY5W1TywddZQqUyN3CQVgYu4TB3fZt2OmRpnuqh2h0UAtcMEMkq_WQ3_08rqsskD0BoTh2f4kWJRr-MkdiHO-KxSFH1qLR41pmv1zymWkGeyhHQsR8X21pvtoSycHaLcev4CtNR6iD8Cib7dYLApzMQEyeGyZe75wkWZThfNyxg0oHld8zdgccv_Ev5BvYj2XOir7TlgkEU6q0-DwXHGUHKHxoP_-OHTsrARHQYJVOLGmXSp1KCkRgGgkjamnIRXrqeBGMsOh3FOmi6Z0JIyVMl8D1AqFJl4YSqb9Y9RM0kSfIAxJmKeI8ARgtSCMA0YAk2hf-VKyWEjSRm6tMa4skbiZZzHjZUObMW50zI2OeaXjNrpefpFVJBobZK9gEbi1pHyDHF6Tm8_ygvuccAPqvJBnUdxGnXolV3KrfXS6-fUZ2ibmqkNZcemgZvGz0OcAQAp5YXfZHzJh2cU
  priority: 102
  providerName: ProQuest
Title ARTS: autonomous research topic selection system using word embeddings and network analysis
URI https://iopscience.iop.org/article/10.1088/2632-2153/ac61eb
https://www.proquest.com/docview/2653319954
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5RWFh4Iwql8gADQ2jqJMaFCVBLQYJWPEQlBst2HEAqaUVTsfHbOSduEQJVLJGHcxydY993Pt93AHs84ppq34YGpfLCmHLcB33jqTp6bopxHufcndc3rP0QXvWi3hycTHNhBkO39R9isyAKLlToLsTxmmUY99BSBTWpGb6yBAsBZ9x6Xp3gcXrAgoYbwYXvQpN_dfxhiko43K_9ODcyrRVYcuiQnBbfsgpzJl2D5UnlBeIW4jo8IQy9OyZynNmcBHTeiSPteSHZYPiqySgvb4M6JwVVM7H325_JB7qaxLwpE-chJyLTmKTFRXBsF_QkG_DQat6ftz1XJsHT6FtlXmJYnSkTKUYlghnFEuYb9MIaOjxS3NInN7QNoGkTS7tAeWAQZUXSUD-KFDfBJsyng9RsAUH_y9dU-hJhWhglIacIR0ygA6V4IhUtQ22iMaEdh7gtZdEXeSybc2F1LKyORaHjMhxMewwL_owZsvs4CcItotEMOfJD7q0_ykQgqLB4zo_EME7KUJnM5LccZYhtbUp6uP3PkXZgkdp0h_zUpQLz2fvY7CIIyVQVSrx1UYWFs-ZN97aau_L4vOx08Xn92azmP-MXAu3ciQ
linkProvider IOP Publishing
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4BPcCFtjzE8mh9gAOHaIOTGG8lhFDb7cIuXAAJiYOxHadFgiSQrKr-KX4jM3mwQpX2trdI66yUeXi-8Xi-AdiVkbTc-lQa1MYLYy5xH_SdZw4wczNCyrji7jy_EIPr8OwmupmDl7YXhq5VtntitVHHmaUz8i4XCEyonzg8zp88mhpF1dV2hEZtFkP37y-mbMXR6Q_U7x7n_Z9X3wdeM1XAs5iKlF7ixIEwLjKCa4z9RiTCd5i09Gx4aCSxDfcs1ZusizXZswwcgpJIO-5HkZEuwP-dhw9hEPTIo2T_19uZDmIFxDN-Uw1F_-0SG7qHUTXoaivw899Fv_n7LP8vBFRxrf8JlhtAyk5qC_oMcy5dgY_tsAfW-P4q3CLyvfzG9LikNohsXLCGJ-gPK7P83rKimqiDamY1OzSjK_W_GYmKuUfj4qrKxXQas7S-e47PNSPKGlzPRIbrsJBmqdsAhimfb7n2NSLDMEpCyREBucAGxshEG96BbisxZRvacpqe8aCq8rmUimSsSMaqlnEH9t_eyGvKjilr91AJqvHbYso69m7d40NRqkBxRRDSj1QeJx3YbjU5WTex2s3pP3-FxcHV-UiNTi-GW7DEqcmiOuvZhoXyeex2EPqU5ktlbwzuZm3gr4vcFSg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5aQbz4FqtVc9CDh7Xb7Cam3kQt9VUFLRY8hCSbVaHdFrvFv-8km1aKUrzlMEuWyWO-ycx8g9Ahp1wTHdrQoFRBnBAO92BoAlUDz00xzhPH3XnfYs12fNOhHd_n1NXC9Af-6j-BYUEUXKjQJ8TxqmUYD8BSRVWpWc2mTifpPFqgEWO2d8ND9DJ5ZAHjDQAj9OHJvz6eMkfzMOWvO9kZmsYqWvYIEZ8X_7OG5ky2jlbG3RewP4wb6BWg6NMZlqPc1iWAA489cc87zvuDD42HrsUN6B0XdM3Y5ri_4S9wN7HpKZO4sBOWWYKzIhkcxgVFySZqN66eL5qBb5UQaPCv8iA1rMaUoYoRCYBGsZSFBjyxuo5PFbcUynVtg2jaJNIeUh4ZQFpUGhJSqriJtlAp62dmG2HwwUJNZCgBqsU0jTkBSGIiHSnFU6lIGVXHGhPa84jbdhZd4eLZnAurY2F1LAodl9Hx5ItBwaExQ_YIFkH4gzScIYen5HrdYS4iQYTFdCEVsCfKqDJeyR85wgDf2rL0eOefMx2gxcfLhri7bt3uoiViqx_cI0wFlfLPkdkDTJKrfbfvvgEeYNrJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ARTS%3A+autonomous+research+topic+selection+system+using+word+embeddings+and+network+analysis&rft.jtitle=Machine+learning%3A+science+and+technology&rft.au=Teruya%2C+Eri&rft.au=Takeuchi%2C+Tadashi&rft.au=Morita%2C+Hidekazu&rft.au=Hayashi%2C+Takayuki&rft.date=2022-06-01&rft.pub=IOP+Publishing&rft.eissn=2632-2153&rft.volume=3&rft.issue=2&rft_id=info:doi/10.1088%2F2632-2153%2Fac61eb&rft.externalDocID=mlstac61eb
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2632-2153&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2632-2153&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2632-2153&client=summon