Neural population dynamics of computing with synaptic modulations

In addition to long-timescale rewiring, synapses in the brain are subject to significant modulation that occurs at faster timescales that endow the brain with additional means of processing information. Despite this, models of the brain like recurrent neural networks (RNNs) often have their weights...

Full description

Saved in:
Bibliographic Details
Published ineLife Vol. 12
Main Authors Aitken, Kyle, Mihalas, Stefan
Format Journal Article
LanguageEnglish
Published England eLife Sciences Publications, Ltd 23.02.2023
eLife Sciences Publications Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In addition to long-timescale rewiring, synapses in the brain are subject to significant modulation that occurs at faster timescales that endow the brain with additional means of processing information. Despite this, models of the brain like recurrent neural networks (RNNs) often have their weights frozen after training, relying on an internal state stored in neuronal activity to hold task-relevant information. In this work, we study the computational potential and resulting dynamics of a network that relies solely on synapse modulation during inference to process task-relevant information, the multi-plasticity network (MPN). Since the MPN has no recurrent connections, this allows us to study the computational capabilities and dynamical behavior contributed by synapses modulations alone. The generality of the MPN allows for our results to apply to synaptic modulation mechanisms ranging from short-term synaptic plasticity (STSP) to slower modulations such as spike-time dependent plasticity (STDP). We thoroughly examine the neural population dynamics of the MPN trained on integration-based tasks and compare it to known RNN dynamics, finding the two to have fundamentally different attractor structure. We find said differences in dynamics allow the MPN to outperform its RNN counterparts on several neuroscience-relevant tests. Training the MPN across a battery of neuroscience tasks, we find its computational capabilities in such settings is comparable to networks that compute with recurrent connections. Altogether, we believe this work demonstrates the computational possibilities of computing with synaptic modulations and highlights important motifs of these computations so that they can be identified in brain-like systems.
AbstractList In addition to long-timescale rewiring, synapses in the brain are subject to significant modulation that occurs at faster timescales that endow the brain with additional means of processing information. Despite this, models of the brain like recurrent neural networks (RNNs) often have their weights frozen after training, relying on an internal state stored in neuronal activity to hold task-relevant information. In this work, we study the computational potential and resulting dynamics of a network that relies solely on synapse modulation during inference to process task-relevant information, the multi-plasticity network (MPN). Since the MPN has no recurrent connections, this allows us to study the computational capabilities and dynamical behavior contributed by synapses modulations alone. The generality of the MPN allows for our results to apply to synaptic modulation mechanisms ranging from short-term synaptic plasticity (STSP) to slower modulations such as spike-time dependent plasticity (STDP). We thoroughly examine the neural population dynamics of the MPN trained on integration-based tasks and compare it to known RNN dynamics, finding the two to have fundamentally different attractor structure. We find said differences in dynamics allow the MPN to outperform its RNN counterparts on several neuroscience-relevant tests. Training the MPN across a battery of neuroscience tasks, we find its computational capabilities in such settings is comparable to networks that compute with recurrent connections. Altogether, we believe this work demonstrates the computational possibilities of computing with synaptic modulations and highlights important motifs of these computations so that they can be identified in brain-like systems.
In addition to long-timescale rewiring, synapses in the brain are subject to significant modulation that occurs at faster timescales that endow the brain with additional means of processing information. Despite this, models of the brain like recurrent neural networks (RNNs) often have their weights frozen after training, relying on an internal state stored in neuronal activity to hold task-relevant information. In this work, we study the computational potential and resulting dynamics of a network that relies solely on synapse modulation during inference to process task-relevant information, the multi-plasticity network (MPN). Since the MPN has no recurrent connections, this allows us to study the computational capabilities and dynamical behavior contributed by synapses modulations alone. The generality of the MPN allows for our results to apply to synaptic modulation mechanisms ranging from short-term synaptic plasticity (STSP) to slower modulations such as spike-time dependent plasticity (STDP). We thoroughly examine the neural population dynamics of the MPN trained on integration-based tasks and compare it to known RNN dynamics, finding the two to have fundamentally different attractor structure. We find said differences in dynamics allow the MPN to outperform its RNN counterparts on several neuroscience-relevant tests. Training the MPN across a battery of neuroscience tasks, we find its computational capabilities in such settings is comparable to networks that compute with recurrent connections. Altogether, we believe this work demonstrates the computational possibilities of computing with synaptic modulations and highlights important motifs of these computations so that they can be identified in brain-like systems.In addition to long-timescale rewiring, synapses in the brain are subject to significant modulation that occurs at faster timescales that endow the brain with additional means of processing information. Despite this, models of the brain like recurrent neural networks (RNNs) often have their weights frozen after training, relying on an internal state stored in neuronal activity to hold task-relevant information. In this work, we study the computational potential and resulting dynamics of a network that relies solely on synapse modulation during inference to process task-relevant information, the multi-plasticity network (MPN). Since the MPN has no recurrent connections, this allows us to study the computational capabilities and dynamical behavior contributed by synapses modulations alone. The generality of the MPN allows for our results to apply to synaptic modulation mechanisms ranging from short-term synaptic plasticity (STSP) to slower modulations such as spike-time dependent plasticity (STDP). We thoroughly examine the neural population dynamics of the MPN trained on integration-based tasks and compare it to known RNN dynamics, finding the two to have fundamentally different attractor structure. We find said differences in dynamics allow the MPN to outperform its RNN counterparts on several neuroscience-relevant tests. Training the MPN across a battery of neuroscience tasks, we find its computational capabilities in such settings is comparable to networks that compute with recurrent connections. Altogether, we believe this work demonstrates the computational possibilities of computing with synaptic modulations and highlights important motifs of these computations so that they can be identified in brain-like systems.
Author Mihalas, Stefan
Aitken, Kyle
Author_xml – sequence: 1
  givenname: Kyle
  orcidid: 0000-0003-0207-5885
  surname: Aitken
  fullname: Aitken, Kyle
– sequence: 2
  givenname: Stefan
  orcidid: 0000-0002-2629-7100
  surname: Mihalas
  fullname: Mihalas, Stefan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36820526$$D View this record in MEDLINE/PubMed
BookMark eNptkUtLxDAUhYOM-JyVe-lSkNG0SZt0JcPgY2DQjYK7kCY3MxnapjatMv_ezENRMZuEe76ce7nnGA1qVwNCZzG-YmlKr2FmDVxxgkm6h44SnOIR5vR18ON9iIbeL3E4jHIe5wfokGQ8yEl2hMaP0LeyjBrX9KXsrKsjvaplZZWPnImUq5q-s_U8-rDdIvJBajqrosrpHe5P0b6RpYfh7j5BL3e3z5OH0ezpfjoZz0aKUt6NTGLyWBHCQNJCa8O1zHiRaZwXJJWxKgzLuS4MyJwwLAlRkCqTUEpjw4JMTtB066udXIqmtZVsV8JJKzYF186FbMNsJYgEcAFGK61yTDOVcciBY1IAZ1ymlAavm61X0xcVaAV1F5bwy_S3UtuFmLt3EYclJpytHS52Dq1768F3orJeQVnKGlzvRcJYTihnJA3o-c9m312-QgjA5RZQrfO-BfONxFisUxablMUm5UDHf2hlu00UYVJb_vvnE2p2rb0
CitedBy_id crossref_primary_10_1016_j_bbrc_2024_150302
crossref_primary_10_3390_bios14020068
crossref_primary_10_1016_j_celrep_2024_113785
crossref_primary_10_1016_j_neuropsychologia_2024_109062
Cites_doi 10.1146/annurev.ph.55.030193.002145
10.1126/science.abj5861
10.1016/j.cosrev.2009.03.005
10.1126/science.7997883
10.1007/s11064-018-2695-4
10.1016/j.neuron.2006.06.017
10.1038/s41593-018-0310-2
10.1007/s10827-019-00717-5
10.1126/science.1150769
10.1093/brain/awg078
10.1073/pnas.94.2.719
10.1523/JNEUROSCI.16-06-02112.1996
10.1371/journal.pcbi.1009246
10.1146/annurev-neuro-092619-094115
10.1103/PhysRevE.66.041902
10.1080/09540099550039318
10.1007/BF00320393
10.4324/9781410612403
10.1037/0033-295x.97.2.285
10.1080/net.13.2.217.242
10.1073/pnas.92.24.11175
10.1523/JNEUROSCI.2485-17.2018
10.1146/annurev-physiol-021014-071753
10.1146/annurev.physiol.64.092501.114547
10.1126/science.1091277
10.1101/2021.05.18.444107
10.1038/s41593-019-0414-3
10.1523/JNEUROSCI.18-24-10464.1998
10.1162/neco.1997.9.8.1735
10.31234/osf.io/aqc9n
10.1037/0033-295X.102.3.419
10.1016/j.neuron.2013.01.039
10.3115/v1/D14-1179
10.1038/382807a0
10.1016/j.tics.2015.05.004
10.1371/journal.pcbi.1000291
10.1016/s1364-6613(99)01294-2
10.1162/089976698300017502
10.1038/s41583-022-00663-9
10.1371/journal.pcbi.1008813
10.1007/978-3-540-74690-4
10.1523/JNEUROSCI.4353-05.2006
10.1073/pnas.93.23.13339
10.1038/72093
10.1126/science.1378648
10.1016/j.conb.2013.10.008
10.1038/s41583-020-0277-3
10.1371/journal.pcbi.1000073
10.1038/s41586-021-03390-w
10.1097/00004647-200110000-00001
10.1523/JNEUROSCI.1875-10.2010
10.1016/S0079-7421(08)60536-8
10.1038/nature07842
10.1073/pnas.1611835114
10.1162/jocn_a_00029
10.1038/s41593-018-0314-y
10.1073/pnas.0913875107
10.1016/0896-6273(95)90223-6
10.1038/nature12742
10.1162/089976602760407955
10.1016/j.tics.2016.05.004
10.1016/j.neuron.2021.11.009
10.1073/pnas.92.9.3844
10.1088/0034-4885/61/4/002
10.1126/science.275.5297.213
10.1152/jn.1996.75.5.1919
ContentType Journal Article
Copyright 2023, Aitken and Mihalas.
2023, Aitken and Mihalas 2023 Aitken and Mihalas
Copyright_xml – notice: 2023, Aitken and Mihalas.
– notice: 2023, Aitken and Mihalas 2023 Aitken and Mihalas
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.7554/eLife.83035
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2050-084X
ExternalDocumentID oai_doaj_org_article_2e0befdcdc9046c68e9e803be878a544
PMC10072874
36820526
10_7554_eLife_83035
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH HHS
  grantid: RF1DA055669
– fundername: NIDA NIH HHS
  grantid: RF1 DA055669
– fundername: NIH HHS
  grantid: R01EB02981
– fundername: NIH HHS
  grantid: F1DA055669
– fundername: NIH HHS
  grantid: R01EB029813
– fundername: NIBIB NIH HHS
  grantid: R01 EB029813
– fundername: ;
– fundername: ;
  grantid: RF1DA055669
– fundername: ;
  grantid: R01EB029813
GroupedDBID 53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAKDD
AAYXX
ABUWG
ACGFO
ACGOD
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
DWQXO
EMOBN
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NQS
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RHI
RNS
RPM
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c448t-f2f91c337ea4bddf8da68b6d09b35a1cbf798dbfea9370a33ce5cf24441f71cb3
IEDL.DBID M48
ISSN 2050-084X
IngestDate Wed Aug 27 01:28:41 EDT 2025
Thu Aug 21 18:38:21 EDT 2025
Fri Jul 11 03:17:21 EDT 2025
Sat Aug 02 01:41:11 EDT 2025
Thu Apr 24 22:58:03 EDT 2025
Tue Jul 01 01:58:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords neural population dynamics
none
synapse dynamics
synaptic plasticity
recurrent neural networks
neuroscience
Language English
License 2023, Aitken and Mihalas.
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c448t-f2f91c337ea4bddf8da68b6d09b35a1cbf798dbfea9370a33ce5cf24441f71cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2629-7100
0000-0003-0207-5885
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.7554/eLife.83035
PMID 36820526
PQID 2779348735
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_2e0befdcdc9046c68e9e803be878a544
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10072874
proquest_miscellaneous_2779348735
pubmed_primary_36820526
crossref_primary_10_7554_eLife_83035
crossref_citationtrail_10_7554_eLife_83035
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-23
PublicationDateYYYYMMDD 2023-02-23
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-23
  day: 23
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle eLife
PublicationTitleAlternate Elife
PublicationYear 2023
Publisher eLife Sciences Publications, Ltd
eLife Sciences Publications Ltd
Publisher_xml – name: eLife Sciences Publications, Ltd
– name: eLife Sciences Publications Ltd
References Sjöström (bib63) 2006; 51
Ba (bib4) 2016
Bi (bib13) 1998; 18
Hebb (bib26) 2005
Attwell (bib3) 2001; 21
Masse (bib48) 2019; 22
Burak (bib14) 2009; 5
Cannon (bib17) 1983; 49
Pettit (bib57) 1994; 266
Vyas (bib72) 2020; 43
Fuhs (bib25) 2006; 26
Robins (bib59) 1995; 7
Silva (bib62) 1992; 257
McFarlan (bib51) 2023; 24
Campagnola (bib16) 2022; 375
McClelland (bib49) 1995; 102
McCloskey (bib50) 1989; 24
Love (bib37) 2003; 126
Patterson (bib56) 2010; 107
Zhang (bib75) 1996; 16
Lundqvist (bib40) 2018; 38
Stevens (bib64) 1995; 14
Markram (bib47) 1997; 275
Mante (bib45) 2013; 503
Jaeger (bib30) 2004; 304
Kirkpatrick (bib32) 2017; 114
Ermentrout (bib23) 1998; 61
Lillicrap (bib35) 2020; 21
Maheswaranathan (bib42) 2019; 32
Molano-Mazon (bib52) 2022
Collins (bib20) 2016
Tyulmankov (bib71) 2022; 110
de Sá (bib21) 2007
French (bib24) 1999; 3
Orhan (bib54) 2019; 22
Baltaci (bib7) 2019; 44
Maheswaranathan (bib44) 2020
Cho (bib18) 2000; 3
Becker (bib10) 2021; 17
Kingma (bib31) 2014
Herring (bib27) 2016; 78
Mongillo (bib53) 2008; 319
Sugase-Miyamoto (bib68) 2008; 4
Tsodyks (bib69) 1997; 94
Hochreiter (bib28) 1997; 9
Lundqvist (bib39) 2011; 23
Barak (bib9) 2014; 25
Maass (bib41) 2002; 14
Seung (bib61) 1996; 93
Duncker (bib22) 2020
Markram (bib46) 1996; 382
Tsodyks (bib70) 1998; 10
Stringer (bib67) 2002; 13
Xie (bib73) 2002; 66
Ben-Yishai (bib11) 1995; 92
Lledo (bib36) 1995; 92
Panichello (bib55) 2021; 592
Hu (bib29) 2021; 17
Aitken (bib1) 2020
Cho (bib19) 2014
Ballintyn (bib6) 2019; 46
Ratcliff (bib58) 1990; 97
Zucker (bib76) 2002; 64
Yang (bib74) 2019; 22
Aitken (bib2) 2023
Burnham (bib15) 2021
Bertram (bib12) 1996; 75
Barak (bib8) 2010; 30
Stokes (bib66) 2015; 19
Rodriguez (bib60) 2022
Kumaran (bib33) 2016; 20
Lee (bib34) 2009; 458
Lukoševičius (bib38) 2009; 3
Bailey (bib5) 1993; 55
Stokes (bib65) 2013; 78
Maheswaranathan (bib43) 2019
References_xml – volume: 55
  start-page: 397
  year: 1993
  ident: bib5
  article-title: Structural changes accompanying memory storage
  publication-title: Annual Review of Physiology
  doi: 10.1146/annurev.ph.55.030193.002145
– volume-title: arXiv
  year: 2016
  ident: bib4
  article-title: Using Fast Weights to Attend to the Recent Past
– volume: 375
  year: 2022
  ident: bib16
  article-title: Local connectivity and synaptic dynamics in mouse and human neocortex
  publication-title: Science
  doi: 10.1126/science.abj5861
– volume: 3
  start-page: 127
  year: 2009
  ident: bib38
  article-title: Reservoir computing approaches to recurrent neural network training
  publication-title: Computer Science Review
  doi: 10.1016/j.cosrev.2009.03.005
– volume: 266
  start-page: 1881
  year: 1994
  ident: bib57
  article-title: Potentiated transmission and prevention of further LTP by increased CaMKII activity in postsynaptic hippocampal slice neurons
  publication-title: Science
  doi: 10.1126/science.7997883
– volume: 44
  start-page: 281
  year: 2019
  ident: bib7
  article-title: Molecular mechanisms of early and late LTP
  publication-title: Neurochemical Research
  doi: 10.1007/s11064-018-2695-4
– volume-title: arXiv
  year: 2019
  ident: bib43
  article-title: Universality and Individuality in Neural Dynamics across Large Populations of Recurrent Networks
– volume: 51
  start-page: 227
  year: 2006
  ident: bib63
  article-title: A cooperative switch determines the sign of synaptic plasticity in distal dendrites of neocortical pyramidal neurons
  publication-title: Neuron
  doi: 10.1016/j.neuron.2006.06.017
– volume: 22
  start-page: 297
  year: 2019
  ident: bib74
  article-title: Task representations in neural networks trained to perform many cognitive tasks
  publication-title: Nature Neuroscience
  doi: 10.1038/s41593-018-0310-2
– volume: 46
  start-page: 279
  year: 2019
  ident: bib6
  article-title: Spatiotemporal discrimination in attractor networks with short-term synaptic plasticity
  publication-title: Journal of Computational Neuroscience
  doi: 10.1007/s10827-019-00717-5
– volume: 32
  start-page: 15696
  year: 2019
  ident: bib42
  article-title: Reverse engineering recurrent networks for sentiment classification reveals line attractor dynamics
  publication-title: Advances in Neural Information Processing Systems
– volume: 319
  start-page: 1543
  year: 2008
  ident: bib53
  article-title: Synaptic theory of working memory
  publication-title: Science
  doi: 10.1126/science.1150769
– volume: 126
  start-page: 1009
  year: 2003
  ident: bib37
  article-title: DEGENERATION and regeneration in the nervous system
  publication-title: Brain
  doi: 10.1093/brain/awg078
– volume: 94
  start-page: 719
  year: 1997
  ident: bib69
  article-title: The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability
  publication-title: PNAS
  doi: 10.1073/pnas.94.2.719
– volume: 16
  start-page: 2112
  year: 1996
  ident: bib75
  article-title: Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.16-06-02112.1996
– volume: 17
  year: 2021
  ident: bib29
  article-title: Adaptation supports short-term memory in a visual change detection task
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1009246
– volume: 43
  start-page: 249
  year: 2020
  ident: bib72
  article-title: Computation through neural population dynamics
  publication-title: Annual Review of Neuroscience
  doi: 10.1146/annurev-neuro-092619-094115
– volume: 66
  year: 2002
  ident: bib73
  article-title: Double-Ring network model of the head-direction system
  publication-title: Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics
  doi: 10.1103/PhysRevE.66.041902
– volume: 7
  start-page: 123
  year: 1995
  ident: bib59
  article-title: Catastrophic forgetting, rehearsal and pseudorehearsal
  publication-title: Connection Science
  doi: 10.1080/09540099550039318
– volume: 49
  start-page: 127
  year: 1983
  ident: bib17
  article-title: A proposed neural network for the integrator of the oculomotor system
  publication-title: Biol Cybern
  doi: 10.1007/BF00320393
– volume-title: The Organization of Behavior
  year: 2005
  ident: bib26
  doi: 10.4324/9781410612403
– volume: 97
  start-page: 285
  year: 1990
  ident: bib58
  article-title: Connectionist models of recognition memory: constraints imposed by learning and forgetting functions
  publication-title: Psychological Review
  doi: 10.1037/0033-295x.97.2.285
– volume: 13
  start-page: 217
  year: 2002
  ident: bib67
  article-title: Self-organizing continuous attractor networks and path integration: one-dimensional models of head direction cells
  publication-title: Network
  doi: 10.1080/net.13.2.217.242
– volume: 92
  start-page: 11175
  year: 1995
  ident: bib36
  article-title: Calcium/calmodulin-dependent kinase II and long-term potentiation enhance synaptic transmission by the same mechanism
  publication-title: PNAS
  doi: 10.1073/pnas.92.24.11175
– volume: 38
  start-page: 7013
  year: 2018
  ident: bib40
  article-title: Working memory: delay activity, Yes! persistent activity? maybe not
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.2485-17.2018
– volume: 78
  start-page: 351
  year: 2016
  ident: bib27
  article-title: Long-Term potentiation: from CaMKII to AMPA receptor trafficking
  publication-title: Annual Review of Physiology
  doi: 10.1146/annurev-physiol-021014-071753
– volume: 64
  start-page: 355
  year: 2002
  ident: bib76
  article-title: Short-Term synaptic plasticity
  publication-title: Annual Review of Physiology
  doi: 10.1146/annurev.physiol.64.092501.114547
– volume: 304
  start-page: 78
  year: 2004
  ident: bib30
  article-title: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication
  publication-title: Science
  doi: 10.1126/science.1091277
– volume-title: bioRxiv
  year: 2021
  ident: bib15
  article-title: Learning to Predict in Networks with Heterogeneous and Dynamic Synapses
  doi: 10.1101/2021.05.18.444107
– volume-title: arXiv
  year: 2020
  ident: bib1
  article-title: The Geometry of Integration in Text Classification Rnns
– volume: 22
  start-page: 1159
  year: 2019
  ident: bib48
  article-title: Circuit mechanisms for the maintenance and manipulation of information in working memory
  publication-title: Nature Neuroscience
  doi: 10.1038/s41593-019-0414-3
– volume: 18
  start-page: 10464
  year: 1998
  ident: bib13
  article-title: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.18-24-10464.1998
– volume: 9
  start-page: 1735
  year: 1997
  ident: bib28
  article-title: Long short-term memory
  publication-title: Neural Computation
  doi: 10.1162/neco.1997.9.8.1735
– volume-title: PsyArXiv
  year: 2022
  ident: bib52
  article-title: NeuroGym: An Open Resource for Developing and Sharing Neuroscience Tasks
  doi: 10.31234/osf.io/aqc9n
– volume: 102
  start-page: 419
  year: 1995
  ident: bib49
  article-title: Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory
  publication-title: Psychological Review
  doi: 10.1037/0033-295X.102.3.419
– volume: 78
  start-page: 364
  year: 2013
  ident: bib65
  article-title: Dynamic coding for cognitive control in prefrontal cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.01.039
– year: 2014
  ident: bib19
  article-title: Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation
  doi: 10.3115/v1/D14-1179
– volume: 382
  start-page: 807
  year: 1996
  ident: bib46
  article-title: Redistribution of synaptic efficacy between neocortical pyramidal neurons
  publication-title: Nature
  doi: 10.1038/382807a0
– volume: 19
  start-page: 394
  year: 2015
  ident: bib66
  article-title: “ Activity-silent ” working memory in prefrontal cortex: a dynamic coding framework
  publication-title: Trends in Cognitive Sciences
  doi: 10.1016/j.tics.2015.05.004
– volume: 5
  year: 2009
  ident: bib14
  article-title: Accurate path integration in continuous attractor network models of grid cells
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1000291
– volume: 3
  start-page: 128
  year: 1999
  ident: bib24
  article-title: Catastrophic forgetting in connectionist networks
  publication-title: Trends in Cognitive Sciences
  doi: 10.1016/s1364-6613(99)01294-2
– volume: 10
  start-page: 821
  year: 1998
  ident: bib70
  article-title: Neural networks with dynamic synapses
  publication-title: Neural Computation
  doi: 10.1162/089976698300017502
– volume: 24
  start-page: 80
  year: 2023
  ident: bib51
  article-title: The plasticitome of cortical interneurons
  publication-title: Nature Reviews. Neuroscience
  doi: 10.1038/s41583-022-00663-9
– volume: 17
  year: 2021
  ident: bib10
  article-title: The biophysical basis underlying the maintenance of early phase long-term potentiation
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1008813
– volume-title: Artificial Neural Networks – Icann 2007
  year: 2007
  ident: bib21
  doi: 10.1007/978-3-540-74690-4
– year: 2014
  ident: bib31
  article-title: Adam: A method for stochastic optimization
– volume: 26
  start-page: 4266
  year: 2006
  ident: bib25
  article-title: A spin glass model of path integration in rat medial entorhinal cortex
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.4353-05.2006
– volume: 93
  start-page: 13339
  year: 1996
  ident: bib61
  article-title: How the brain keeps the eyes still
  publication-title: PNAS
  doi: 10.1073/pnas.93.23.13339
– volume: 3
  start-page: 150
  year: 2000
  ident: bib18
  article-title: A new form of long-term depression in the perirhinal cortex
  publication-title: Nature Neuroscience
  doi: 10.1038/72093
– volume: 257
  start-page: 201
  year: 1992
  ident: bib62
  article-title: Deficient hippocampal long-term potentiation in alpha-calcium-calmodulin kinase II mutant mice
  publication-title: Science
  doi: 10.1126/science.1378648
– volume: 25
  start-page: 20
  year: 2014
  ident: bib9
  article-title: Working models of working memory
  publication-title: Current Opinion in Neurobiology
  doi: 10.1016/j.conb.2013.10.008
– volume: 21
  start-page: 335
  year: 2020
  ident: bib35
  article-title: Backpropagation and the brain
  publication-title: Nature Reviews. Neuroscience
  doi: 10.1038/s41583-020-0277-3
– volume: 4
  year: 2008
  ident: bib68
  article-title: Short-term memory trace in rapidly adapting synapses of inferior temporal cortex
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1000073
– volume-title: arXiv
  year: 2016
  ident: bib20
  article-title: Capacity and Trainability in Recurrent Neural Networks
– volume: 592
  start-page: 601
  year: 2021
  ident: bib55
  article-title: Shared mechanisms underlie the control of working memory and attention
  publication-title: Nature
  doi: 10.1038/s41586-021-03390-w
– volume: 21
  start-page: 1133
  year: 2001
  ident: bib3
  article-title: An energy budget for signaling in the grey matter of the brain
  publication-title: Journal of Cerebral Blood Flow and Metabolism
  doi: 10.1097/00004647-200110000-00001
– volume: 30
  start-page: 9424
  year: 2010
  ident: bib8
  article-title: Neuronal population coding of parametric working memory
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.1875-10.2010
– year: 2022
  ident: bib60
  article-title: Short-term plasticity neurons learning to learn and forget
– volume: 24
  start-page: 109
  year: 1989
  ident: bib50
  article-title: Catastrophic interference in connectionist networks: the sequential learning problem
  publication-title: Psychology of Learning and Motivation
  doi: 10.1016/S0079-7421(08)60536-8
– volume: 458
  start-page: 299
  year: 2009
  ident: bib34
  article-title: Activation of CaMKII in single dendritic spines during long-term potentiation
  publication-title: Nature
  doi: 10.1038/nature07842
– volume: 114
  start-page: 3521
  year: 2017
  ident: bib32
  article-title: Overcoming catastrophic forgetting in neural networks
  publication-title: PNAS
  doi: 10.1073/pnas.1611835114
– volume: 23
  start-page: 3008
  year: 2011
  ident: bib39
  article-title: Theta and gamma power increases and alpha/beta power decreases with memory load in an attractor network model
  publication-title: Journal of Cognitive Neuroscience
  doi: 10.1162/jocn_a_00029
– volume: 22
  start-page: 275
  year: 2019
  ident: bib54
  article-title: A diverse range of factors affect the nature of neural representations underlying short-term memory
  publication-title: Nature Neuroscience
  doi: 10.1038/s41593-018-0314-y
– volume-title: arXiv
  year: 2020
  ident: bib44
  article-title: How Recurrent Networks Implement Contextual Processing in Sentiment Analysis
– volume: 107
  start-page: 15951
  year: 2010
  ident: bib56
  article-title: Ampa receptors are exocytosed in stimulated spines and adjacent dendrites in a ras-erk-dependent manner during long-term potentiation
  publication-title: PNAS
  doi: 10.1073/pnas.0913875107
– volume: 14
  start-page: 795
  year: 1995
  ident: bib64
  article-title: Facilitation and depression at single central synapses
  publication-title: Neuron
  doi: 10.1016/0896-6273(95)90223-6
– volume-title: Software Heritage
  year: 2023
  ident: bib2
  article-title: Supporting code for multi-plasticity networks
– volume: 503
  start-page: 78
  year: 2013
  ident: bib45
  article-title: Context-Dependent computation by recurrent dynamics in prefrontal cortex
  publication-title: Nature
  doi: 10.1038/nature12742
– volume: 14
  start-page: 2531
  year: 2002
  ident: bib41
  article-title: Real-Time computing without stable states: a new framework for neural computation based on perturbations
  publication-title: Neural Computation
  doi: 10.1162/089976602760407955
– volume: 20
  start-page: 512
  year: 2016
  ident: bib33
  article-title: What learning systems do intelligent agents need? complementary learning systems theory updated
  publication-title: Trends in Cognitive Sciences
  doi: 10.1016/j.tics.2016.05.004
– volume: 110
  start-page: 544
  year: 2022
  ident: bib71
  article-title: Meta-learning synaptic plasticity and memory addressing for continual familiarity detection
  publication-title: Neuron
  doi: 10.1016/j.neuron.2021.11.009
– volume: 92
  start-page: 3844
  year: 1995
  ident: bib11
  article-title: Theory of orientation tuning in visual cortex
  publication-title: PNAS
  doi: 10.1073/pnas.92.9.3844
– volume: 61
  start-page: 353
  year: 1998
  ident: bib23
  article-title: Neural networks as spatio-temporal pattern-forming systems
  publication-title: Reports on Progress in Physics
  doi: 10.1088/0034-4885/61/4/002
– volume: 275
  start-page: 213
  year: 1997
  ident: bib47
  article-title: Regulation of synaptic efficacy by coincidence of postsynaptic APS and EPSPs
  publication-title: Science
  doi: 10.1126/science.275.5297.213
– volume: 75
  start-page: 1919
  year: 1996
  ident: bib12
  article-title: Single-domain/bound calcium hypothesis of transmitter release and facilitation
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.1996.75.5.1919
– start-page: 14387
  year: 2020
  ident: bib22
  article-title: Organizing recurrent network dynamics by task-computation to enable continual learning
SSID ssj0000748819
Score 2.3888
Snippet In addition to long-timescale rewiring, synapses in the brain are subject to significant modulation that occurs at faster timescales that endow the brain with...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Brain - physiology
Neural Networks, Computer
neural population dynamics
Neuronal Plasticity
Neuroscience
recurrent neural networks
synapse dynamics
Synapses
synaptic plasticity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yELyI39YvKuwk1LVL2iTHKY4h6snBbiWfONB22O3gf-9L2pVVBC9e-x4kfS99H2ny-yHUt0RYrhIZmVRlERE4iwTVNFISqhENAm7chv7zSzaZksdZOtug-nJnwmp44Npwg6GJpbFaacWhlVMZM9ywGEvDKBMp8UigkPM2mikfgykszITXF_IopMyBeZpbc8sgYqedFOSR-n8rL3-ektxIO-M9tNvUi-Gonuc-2jLFAdquGSS_DtHIgWuAfNHycIW65pivwtKGynM2QHYK3X5rWIEIQoQKP0rdqFdHaDp-eL2fRA0rQqSglVpGdmh5ojCmRhCptWVaZExmOuYSpyJR0lLOtLRGQOURC4wVuMFCFieJpSDGx6hXlIU5RSE0S4RjqTKhJBHEsXDgmBsLNQnUDTYJ0M3aULlqIMMdc8V7Dq2Ds2rurZp7qwao3yovaqSM39XunMVbFQdv7R-A0_PG6flfTg_Q9dpfOXwO7h-HKEy5qvIhhYADTZgb6KT2XzsUhrdy8DYBYh3PdubSlRTzNw-57c6SOGaAs_-Y_TnacaT1_mI8vkC95efKXEJps5RXfhV_A4WX_Ho
  priority: 102
  providerName: Directory of Open Access Journals
Title Neural population dynamics of computing with synaptic modulations
URI https://www.ncbi.nlm.nih.gov/pubmed/36820526
https://www.proquest.com/docview/2779348735
https://pubmed.ncbi.nlm.nih.gov/PMC10072874
https://doaj.org/article/2e0befdcdc9046c68e9e803be878a544
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED_SlkJfxrr1I90aXOhTwakdyZb0NNrRUMZaylggb0afbSC1sziF9r_fSXbCUvKwV5-MrDud7neydD-Ac0elEzpVsc10HlNJ8lgyw2KtEI0YFAjrN_Tv7vPbEf0xzsYdWJJxtgqsN6Z2nk9qNJ_2X_-8fUOHR_zaZxgNL-3PibN9jotxtgU7GJKY99C7FueHJZnhPA0kH4MkC7VMx81dvffvr0WnUMR_E_J8f4Dyn4g0_AgfWigZXTW234eOLT_BbkMu-fYZrnzdDZTPVhRdkWno5-uocpEOdA4YuCK_FRvVKMLVQ0fPlWmb1wcwGt78_n4bt4QJscYsaxG7gROpJoRZSZUxjhuZc5WbRCiSyVQrxwQ3ylmJoCSRhGi0kMMAT1PHUEwOYbusSnsMEeZRVBClc6kVldQTdJBEWIdwBSGFS7twsVRUodtq4p7UYlpgVuG1WgStFkGrXThfNZ41RTQ2N7v2Gl818ZWvw4Nq_li0jlQMbKKsM9pogam9zrkVlidEWc64zCjtwtnSXgV6iv_9IUtbvdTFgOFahPmZ7-iosd-qK4Kj8pVvusDXLLv2LeuScvIUqnH7YyaeNODk_wb5BfY8Y324FU--wvZi_mJPEdcsVA-22Jj1YOf65v7hVy_sDvTCPP4L2Fb9nQ
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+population+dynamics+of+computing+with+synaptic+modulations&rft.jtitle=eLife&rft.au=Aitken%2C+Kyle&rft.au=Mihalas%2C+Stefan&rft.date=2023-02-23&rft.issn=2050-084X&rft.eissn=2050-084X&rft.volume=12&rft_id=info:doi/10.7554%2FeLife.83035&rft.externalDBID=n%2Fa&rft.externalDocID=10_7554_eLife_83035
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon