The impact of internal climate variability on OH trends between 2005 and 2014
The hydroxyl radical (OH) lies at the nexus of climate and air quality as the primary oxidant for both reactive greenhouse gases and many hazardous air pollutants. To better understand the role of climate variability on spatiotemporal patterns of OH, we utilize a 13-member ensemble of the Community...
Saved in:
Published in | Environmental research letters Vol. 19; no. 6; pp. 64032 - 64041 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
01.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The hydroxyl radical (OH) lies at the nexus of climate and air quality as the primary oxidant for both reactive greenhouse gases and many hazardous air pollutants. To better understand the role of climate variability on spatiotemporal patterns of OH, we utilize a 13-member ensemble of the Community Earth System Model version 2-Whole Atmosphere Community Climate Model version 6 (CESM2-WACCM6), a fully coupled chemistry-climate model, spanning the years 1950–2014. Ensemble members vary only in their initial conditions of the climate state in 1950. We focus on the final decade of the simulation, 2005–2014, when prior studies disagree on the signs of the global OH trends. The ensemble mean global airmass-weighted mean tropospheric column OH (
Ω
TOH
), which is an estimate of the forced signal, increases by 0.06%/year between 2005 and 2014 while regional
Ω
TOH
trends range from −0.56%/year over Southern Europe to +0.64%/year over South America. We show that ten-year
Ω
TOH
trends are strongly affected by internal climate variability, as the spread of
Ω
TOH
trends across the ensemble varies between 0.23%/year in Asia and 1.53%/year in South America. We train a fully connected neural network to emulate the
Ω
TOH
simulated by the CESM2-WACCM6 model and combine it with satellite observations to interpret the role of OH chemical proxies. While the OH chemical proxies are subject to internal variability, the impact of internal variability on
Ω
TOH
trends is primarily due to the meteorological parameters except for South America. Forced trends in global mean
Ω
TOH
do not unambiguously emerge from trends driven by internal variability over the 2005–2014 period. The observation-constrained
Ω
TOH
presents opposite trends due to climate variability, resulting in varying conclusions on the attribution of OH to CH
4
trends. |
---|---|
AbstractList | The hydroxyl radical (OH) lies at the nexus of climate and air quality as the primary oxidant for both reactive greenhouse gases and many hazardous air pollutants. To better understand the role of climate variability on spatiotemporal patterns of OH, we utilize a 13-member ensemble of the Community Earth System Model version 2-Whole Atmosphere Community Climate Model version 6 (CESM2-WACCM6), a fully coupled chemistry-climate model, spanning the years 1950–2014. Ensemble members vary only in their initial conditions of the climate state in 1950. We focus on the final decade of the simulation, 2005–2014, when prior studies disagree on the signs of the global OH trends. The ensemble mean global airmass-weighted mean tropospheric column OH (
Ω
TOH
), which is an estimate of the forced signal, increases by 0.06%/year between 2005 and 2014 while regional
Ω
TOH
trends range from −0.56%/year over Southern Europe to +0.64%/year over South America. We show that ten-year
Ω
TOH
trends are strongly affected by internal climate variability, as the spread of
Ω
TOH
trends across the ensemble varies between 0.23%/year in Asia and 1.53%/year in South America. We train a fully connected neural network to emulate the
Ω
TOH
simulated by the CESM2-WACCM6 model and combine it with satellite observations to interpret the role of OH chemical proxies. While the OH chemical proxies are subject to internal variability, the impact of internal variability on
Ω
TOH
trends is primarily due to the meteorological parameters except for South America. Forced trends in global mean
Ω
TOH
do not unambiguously emerge from trends driven by internal variability over the 2005–2014 period. The observation-constrained
Ω
TOH
presents opposite trends due to climate variability, resulting in varying conclusions on the attribution of OH to CH
4
trends. The hydroxyl radical (OH) lies at the nexus of climate and air quality as the primary oxidant for both reactive greenhouse gases and many hazardous air pollutants. To better understand the role of climate variability on spatiotemporal patterns of OH, we utilize a 13-member ensemble of the Community Earth System Model version 2-Whole Atmosphere Community Climate Model version 6 (CESM2-WACCM6), a fully coupled chemistry-climate model, spanning the years 1950–2014. Ensemble members vary only in their initial conditions of the climate state in 1950. We focus on the final decade of the simulation, 2005–2014, when prior studies disagree on the signs of the global OH trends. The ensemble mean global airmass-weighted mean tropospheric column OH ( $\Omega_{\mathrm{TOH}}$ ), which is an estimate of the forced signal, increases by 0.06%/year between 2005 and 2014 while regional $\Omega_{\mathrm{TOH}}$ trends range from −0.56%/year over Southern Europe to +0.64%/year over South America. We show that ten-year $\Omega_{\mathrm{TOH}}$ trends are strongly affected by internal climate variability, as the spread of $\Omega_{\mathrm{TOH}}$ trends across the ensemble varies between 0.23%/year in Asia and 1.53%/year in South America. We train a fully connected neural network to emulate the $\Omega_{\mathrm{TOH}}$ simulated by the CESM2-WACCM6 model and combine it with satellite observations to interpret the role of OH chemical proxies. While the OH chemical proxies are subject to internal variability, the impact of internal variability on $\Omega_{\mathrm{TOH}}$ trends is primarily due to the meteorological parameters except for South America. Forced trends in global mean $\Omega_{\mathrm{TOH}}$ do not unambiguously emerge from trends driven by internal variability over the 2005–2014 period. The observation-constrained $\Omega_{\mathrm{TOH}}$ presents opposite trends due to climate variability, resulting in varying conclusions on the attribution of OH to CH _4 trends. The hydroxyl radical (OH) lies at the nexus of climate and air quality as the primary oxidant for both reactive greenhouse gases and many hazardous air pollutants. To better understand the role of climate variability on spatiotemporal patterns of OH, we utilize a 13-member ensemble of the Community Earth System Model version 2-Whole Atmosphere Community Climate Model version 6 (CESM2-WACCM6), a fully coupled chemistry-climate model, spanning the years 1950–2014. Ensemble members vary only in their initial conditions of the climate state in 1950. We focus on the final decade of the simulation, 2005–2014, when prior studies disagree on the signs of the global OH trends. The ensemble mean global airmass-weighted mean tropospheric column OH (ΩTOH), which is an estimate of the forced signal, increases by 0.06%/year between 2005 and 2014 while regional ΩTOH trends range from −0.56%/year over Southern Europe to +0.64%/year over South America. We show that ten-year ΩTOH trends are strongly affected by internal climate variability, as the spread of ΩTOH trends across the ensemble varies between 0.23%/year in Asia and 1.53%/year in South America. We train a fully connected neural network to emulate the ΩTOH simulated by the CESM2-WACCM6 model and combine it with satellite observations to interpret the role of OH chemical proxies. While the OH chemical proxies are subject to internal variability, the impact of internal variability on ΩTOH trends is primarily due to the meteorological parameters except for South America. Forced trends in global mean ΩTOH do not unambiguously emerge from trends driven by internal variability over the 2005–2014 period. The observation-constrained ΩTOH presents opposite trends due to climate variability, resulting in varying conclusions on the attribution of OH to CH4 trends. |
Author | Correa, Gus Lamarque, Jean-Francois Fiore, Arlene M Worden, Helen Zhu, Qindan |
Author_xml | – sequence: 1 givenname: Qindan surname: Zhu fullname: Zhu, Qindan organization: Massachusetts Institute of Technology Department of Earth, Atmospheric and Planetary Sciences, Cambridge, MA, United States of America – sequence: 2 givenname: Arlene M orcidid: 0000-0003-0221-2122 surname: Fiore fullname: Fiore, Arlene M organization: Massachusetts Institute of Technology Department of Earth, Atmospheric and Planetary Sciences, Cambridge, MA, United States of America – sequence: 3 givenname: Gus surname: Correa fullname: Correa, Gus organization: Columbia Climate School Lamont-Doherty Earth Observatory (LDEO), Palisades, NY, United States of America – sequence: 4 givenname: Jean-Francois surname: Lamarque fullname: Lamarque, Jean-Francois organization: The National Center for Atmospheric Research , Boulder, CO, United States of America – sequence: 5 givenname: Helen surname: Worden fullname: Worden, Helen organization: National Center for Atmospheric Research Atmospheric Chemistry Observations & Modeling Laboratory, Boulder, CO, United States of America |
BookMark | eNp9kc1LHjEQxkOx4Ee9ewx46KVvTTYfmz2KtFWweNFzmE1mNS9rsmZji_99s91-SKlCIMMwv2centknOzFFJOSIs4-cGXPCW2k2nWj0CXjZy_YN2fvT2nlW75L9ed4ypqRqzR75en2HNNxP4ApNAw2xYI4wUjeGeyhIv0EO0IcxlCeaIr06pyVj9DPtsXxHjLSpUhSirwWX78jbAcYZD3_9B-Tm86frs_PN5dWXi7PTy42T0pQNci5ANsKxaoi7XnnNGNeDEoY57TgT0rgefQvQK1SSeYHKqQqI-gwTB-Ri1fUJtnbK1Wt-sgmC_dlI-dZCLsGNaLXrXN9VxjdCwqCMBO2d5KAd8sENVet41ZpyenjEudhtelwymK1gquualjNVp_Q65XKa54yDdaFACSmWDGG0nNnlDHbJ2S452_UMFWT_gL_tvoK8X5GQpr9mMNctndWWaVlzs5NfvH_4z-SLwj8AWmKkiw |
CODEN | ERLNAL |
CitedBy_id | crossref_primary_10_5194_acp_24_13001_2024 crossref_primary_10_1073_pnas_2402730121 |
Cites_doi | 10.5194/amt-15-2325-2022 10.1029/91JD02755 10.1029/2008GL036037 10.5194/gmd-10-3329-2017 10.1029/2019MS001882 10.3390/rs14092191 10.5194/acp-16-2597-2016 10.1146/annurev-earth-032320-090307 10.1175/JCLI-D-20-0123.1 10.1073/pnas.1616426114 10.1029/2002JD002272 10.5194/amt-11-6651-2018 10.1029/2020JD033862 10.5194/acp-21-6481-2021 10.5194/acp-20-1341-2020 10.1007/s00382-010-0977-x 10.1021/acs.est.1c05636 10.1038/s41558-020-0731-2 10.5194/acp-20-12905-2020 10.1073/pnas.2117399119 10.1029/2019MS001916 10.5194/gmd-15-6341-2022 10.5194/acp-23-4955-2023 10.5194/acp-16-12477-2016 10.5194/acp-13-837-2013 10.5194/acp-15-12519-2015 10.1126/science.173.3992.141 10.5194/amt-4-1905-2011 10.1016/j.atmosenv.2015.03.055 10.1029/2018JD028388 10.5194/acp-19-407-2019 10.1088/2752-5295/ac9cc2 10.5194/acp-23-6319-2023 10.5194/acp-24-1415-2024 10.1073/pnas.1807532115 10.1029/2019JD030943 10.1126/science.1058673 10.1073/pnas.2115204118 10.1002/2016JD026239 10.5194/acp-19-13569-2019 10.1073/pnas.1616020114 10.5194/acp-23-789-2023 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Published by IOP Publishing Ltd 2024 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Author(s). Published by IOP Publishing Ltd – notice: 2024 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 8FE 8FG ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ L6V M7S PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY DOA |
DOI | 10.1088/1748-9326/ad4b47 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection (ProQuest) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Engineering Database Environmental Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection (ProQuest) Environmental Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
EISSN | 1748-9326 |
ExternalDocumentID | oai_doaj_org_article_6c9cb9803d234af584a6dc41a6ce1fcf 10_1088_1748_9326_ad4b47 erlad4b47 |
GeographicLocations | South America |
GeographicLocations_xml | – name: South America |
GrantInformation_xml | – fundername: National Aeronautics and Space Administration grantid: 80NSSC23K0925 funderid: http://dx.doi.org/10.13039/100000104 |
GroupedDBID | 1JI 29G 2WC 5B3 5GY 5PX 5VS 7.Q AAFWJ AAHBH AAJKP ABHWH ABJCF ACAFW ACGFO ACHIP ADBBV AEFHF AEJGL AENEX AFKRA AFPKN AFYNE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATCPS ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ BHPHI CBCFC CCPQU CEBXE CJUJL CRLBU CS3 DU5 E3Z EBS EDWGO EQZZN GROUPED_DOAJ GX1 HCIFZ HH5 IJHAN IOP IZVLO KNG KQ8 LAP M7S M~E N5L N9A O3W OK1 P2P PATMY PIMPY PJBAE PTHSS PYCSY RIN RNS RO9 SY9 T37 TR2 TSCCA W28 ~02 AAYXX AEUYN CITATION OVT PHGZM PHGZT 8FE 8FG ABUWG AEINN AZQEC DWQXO GNUQQ L6V PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c448t-e113a423c03261cb5d60016f5380c6c10348cbed7aab5e540d3e5c523c33c3803 |
IEDL.DBID | DOA |
ISSN | 1748-9326 |
IngestDate | Wed Aug 27 01:30:24 EDT 2025 Wed Aug 13 11:29:56 EDT 2025 Tue Jul 01 04:05:45 EDT 2025 Thu Apr 24 22:53:06 EDT 2025 Sun Aug 18 17:00:26 EDT 2024 Tue Aug 20 22:17:06 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c448t-e113a423c03261cb5d60016f5380c6c10348cbed7aab5e540d3e5c523c33c3803 |
Notes | ERL-117482.R2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0221-2122 |
OpenAccessLink | https://doaj.org/article/6c9cb9803d234af584a6dc41a6ce1fcf |
PQID | 3059927105 |
PQPubID | 4998671 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6c9cb9803d234af584a6dc41a6ce1fcf proquest_journals_3059927105 crossref_primary_10_1088_1748_9326_ad4b47 iop_journals_10_1088_1748_9326_ad4b47 crossref_citationtrail_10_1088_1748_9326_ad4b47 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol |
PublicationTitle | Environmental research letters |
PublicationTitleAbbrev | ERL |
PublicationTitleAlternate | Environ. Res. Lett |
PublicationYear | 2024 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Gettelman (erlad4b47bib16) 2019; 124 Prinn (erlad4b47bib30) 1992; 97 Levy (erlad4b47bib21) 1971; 173 Anderson (erlad4b47bib3) 2023; 23 Deser (erlad4b47bib11) 2020a; 10 Murray (erlad4b47bib24) 2021; 118 Stevenson (erlad4b47bib34) 2020; 20 Boersma (erlad4b47bib5) 2018; 11 Deeter (erlad4b47bib9) 2022; 15 Masson-Delmotte (erlad4b47bib22) 2021 Zhao (erlad4b47bib43) 2023; 23 Worden (erlad4b47bib42) 2019; 19 Boersma (erlad4b47bib4) 2011; 4 Naus (erlad4b47bib25) 2019; 19 Rigby (erlad4b47bib33) 2017; 114 Zhu (erlad4b47bib45) 2022b; 56 Patra (erlad4b47bib29) 2021; 126 Nicely (erlad4b47bib27) 2018; 123 Anderson (erlad4b47bib2) 2022; 15 Fiore (erlad4b47bib15) 2024; 52 Turner (erlad4b47bib37) 2018; 115 Van Marle (erlad4b47bib38) 2017; 10 Worden (erlad4b47bib41) 2013; 13 Deser (erlad4b47bib12) 2020b; 33 Danabasoglu (erlad4b47bib7) 2020; 12 Kingma (erlad4b47bib17) 2014 Deser (erlad4b47bib10) 2012; 38 Zhu (erlad4b47bib44) 2022a; 119 Prinn (erlad4b47bib31) 2001; 292 Lelieveld (erlad4b47bib20) 2016; 16 Thompson (erlad4b47bib35) 2024; 24 Rigby (erlad4b47bib32) 2008; 35 Wang (erlad4b47bib39) 2022; 14 Emmons (erlad4b47bib13) 2020; 12 Nicely (erlad4b47bib26) 2017; 122 Turner (erlad4b47bib36) 2017; 114 McNorton (erlad4b47bib23) 2015 Lamsal (erlad4b47bib18) 2015; 110 Fiore (erlad4b47bib14) 2022; 1 Anderson (erlad4b47bib1) 2021; 21 Lelieveld (erlad4b47bib19) 2002; 107 Wolfe (erlad4b47bib40) 2016; 16 Chua (erlad4b47bib6) 2023; 23 De Smedt (erlad4b47bib8) 2015; 15 Nicely (erlad4b47bib28) 2020; 20 |
References_xml | – volume: 15 start-page: 2325 year: 2022 ident: erlad4b47bib9 article-title: The MOPITT version 9 CO product: sampling enhancements and validation publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-15-2325-2022 – volume: 97 start-page: 2445 year: 1992 ident: erlad4b47bib30 article-title: Global average concentration and trend for hydroxyl radicals deduced from ALE/GAGE trichloroethane (methyl chloroform) data for 1978–1990 publication-title: J. Geophys. Res. Atmos. doi: 10.1029/91JD02755 – volume: 35 year: 2008 ident: erlad4b47bib32 article-title: Renewed growth of atmospheric methane publication-title: Geophys. Res. Lett. doi: 10.1029/2008GL036037 – volume: 10 start-page: 3329 year: 2017 ident: erlad4b47bib38 article-title: Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015) publication-title: Geosci. Model Dev. doi: 10.5194/gmd-10-3329-2017 – volume: 12 year: 2020 ident: erlad4b47bib13 article-title: The chemistry mechanism in the community earth system model version 2 (CESM2) publication-title: J. Adv. Model. Earth Syst. doi: 10.1029/2019MS001882 – volume: 14 start-page: 2191 year: 2022 ident: erlad4b47bib39 article-title: Ambient formaldehyde over the United States from ground-based (AQS) and satellite (OMI) observations publication-title: Remote Sens. doi: 10.3390/rs14092191 – volume: 16 start-page: 2597 year: 2016 ident: erlad4b47bib40 article-title: Formaldehyde production from isoprene oxidation across NO x regimes publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-16-2597-2016 – volume: 52 year: 2024 ident: erlad4b47bib15 article-title: Climate and tropospheric oxidizing capacity publication-title: Annu. Rev. Earth Planet. Sci. doi: 10.1146/annurev-earth-032320-090307 – year: 2014 ident: erlad4b47bib17 article-title: Adam: a method for stochastic optimization – volume: 33 start-page: 7835 year: 2020b ident: erlad4b47bib12 article-title: Isolating the evolving contributions of anthropogenic aerosols and greenhouse gases: a new CESM1 large ensemble community resource publication-title: J. Clim. doi: 10.1175/JCLI-D-20-0123.1 – volume: 114 start-page: 5373 year: 2017 ident: erlad4b47bib33 article-title: Role of atmospheric oxidation in recent methane growth publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1616426114 – volume: 107 start-page: ACH year: 2002 ident: erlad4b47bib19 article-title: Stability of tropospheric hydroxyl chemistry publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2002JD002272 – volume: 11 start-page: 6651 year: 2018 ident: erlad4b47bib5 article-title: Improving algorithms and uncertainty estimates for satellite NO2 retrievals: results from the quality assurance for the essential climate variables (QA4ECV) project publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-11-6651-2018 – volume: 126 year: 2021 ident: erlad4b47bib29 article-title: Methyl chloroform continues to constrain the hydroxyl (OH) variability in the troposphere publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2020JD033862 – volume: 21 start-page: 6481 year: 2021 ident: erlad4b47bib1 article-title: Spatial and temporal variability in the hydroxyl (OH) radical: understanding the role of large-scale climate features and their influence on OH through its dynamical and photochemical drivers publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-21-6481-2021 – volume: 20 start-page: 1341 year: 2020 ident: erlad4b47bib28 article-title: A machine learning examination of hydroxyl radical differences among model simulations for CCMI-1 publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-20-1341-2020 – volume: 38 start-page: 527 year: 2012 ident: erlad4b47bib10 article-title: Uncertainty in climate change projections: the role of internal variability publication-title: Clim. Dyn. doi: 10.1007/s00382-010-0977-x – volume: 56 start-page: 7362 year: 2022b ident: erlad4b47bib45 article-title: Combining machine learning and satellite observations to predict spatial and temporal variation of near surface OH in North American cities publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c05636 – volume: 10 start-page: 277 year: 2020a ident: erlad4b47bib11 article-title: Insights from Earth system model initial-condition large ensembles and future prospects publication-title: Nat. Clim. Change doi: 10.1038/s41558-020-0731-2 – start-page: p 9402 year: 2015 ident: erlad4b47bib23 article-title: Role of OH variability in the stalling of the global atmospheric CH4 growth rate from 2000 to 2006 – volume: 20 start-page: 12905 year: 2020 ident: erlad4b47bib34 article-title: Trends in global tropospheric hydroxyl radical and methane lifetime since 1850 from AerChemMIP publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-20-12905-2020 – volume: 119 year: 2022a ident: erlad4b47bib44 article-title: Estimate of OH trends over one decade in North American cities publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.2117399119 – volume: 12 year: 2020 ident: erlad4b47bib7 article-title: The community earth system model version 2 (CESM2) publication-title: J. Adv. Model. Earth Syst. doi: 10.1029/2019MS001916 – volume: 15 start-page: 6341 year: 2022 ident: erlad4b47bib2 article-title: A machine learning methodology for the generation of a parameterization of the hydroxyl radical publication-title: Geosci. Model Dev. doi: 10.5194/gmd-15-6341-2022 – volume: 23 start-page: 4955 year: 2023 ident: erlad4b47bib6 article-title: Exploring the drivers of tropospheric hydroxyl radical trends in the GFDL AM4.1 atmospheric chemistry-climate model publication-title: Atmos. Chem. Phys. Discuss. doi: 10.5194/acp-23-4955-2023 – volume: 16 start-page: 12477 year: 2016 ident: erlad4b47bib20 article-title: Global tropospheric hydroxyl distribution, budget and reactivity publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-16-12477-2016 – volume: 13 start-page: 837 year: 2013 ident: erlad4b47bib41 article-title: Decadal record of satellite carbon monoxide observations publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-13-837-2013 – volume: 15 start-page: 12519 year: 2015 ident: erlad4b47bib8 article-title: Diurnal, seasonal and long-term variations of global formaldehyde columns inferred from combined OMI and GOME-2 observations publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-15-12519-2015 – volume: 173 start-page: 141 year: 1971 ident: erlad4b47bib21 article-title: Normal atmosphere: large radical and formaldehyde concentrations predicted publication-title: Science doi: 10.1126/science.173.3992.141 – volume: 4 start-page: 1905 year: 2011 ident: erlad4b47bib4 article-title: An improved tropospheric NO2 column retrieval algorithm for the Ozone Monitoring Instrument publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-4-1905-2011 – volume: 110 start-page: 130 year: 2015 ident: erlad4b47bib18 article-title: US NO2 trends (2005–2013): EPA Air Quality System (AQS) data versus improved observations from the Ozone Monitoring Instrument (OMI) publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2015.03.055 – volume: 123 start-page: 10774 year: 2018 ident: erlad4b47bib27 article-title: Changes in global tropospheric OH expected as a result of climate change over the last several decades publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2018JD028388 – volume: 19 start-page: 407 year: 2019 ident: erlad4b47bib25 article-title: Constraints and biases in a tropospheric two-box model of OH publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-19-407-2019 – volume: 1 year: 2022 ident: erlad4b47bib14 article-title: Understanding recent tropospheric ozone trends in the context of large internal variability: a new perspective from chemistry-climate model ensembles publication-title: Environ. Res. Clim. doi: 10.1088/2752-5295/ac9cc2 – volume: 23 start-page: 6319 year: 2023 ident: erlad4b47bib3 article-title: Constraining the hydroxyl (OH) radical in the tropics with satellite observations of its drivers–first steps toward assessing the feasibility of a global observation strategy publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-23-6319-2023 – volume: 24 start-page: 1 year: 2024 ident: erlad4b47bib35 article-title: Estimation of the atmospheric hydroxyl radical oxidative capacity using multiple hydrofluorocarbons (HFCs) publication-title: EGUsphere doi: 10.5194/acp-24-1415-2024 – volume: 115 start-page: 8931 year: 2018 ident: erlad4b47bib37 article-title: Modulation of hydroxyl variability by ENSO in the absence of external forcing publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1807532115 – volume: 124 start-page: 12380 year: 2019 ident: erlad4b47bib16 article-title: The whole atmosphere community climate model version 6 (WACCM6) publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2019JD030943 – year: 2021 ident: erlad4b47bib22 article-title: IPCC, 2021: Summary for policymakers – volume: 292 start-page: 1882 year: 2001 ident: erlad4b47bib31 article-title: Evidence for substantial variations of atmospheric hydroxyl radicals in the past two decades publication-title: Science doi: 10.1126/science.1058673 – volume: 118 year: 2021 ident: erlad4b47bib24 article-title: Large uncertainties in global hydroxyl projections tied to fate of reactive nitrogen and carbon publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.2115204118 – volume: 122 start-page: 1983 year: 2017 ident: erlad4b47bib26 article-title: Quantifying the causes of differences in tropospheric OH within global models publication-title: J. Geophys. Res. Atmos. doi: 10.1002/2016JD026239 – volume: 19 start-page: 13569 year: 2019 ident: erlad4b47bib42 article-title: New constraints on biogenic emissions using satellite-based estimates of carbon monoxide fluxes publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-19-13569-2019 – volume: 114 start-page: 5367 year: 2017 ident: erlad4b47bib36 article-title: Ambiguity in the causes for decadal trends in atmospheric methane and hydroxyl publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1616020114 – volume: 23 start-page: 789 year: 2023 ident: erlad4b47bib43 article-title: Reconciling the bottom-up and top-down estimates of the methane chemical sink using multiple observations publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-23-789-2023 |
SSID | ssj0054578 |
Score | 2.4109502 |
Snippet | The hydroxyl radical (OH) lies at the nexus of climate and air quality as the primary oxidant for both reactive greenhouse gases and many hazardous air... |
SourceID | doaj proquest crossref iop |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 64032 |
SubjectTerms | Air pollution Air quality chemistry-climate interaction Climate models Climate variability Greenhouse gases hydroxyl radical Hydroxyl radicals Initial conditions machine learning Meteorological parameters methane Neural networks Oxidants Oxidizing agents Satellite observation satellite observations Trends |
SummonAdditionalLinks | – databaseName: IOP Science Platform dbid: IOP link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbJ9pJLmrZZmnRbdGgOPXjXtmRZJqekZFkKaXJIIIeCkEYyhC72kjiF9td3ZMkbNi2hFHwQ9sh6jB6fpJlPhHyUGbOptCwx0lYJB2BJJUqX1Ea71PHKyN5R-PyrWFzzLzfFzRY5XvvCtKs49E8xGIiCQxVGgzg5QwyNfRRhhyfANbzcJi-YxInTe-9dXA7DMCKDUsZzyb_F2piHerp-nF0wyT_G5H6imb8k34YsBvuS79OHzkzh1xP2xv8swx7ZjQCUngTRV2TLNa_J-OzR3w0_xg5__4acYzOiwZOStjW9DfuHSwrLW4S6jv7ApXZg-v5J24ZeLGjXG9nSaP9F_XYS1Y3FQMb3yfX87OrzIok3MCSAy7YucVnGNAIuSDGrGZjCenwkahwlUxCQpYxLMM6WWpvCIfizzBWAa1tg-MiUjcmoaRv3llDt76AQlbEIYbDEUue6toXlpaudg6o-ILNBHwoiPbm_JWOp-mNyKZWvM-XrTIU6OyCf1jFWgZrjGdlTr-K1nCfV7l-gclRUjhJQgakw1zZnXNcIzbSwwDMtwGU1YBaPUJ8qdvL7ZxKjG3LuDgtRKaH8qSnL1criryZDK3uUY54rJ0fIVxz-Y0rvyE6OICuYrk3IqLt7cO8RJHXmQ98ZfgO9Eglg priority: 102 providerName: IOP Publishing – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA-6vfgifuLHlDzogw9lbdNm6ZOoTIawKeJgbyG5pDIY7dym4H_vpc02RRj0oTTXNrnL3f3ydUfIlYiYCYVhgRYmCxIAFmS8Y4NcKxvaJNOiOijcH_DeMHkapSM_4Tb32yqXNrEy1KYEN0feZi6QSIz-ML2dfgQua5RbXfUpNLZJE02wEA3SvO8OXl6XthjhQUf4xUlUpzbCb1RvRCwudq52KVV-OaMqZj-6mHE5_WeYK2_zuEd2PUykd7Vc98mWLQ7IcXd9Kg0LvVrOD0kfhU3r8460zOm4nuWbUJiMEZBa-oUD4joe9zctC_rco4tqKyz1u7Som_ShqjB4EyVHZPjYfXvoBT5PQgA4uFoENoqYQlgEIbYsAp0ah2J4jrYsBA5RyBIB2pqOUjq1CNEMsyngCBQYXiJkx6RRlIU9IVS5TBE80waBBjJIqFjlJjVJx-bWQpafkvaSYRJ8EHGXy2Iiq8VsIaRjsXQsljWLT8nN6o1pHUBjA-29k8GKzoW-rh6Us3fpNUlyyEBnWGsTs0TlCKAUN5BEioONcsAqXqMEpVfF-Yaf0T90doaNyCSXbm2TxXJq8FOtZTdY06074tnm4nOyEyMCqveVtUhjMfu0F4hgFvrSd9MfNy_tMA priority: 102 providerName: ProQuest |
Title | The impact of internal climate variability on OH trends between 2005 and 2014 |
URI | https://iopscience.iop.org/article/10.1088/1748-9326/ad4b47 https://www.proquest.com/docview/3059927105 https://doaj.org/article/6c9cb9803d234af584a6dc41a6ce1fcf |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA9-XLyInzidIwc9eChrmzZLj042p6AbougtJC8JDEY3dAr-9740nR8I8yKUUtrXNnl5H798vUfIiUiYiYVhkRamiDIAFhW8YyOnlY1tVmhRbRS-ueWDh-z6KX_6lurLrwkL4YED49ocCtCFiJlJWaYc-kvFDWSJ4mATB85bX_R5i85UsMEICzqinpRENWoj7Ea1RqTiY-Zqn0rlmxOqYvWjaxlPZ78McuVl-ltks4aH9DwUa5us2HKH7Pe-dqPhw1odX3bJDTYyDfsc6dTRcRjdm1CYjBGIWvqGHeEQh_udTks6HNB5tQSW1quzqB_soao0eJFke-Sh37u_GER1foQIsFM1j2ySMIVwCGKsWQI6Nx69cIc2LAYOScwyAdqajlI6twjNDLM5YM8TGB7I0n2yVk5Le0Co8hkieKENAgxkkFCpciY3Wcc6a6FwDdJeMExCHTzc57CYyGoSWwjpWSw9i2VgcYOcfb4xC4EzltB2fRt80vmQ19UNFARZC4L8SxAa5BRbUNYq-LLkZ_QHnX3GShSSSz-nyVI5M_ip5kIMvuiYj2STIiDLD_-juEdkI0V8FFadNcna_PnVHiO-mesWWRX9yxZZ7_ZuR3etSrDxfDUc4XnIHj8AMRT6Bw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYoHNoL6guVlrY-wIFDtEnseJ1DVdGW7VJYuIDEzbXHTrXSKll2tyD-VH8jM3mwRUh7Q8ohip3YGc_j82NmGNvVifCx9iJy2ueRBBBRrvohKpwNcZC507Wj8OhUDS_kr8vsco3963xh6FhlpxNrRe0roDXynqBAIinaw-zr9CqirFG0u9ql0GjY4jjc3uCUbf7l6AeO716aDg7Pvw-jNqtABDgVWUQhSYRFEAExIpcEXObJ5qsCJT8GBUkspAYXfN9alwUENF6EDHC-BgIvHQv87jO2IQVacvJMH_zsND-Ckb5ut0JReHsI9lGZYCsUqddRApf_TF-dIQAN2riaPjIDtW0bvGSbLSjlBw0XvWJroXzNtg6XPnBY2CqB-Rs2QtbijXclrwo-btYUJxwmY4S_gV_j9LuJ_n3Lq5KfDfmiPnjL2zNhnJaYuC093iTyLbt4EvptsfWyKsM7xi3lpVC58whrkEDaprbwmZf9UIQAebHNeh3BDLQhyylzxsTUW-daGyKxIRKbhsTbbP_-jWkTrmNF3W80Bvf1KNB2_aCa_TGt3BoFObgce-1TIW2BcM0qDzKxCkJSAHZxD0fQtII_X9EYf1AvzPAncqMM7aSK1Ew9fmqnY4NlvSXbv19d_Jk9H56PTszJ0enxB_YiRezVnGjbYeuL2d_wEbHTwn2qGZaz308tIXfj6ydl |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RKlW99I3YQlsfyqGH7CZxHs6BQ1tYLaU8DkXi5tpjR0JdZVdsKKJ_ir_CT2IcexfRVqgXDpVysBLHHtszns_2zBjgvUi4iYXhkRamijJEHlVFaaNaKxvbrNKicxTe2y9GR9mX4_x4CS4XvjCTaZj6-5T0gYJ9FwaDODEgDE0ySrDDBcDVWTmYmjpYVe7ai3Nas802d7ZogDfSdLj97fMoCtcKREhrkTayScIVoQiMqYwEdW6c0i9qEv0YC0xingnU1pRK6dwSojHc5kgLNuT0iJhTuQ_gYc5JVzuPwYPD-dRPaKQU4Sz0b5Te0n3dFQGk0aiZf-iBTrkNn8LVvFu8TcuP_lmr-_jrt4iR_1G_PYMnAWizj56857Bkmxewsn3j10cfw8Q2ewl7JC7Me4yySc1O_D7pmOH4hCC9ZT8VCWpnR3zBJg07GLG2MyZmwc6NuW0zphpDiSR7BUf30rQVWG4mjV0FptxdG0WlDUE16mWhUlWb3GSlra3Fqu7BYM4DEkMYdncbyFh25gBCSDdO0o2T9OPUgw-LP6Y-BMkdeT85tlrkc8HDuxfEEDIwhCywQl0R1SblmaoJgqrCYJaoAm1SI5G4QTwkw2Q2u6MydiufPaVGVLKQ7nSYp5L4qwfrc86-ycddTKCUoG3--h9regePDreG8uvO_u4aPE4JV3prvXVYbk_P7BvCha1-28kig-_3zcTXuHdm9Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+impact+of+internal+climate+variability+on+OH+trends+between+2005+and+2014&rft.jtitle=Environmental+research+letters&rft.au=Zhu%2C+Qindan&rft.au=Fiore%2C+Arlene+M&rft.au=Correa%2C+Gus&rft.au=Lamarque%2C+Jean-Francois&rft.date=2024-06-01&rft.issn=1748-9326&rft.eissn=1748-9326&rft.volume=19&rft.issue=6&rft.spage=64032&rft_id=info:doi/10.1088%2F1748-9326%2Fad4b47&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1748_9326_ad4b47 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-9326&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-9326&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-9326&client=summon |