Sex differences in solute transport along the nephrons: effects of Na + transport inhibition
Each day, ~1.7 kg of NaCl and 180 liters of water are reabsorbed by nephron segments in humans, with urinary excretion fine tuned to meet homeostatic requirements. These tasks are coordinated by a spectrum of renal Na + transporters and channels. The goal of the present study was to investigate the...
Saved in:
Published in | American journal of physiology. Renal physiology Vol. 319; no. 3; pp. F487 - F505 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Bethesda, MD
American Physiological Society
01.09.2020
|
Series | Sex and Gender in Renal Health and Function |
Online Access | Get full text |
Cover
Loading…
Abstract | Each day, ~1.7 kg of NaCl and 180 liters of water are reabsorbed by nephron segments in humans, with urinary excretion fine tuned to meet homeostatic requirements. These tasks are coordinated by a spectrum of renal Na
+
transporters and channels. The goal of the present study was to investigate the extent to which inhibitors of transepithelial Na
+
transport (T
Na
) along the nephron alter urinary solute excretion and how those effects may vary between male and female subjects. To accomplish that goal, we developed sex-specific multinephron models that represent detailed transcellular and paracellular transport processes along the nephrons of male and female rat kidneys. We simulated inhibition of Na
+
/H
+
exchanger 3 (NHE3), bumetanide-sensitive Na
+
-K
+
-2Cl
−
cotransporter (NKCC2), Na
+
-Cl
−
cotransporter (NCC), and amiloride-sensitive epithelial Na
+
channel (ENaC). NHE3 inhibition simulations predicted a substantially reduced proximal tubule T
Na
, and NKCC2 inhibition substantially reduced thick ascending limb T
Na
. Both gave rise to diuresis, natriuresis, and kaliuresis, with those effects stronger in female rats. While NCC inhibition was predicted to have only minor impact on renal T
Na
, it nonetheless had a notable effect of enhancing excretion of Na
+
, K
+
, and Cl
−
, particularly in female rats. Inhibition of ENaC was predicted to have opposite effects on the excretion of Na
+
(increased) and K
+
(decreased) and to have only a minor impact on whole kidney T
Na
. Unlike inhibition of other transporters, ENaC inhibition induced stronger natriuresis and diuresis in male rats than female rats. Overall, model predictions agreed well with measured changes in Na
+
and K
+
excretion in response to diuretics and Na
+
transporter mutations. |
---|---|
AbstractList | Each day, ~1.7 kg of NaCl and 180 liters of water are reabsorbed by nephron segments in humans, with urinary excretion fine tuned to meet homeostatic requirements. These tasks are coordinated by a spectrum of renal Na
+
transporters and channels. The goal of the present study was to investigate the extent to which inhibitors of transepithelial Na
+
transport (T
Na
) along the nephron alter urinary solute excretion and how those effects may vary between male and female subjects. To accomplish that goal, we developed sex-specific multinephron models that represent detailed transcellular and paracellular transport processes along the nephrons of male and female rat kidneys. We simulated inhibition of Na
+
/H
+
exchanger 3 (NHE3), bumetanide-sensitive Na
+
-K
+
-2Cl
−
cotransporter (NKCC2), Na
+
-Cl
−
cotransporter (NCC), and amiloride-sensitive epithelial Na
+
channel (ENaC). NHE3 inhibition simulations predicted a substantially reduced proximal tubule T
Na
, and NKCC2 inhibition substantially reduced thick ascending limb T
Na
. Both gave rise to diuresis, natriuresis, and kaliuresis, with those effects stronger in female rats. While NCC inhibition was predicted to have only minor impact on renal T
Na
, it nonetheless had a notable effect of enhancing excretion of Na
+
, K
+
, and Cl
−
, particularly in female rats. Inhibition of ENaC was predicted to have opposite effects on the excretion of Na
+
(increased) and K
+
(decreased) and to have only a minor impact on whole kidney T
Na
. Unlike inhibition of other transporters, ENaC inhibition induced stronger natriuresis and diuresis in male rats than female rats. Overall, model predictions agreed well with measured changes in Na
+
and K
+
excretion in response to diuretics and Na
+
transporter mutations. Each day, ~1.7 kg of NaCl and 180 liters of water are reabsorbed by nephron segments in humans, with urinary excretion fine tuned to meet homeostatic requirements. These tasks are coordinated by a spectrum of renal Na+ transporters and channels. The goal of the present study was to investigate the extent to which inhibitors of transepithelial Na+ transport (TNa) along the nephron alter urinary solute excretion and how those effects may vary between male and female subjects. To accomplish that goal, we developed sex-specific multinephron models that represent detailed transcellular and paracellular transport processes along the nephrons of male and female rat kidneys. We simulated inhibition of Na+/H+ exchanger 3 (NHE3), bumetanide-sensitive Na+-K+-2Cl- cotransporter (NKCC2), Na+-Cl- cotransporter (NCC), and amiloride-sensitive epithelial Na+ channel (ENaC). NHE3 inhibition simulations predicted a substantially reduced proximal tubule TNa, and NKCC2 inhibition substantially reduced thick ascending limb TNa. Both gave rise to diuresis, natriuresis, and kaliuresis, with those effects stronger in female rats. While NCC inhibition was predicted to have only minor impact on renal TNa, it nonetheless had a notable effect of enhancing excretion of Na+, K+, and Cl-, particularly in female rats. Inhibition of ENaC was predicted to have opposite effects on the excretion of Na+ (increased) and K+ (decreased) and to have only a minor impact on whole kidney TNa. Unlike inhibition of other transporters, ENaC inhibition induced stronger natriuresis and diuresis in male rats than female rats. Overall, model predictions agreed well with measured changes in Na+ and K+ excretion in response to diuretics and Na+ transporter mutations.Each day, ~1.7 kg of NaCl and 180 liters of water are reabsorbed by nephron segments in humans, with urinary excretion fine tuned to meet homeostatic requirements. These tasks are coordinated by a spectrum of renal Na+ transporters and channels. The goal of the present study was to investigate the extent to which inhibitors of transepithelial Na+ transport (TNa) along the nephron alter urinary solute excretion and how those effects may vary between male and female subjects. To accomplish that goal, we developed sex-specific multinephron models that represent detailed transcellular and paracellular transport processes along the nephrons of male and female rat kidneys. We simulated inhibition of Na+/H+ exchanger 3 (NHE3), bumetanide-sensitive Na+-K+-2Cl- cotransporter (NKCC2), Na+-Cl- cotransporter (NCC), and amiloride-sensitive epithelial Na+ channel (ENaC). NHE3 inhibition simulations predicted a substantially reduced proximal tubule TNa, and NKCC2 inhibition substantially reduced thick ascending limb TNa. Both gave rise to diuresis, natriuresis, and kaliuresis, with those effects stronger in female rats. While NCC inhibition was predicted to have only minor impact on renal TNa, it nonetheless had a notable effect of enhancing excretion of Na+, K+, and Cl-, particularly in female rats. Inhibition of ENaC was predicted to have opposite effects on the excretion of Na+ (increased) and K+ (decreased) and to have only a minor impact on whole kidney TNa. Unlike inhibition of other transporters, ENaC inhibition induced stronger natriuresis and diuresis in male rats than female rats. Overall, model predictions agreed well with measured changes in Na+ and K+ excretion in response to diuretics and Na+ transporter mutations. |
Author | Hu, Rui Layton, Anita T. McDonough, Alicia A. |
Author_xml | – sequence: 1 givenname: Rui surname: Hu fullname: Hu, Rui organization: Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada – sequence: 2 givenname: Alicia A. orcidid: 0000-0002-0459-469X surname: McDonough fullname: McDonough, Alicia A. organization: Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California – sequence: 3 givenname: Anita T. surname: Layton fullname: Layton, Anita T. organization: Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada, Department of Biology, Cheriton School of Computer Science, and School of Pharmacology, University of Waterloo, Waterloo, Ontario, Canada |
BookMark | eNp9kU1LxDAQhoMofv8CLzkK0jVJ0zb1IIj4BaIHFTwIIZtO3Eg3qUlW9N-bdVdQD-YygXnfZ2Z4t9Cq8w4Q2qNkRGnFDtXLEMCpfkQI42TECCMraDN3WEF5Xa_mf1vSQlTN4wbaivGFEEIpo-too2QN50TwTfR0B--4s8ZAZmmI2DocfT9LgFNQLg4-JKx6755xmgB2MEyCd_EIQ7boFLE3-Ebhgx9q6yZ2bJP1bgetGdVH2F3WbfRwfnZ_ellc315cnZ5cF5pzkQpT1qYyQLUR-em2MaLSnBndjWtaKd5y1ui6Im0DUGvTQkeAETEWou5Y1_JyGx0vuMNsPIVOg8vb9HIIdqrCh_TKyt8dZyfy2b_JJkOZoBmwvwQE_zqDmOTURg19rxz4WZSMlySP56LN0nYh1cHHGMBIbZOaX5vJtpeUyHk68jsd-ZWOnKeTveUf7_eK_7k-AYb1mRY |
CitedBy_id | crossref_primary_10_1007_s00285_023_01891_y crossref_primary_10_3389_fphys_2022_991705 crossref_primary_10_1152_ajprenal_00177_2023 crossref_primary_10_1038_s41581_023_00757_2 crossref_primary_10_1016_j_rce_2023_11_011 crossref_primary_10_3389_fphar_2021_780620 crossref_primary_10_1016_j_isci_2021_102667 crossref_primary_10_1016_j_mbs_2021_108642 crossref_primary_10_1096_fj_202200785RR crossref_primary_10_1371_journal_pone_0293419 crossref_primary_10_1016_j_jtbi_2023_111583 crossref_primary_10_3390_biom15010143 crossref_primary_10_1016_j_isci_2021_102341 crossref_primary_10_1152_ajprenal_00175_2022 crossref_primary_10_1152_ajprenal_00222_2024 crossref_primary_10_1152_ajprenal_00403_2023 crossref_primary_10_1139_cjpp_2022_0126 crossref_primary_10_1152_ajprenal_00064_2021 crossref_primary_10_1016_j_ijpx_2024_100254 crossref_primary_10_1152_ajprenal_00161_2023 crossref_primary_10_1152_ajprenal_00264_2021 crossref_primary_10_1097_MD_0000000000034967 crossref_primary_10_1016_j_rceng_2023_11_003 crossref_primary_10_1038_s41371_022_00748_z crossref_primary_10_3389_fphys_2022_741121 crossref_primary_10_1152_ajprenal_00145_2023 crossref_primary_10_1152_ajprenal_00398_2023 crossref_primary_10_1172_jci_insight_172051 crossref_primary_10_1681_ASN_0000000000000109 crossref_primary_10_35119_maio_v4i1_121 crossref_primary_10_1152_physiolgenomics_00102_2021 crossref_primary_10_1152_ajprenal_00231_2022 crossref_primary_10_3389_fimmu_2023_1178410 crossref_primary_10_1007_s12264_024_01240_z crossref_primary_10_1091_mbc_E24_01_0025 crossref_primary_10_3389_fphar_2024_1409271 crossref_primary_10_3390_pharmaceutics15031002 crossref_primary_10_1371_journal_pone_0279785 crossref_primary_10_1016_j_jtbi_2022_111074 crossref_primary_10_1002_pds_5592 crossref_primary_10_1152_ajprenal_00001_2024 crossref_primary_10_3390_ijms22115819 crossref_primary_10_1371_journal_pcbi_1010607 crossref_primary_10_1152_ajprenal_00227_2022 crossref_primary_10_1152_ajprenal_00296_2022 crossref_primary_10_1137_22M1480732 crossref_primary_10_3389_fcvm_2022_968184 crossref_primary_10_1007_s00424_022_02718_3 |
Cites_doi | 10.1681/ASN.V541112 10.1097/00000441-200001000-00005 10.1530/JOE-16-0669 10.1016/j.kint.2017.02.001 10.1152/ajprenal.00288.2014 10.1152/ajprenal.00415.2012 10.1038/ki.1987.39 10.1152/ajprenal.00249.2009 10.1152/ajprenal.1988.254.2.F223 10.1016/j.cbpb.2003.10.006 10.1097/00041552-200309000-00008 10.1152/ajprenal.1985.248.4.F527 10.1152/ajprenal.00203.2010 10.1007/s002329900297 10.1152/ajpcell.00450.2011 10.1038/ng0196-24 10.1152/ajprenal.00236.2011 10.1126/science.1062844 10.1016/j.coph.2014.12.012 10.1042/CS20150654 10.1007/s00424-007-0308-1 10.1152/ajprenal.1998.275.3.F379 10.1016/S0140-6736(05)17741-1 10.1161/CIR.0000000000000659 10.1172/JCI107721 10.1152/ajprenal.00174.2014 10.1038/367463a0 10.1038/969 10.1152/physrev.00056.2003 10.1152/ajprenal.00398.2003 10.1152/ajprenal.1999.277.3.F447 10.1152/ajprenal.00649.2013 10.1139/y05-012 10.1152/ajprenal.00657.2016 10.1152/ajpregu.00039.2013 10.1152/ajprenal.00149.2014 10.1038/ng0396-248 10.1152/ajprenal.00294.2016 10.1172/JCI8609 10.1152/physrev.00055.2017 10.1159/000074675 10.1152/ajprenal.00551.2017 10.1146/annurev.ph.49.030187.001343 10.1152/ajprenal.00129.2015 10.1152/physrev.00044.2018 10.1006/phrs.1998.0311 10.1016/0272-6386(95)90119-1 10.2215/CJN.05920613 10.1146/annurev.physiol.64.081501.155847 10.1038/ng.2218 10.1152/ajprenal.00030.2009 10.2215/CJN.12391213 10.1152/ajpregu.00060.2019 10.1007/s00424-008-0595-1 10.1016/j.steroids.2010.05.014 10.1152/ajprenal.00204.2010 10.1113/expphysiol.2003.002652 10.1152/ajprenal.00600.2014 10.1152/ajprenal.00354.2015 10.1152/ajprenal.00572.2009 10.1681/ASN.2019080790 10.1152/ajprenal.00183.2013 10.1681/ASN.2006091070 10.1038/ki.1987.117 10.2337/dc11-s246 10.1152/physiol.00026.2016 10.2215/CJN.05760513 10.1111/apha.13448 10.1038/ki.1985.154 10.1159/000179741 10.1161/HYPERTENSIONAHA.119.13887 10.1172/JCI108105 10.1152/ajprenal.00171.2018 10.1152/ajprenal.00087.2017 10.1152/physrev.00031.2005 10.1152/ajprenal.00396.2011 10.1152/ajprenal.00334.2015 10.1152/ajpregu.00002.2010 10.1038/ki.1988.206 10.1681/ASN.2015070734 10.1152/ajprenal.00352.2019 10.1126/science.109.2837.489 10.1001/jama.1976.03260470017018 10.1152/ajprenal.00263.2011 10.1681/ASN.2017030295 10.1152/ajprenal.00577.2014 10.1186/2042-6410-3-7 10.1111/j.1472-8206.2010.00854.x 10.1074/jbc.M804322200 10.1016/j.compbiomed.2018.11.002 10.1172/JCI9260 10.1016/0895-7061(95)00216-2 10.1038/ki.2008.350 10.1152/ajprenal.00363.2018 |
ContentType | Journal Article |
Copyright | Copyright © 2020 the American Physiological Society 2020 American Physiological Society |
Copyright_xml | – notice: Copyright © 2020 the American Physiological Society 2020 American Physiological Society |
DBID | AAYXX CITATION 7X8 5PM |
DOI | 10.1152/ajprenal.00240.2020 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | SEX DIFFERENCES IN SOLUTE TRANSPORT |
EISSN | 1522-1466 |
EndPage | F505 |
ExternalDocumentID | PMC7509281 10_1152_ajprenal_00240_2020 |
GrantInformation_xml | – fundername: ; – fundername: ; ; grantid: 2R01DK083785 |
GroupedDBID | --- 23M 2WC 39C 4.4 53G 5GY 5VS 6J9 AAFWJ AAYXX ACPRK ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CITATION E3Z EBS EMOBN F5P GX1 H13 ITBOX KQ8 OK1 P2P PQQKQ RAP RHI RPL RPRKH TR2 W8F WOQ XSW YSK 7X8 5PM |
ID | FETCH-LOGICAL-c448t-f36f5fe1cf8888c97f85c42fcdb615a49427c65097ee6cf9ed0e208b886d2d943 |
ISSN | 1931-857X 1522-1466 |
IngestDate | Thu Aug 21 18:29:44 EDT 2025 Thu Jul 10 17:50:24 EDT 2025 Tue Jul 01 02:06:33 EDT 2025 Thu Apr 24 22:56:11 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c448t-f36f5fe1cf8888c97f85c42fcdb615a49427c65097ee6cf9ed0e208b886d2d943 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0459-469X |
OpenAccessLink | https://journals.physiology.org/doi/pdf/10.1152/ajprenal.00240.2020 |
PMID | 32744084 |
PQID | 2430097489 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7509281 proquest_miscellaneous_2430097489 crossref_citationtrail_10_1152_ajprenal_00240_2020 crossref_primary_10_1152_ajprenal_00240_2020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Bethesda, MD |
PublicationPlace_xml | – name: Bethesda, MD |
PublicationSeriesTitle | Sex and Gender in Renal Health and Function |
PublicationTitle | American journal of physiology. Renal physiology |
PublicationYear | 2020 |
Publisher | American Physiological Society |
Publisher_xml | – name: American Physiological Society |
References | B20 B64 B21 B65 B22 B66 B23 B67 B24 B68 B25 B69 B26 B27 B28 B29 B70 B71 B72 B73 B30 B74 B75 B32 B76 B33 B47a B77 B34 B78 B79 B36 B37 B38 B39 B1 B2 B3 B4 B5 B6 B7 B8 B9 B80 B81 B82 B83 B10a B40 B84 B41 B85 B42 B86 B43 B44a B87 Higgins BA (B31) 1964; 27 B44 B88 B45 B89 B46 B47 B48 B49 B90 B91 B92 B93 B50 B51 B52 B53 B10 B54 B55 B12 B56 B13 B57 B14 B58 B15 B59 B16 B17 B18 B19 Johnston PA (B35) 1992; 14 Chen Z (B11) 1994; 5 B60 B61 B62 B63 |
References_xml | – volume: 5 start-page: 1112 year: 1994 ident: B11 publication-title: J Am Soc Nephrol doi: 10.1681/ASN.V541112 – ident: B24 doi: 10.1097/00000441-200001000-00005 – ident: B73 doi: 10.1530/JOE-16-0669 – ident: B17 doi: 10.1016/j.kint.2017.02.001 – volume: 27 start-page: 457 year: 1964 ident: B31 publication-title: Clin Sci – ident: B53 doi: 10.1152/ajprenal.00288.2014 – ident: B2 doi: 10.1152/ajprenal.00415.2012 – ident: B25 doi: 10.1038/ki.1987.39 – ident: B43 doi: 10.1152/ajprenal.00249.2009 – ident: B55 doi: 10.1152/ajprenal.1988.254.2.F223 – ident: B65 doi: 10.1016/j.cbpb.2003.10.006 – ident: B29 doi: 10.1097/00041552-200309000-00008 – ident: B13 doi: 10.1152/ajprenal.1985.248.4.F527 – ident: B39 doi: 10.1152/ajprenal.00203.2010 – ident: B82 doi: 10.1007/s002329900297 – ident: B67 doi: 10.1152/ajpcell.00450.2011 – ident: B76 doi: 10.1038/ng0196-24 – ident: B85 doi: 10.1152/ajprenal.00236.2011 – ident: B92 doi: 10.1126/science.1062844 – ident: B90 doi: 10.1016/j.coph.2014.12.012 – ident: B28 doi: 10.1042/CS20150654 – ident: B66 doi: 10.1007/s00424-007-0308-1 – ident: B9 doi: 10.1152/ajprenal.1998.275.3.F379 – ident: B36 doi: 10.1016/S0140-6736(05)17741-1 – ident: B3 doi: 10.1161/CIR.0000000000000659 – ident: B93 doi: 10.1172/JCI107721 – ident: B6 doi: 10.1152/ajprenal.00174.2014 – ident: B8 doi: 10.1038/367463a0 – ident: B71 doi: 10.1038/969 – ident: B52 doi: 10.1152/physrev.00056.2003 – ident: B44 doi: 10.1152/ajprenal.00398.2003 – ident: B49 doi: 10.1152/ajprenal.1999.277.3.F447 – ident: B72 doi: 10.1152/ajprenal.00649.2013 – ident: B83 doi: 10.1139/y05-012 – ident: B46 doi: 10.1152/ajprenal.00657.2016 – ident: B27 doi: 10.1152/ajpregu.00039.2013 – ident: B21 doi: 10.1152/ajprenal.00149.2014 – ident: B10 doi: 10.1038/ng0396-248 – ident: B42 doi: 10.1152/ajprenal.00294.2016 – ident: B22 doi: 10.1172/JCI8609 – ident: B23 doi: 10.1152/physrev.00055.2017 – ident: B5 doi: 10.1159/000074675 – ident: B44a doi: 10.1152/ajprenal.00551.2017 – ident: B7 doi: 10.1146/annurev.ph.49.030187.001343 – ident: B16 doi: 10.1152/ajprenal.00129.2015 – ident: B32 doi: 10.1152/physrev.00044.2018 – ident: B63 doi: 10.1006/phrs.1998.0311 – ident: B75 doi: 10.1016/0272-6386(95)90119-1 – ident: B81 doi: 10.2215/CJN.05920613 – ident: B14 doi: 10.1146/annurev.physiol.64.081501.155847 – ident: B50 doi: 10.1038/ng.2218 – ident: B86 doi: 10.1152/ajprenal.00030.2009 – ident: B59 doi: 10.2215/CJN.12391213 – ident: B78 doi: 10.1152/ajpregu.00060.2019 – ident: B4 doi: 10.1007/s00424-008-0595-1 – volume: 14 start-page: 523 year: 1992 ident: B35 publication-title: Methods Find Exp Clin Pharmacol – ident: B56 doi: 10.1016/j.steroids.2010.05.014 – ident: B40 doi: 10.1152/ajprenal.00204.2010 – ident: B68 doi: 10.1113/expphysiol.2003.002652 – ident: B20 doi: 10.1152/ajprenal.00600.2014 – ident: B62 doi: 10.1152/ajprenal.00354.2015 – ident: B10a doi: 10.1152/ajprenal.00572.2009 – ident: B70 doi: 10.1681/ASN.2019080790 – ident: B57 doi: 10.1152/ajprenal.00183.2013 – ident: B58 doi: 10.1681/ASN.2006091070 – ident: B79 doi: 10.1038/ki.1987.117 – ident: B26 doi: 10.2337/dc11-s246 – ident: B64 doi: 10.1152/physiol.00026.2016 – ident: B60 doi: 10.2215/CJN.05760513 – ident: B89 doi: 10.1111/apha.13448 – ident: B33 doi: 10.1038/ki.1985.154 – ident: B54 doi: 10.1159/000179741 – ident: B74 doi: 10.1161/HYPERTENSIONAHA.119.13887 – ident: B38 doi: 10.1172/JCI108105 – ident: B47a doi: 10.1152/ajprenal.00171.2018 – ident: B48 doi: 10.1152/ajprenal.00087.2017 – ident: B84 doi: 10.1152/physrev.00031.2005 – ident: B1 doi: 10.1152/ajprenal.00396.2011 – ident: B19 doi: 10.1152/ajprenal.00334.2015 – ident: B51 doi: 10.1152/ajpregu.00002.2010 – ident: B61 doi: 10.1038/ki.1988.206 – ident: B77 doi: 10.1681/ASN.2015070734 – ident: B34 doi: 10.1152/ajprenal.00352.2019 – ident: B87 doi: 10.1126/science.109.2837.489 – ident: B80 doi: 10.1001/jama.1976.03260470017018 – ident: B41 doi: 10.1152/ajprenal.00263.2011 – ident: B88 doi: 10.1681/ASN.2017030295 – ident: B15 doi: 10.1152/ajprenal.00577.2014 – ident: B69 doi: 10.1186/2042-6410-3-7 – ident: B37 doi: 10.1111/j.1472-8206.2010.00854.x – ident: B30 doi: 10.1074/jbc.M804322200 – ident: B47 doi: 10.1016/j.compbiomed.2018.11.002 – ident: B12 doi: 10.1172/JCI9260 – ident: B91 doi: 10.1016/0895-7061(95)00216-2 – ident: B18 doi: 10.1038/ki.2008.350 – ident: B45 doi: 10.1152/ajprenal.00363.2018 |
SSID | ssj0001121 |
Score | 2.5199404 |
Snippet | Each day, ~1.7 kg of NaCl and 180 liters of water are reabsorbed by nephron segments in humans, with urinary excretion fine tuned to meet homeostatic... |
SourceID | pubmedcentral proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | F487 |
Title | Sex differences in solute transport along the nephrons: effects of Na + transport inhibition |
URI | https://www.proquest.com/docview/2430097489 https://pubmed.ncbi.nlm.nih.gov/PMC7509281 |
Volume | 319 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9NAEF_0BPFF9E6xnsoK4ktNbbebL99OuXJoryq2UPAh7CcXOZPjTMHzr3dms_koFjntQ2i2ySbs_DqZmcz8hpAXUSitsKkOEsNNwI22gZCY6GonsQktgMQVCp8uopMVf78O111CpqsuqeRI_dpZV_I_UoUxkCtWyf6DZNtJYQC-g3xhCxKG7bVk_MX8bDuc1JlVQ3dBg50fas7yoTgvfUFUYS6QCdflwPXSOBZgPr7tnZAXZ7nMW3k1DLXNm50e1YSLiriw_AjEhIPdSAcXJ8RNvhWOxtZAdXkNRlW6eOpcXDVNrkHVCJ_B7YMS4IE2WVetHgUfF5SwZ7neMeaV79QrzLzvnDtVOuP1k_hPHR8iZ6z4hpyf4J84lrYR3kT3SGte4y8-ZrPVfJ4tj9fLm-QWA1cCu1x8-NwxyoO9WXPq-pvzzFSw_3rHJbatl84l2U6o7Vkoy3vkrnct6FGNk_vkhin2ycFRIary-xV9ST-1wtknt099TsUB-Qoooj0U0bygNYpoCwrqUEQBRbRB0RvqMURLSxdi2Du4Q9ADspodL9-dBL7lRqDAT68CO41saM1E2QQ-Ko1tEirOrNISTF_BU85ihaSLsTGRsqnRY8PGiUySSDOd8ulDsleUhXlEaChjsCUlUkJqPpHjVIdC6UhJbSRTsRwQ1ixlpjwfPbZFOc-cXxqyrFn_zK1_hus_IK_aky5qOpa_H_68kVEGahPfhYnClJsfGeNTLGHiSTog8Zbw2nmReH37lyI_cwTsaGWzZPL4GrMfkjvd_-MJ2asuN-YpmLGVfOZw-BtuMqVO |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sex+differences+in+solute+transport+along+the+nephrons%3A+effects+of+Na%2B+transport+inhibition&rft.jtitle=American+journal+of+physiology.+Renal+physiology&rft.au=Hu%2C+Rui&rft.au=McDonough%2C+Alicia+A&rft.au=Layton%2C+Anita+T&rft.date=2020-09-01&rft.issn=1522-1466&rft.eissn=1522-1466&rft.volume=319&rft.issue=3&rft.spage=F487&rft_id=info:doi/10.1152%2Fajprenal.00240.2020&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-857X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-857X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-857X&client=summon |