Sex differences in solute transport along the nephrons: effects of Na + transport inhibition

Each day, ~1.7 kg of NaCl and 180 liters of water are reabsorbed by nephron segments in humans, with urinary excretion fine tuned to meet homeostatic requirements. These tasks are coordinated by a spectrum of renal Na + transporters and channels. The goal of the present study was to investigate the...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of physiology. Renal physiology Vol. 319; no. 3; pp. F487 - F505
Main Authors Hu, Rui, McDonough, Alicia A., Layton, Anita T.
Format Journal Article
LanguageEnglish
Published Bethesda, MD American Physiological Society 01.09.2020
SeriesSex and Gender in Renal Health and Function
Online AccessGet full text

Cover

Loading…
Abstract Each day, ~1.7 kg of NaCl and 180 liters of water are reabsorbed by nephron segments in humans, with urinary excretion fine tuned to meet homeostatic requirements. These tasks are coordinated by a spectrum of renal Na + transporters and channels. The goal of the present study was to investigate the extent to which inhibitors of transepithelial Na + transport (T Na ) along the nephron alter urinary solute excretion and how those effects may vary between male and female subjects. To accomplish that goal, we developed sex-specific multinephron models that represent detailed transcellular and paracellular transport processes along the nephrons of male and female rat kidneys. We simulated inhibition of Na + /H + exchanger 3 (NHE3), bumetanide-sensitive Na + -K + -2Cl − cotransporter (NKCC2), Na + -Cl − cotransporter (NCC), and amiloride-sensitive epithelial Na + channel (ENaC). NHE3 inhibition simulations predicted a substantially reduced proximal tubule T Na , and NKCC2 inhibition substantially reduced thick ascending limb T Na . Both gave rise to diuresis, natriuresis, and kaliuresis, with those effects stronger in female rats. While NCC inhibition was predicted to have only minor impact on renal T Na , it nonetheless had a notable effect of enhancing excretion of Na + , K + , and Cl − , particularly in female rats. Inhibition of ENaC was predicted to have opposite effects on the excretion of Na + (increased) and K + (decreased) and to have only a minor impact on whole kidney T Na . Unlike inhibition of other transporters, ENaC inhibition induced stronger natriuresis and diuresis in male rats than female rats. Overall, model predictions agreed well with measured changes in Na + and K + excretion in response to diuretics and Na + transporter mutations.
AbstractList Each day, ~1.7 kg of NaCl and 180 liters of water are reabsorbed by nephron segments in humans, with urinary excretion fine tuned to meet homeostatic requirements. These tasks are coordinated by a spectrum of renal Na + transporters and channels. The goal of the present study was to investigate the extent to which inhibitors of transepithelial Na + transport (T Na ) along the nephron alter urinary solute excretion and how those effects may vary between male and female subjects. To accomplish that goal, we developed sex-specific multinephron models that represent detailed transcellular and paracellular transport processes along the nephrons of male and female rat kidneys. We simulated inhibition of Na + /H + exchanger 3 (NHE3), bumetanide-sensitive Na + -K + -2Cl − cotransporter (NKCC2), Na + -Cl − cotransporter (NCC), and amiloride-sensitive epithelial Na + channel (ENaC). NHE3 inhibition simulations predicted a substantially reduced proximal tubule T Na , and NKCC2 inhibition substantially reduced thick ascending limb T Na . Both gave rise to diuresis, natriuresis, and kaliuresis, with those effects stronger in female rats. While NCC inhibition was predicted to have only minor impact on renal T Na , it nonetheless had a notable effect of enhancing excretion of Na + , K + , and Cl − , particularly in female rats. Inhibition of ENaC was predicted to have opposite effects on the excretion of Na + (increased) and K + (decreased) and to have only a minor impact on whole kidney T Na . Unlike inhibition of other transporters, ENaC inhibition induced stronger natriuresis and diuresis in male rats than female rats. Overall, model predictions agreed well with measured changes in Na + and K + excretion in response to diuretics and Na + transporter mutations.
Each day, ~1.7 kg of NaCl and 180 liters of water are reabsorbed by nephron segments in humans, with urinary excretion fine tuned to meet homeostatic requirements. These tasks are coordinated by a spectrum of renal Na+ transporters and channels. The goal of the present study was to investigate the extent to which inhibitors of transepithelial Na+ transport (TNa) along the nephron alter urinary solute excretion and how those effects may vary between male and female subjects. To accomplish that goal, we developed sex-specific multinephron models that represent detailed transcellular and paracellular transport processes along the nephrons of male and female rat kidneys. We simulated inhibition of Na+/H+ exchanger 3 (NHE3), bumetanide-sensitive Na+-K+-2Cl- cotransporter (NKCC2), Na+-Cl- cotransporter (NCC), and amiloride-sensitive epithelial Na+ channel (ENaC). NHE3 inhibition simulations predicted a substantially reduced proximal tubule TNa, and NKCC2 inhibition substantially reduced thick ascending limb TNa. Both gave rise to diuresis, natriuresis, and kaliuresis, with those effects stronger in female rats. While NCC inhibition was predicted to have only minor impact on renal TNa, it nonetheless had a notable effect of enhancing excretion of Na+, K+, and Cl-, particularly in female rats. Inhibition of ENaC was predicted to have opposite effects on the excretion of Na+ (increased) and K+ (decreased) and to have only a minor impact on whole kidney TNa. Unlike inhibition of other transporters, ENaC inhibition induced stronger natriuresis and diuresis in male rats than female rats. Overall, model predictions agreed well with measured changes in Na+ and K+ excretion in response to diuretics and Na+ transporter mutations.Each day, ~1.7 kg of NaCl and 180 liters of water are reabsorbed by nephron segments in humans, with urinary excretion fine tuned to meet homeostatic requirements. These tasks are coordinated by a spectrum of renal Na+ transporters and channels. The goal of the present study was to investigate the extent to which inhibitors of transepithelial Na+ transport (TNa) along the nephron alter urinary solute excretion and how those effects may vary between male and female subjects. To accomplish that goal, we developed sex-specific multinephron models that represent detailed transcellular and paracellular transport processes along the nephrons of male and female rat kidneys. We simulated inhibition of Na+/H+ exchanger 3 (NHE3), bumetanide-sensitive Na+-K+-2Cl- cotransporter (NKCC2), Na+-Cl- cotransporter (NCC), and amiloride-sensitive epithelial Na+ channel (ENaC). NHE3 inhibition simulations predicted a substantially reduced proximal tubule TNa, and NKCC2 inhibition substantially reduced thick ascending limb TNa. Both gave rise to diuresis, natriuresis, and kaliuresis, with those effects stronger in female rats. While NCC inhibition was predicted to have only minor impact on renal TNa, it nonetheless had a notable effect of enhancing excretion of Na+, K+, and Cl-, particularly in female rats. Inhibition of ENaC was predicted to have opposite effects on the excretion of Na+ (increased) and K+ (decreased) and to have only a minor impact on whole kidney TNa. Unlike inhibition of other transporters, ENaC inhibition induced stronger natriuresis and diuresis in male rats than female rats. Overall, model predictions agreed well with measured changes in Na+ and K+ excretion in response to diuretics and Na+ transporter mutations.
Author Hu, Rui
Layton, Anita T.
McDonough, Alicia A.
Author_xml – sequence: 1
  givenname: Rui
  surname: Hu
  fullname: Hu, Rui
  organization: Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
– sequence: 2
  givenname: Alicia A.
  orcidid: 0000-0002-0459-469X
  surname: McDonough
  fullname: McDonough, Alicia A.
  organization: Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California
– sequence: 3
  givenname: Anita T.
  surname: Layton
  fullname: Layton, Anita T.
  organization: Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada, Department of Biology, Cheriton School of Computer Science, and School of Pharmacology, University of Waterloo, Waterloo, Ontario, Canada
BookMark eNp9kU1LxDAQhoMofv8CLzkK0jVJ0zb1IIj4BaIHFTwIIZtO3Eg3qUlW9N-bdVdQD-YygXnfZ2Z4t9Cq8w4Q2qNkRGnFDtXLEMCpfkQI42TECCMraDN3WEF5Xa_mf1vSQlTN4wbaivGFEEIpo-too2QN50TwTfR0B--4s8ZAZmmI2DocfT9LgFNQLg4-JKx6755xmgB2MEyCd_EIQ7boFLE3-Ebhgx9q6yZ2bJP1bgetGdVH2F3WbfRwfnZ_ellc315cnZ5cF5pzkQpT1qYyQLUR-em2MaLSnBndjWtaKd5y1ui6Im0DUGvTQkeAETEWou5Y1_JyGx0vuMNsPIVOg8vb9HIIdqrCh_TKyt8dZyfy2b_JJkOZoBmwvwQE_zqDmOTURg19rxz4WZSMlySP56LN0nYh1cHHGMBIbZOaX5vJtpeUyHk68jsd-ZWOnKeTveUf7_eK_7k-AYb1mRY
CitedBy_id crossref_primary_10_1007_s00285_023_01891_y
crossref_primary_10_3389_fphys_2022_991705
crossref_primary_10_1152_ajprenal_00177_2023
crossref_primary_10_1038_s41581_023_00757_2
crossref_primary_10_1016_j_rce_2023_11_011
crossref_primary_10_3389_fphar_2021_780620
crossref_primary_10_1016_j_isci_2021_102667
crossref_primary_10_1016_j_mbs_2021_108642
crossref_primary_10_1096_fj_202200785RR
crossref_primary_10_1371_journal_pone_0293419
crossref_primary_10_1016_j_jtbi_2023_111583
crossref_primary_10_3390_biom15010143
crossref_primary_10_1016_j_isci_2021_102341
crossref_primary_10_1152_ajprenal_00175_2022
crossref_primary_10_1152_ajprenal_00222_2024
crossref_primary_10_1152_ajprenal_00403_2023
crossref_primary_10_1139_cjpp_2022_0126
crossref_primary_10_1152_ajprenal_00064_2021
crossref_primary_10_1016_j_ijpx_2024_100254
crossref_primary_10_1152_ajprenal_00161_2023
crossref_primary_10_1152_ajprenal_00264_2021
crossref_primary_10_1097_MD_0000000000034967
crossref_primary_10_1016_j_rceng_2023_11_003
crossref_primary_10_1038_s41371_022_00748_z
crossref_primary_10_3389_fphys_2022_741121
crossref_primary_10_1152_ajprenal_00145_2023
crossref_primary_10_1152_ajprenal_00398_2023
crossref_primary_10_1172_jci_insight_172051
crossref_primary_10_1681_ASN_0000000000000109
crossref_primary_10_35119_maio_v4i1_121
crossref_primary_10_1152_physiolgenomics_00102_2021
crossref_primary_10_1152_ajprenal_00231_2022
crossref_primary_10_3389_fimmu_2023_1178410
crossref_primary_10_1007_s12264_024_01240_z
crossref_primary_10_1091_mbc_E24_01_0025
crossref_primary_10_3389_fphar_2024_1409271
crossref_primary_10_3390_pharmaceutics15031002
crossref_primary_10_1371_journal_pone_0279785
crossref_primary_10_1016_j_jtbi_2022_111074
crossref_primary_10_1002_pds_5592
crossref_primary_10_1152_ajprenal_00001_2024
crossref_primary_10_3390_ijms22115819
crossref_primary_10_1371_journal_pcbi_1010607
crossref_primary_10_1152_ajprenal_00227_2022
crossref_primary_10_1152_ajprenal_00296_2022
crossref_primary_10_1137_22M1480732
crossref_primary_10_3389_fcvm_2022_968184
crossref_primary_10_1007_s00424_022_02718_3
Cites_doi 10.1681/ASN.V541112
10.1097/00000441-200001000-00005
10.1530/JOE-16-0669
10.1016/j.kint.2017.02.001
10.1152/ajprenal.00288.2014
10.1152/ajprenal.00415.2012
10.1038/ki.1987.39
10.1152/ajprenal.00249.2009
10.1152/ajprenal.1988.254.2.F223
10.1016/j.cbpb.2003.10.006
10.1097/00041552-200309000-00008
10.1152/ajprenal.1985.248.4.F527
10.1152/ajprenal.00203.2010
10.1007/s002329900297
10.1152/ajpcell.00450.2011
10.1038/ng0196-24
10.1152/ajprenal.00236.2011
10.1126/science.1062844
10.1016/j.coph.2014.12.012
10.1042/CS20150654
10.1007/s00424-007-0308-1
10.1152/ajprenal.1998.275.3.F379
10.1016/S0140-6736(05)17741-1
10.1161/CIR.0000000000000659
10.1172/JCI107721
10.1152/ajprenal.00174.2014
10.1038/367463a0
10.1038/969
10.1152/physrev.00056.2003
10.1152/ajprenal.00398.2003
10.1152/ajprenal.1999.277.3.F447
10.1152/ajprenal.00649.2013
10.1139/y05-012
10.1152/ajprenal.00657.2016
10.1152/ajpregu.00039.2013
10.1152/ajprenal.00149.2014
10.1038/ng0396-248
10.1152/ajprenal.00294.2016
10.1172/JCI8609
10.1152/physrev.00055.2017
10.1159/000074675
10.1152/ajprenal.00551.2017
10.1146/annurev.ph.49.030187.001343
10.1152/ajprenal.00129.2015
10.1152/physrev.00044.2018
10.1006/phrs.1998.0311
10.1016/0272-6386(95)90119-1
10.2215/CJN.05920613
10.1146/annurev.physiol.64.081501.155847
10.1038/ng.2218
10.1152/ajprenal.00030.2009
10.2215/CJN.12391213
10.1152/ajpregu.00060.2019
10.1007/s00424-008-0595-1
10.1016/j.steroids.2010.05.014
10.1152/ajprenal.00204.2010
10.1113/expphysiol.2003.002652
10.1152/ajprenal.00600.2014
10.1152/ajprenal.00354.2015
10.1152/ajprenal.00572.2009
10.1681/ASN.2019080790
10.1152/ajprenal.00183.2013
10.1681/ASN.2006091070
10.1038/ki.1987.117
10.2337/dc11-s246
10.1152/physiol.00026.2016
10.2215/CJN.05760513
10.1111/apha.13448
10.1038/ki.1985.154
10.1159/000179741
10.1161/HYPERTENSIONAHA.119.13887
10.1172/JCI108105
10.1152/ajprenal.00171.2018
10.1152/ajprenal.00087.2017
10.1152/physrev.00031.2005
10.1152/ajprenal.00396.2011
10.1152/ajprenal.00334.2015
10.1152/ajpregu.00002.2010
10.1038/ki.1988.206
10.1681/ASN.2015070734
10.1152/ajprenal.00352.2019
10.1126/science.109.2837.489
10.1001/jama.1976.03260470017018
10.1152/ajprenal.00263.2011
10.1681/ASN.2017030295
10.1152/ajprenal.00577.2014
10.1186/2042-6410-3-7
10.1111/j.1472-8206.2010.00854.x
10.1074/jbc.M804322200
10.1016/j.compbiomed.2018.11.002
10.1172/JCI9260
10.1016/0895-7061(95)00216-2
10.1038/ki.2008.350
10.1152/ajprenal.00363.2018
ContentType Journal Article
Copyright Copyright © 2020 the American Physiological Society 2020 American Physiological Society
Copyright_xml – notice: Copyright © 2020 the American Physiological Society 2020 American Physiological Society
DBID AAYXX
CITATION
7X8
5PM
DOI 10.1152/ajprenal.00240.2020
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate SEX DIFFERENCES IN SOLUTE TRANSPORT
EISSN 1522-1466
EndPage F505
ExternalDocumentID PMC7509281
10_1152_ajprenal_00240_2020
GrantInformation_xml – fundername: ;
– fundername: ; ;
  grantid: 2R01DK083785
GroupedDBID ---
23M
2WC
39C
4.4
53G
5GY
5VS
6J9
AAFWJ
AAYXX
ACPRK
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CITATION
E3Z
EBS
EMOBN
F5P
GX1
H13
ITBOX
KQ8
OK1
P2P
PQQKQ
RAP
RHI
RPL
RPRKH
TR2
W8F
WOQ
XSW
YSK
7X8
5PM
ID FETCH-LOGICAL-c448t-f36f5fe1cf8888c97f85c42fcdb615a49427c65097ee6cf9ed0e208b886d2d943
ISSN 1931-857X
1522-1466
IngestDate Thu Aug 21 18:29:44 EDT 2025
Thu Jul 10 17:50:24 EDT 2025
Tue Jul 01 02:06:33 EDT 2025
Thu Apr 24 22:56:11 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c448t-f36f5fe1cf8888c97f85c42fcdb615a49427c65097ee6cf9ed0e208b886d2d943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0459-469X
OpenAccessLink https://journals.physiology.org/doi/pdf/10.1152/ajprenal.00240.2020
PMID 32744084
PQID 2430097489
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7509281
proquest_miscellaneous_2430097489
crossref_citationtrail_10_1152_ajprenal_00240_2020
crossref_primary_10_1152_ajprenal_00240_2020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Bethesda, MD
PublicationPlace_xml – name: Bethesda, MD
PublicationSeriesTitle Sex and Gender in Renal Health and Function
PublicationTitle American journal of physiology. Renal physiology
PublicationYear 2020
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References B20
B64
B21
B65
B22
B66
B23
B67
B24
B68
B25
B69
B26
B27
B28
B29
B70
B71
B72
B73
B30
B74
B75
B32
B76
B33
B47a
B77
B34
B78
B79
B36
B37
B38
B39
B1
B2
B3
B4
B5
B6
B7
B8
B9
B80
B81
B82
B83
B10a
B40
B84
B41
B85
B42
B86
B43
B44a
B87
Higgins BA (B31) 1964; 27
B44
B88
B45
B89
B46
B47
B48
B49
B90
B91
B92
B93
B50
B51
B52
B53
B10
B54
B55
B12
B56
B13
B57
B14
B58
B15
B59
B16
B17
B18
B19
Johnston PA (B35) 1992; 14
Chen Z (B11) 1994; 5
B60
B61
B62
B63
References_xml – volume: 5
  start-page: 1112
  year: 1994
  ident: B11
  publication-title: J Am Soc Nephrol
  doi: 10.1681/ASN.V541112
– ident: B24
  doi: 10.1097/00000441-200001000-00005
– ident: B73
  doi: 10.1530/JOE-16-0669
– ident: B17
  doi: 10.1016/j.kint.2017.02.001
– volume: 27
  start-page: 457
  year: 1964
  ident: B31
  publication-title: Clin Sci
– ident: B53
  doi: 10.1152/ajprenal.00288.2014
– ident: B2
  doi: 10.1152/ajprenal.00415.2012
– ident: B25
  doi: 10.1038/ki.1987.39
– ident: B43
  doi: 10.1152/ajprenal.00249.2009
– ident: B55
  doi: 10.1152/ajprenal.1988.254.2.F223
– ident: B65
  doi: 10.1016/j.cbpb.2003.10.006
– ident: B29
  doi: 10.1097/00041552-200309000-00008
– ident: B13
  doi: 10.1152/ajprenal.1985.248.4.F527
– ident: B39
  doi: 10.1152/ajprenal.00203.2010
– ident: B82
  doi: 10.1007/s002329900297
– ident: B67
  doi: 10.1152/ajpcell.00450.2011
– ident: B76
  doi: 10.1038/ng0196-24
– ident: B85
  doi: 10.1152/ajprenal.00236.2011
– ident: B92
  doi: 10.1126/science.1062844
– ident: B90
  doi: 10.1016/j.coph.2014.12.012
– ident: B28
  doi: 10.1042/CS20150654
– ident: B66
  doi: 10.1007/s00424-007-0308-1
– ident: B9
  doi: 10.1152/ajprenal.1998.275.3.F379
– ident: B36
  doi: 10.1016/S0140-6736(05)17741-1
– ident: B3
  doi: 10.1161/CIR.0000000000000659
– ident: B93
  doi: 10.1172/JCI107721
– ident: B6
  doi: 10.1152/ajprenal.00174.2014
– ident: B8
  doi: 10.1038/367463a0
– ident: B71
  doi: 10.1038/969
– ident: B52
  doi: 10.1152/physrev.00056.2003
– ident: B44
  doi: 10.1152/ajprenal.00398.2003
– ident: B49
  doi: 10.1152/ajprenal.1999.277.3.F447
– ident: B72
  doi: 10.1152/ajprenal.00649.2013
– ident: B83
  doi: 10.1139/y05-012
– ident: B46
  doi: 10.1152/ajprenal.00657.2016
– ident: B27
  doi: 10.1152/ajpregu.00039.2013
– ident: B21
  doi: 10.1152/ajprenal.00149.2014
– ident: B10
  doi: 10.1038/ng0396-248
– ident: B42
  doi: 10.1152/ajprenal.00294.2016
– ident: B22
  doi: 10.1172/JCI8609
– ident: B23
  doi: 10.1152/physrev.00055.2017
– ident: B5
  doi: 10.1159/000074675
– ident: B44a
  doi: 10.1152/ajprenal.00551.2017
– ident: B7
  doi: 10.1146/annurev.ph.49.030187.001343
– ident: B16
  doi: 10.1152/ajprenal.00129.2015
– ident: B32
  doi: 10.1152/physrev.00044.2018
– ident: B63
  doi: 10.1006/phrs.1998.0311
– ident: B75
  doi: 10.1016/0272-6386(95)90119-1
– ident: B81
  doi: 10.2215/CJN.05920613
– ident: B14
  doi: 10.1146/annurev.physiol.64.081501.155847
– ident: B50
  doi: 10.1038/ng.2218
– ident: B86
  doi: 10.1152/ajprenal.00030.2009
– ident: B59
  doi: 10.2215/CJN.12391213
– ident: B78
  doi: 10.1152/ajpregu.00060.2019
– ident: B4
  doi: 10.1007/s00424-008-0595-1
– volume: 14
  start-page: 523
  year: 1992
  ident: B35
  publication-title: Methods Find Exp Clin Pharmacol
– ident: B56
  doi: 10.1016/j.steroids.2010.05.014
– ident: B40
  doi: 10.1152/ajprenal.00204.2010
– ident: B68
  doi: 10.1113/expphysiol.2003.002652
– ident: B20
  doi: 10.1152/ajprenal.00600.2014
– ident: B62
  doi: 10.1152/ajprenal.00354.2015
– ident: B10a
  doi: 10.1152/ajprenal.00572.2009
– ident: B70
  doi: 10.1681/ASN.2019080790
– ident: B57
  doi: 10.1152/ajprenal.00183.2013
– ident: B58
  doi: 10.1681/ASN.2006091070
– ident: B79
  doi: 10.1038/ki.1987.117
– ident: B26
  doi: 10.2337/dc11-s246
– ident: B64
  doi: 10.1152/physiol.00026.2016
– ident: B60
  doi: 10.2215/CJN.05760513
– ident: B89
  doi: 10.1111/apha.13448
– ident: B33
  doi: 10.1038/ki.1985.154
– ident: B54
  doi: 10.1159/000179741
– ident: B74
  doi: 10.1161/HYPERTENSIONAHA.119.13887
– ident: B38
  doi: 10.1172/JCI108105
– ident: B47a
  doi: 10.1152/ajprenal.00171.2018
– ident: B48
  doi: 10.1152/ajprenal.00087.2017
– ident: B84
  doi: 10.1152/physrev.00031.2005
– ident: B1
  doi: 10.1152/ajprenal.00396.2011
– ident: B19
  doi: 10.1152/ajprenal.00334.2015
– ident: B51
  doi: 10.1152/ajpregu.00002.2010
– ident: B61
  doi: 10.1038/ki.1988.206
– ident: B77
  doi: 10.1681/ASN.2015070734
– ident: B34
  doi: 10.1152/ajprenal.00352.2019
– ident: B87
  doi: 10.1126/science.109.2837.489
– ident: B80
  doi: 10.1001/jama.1976.03260470017018
– ident: B41
  doi: 10.1152/ajprenal.00263.2011
– ident: B88
  doi: 10.1681/ASN.2017030295
– ident: B15
  doi: 10.1152/ajprenal.00577.2014
– ident: B69
  doi: 10.1186/2042-6410-3-7
– ident: B37
  doi: 10.1111/j.1472-8206.2010.00854.x
– ident: B30
  doi: 10.1074/jbc.M804322200
– ident: B47
  doi: 10.1016/j.compbiomed.2018.11.002
– ident: B12
  doi: 10.1172/JCI9260
– ident: B91
  doi: 10.1016/0895-7061(95)00216-2
– ident: B18
  doi: 10.1038/ki.2008.350
– ident: B45
  doi: 10.1152/ajprenal.00363.2018
SSID ssj0001121
Score 2.5199404
Snippet Each day, ~1.7 kg of NaCl and 180 liters of water are reabsorbed by nephron segments in humans, with urinary excretion fine tuned to meet homeostatic...
SourceID pubmedcentral
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage F487
Title Sex differences in solute transport along the nephrons: effects of Na + transport inhibition
URI https://www.proquest.com/docview/2430097489
https://pubmed.ncbi.nlm.nih.gov/PMC7509281
Volume 319
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9NAEF_0BPFF9E6xnsoK4ktNbbebL99OuXJoryq2UPAh7CcXOZPjTMHzr3dms_koFjntQ2i2ySbs_DqZmcz8hpAXUSitsKkOEsNNwI22gZCY6GonsQktgMQVCp8uopMVf78O111CpqsuqeRI_dpZV_I_UoUxkCtWyf6DZNtJYQC-g3xhCxKG7bVk_MX8bDuc1JlVQ3dBg50fas7yoTgvfUFUYS6QCdflwPXSOBZgPr7tnZAXZ7nMW3k1DLXNm50e1YSLiriw_AjEhIPdSAcXJ8RNvhWOxtZAdXkNRlW6eOpcXDVNrkHVCJ_B7YMS4IE2WVetHgUfF5SwZ7neMeaV79QrzLzvnDtVOuP1k_hPHR8iZ6z4hpyf4J84lrYR3kT3SGte4y8-ZrPVfJ4tj9fLm-QWA1cCu1x8-NwxyoO9WXPq-pvzzFSw_3rHJbatl84l2U6o7Vkoy3vkrnct6FGNk_vkhin2ycFRIary-xV9ST-1wtknt099TsUB-Qoooj0U0bygNYpoCwrqUEQBRbRB0RvqMURLSxdi2Du4Q9ADspodL9-dBL7lRqDAT68CO41saM1E2QQ-Ko1tEirOrNISTF_BU85ihaSLsTGRsqnRY8PGiUySSDOd8ulDsleUhXlEaChjsCUlUkJqPpHjVIdC6UhJbSRTsRwQ1ixlpjwfPbZFOc-cXxqyrFn_zK1_hus_IK_aky5qOpa_H_68kVEGahPfhYnClJsfGeNTLGHiSTog8Zbw2nmReH37lyI_cwTsaGWzZPL4GrMfkjvd_-MJ2asuN-YpmLGVfOZw-BtuMqVO
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sex+differences+in+solute+transport+along+the+nephrons%3A+effects+of+Na%2B+transport+inhibition&rft.jtitle=American+journal+of+physiology.+Renal+physiology&rft.au=Hu%2C+Rui&rft.au=McDonough%2C+Alicia+A&rft.au=Layton%2C+Anita+T&rft.date=2020-09-01&rft.issn=1522-1466&rft.eissn=1522-1466&rft.volume=319&rft.issue=3&rft.spage=F487&rft_id=info:doi/10.1152%2Fajprenal.00240.2020&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-857X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-857X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-857X&client=summon