Neural population dynamics of computing with synaptic modulations
In addition to long-timescale rewiring, synapses in the brain are subject to significant modulation that occurs at faster timescales that endow the brain with additional means of processing information. Despite this, models of the brain like recurrent neural networks (RNNs) often have their weights...
Saved in:
Published in | eLife Vol. 12 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
eLife Sciences Publications, Ltd
23.02.2023
eLife Sciences Publications Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In addition to long-timescale rewiring, synapses in the brain are subject to significant modulation that occurs at faster timescales that endow the brain with additional means of processing information. Despite this, models of the brain like recurrent neural networks (RNNs) often have their weights frozen after training, relying on an internal state stored in neuronal activity to hold task-relevant information. In this work, we study the computational potential and resulting dynamics of a network that relies solely on synapse modulation during inference to process task-relevant information, the multi-plasticity network (MPN). Since the MPN has no recurrent connections, this allows us to study the computational capabilities and dynamical behavior contributed by synapses modulations alone. The generality of the MPN allows for our results to apply to synaptic modulation mechanisms ranging from short-term synaptic plasticity (STSP) to slower modulations such as spike-time dependent plasticity (STDP). We thoroughly examine the neural population dynamics of the MPN trained on integration-based tasks and compare it to known RNN dynamics, finding the two to have fundamentally different attractor structure. We find said differences in dynamics allow the MPN to outperform its RNN counterparts on several neuroscience-relevant tests. Training the MPN across a battery of neuroscience tasks, we find its computational capabilities in such settings is comparable to networks that compute with recurrent connections. Altogether, we believe this work demonstrates the computational possibilities of computing with synaptic modulations and highlights important motifs of these computations so that they can be identified in brain-like systems. |
---|---|
AbstractList | In addition to long-timescale rewiring, synapses in the brain are subject to significant modulation that occurs at faster timescales that endow the brain with additional means of processing information. Despite this, models of the brain like recurrent neural networks (RNNs) often have their weights frozen after training, relying on an internal state stored in neuronal activity to hold task-relevant information. In this work, we study the computational potential and resulting dynamics of a network that relies solely on synapse modulation during inference to process task-relevant information, the multi-plasticity network (MPN). Since the MPN has no recurrent connections, this allows us to study the computational capabilities and dynamical behavior contributed by synapses modulations alone. The generality of the MPN allows for our results to apply to synaptic modulation mechanisms ranging from short-term synaptic plasticity (STSP) to slower modulations such as spike-time dependent plasticity (STDP). We thoroughly examine the neural population dynamics of the MPN trained on integration-based tasks and compare it to known RNN dynamics, finding the two to have fundamentally different attractor structure. We find said differences in dynamics allow the MPN to outperform its RNN counterparts on several neuroscience-relevant tests. Training the MPN across a battery of neuroscience tasks, we find its computational capabilities in such settings is comparable to networks that compute with recurrent connections. Altogether, we believe this work demonstrates the computational possibilities of computing with synaptic modulations and highlights important motifs of these computations so that they can be identified in brain-like systems. In addition to long-timescale rewiring, synapses in the brain are subject to significant modulation that occurs at faster timescales that endow the brain with additional means of processing information. Despite this, models of the brain like recurrent neural networks (RNNs) often have their weights frozen after training, relying on an internal state stored in neuronal activity to hold task-relevant information. In this work, we study the computational potential and resulting dynamics of a network that relies solely on synapse modulation during inference to process task-relevant information, the multi-plasticity network (MPN). Since the MPN has no recurrent connections, this allows us to study the computational capabilities and dynamical behavior contributed by synapses modulations alone. The generality of the MPN allows for our results to apply to synaptic modulation mechanisms ranging from short-term synaptic plasticity (STSP) to slower modulations such as spike-time dependent plasticity (STDP). We thoroughly examine the neural population dynamics of the MPN trained on integration-based tasks and compare it to known RNN dynamics, finding the two to have fundamentally different attractor structure. We find said differences in dynamics allow the MPN to outperform its RNN counterparts on several neuroscience-relevant tests. Training the MPN across a battery of neuroscience tasks, we find its computational capabilities in such settings is comparable to networks that compute with recurrent connections. Altogether, we believe this work demonstrates the computational possibilities of computing with synaptic modulations and highlights important motifs of these computations so that they can be identified in brain-like systems.In addition to long-timescale rewiring, synapses in the brain are subject to significant modulation that occurs at faster timescales that endow the brain with additional means of processing information. Despite this, models of the brain like recurrent neural networks (RNNs) often have their weights frozen after training, relying on an internal state stored in neuronal activity to hold task-relevant information. In this work, we study the computational potential and resulting dynamics of a network that relies solely on synapse modulation during inference to process task-relevant information, the multi-plasticity network (MPN). Since the MPN has no recurrent connections, this allows us to study the computational capabilities and dynamical behavior contributed by synapses modulations alone. The generality of the MPN allows for our results to apply to synaptic modulation mechanisms ranging from short-term synaptic plasticity (STSP) to slower modulations such as spike-time dependent plasticity (STDP). We thoroughly examine the neural population dynamics of the MPN trained on integration-based tasks and compare it to known RNN dynamics, finding the two to have fundamentally different attractor structure. We find said differences in dynamics allow the MPN to outperform its RNN counterparts on several neuroscience-relevant tests. Training the MPN across a battery of neuroscience tasks, we find its computational capabilities in such settings is comparable to networks that compute with recurrent connections. Altogether, we believe this work demonstrates the computational possibilities of computing with synaptic modulations and highlights important motifs of these computations so that they can be identified in brain-like systems. |
Author | Mihalas, Stefan Aitken, Kyle |
Author_xml | – sequence: 1 givenname: Kyle orcidid: 0000-0003-0207-5885 surname: Aitken fullname: Aitken, Kyle – sequence: 2 givenname: Stefan orcidid: 0000-0002-2629-7100 surname: Mihalas fullname: Mihalas, Stefan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36820526$$D View this record in MEDLINE/PubMed |
BookMark | eNptkUtLxDAUhYOM-JyVe-lSkNG0SZt0JcPgY2DQjYK7kCY3MxnapjatMv_ezENRMZuEe76ce7nnGA1qVwNCZzG-YmlKr2FmDVxxgkm6h44SnOIR5vR18ON9iIbeL3E4jHIe5wfokGQ8yEl2hMaP0LeyjBrX9KXsrKsjvaplZZWPnImUq5q-s_U8-rDdIvJBajqrosrpHe5P0b6RpYfh7j5BL3e3z5OH0ezpfjoZz0aKUt6NTGLyWBHCQNJCa8O1zHiRaZwXJJWxKgzLuS4MyJwwLAlRkCqTUEpjw4JMTtB066udXIqmtZVsV8JJKzYF186FbMNsJYgEcAFGK61yTDOVcciBY1IAZ1ymlAavm61X0xcVaAV1F5bwy_S3UtuFmLt3EYclJpytHS52Dq1768F3orJeQVnKGlzvRcJYTihnJA3o-c9m312-QgjA5RZQrfO-BfONxFisUxablMUm5UDHf2hlu00UYVJb_vvnE2p2rb0 |
CitedBy_id | crossref_primary_10_1016_j_bbrc_2024_150302 crossref_primary_10_3390_bios14020068 crossref_primary_10_1016_j_celrep_2024_113785 crossref_primary_10_1016_j_neuropsychologia_2024_109062 |
Cites_doi | 10.1146/annurev.ph.55.030193.002145 10.1126/science.abj5861 10.1016/j.cosrev.2009.03.005 10.1126/science.7997883 10.1007/s11064-018-2695-4 10.1016/j.neuron.2006.06.017 10.1038/s41593-018-0310-2 10.1007/s10827-019-00717-5 10.1126/science.1150769 10.1093/brain/awg078 10.1073/pnas.94.2.719 10.1523/JNEUROSCI.16-06-02112.1996 10.1371/journal.pcbi.1009246 10.1146/annurev-neuro-092619-094115 10.1103/PhysRevE.66.041902 10.1080/09540099550039318 10.1007/BF00320393 10.4324/9781410612403 10.1037/0033-295x.97.2.285 10.1080/net.13.2.217.242 10.1073/pnas.92.24.11175 10.1523/JNEUROSCI.2485-17.2018 10.1146/annurev-physiol-021014-071753 10.1146/annurev.physiol.64.092501.114547 10.1126/science.1091277 10.1101/2021.05.18.444107 10.1038/s41593-019-0414-3 10.1523/JNEUROSCI.18-24-10464.1998 10.1162/neco.1997.9.8.1735 10.31234/osf.io/aqc9n 10.1037/0033-295X.102.3.419 10.1016/j.neuron.2013.01.039 10.3115/v1/D14-1179 10.1038/382807a0 10.1016/j.tics.2015.05.004 10.1371/journal.pcbi.1000291 10.1016/s1364-6613(99)01294-2 10.1162/089976698300017502 10.1038/s41583-022-00663-9 10.1371/journal.pcbi.1008813 10.1007/978-3-540-74690-4 10.1523/JNEUROSCI.4353-05.2006 10.1073/pnas.93.23.13339 10.1038/72093 10.1126/science.1378648 10.1016/j.conb.2013.10.008 10.1038/s41583-020-0277-3 10.1371/journal.pcbi.1000073 10.1038/s41586-021-03390-w 10.1097/00004647-200110000-00001 10.1523/JNEUROSCI.1875-10.2010 10.1016/S0079-7421(08)60536-8 10.1038/nature07842 10.1073/pnas.1611835114 10.1162/jocn_a_00029 10.1038/s41593-018-0314-y 10.1073/pnas.0913875107 10.1016/0896-6273(95)90223-6 10.1038/nature12742 10.1162/089976602760407955 10.1016/j.tics.2016.05.004 10.1016/j.neuron.2021.11.009 10.1073/pnas.92.9.3844 10.1088/0034-4885/61/4/002 10.1126/science.275.5297.213 10.1152/jn.1996.75.5.1919 |
ContentType | Journal Article |
Copyright | 2023, Aitken and Mihalas. 2023, Aitken and Mihalas 2023 Aitken and Mihalas |
Copyright_xml | – notice: 2023, Aitken and Mihalas. – notice: 2023, Aitken and Mihalas 2023 Aitken and Mihalas |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.7554/eLife.83035 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2050-084X |
ExternalDocumentID | oai_doaj_org_article_2e0befdcdc9046c68e9e803be878a544 PMC10072874 36820526 10_7554_eLife_83035 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIH HHS grantid: RF1DA055669 – fundername: NIDA NIH HHS grantid: RF1 DA055669 – fundername: NIH HHS grantid: R01EB02981 – fundername: NIH HHS grantid: F1DA055669 – fundername: NIH HHS grantid: R01EB029813 – fundername: NIBIB NIH HHS grantid: R01 EB029813 – fundername: ; – fundername: ; grantid: RF1DA055669 – fundername: ; grantid: R01EB029813 |
GroupedDBID | 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAKDD AAYXX ABUWG ACGFO ACGOD ACPRK ADBBV ADRAZ AENEX AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK DWQXO EMOBN FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IEA IHR INH INR ISR ITC KQ8 LK8 M1P M2P M48 M7P M~E NQS OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RHI RNS RPM UKHRP CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c448t-f2f91c337ea4bddf8da68b6d09b35a1cbf798dbfea9370a33ce5cf24441f71cb3 |
IEDL.DBID | M48 |
ISSN | 2050-084X |
IngestDate | Wed Aug 27 01:28:41 EDT 2025 Thu Aug 21 18:38:21 EDT 2025 Fri Jul 11 03:17:21 EDT 2025 Sat Aug 02 01:41:11 EDT 2025 Thu Apr 24 22:58:03 EDT 2025 Tue Jul 01 01:58:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | neural population dynamics none synapse dynamics synaptic plasticity recurrent neural networks neuroscience |
Language | English |
License | 2023, Aitken and Mihalas. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c448t-f2f91c337ea4bddf8da68b6d09b35a1cbf798dbfea9370a33ce5cf24441f71cb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2629-7100 0000-0003-0207-5885 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.7554/eLife.83035 |
PMID | 36820526 |
PQID | 2779348735 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2e0befdcdc9046c68e9e803be878a544 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10072874 proquest_miscellaneous_2779348735 pubmed_primary_36820526 crossref_primary_10_7554_eLife_83035 crossref_citationtrail_10_7554_eLife_83035 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-23 |
PublicationDateYYYYMMDD | 2023-02-23 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | eLife |
PublicationTitleAlternate | Elife |
PublicationYear | 2023 |
Publisher | eLife Sciences Publications, Ltd eLife Sciences Publications Ltd |
Publisher_xml | – name: eLife Sciences Publications, Ltd – name: eLife Sciences Publications Ltd |
References | Sjöström (bib63) 2006; 51 Ba (bib4) 2016 Bi (bib13) 1998; 18 Hebb (bib26) 2005 Attwell (bib3) 2001; 21 Masse (bib48) 2019; 22 Burak (bib14) 2009; 5 Cannon (bib17) 1983; 49 Pettit (bib57) 1994; 266 Vyas (bib72) 2020; 43 Fuhs (bib25) 2006; 26 Robins (bib59) 1995; 7 Silva (bib62) 1992; 257 McFarlan (bib51) 2023; 24 Campagnola (bib16) 2022; 375 McClelland (bib49) 1995; 102 McCloskey (bib50) 1989; 24 Love (bib37) 2003; 126 Patterson (bib56) 2010; 107 Zhang (bib75) 1996; 16 Lundqvist (bib40) 2018; 38 Stevens (bib64) 1995; 14 Markram (bib47) 1997; 275 Mante (bib45) 2013; 503 Jaeger (bib30) 2004; 304 Kirkpatrick (bib32) 2017; 114 Ermentrout (bib23) 1998; 61 Lillicrap (bib35) 2020; 21 Maheswaranathan (bib42) 2019; 32 Molano-Mazon (bib52) 2022 Collins (bib20) 2016 Tyulmankov (bib71) 2022; 110 de Sá (bib21) 2007 French (bib24) 1999; 3 Orhan (bib54) 2019; 22 Baltaci (bib7) 2019; 44 Maheswaranathan (bib44) 2020 Cho (bib18) 2000; 3 Becker (bib10) 2021; 17 Kingma (bib31) 2014 Herring (bib27) 2016; 78 Mongillo (bib53) 2008; 319 Sugase-Miyamoto (bib68) 2008; 4 Tsodyks (bib69) 1997; 94 Hochreiter (bib28) 1997; 9 Lundqvist (bib39) 2011; 23 Barak (bib9) 2014; 25 Maass (bib41) 2002; 14 Seung (bib61) 1996; 93 Duncker (bib22) 2020 Markram (bib46) 1996; 382 Tsodyks (bib70) 1998; 10 Stringer (bib67) 2002; 13 Xie (bib73) 2002; 66 Ben-Yishai (bib11) 1995; 92 Lledo (bib36) 1995; 92 Panichello (bib55) 2021; 592 Hu (bib29) 2021; 17 Aitken (bib1) 2020 Cho (bib19) 2014 Ballintyn (bib6) 2019; 46 Ratcliff (bib58) 1990; 97 Zucker (bib76) 2002; 64 Yang (bib74) 2019; 22 Aitken (bib2) 2023 Burnham (bib15) 2021 Bertram (bib12) 1996; 75 Barak (bib8) 2010; 30 Stokes (bib66) 2015; 19 Rodriguez (bib60) 2022 Kumaran (bib33) 2016; 20 Lee (bib34) 2009; 458 Lukoševičius (bib38) 2009; 3 Bailey (bib5) 1993; 55 Stokes (bib65) 2013; 78 Maheswaranathan (bib43) 2019 |
References_xml | – volume: 55 start-page: 397 year: 1993 ident: bib5 article-title: Structural changes accompanying memory storage publication-title: Annual Review of Physiology doi: 10.1146/annurev.ph.55.030193.002145 – volume-title: arXiv year: 2016 ident: bib4 article-title: Using Fast Weights to Attend to the Recent Past – volume: 375 year: 2022 ident: bib16 article-title: Local connectivity and synaptic dynamics in mouse and human neocortex publication-title: Science doi: 10.1126/science.abj5861 – volume: 3 start-page: 127 year: 2009 ident: bib38 article-title: Reservoir computing approaches to recurrent neural network training publication-title: Computer Science Review doi: 10.1016/j.cosrev.2009.03.005 – volume: 266 start-page: 1881 year: 1994 ident: bib57 article-title: Potentiated transmission and prevention of further LTP by increased CaMKII activity in postsynaptic hippocampal slice neurons publication-title: Science doi: 10.1126/science.7997883 – volume: 44 start-page: 281 year: 2019 ident: bib7 article-title: Molecular mechanisms of early and late LTP publication-title: Neurochemical Research doi: 10.1007/s11064-018-2695-4 – volume-title: arXiv year: 2019 ident: bib43 article-title: Universality and Individuality in Neural Dynamics across Large Populations of Recurrent Networks – volume: 51 start-page: 227 year: 2006 ident: bib63 article-title: A cooperative switch determines the sign of synaptic plasticity in distal dendrites of neocortical pyramidal neurons publication-title: Neuron doi: 10.1016/j.neuron.2006.06.017 – volume: 22 start-page: 297 year: 2019 ident: bib74 article-title: Task representations in neural networks trained to perform many cognitive tasks publication-title: Nature Neuroscience doi: 10.1038/s41593-018-0310-2 – volume: 46 start-page: 279 year: 2019 ident: bib6 article-title: Spatiotemporal discrimination in attractor networks with short-term synaptic plasticity publication-title: Journal of Computational Neuroscience doi: 10.1007/s10827-019-00717-5 – volume: 32 start-page: 15696 year: 2019 ident: bib42 article-title: Reverse engineering recurrent networks for sentiment classification reveals line attractor dynamics publication-title: Advances in Neural Information Processing Systems – volume: 319 start-page: 1543 year: 2008 ident: bib53 article-title: Synaptic theory of working memory publication-title: Science doi: 10.1126/science.1150769 – volume: 126 start-page: 1009 year: 2003 ident: bib37 article-title: DEGENERATION and regeneration in the nervous system publication-title: Brain doi: 10.1093/brain/awg078 – volume: 94 start-page: 719 year: 1997 ident: bib69 article-title: The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability publication-title: PNAS doi: 10.1073/pnas.94.2.719 – volume: 16 start-page: 2112 year: 1996 ident: bib75 article-title: Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.16-06-02112.1996 – volume: 17 year: 2021 ident: bib29 article-title: Adaptation supports short-term memory in a visual change detection task publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1009246 – volume: 43 start-page: 249 year: 2020 ident: bib72 article-title: Computation through neural population dynamics publication-title: Annual Review of Neuroscience doi: 10.1146/annurev-neuro-092619-094115 – volume: 66 year: 2002 ident: bib73 article-title: Double-Ring network model of the head-direction system publication-title: Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics doi: 10.1103/PhysRevE.66.041902 – volume: 7 start-page: 123 year: 1995 ident: bib59 article-title: Catastrophic forgetting, rehearsal and pseudorehearsal publication-title: Connection Science doi: 10.1080/09540099550039318 – volume: 49 start-page: 127 year: 1983 ident: bib17 article-title: A proposed neural network for the integrator of the oculomotor system publication-title: Biol Cybern doi: 10.1007/BF00320393 – volume-title: The Organization of Behavior year: 2005 ident: bib26 doi: 10.4324/9781410612403 – volume: 97 start-page: 285 year: 1990 ident: bib58 article-title: Connectionist models of recognition memory: constraints imposed by learning and forgetting functions publication-title: Psychological Review doi: 10.1037/0033-295x.97.2.285 – volume: 13 start-page: 217 year: 2002 ident: bib67 article-title: Self-organizing continuous attractor networks and path integration: one-dimensional models of head direction cells publication-title: Network doi: 10.1080/net.13.2.217.242 – volume: 92 start-page: 11175 year: 1995 ident: bib36 article-title: Calcium/calmodulin-dependent kinase II and long-term potentiation enhance synaptic transmission by the same mechanism publication-title: PNAS doi: 10.1073/pnas.92.24.11175 – volume: 38 start-page: 7013 year: 2018 ident: bib40 article-title: Working memory: delay activity, Yes! persistent activity? maybe not publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.2485-17.2018 – volume: 78 start-page: 351 year: 2016 ident: bib27 article-title: Long-Term potentiation: from CaMKII to AMPA receptor trafficking publication-title: Annual Review of Physiology doi: 10.1146/annurev-physiol-021014-071753 – volume: 64 start-page: 355 year: 2002 ident: bib76 article-title: Short-Term synaptic plasticity publication-title: Annual Review of Physiology doi: 10.1146/annurev.physiol.64.092501.114547 – volume: 304 start-page: 78 year: 2004 ident: bib30 article-title: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication publication-title: Science doi: 10.1126/science.1091277 – volume-title: bioRxiv year: 2021 ident: bib15 article-title: Learning to Predict in Networks with Heterogeneous and Dynamic Synapses doi: 10.1101/2021.05.18.444107 – volume-title: arXiv year: 2020 ident: bib1 article-title: The Geometry of Integration in Text Classification Rnns – volume: 22 start-page: 1159 year: 2019 ident: bib48 article-title: Circuit mechanisms for the maintenance and manipulation of information in working memory publication-title: Nature Neuroscience doi: 10.1038/s41593-019-0414-3 – volume: 18 start-page: 10464 year: 1998 ident: bib13 article-title: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.18-24-10464.1998 – volume: 9 start-page: 1735 year: 1997 ident: bib28 article-title: Long short-term memory publication-title: Neural Computation doi: 10.1162/neco.1997.9.8.1735 – volume-title: PsyArXiv year: 2022 ident: bib52 article-title: NeuroGym: An Open Resource for Developing and Sharing Neuroscience Tasks doi: 10.31234/osf.io/aqc9n – volume: 102 start-page: 419 year: 1995 ident: bib49 article-title: Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory publication-title: Psychological Review doi: 10.1037/0033-295X.102.3.419 – volume: 78 start-page: 364 year: 2013 ident: bib65 article-title: Dynamic coding for cognitive control in prefrontal cortex publication-title: Neuron doi: 10.1016/j.neuron.2013.01.039 – year: 2014 ident: bib19 article-title: Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation doi: 10.3115/v1/D14-1179 – volume: 382 start-page: 807 year: 1996 ident: bib46 article-title: Redistribution of synaptic efficacy between neocortical pyramidal neurons publication-title: Nature doi: 10.1038/382807a0 – volume: 19 start-page: 394 year: 2015 ident: bib66 article-title: “ Activity-silent ” working memory in prefrontal cortex: a dynamic coding framework publication-title: Trends in Cognitive Sciences doi: 10.1016/j.tics.2015.05.004 – volume: 5 year: 2009 ident: bib14 article-title: Accurate path integration in continuous attractor network models of grid cells publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1000291 – volume: 3 start-page: 128 year: 1999 ident: bib24 article-title: Catastrophic forgetting in connectionist networks publication-title: Trends in Cognitive Sciences doi: 10.1016/s1364-6613(99)01294-2 – volume: 10 start-page: 821 year: 1998 ident: bib70 article-title: Neural networks with dynamic synapses publication-title: Neural Computation doi: 10.1162/089976698300017502 – volume: 24 start-page: 80 year: 2023 ident: bib51 article-title: The plasticitome of cortical interneurons publication-title: Nature Reviews. Neuroscience doi: 10.1038/s41583-022-00663-9 – volume: 17 year: 2021 ident: bib10 article-title: The biophysical basis underlying the maintenance of early phase long-term potentiation publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1008813 – volume-title: Artificial Neural Networks – Icann 2007 year: 2007 ident: bib21 doi: 10.1007/978-3-540-74690-4 – year: 2014 ident: bib31 article-title: Adam: A method for stochastic optimization – volume: 26 start-page: 4266 year: 2006 ident: bib25 article-title: A spin glass model of path integration in rat medial entorhinal cortex publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.4353-05.2006 – volume: 93 start-page: 13339 year: 1996 ident: bib61 article-title: How the brain keeps the eyes still publication-title: PNAS doi: 10.1073/pnas.93.23.13339 – volume: 3 start-page: 150 year: 2000 ident: bib18 article-title: A new form of long-term depression in the perirhinal cortex publication-title: Nature Neuroscience doi: 10.1038/72093 – volume: 257 start-page: 201 year: 1992 ident: bib62 article-title: Deficient hippocampal long-term potentiation in alpha-calcium-calmodulin kinase II mutant mice publication-title: Science doi: 10.1126/science.1378648 – volume: 25 start-page: 20 year: 2014 ident: bib9 article-title: Working models of working memory publication-title: Current Opinion in Neurobiology doi: 10.1016/j.conb.2013.10.008 – volume: 21 start-page: 335 year: 2020 ident: bib35 article-title: Backpropagation and the brain publication-title: Nature Reviews. Neuroscience doi: 10.1038/s41583-020-0277-3 – volume: 4 year: 2008 ident: bib68 article-title: Short-term memory trace in rapidly adapting synapses of inferior temporal cortex publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1000073 – volume-title: arXiv year: 2016 ident: bib20 article-title: Capacity and Trainability in Recurrent Neural Networks – volume: 592 start-page: 601 year: 2021 ident: bib55 article-title: Shared mechanisms underlie the control of working memory and attention publication-title: Nature doi: 10.1038/s41586-021-03390-w – volume: 21 start-page: 1133 year: 2001 ident: bib3 article-title: An energy budget for signaling in the grey matter of the brain publication-title: Journal of Cerebral Blood Flow and Metabolism doi: 10.1097/00004647-200110000-00001 – volume: 30 start-page: 9424 year: 2010 ident: bib8 article-title: Neuronal population coding of parametric working memory publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.1875-10.2010 – year: 2022 ident: bib60 article-title: Short-term plasticity neurons learning to learn and forget – volume: 24 start-page: 109 year: 1989 ident: bib50 article-title: Catastrophic interference in connectionist networks: the sequential learning problem publication-title: Psychology of Learning and Motivation doi: 10.1016/S0079-7421(08)60536-8 – volume: 458 start-page: 299 year: 2009 ident: bib34 article-title: Activation of CaMKII in single dendritic spines during long-term potentiation publication-title: Nature doi: 10.1038/nature07842 – volume: 114 start-page: 3521 year: 2017 ident: bib32 article-title: Overcoming catastrophic forgetting in neural networks publication-title: PNAS doi: 10.1073/pnas.1611835114 – volume: 23 start-page: 3008 year: 2011 ident: bib39 article-title: Theta and gamma power increases and alpha/beta power decreases with memory load in an attractor network model publication-title: Journal of Cognitive Neuroscience doi: 10.1162/jocn_a_00029 – volume: 22 start-page: 275 year: 2019 ident: bib54 article-title: A diverse range of factors affect the nature of neural representations underlying short-term memory publication-title: Nature Neuroscience doi: 10.1038/s41593-018-0314-y – volume-title: arXiv year: 2020 ident: bib44 article-title: How Recurrent Networks Implement Contextual Processing in Sentiment Analysis – volume: 107 start-page: 15951 year: 2010 ident: bib56 article-title: Ampa receptors are exocytosed in stimulated spines and adjacent dendrites in a ras-erk-dependent manner during long-term potentiation publication-title: PNAS doi: 10.1073/pnas.0913875107 – volume: 14 start-page: 795 year: 1995 ident: bib64 article-title: Facilitation and depression at single central synapses publication-title: Neuron doi: 10.1016/0896-6273(95)90223-6 – volume-title: Software Heritage year: 2023 ident: bib2 article-title: Supporting code for multi-plasticity networks – volume: 503 start-page: 78 year: 2013 ident: bib45 article-title: Context-Dependent computation by recurrent dynamics in prefrontal cortex publication-title: Nature doi: 10.1038/nature12742 – volume: 14 start-page: 2531 year: 2002 ident: bib41 article-title: Real-Time computing without stable states: a new framework for neural computation based on perturbations publication-title: Neural Computation doi: 10.1162/089976602760407955 – volume: 20 start-page: 512 year: 2016 ident: bib33 article-title: What learning systems do intelligent agents need? complementary learning systems theory updated publication-title: Trends in Cognitive Sciences doi: 10.1016/j.tics.2016.05.004 – volume: 110 start-page: 544 year: 2022 ident: bib71 article-title: Meta-learning synaptic plasticity and memory addressing for continual familiarity detection publication-title: Neuron doi: 10.1016/j.neuron.2021.11.009 – volume: 92 start-page: 3844 year: 1995 ident: bib11 article-title: Theory of orientation tuning in visual cortex publication-title: PNAS doi: 10.1073/pnas.92.9.3844 – volume: 61 start-page: 353 year: 1998 ident: bib23 article-title: Neural networks as spatio-temporal pattern-forming systems publication-title: Reports on Progress in Physics doi: 10.1088/0034-4885/61/4/002 – volume: 275 start-page: 213 year: 1997 ident: bib47 article-title: Regulation of synaptic efficacy by coincidence of postsynaptic APS and EPSPs publication-title: Science doi: 10.1126/science.275.5297.213 – volume: 75 start-page: 1919 year: 1996 ident: bib12 article-title: Single-domain/bound calcium hypothesis of transmitter release and facilitation publication-title: Journal of Neurophysiology doi: 10.1152/jn.1996.75.5.1919 – start-page: 14387 year: 2020 ident: bib22 article-title: Organizing recurrent network dynamics by task-computation to enable continual learning |
SSID | ssj0000748819 |
Score | 2.3888 |
Snippet | In addition to long-timescale rewiring, synapses in the brain are subject to significant modulation that occurs at faster timescales that endow the brain with... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Brain - physiology Neural Networks, Computer neural population dynamics Neuronal Plasticity Neuroscience recurrent neural networks synapse dynamics Synapses synaptic plasticity |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yELyI39YvKuwk1LVL2iTHKY4h6snBbiWfONB22O3gf-9L2pVVBC9e-x4kfS99H2ny-yHUt0RYrhIZmVRlERE4iwTVNFISqhENAm7chv7zSzaZksdZOtug-nJnwmp44Npwg6GJpbFaacWhlVMZM9ywGEvDKBMp8UigkPM2mikfgykszITXF_IopMyBeZpbc8sgYqedFOSR-n8rL3-ektxIO-M9tNvUi-Gonuc-2jLFAdquGSS_DtHIgWuAfNHycIW65pivwtKGynM2QHYK3X5rWIEIQoQKP0rdqFdHaDp-eL2fRA0rQqSglVpGdmh5ojCmRhCptWVaZExmOuYSpyJR0lLOtLRGQOURC4wVuMFCFieJpSDGx6hXlIU5RSE0S4RjqTKhJBHEsXDgmBsLNQnUDTYJ0M3aULlqIMMdc8V7Dq2Ds2rurZp7qwao3yovaqSM39XunMVbFQdv7R-A0_PG6flfTg_Q9dpfOXwO7h-HKEy5qvIhhYADTZgb6KT2XzsUhrdy8DYBYh3PdubSlRTzNw-57c6SOGaAs_-Y_TnacaT1_mI8vkC95efKXEJps5RXfhV_A4WX_Ho priority: 102 providerName: Directory of Open Access Journals |
Title | Neural population dynamics of computing with synaptic modulations |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36820526 https://www.proquest.com/docview/2779348735 https://pubmed.ncbi.nlm.nih.gov/PMC10072874 https://doaj.org/article/2e0befdcdc9046c68e9e803be878a544 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED_SlkJfxrr1I90aXOhTwakdyZb0NNrRUMZaylggb0afbSC1sziF9r_fSXbCUvKwV5-MrDud7neydD-Ac0elEzpVsc10HlNJ8lgyw2KtEI0YFAjrN_Tv7vPbEf0xzsYdWJJxtgqsN6Z2nk9qNJ_2X_-8fUOHR_zaZxgNL-3PibN9jotxtgU7GJKY99C7FueHJZnhPA0kH4MkC7VMx81dvffvr0WnUMR_E_J8f4Dyn4g0_AgfWigZXTW234eOLT_BbkMu-fYZrnzdDZTPVhRdkWno5-uocpEOdA4YuCK_FRvVKMLVQ0fPlWmb1wcwGt78_n4bt4QJscYsaxG7gROpJoRZSZUxjhuZc5WbRCiSyVQrxwQ3ylmJoCSRhGi0kMMAT1PHUEwOYbusSnsMEeZRVBClc6kVldQTdJBEWIdwBSGFS7twsVRUodtq4p7UYlpgVuG1WgStFkGrXThfNZ41RTQ2N7v2Gl818ZWvw4Nq_li0jlQMbKKsM9pogam9zrkVlidEWc64zCjtwtnSXgV6iv_9IUtbvdTFgOFahPmZ7-iosd-qK4Kj8pVvusDXLLv2LeuScvIUqnH7YyaeNODk_wb5BfY8Y324FU--wvZi_mJPEdcsVA-22Jj1YOf65v7hVy_sDvTCPP4L2Fb9nQ |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+population+dynamics+of+computing+with+synaptic+modulations&rft.jtitle=eLife&rft.au=Aitken%2C+Kyle&rft.au=Mihalas%2C+Stefan&rft.date=2023-02-23&rft.issn=2050-084X&rft.eissn=2050-084X&rft.volume=12&rft_id=info:doi/10.7554%2FeLife.83035&rft.externalDBID=n%2Fa&rft.externalDocID=10_7554_eLife_83035 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon |