The impact of internal climate variability on OH trends between 2005 and 2014

The hydroxyl radical (OH) lies at the nexus of climate and air quality as the primary oxidant for both reactive greenhouse gases and many hazardous air pollutants. To better understand the role of climate variability on spatiotemporal patterns of OH, we utilize a 13-member ensemble of the Community...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental research letters Vol. 19; no. 6; pp. 64032 - 64041
Main Authors Zhu, Qindan, Fiore, Arlene M, Correa, Gus, Lamarque, Jean-Francois, Worden, Helen
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The hydroxyl radical (OH) lies at the nexus of climate and air quality as the primary oxidant for both reactive greenhouse gases and many hazardous air pollutants. To better understand the role of climate variability on spatiotemporal patterns of OH, we utilize a 13-member ensemble of the Community Earth System Model version 2-Whole Atmosphere Community Climate Model version 6 (CESM2-WACCM6), a fully coupled chemistry-climate model, spanning the years 1950–2014. Ensemble members vary only in their initial conditions of the climate state in 1950. We focus on the final decade of the simulation, 2005–2014, when prior studies disagree on the signs of the global OH trends. The ensemble mean global airmass-weighted mean tropospheric column OH ( Ω TOH ), which is an estimate of the forced signal, increases by 0.06%/year between 2005 and 2014 while regional Ω TOH trends range from −0.56%/year over Southern Europe to +0.64%/year over South America. We show that ten-year Ω TOH trends are strongly affected by internal climate variability, as the spread of Ω TOH trends across the ensemble varies between 0.23%/year in Asia and 1.53%/year in South America. We train a fully connected neural network to emulate the Ω TOH simulated by the CESM2-WACCM6 model and combine it with satellite observations to interpret the role of OH chemical proxies. While the OH chemical proxies are subject to internal variability, the impact of internal variability on Ω TOH trends is primarily due to the meteorological parameters except for South America. Forced trends in global mean Ω TOH do not unambiguously emerge from trends driven by internal variability over the 2005–2014 period. The observation-constrained Ω TOH presents opposite trends due to climate variability, resulting in varying conclusions on the attribution of OH to CH 4 trends.
AbstractList The hydroxyl radical (OH) lies at the nexus of climate and air quality as the primary oxidant for both reactive greenhouse gases and many hazardous air pollutants. To better understand the role of climate variability on spatiotemporal patterns of OH, we utilize a 13-member ensemble of the Community Earth System Model version 2-Whole Atmosphere Community Climate Model version 6 (CESM2-WACCM6), a fully coupled chemistry-climate model, spanning the years 1950–2014. Ensemble members vary only in their initial conditions of the climate state in 1950. We focus on the final decade of the simulation, 2005–2014, when prior studies disagree on the signs of the global OH trends. The ensemble mean global airmass-weighted mean tropospheric column OH ( Ω TOH ), which is an estimate of the forced signal, increases by 0.06%/year between 2005 and 2014 while regional Ω TOH trends range from −0.56%/year over Southern Europe to +0.64%/year over South America. We show that ten-year Ω TOH trends are strongly affected by internal climate variability, as the spread of Ω TOH trends across the ensemble varies between 0.23%/year in Asia and 1.53%/year in South America. We train a fully connected neural network to emulate the Ω TOH simulated by the CESM2-WACCM6 model and combine it with satellite observations to interpret the role of OH chemical proxies. While the OH chemical proxies are subject to internal variability, the impact of internal variability on Ω TOH trends is primarily due to the meteorological parameters except for South America. Forced trends in global mean Ω TOH do not unambiguously emerge from trends driven by internal variability over the 2005–2014 period. The observation-constrained Ω TOH presents opposite trends due to climate variability, resulting in varying conclusions on the attribution of OH to CH 4 trends.
The hydroxyl radical (OH) lies at the nexus of climate and air quality as the primary oxidant for both reactive greenhouse gases and many hazardous air pollutants. To better understand the role of climate variability on spatiotemporal patterns of OH, we utilize a 13-member ensemble of the Community Earth System Model version 2-Whole Atmosphere Community Climate Model version 6 (CESM2-WACCM6), a fully coupled chemistry-climate model, spanning the years 1950–2014. Ensemble members vary only in their initial conditions of the climate state in 1950. We focus on the final decade of the simulation, 2005–2014, when prior studies disagree on the signs of the global OH trends. The ensemble mean global airmass-weighted mean tropospheric column OH ( $\Omega_{\mathrm{TOH}}$ ), which is an estimate of the forced signal, increases by 0.06%/year between 2005 and 2014 while regional $\Omega_{\mathrm{TOH}}$ trends range from −0.56%/year over Southern Europe to +0.64%/year over South America. We show that ten-year $\Omega_{\mathrm{TOH}}$ trends are strongly affected by internal climate variability, as the spread of $\Omega_{\mathrm{TOH}}$ trends across the ensemble varies between 0.23%/year in Asia and 1.53%/year in South America. We train a fully connected neural network to emulate the $\Omega_{\mathrm{TOH}}$ simulated by the CESM2-WACCM6 model and combine it with satellite observations to interpret the role of OH chemical proxies. While the OH chemical proxies are subject to internal variability, the impact of internal variability on $\Omega_{\mathrm{TOH}}$ trends is primarily due to the meteorological parameters except for South America. Forced trends in global mean $\Omega_{\mathrm{TOH}}$ do not unambiguously emerge from trends driven by internal variability over the 2005–2014 period. The observation-constrained $\Omega_{\mathrm{TOH}}$ presents opposite trends due to climate variability, resulting in varying conclusions on the attribution of OH to CH _4 trends.
The hydroxyl radical (OH) lies at the nexus of climate and air quality as the primary oxidant for both reactive greenhouse gases and many hazardous air pollutants. To better understand the role of climate variability on spatiotemporal patterns of OH, we utilize a 13-member ensemble of the Community Earth System Model version 2-Whole Atmosphere Community Climate Model version 6 (CESM2-WACCM6), a fully coupled chemistry-climate model, spanning the years 1950–2014. Ensemble members vary only in their initial conditions of the climate state in 1950. We focus on the final decade of the simulation, 2005–2014, when prior studies disagree on the signs of the global OH trends. The ensemble mean global airmass-weighted mean tropospheric column OH (ΩTOH), which is an estimate of the forced signal, increases by 0.06%/year between 2005 and 2014 while regional ΩTOH trends range from −0.56%/year over Southern Europe to +0.64%/year over South America. We show that ten-year ΩTOH trends are strongly affected by internal climate variability, as the spread of ΩTOH trends across the ensemble varies between 0.23%/year in Asia and 1.53%/year in South America. We train a fully connected neural network to emulate the ΩTOH simulated by the CESM2-WACCM6 model and combine it with satellite observations to interpret the role of OH chemical proxies. While the OH chemical proxies are subject to internal variability, the impact of internal variability on ΩTOH trends is primarily due to the meteorological parameters except for South America. Forced trends in global mean ΩTOH do not unambiguously emerge from trends driven by internal variability over the 2005–2014 period. The observation-constrained ΩTOH presents opposite trends due to climate variability, resulting in varying conclusions on the attribution of OH to CH4 trends.
Author Correa, Gus
Lamarque, Jean-Francois
Fiore, Arlene M
Worden, Helen
Zhu, Qindan
Author_xml – sequence: 1
  givenname: Qindan
  surname: Zhu
  fullname: Zhu, Qindan
  organization: Massachusetts Institute of Technology Department of Earth, Atmospheric and Planetary Sciences, Cambridge, MA, United States of America
– sequence: 2
  givenname: Arlene M
  orcidid: 0000-0003-0221-2122
  surname: Fiore
  fullname: Fiore, Arlene M
  organization: Massachusetts Institute of Technology Department of Earth, Atmospheric and Planetary Sciences, Cambridge, MA, United States of America
– sequence: 3
  givenname: Gus
  surname: Correa
  fullname: Correa, Gus
  organization: Columbia Climate School Lamont-Doherty Earth Observatory (LDEO), Palisades, NY, United States of America
– sequence: 4
  givenname: Jean-Francois
  surname: Lamarque
  fullname: Lamarque, Jean-Francois
  organization: The National Center for Atmospheric Research , Boulder, CO, United States of America
– sequence: 5
  givenname: Helen
  surname: Worden
  fullname: Worden, Helen
  organization: National Center for Atmospheric Research Atmospheric Chemistry Observations & Modeling Laboratory, Boulder, CO, United States of America
BookMark eNp9kc1LHjEQxkOx4Ee9ewx46KVvTTYfmz2KtFWweNFzmE1mNS9rsmZji_99s91-SKlCIMMwv2centknOzFFJOSIs4-cGXPCW2k2nWj0CXjZy_YN2fvT2nlW75L9ed4ypqRqzR75en2HNNxP4ApNAw2xYI4wUjeGeyhIv0EO0IcxlCeaIr06pyVj9DPtsXxHjLSpUhSirwWX78jbAcYZD3_9B-Tm86frs_PN5dWXi7PTy42T0pQNci5ANsKxaoi7XnnNGNeDEoY57TgT0rgefQvQK1SSeYHKqQqI-gwTB-Ri1fUJtnbK1Wt-sgmC_dlI-dZCLsGNaLXrXN9VxjdCwqCMBO2d5KAd8sENVet41ZpyenjEudhtelwymK1gquualjNVp_Q65XKa54yDdaFACSmWDGG0nNnlDHbJ2S452_UMFWT_gL_tvoK8X5GQpr9mMNctndWWaVlzs5NfvH_4z-SLwj8AWmKkiw
CODEN ERLNAL
CitedBy_id crossref_primary_10_5194_acp_24_13001_2024
crossref_primary_10_1073_pnas_2402730121
Cites_doi 10.5194/amt-15-2325-2022
10.1029/91JD02755
10.1029/2008GL036037
10.5194/gmd-10-3329-2017
10.1029/2019MS001882
10.3390/rs14092191
10.5194/acp-16-2597-2016
10.1146/annurev-earth-032320-090307
10.1175/JCLI-D-20-0123.1
10.1073/pnas.1616426114
10.1029/2002JD002272
10.5194/amt-11-6651-2018
10.1029/2020JD033862
10.5194/acp-21-6481-2021
10.5194/acp-20-1341-2020
10.1007/s00382-010-0977-x
10.1021/acs.est.1c05636
10.1038/s41558-020-0731-2
10.5194/acp-20-12905-2020
10.1073/pnas.2117399119
10.1029/2019MS001916
10.5194/gmd-15-6341-2022
10.5194/acp-23-4955-2023
10.5194/acp-16-12477-2016
10.5194/acp-13-837-2013
10.5194/acp-15-12519-2015
10.1126/science.173.3992.141
10.5194/amt-4-1905-2011
10.1016/j.atmosenv.2015.03.055
10.1029/2018JD028388
10.5194/acp-19-407-2019
10.1088/2752-5295/ac9cc2
10.5194/acp-23-6319-2023
10.5194/acp-24-1415-2024
10.1073/pnas.1807532115
10.1029/2019JD030943
10.1126/science.1058673
10.1073/pnas.2115204118
10.1002/2016JD026239
10.5194/acp-19-13569-2019
10.1073/pnas.1616020114
10.5194/acp-23-789-2023
ContentType Journal Article
Copyright 2024 The Author(s). Published by IOP Publishing Ltd
2024 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). Published by IOP Publishing Ltd
– notice: 2024 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
M7S
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
DOA
DOI 10.1088/1748-9326/ad4b47
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection (ProQuest)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection (ProQuest)
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 1748-9326
ExternalDocumentID oai_doaj_org_article_6c9cb9803d234af584a6dc41a6ce1fcf
10_1088_1748_9326_ad4b47
erlad4b47
GeographicLocations South America
GeographicLocations_xml – name: South America
GrantInformation_xml – fundername: National Aeronautics and Space Administration
  grantid: 80NSSC23K0925
  funderid: http://dx.doi.org/10.13039/100000104
GroupedDBID 1JI
29G
2WC
5B3
5GY
5PX
5VS
7.Q
AAFWJ
AAHBH
AAJKP
ABHWH
ABJCF
ACAFW
ACGFO
ACHIP
ADBBV
AEFHF
AEJGL
AENEX
AFKRA
AFPKN
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATCPS
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
BHPHI
CBCFC
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
KNG
KQ8
LAP
M7S
M~E
N5L
N9A
O3W
OK1
P2P
PATMY
PIMPY
PJBAE
PTHSS
PYCSY
RIN
RNS
RO9
SY9
T37
TR2
TSCCA
W28
~02
AAYXX
AEUYN
CITATION
OVT
PHGZM
PHGZT
8FE
8FG
ABUWG
AEINN
AZQEC
DWQXO
GNUQQ
L6V
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c448t-e113a423c03261cb5d60016f5380c6c10348cbed7aab5e540d3e5c523c33c3803
IEDL.DBID DOA
ISSN 1748-9326
IngestDate Wed Aug 27 01:30:24 EDT 2025
Wed Aug 13 11:29:56 EDT 2025
Tue Jul 01 04:05:45 EDT 2025
Thu Apr 24 22:53:06 EDT 2025
Sun Aug 18 17:00:26 EDT 2024
Tue Aug 20 22:17:06 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c448t-e113a423c03261cb5d60016f5380c6c10348cbed7aab5e540d3e5c523c33c3803
Notes ERL-117482.R2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0221-2122
OpenAccessLink https://doaj.org/article/6c9cb9803d234af584a6dc41a6ce1fcf
PQID 3059927105
PQPubID 4998671
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_6c9cb9803d234af584a6dc41a6ce1fcf
proquest_journals_3059927105
crossref_primary_10_1088_1748_9326_ad4b47
iop_journals_10_1088_1748_9326_ad4b47
crossref_citationtrail_10_1088_1748_9326_ad4b47
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Environmental research letters
PublicationTitleAbbrev ERL
PublicationTitleAlternate Environ. Res. Lett
PublicationYear 2024
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Gettelman (erlad4b47bib16) 2019; 124
Prinn (erlad4b47bib30) 1992; 97
Levy (erlad4b47bib21) 1971; 173
Anderson (erlad4b47bib3) 2023; 23
Deser (erlad4b47bib11) 2020a; 10
Murray (erlad4b47bib24) 2021; 118
Stevenson (erlad4b47bib34) 2020; 20
Boersma (erlad4b47bib5) 2018; 11
Deeter (erlad4b47bib9) 2022; 15
Masson-Delmotte (erlad4b47bib22) 2021
Zhao (erlad4b47bib43) 2023; 23
Worden (erlad4b47bib42) 2019; 19
Boersma (erlad4b47bib4) 2011; 4
Naus (erlad4b47bib25) 2019; 19
Rigby (erlad4b47bib33) 2017; 114
Zhu (erlad4b47bib45) 2022b; 56
Patra (erlad4b47bib29) 2021; 126
Nicely (erlad4b47bib27) 2018; 123
Anderson (erlad4b47bib2) 2022; 15
Fiore (erlad4b47bib15) 2024; 52
Turner (erlad4b47bib37) 2018; 115
Van Marle (erlad4b47bib38) 2017; 10
Worden (erlad4b47bib41) 2013; 13
Deser (erlad4b47bib12) 2020b; 33
Danabasoglu (erlad4b47bib7) 2020; 12
Kingma (erlad4b47bib17) 2014
Deser (erlad4b47bib10) 2012; 38
Zhu (erlad4b47bib44) 2022a; 119
Prinn (erlad4b47bib31) 2001; 292
Lelieveld (erlad4b47bib20) 2016; 16
Thompson (erlad4b47bib35) 2024; 24
Rigby (erlad4b47bib32) 2008; 35
Wang (erlad4b47bib39) 2022; 14
Emmons (erlad4b47bib13) 2020; 12
Nicely (erlad4b47bib26) 2017; 122
Turner (erlad4b47bib36) 2017; 114
McNorton (erlad4b47bib23) 2015
Lamsal (erlad4b47bib18) 2015; 110
Fiore (erlad4b47bib14) 2022; 1
Anderson (erlad4b47bib1) 2021; 21
Lelieveld (erlad4b47bib19) 2002; 107
Wolfe (erlad4b47bib40) 2016; 16
Chua (erlad4b47bib6) 2023; 23
De Smedt (erlad4b47bib8) 2015; 15
Nicely (erlad4b47bib28) 2020; 20
References_xml – volume: 15
  start-page: 2325
  year: 2022
  ident: erlad4b47bib9
  article-title: The MOPITT version 9 CO product: sampling enhancements and validation
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-15-2325-2022
– volume: 97
  start-page: 2445
  year: 1992
  ident: erlad4b47bib30
  article-title: Global average concentration and trend for hydroxyl radicals deduced from ALE/GAGE trichloroethane (methyl chloroform) data for 1978–1990
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/91JD02755
– volume: 35
  year: 2008
  ident: erlad4b47bib32
  article-title: Renewed growth of atmospheric methane
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2008GL036037
– volume: 10
  start-page: 3329
  year: 2017
  ident: erlad4b47bib38
  article-title: Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015)
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-10-3329-2017
– volume: 12
  year: 2020
  ident: erlad4b47bib13
  article-title: The chemistry mechanism in the community earth system model version 2 (CESM2)
  publication-title: J. Adv. Model. Earth Syst.
  doi: 10.1029/2019MS001882
– volume: 14
  start-page: 2191
  year: 2022
  ident: erlad4b47bib39
  article-title: Ambient formaldehyde over the United States from ground-based (AQS) and satellite (OMI) observations
  publication-title: Remote Sens.
  doi: 10.3390/rs14092191
– volume: 16
  start-page: 2597
  year: 2016
  ident: erlad4b47bib40
  article-title: Formaldehyde production from isoprene oxidation across NO x regimes
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-16-2597-2016
– volume: 52
  year: 2024
  ident: erlad4b47bib15
  article-title: Climate and tropospheric oxidizing capacity
  publication-title: Annu. Rev. Earth Planet. Sci.
  doi: 10.1146/annurev-earth-032320-090307
– year: 2014
  ident: erlad4b47bib17
  article-title: Adam: a method for stochastic optimization
– volume: 33
  start-page: 7835
  year: 2020b
  ident: erlad4b47bib12
  article-title: Isolating the evolving contributions of anthropogenic aerosols and greenhouse gases: a new CESM1 large ensemble community resource
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-20-0123.1
– volume: 114
  start-page: 5373
  year: 2017
  ident: erlad4b47bib33
  article-title: Role of atmospheric oxidation in recent methane growth
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.1616426114
– volume: 107
  start-page: ACH
  year: 2002
  ident: erlad4b47bib19
  article-title: Stability of tropospheric hydroxyl chemistry
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2002JD002272
– volume: 11
  start-page: 6651
  year: 2018
  ident: erlad4b47bib5
  article-title: Improving algorithms and uncertainty estimates for satellite NO2 retrievals: results from the quality assurance for the essential climate variables (QA4ECV) project
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-11-6651-2018
– volume: 126
  year: 2021
  ident: erlad4b47bib29
  article-title: Methyl chloroform continues to constrain the hydroxyl (OH) variability in the troposphere
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2020JD033862
– volume: 21
  start-page: 6481
  year: 2021
  ident: erlad4b47bib1
  article-title: Spatial and temporal variability in the hydroxyl (OH) radical: understanding the role of large-scale climate features and their influence on OH through its dynamical and photochemical drivers
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-21-6481-2021
– volume: 20
  start-page: 1341
  year: 2020
  ident: erlad4b47bib28
  article-title: A machine learning examination of hydroxyl radical differences among model simulations for CCMI-1
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-20-1341-2020
– volume: 38
  start-page: 527
  year: 2012
  ident: erlad4b47bib10
  article-title: Uncertainty in climate change projections: the role of internal variability
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-010-0977-x
– volume: 56
  start-page: 7362
  year: 2022b
  ident: erlad4b47bib45
  article-title: Combining machine learning and satellite observations to predict spatial and temporal variation of near surface OH in North American cities
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c05636
– volume: 10
  start-page: 277
  year: 2020a
  ident: erlad4b47bib11
  article-title: Insights from Earth system model initial-condition large ensembles and future prospects
  publication-title: Nat. Clim. Change
  doi: 10.1038/s41558-020-0731-2
– start-page: p 9402
  year: 2015
  ident: erlad4b47bib23
  article-title: Role of OH variability in the stalling of the global atmospheric CH4 growth rate from 2000 to 2006
– volume: 20
  start-page: 12905
  year: 2020
  ident: erlad4b47bib34
  article-title: Trends in global tropospheric hydroxyl radical and methane lifetime since 1850 from AerChemMIP
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-20-12905-2020
– volume: 119
  year: 2022a
  ident: erlad4b47bib44
  article-title: Estimate of OH trends over one decade in North American cities
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.2117399119
– volume: 12
  year: 2020
  ident: erlad4b47bib7
  article-title: The community earth system model version 2 (CESM2)
  publication-title: J. Adv. Model. Earth Syst.
  doi: 10.1029/2019MS001916
– volume: 15
  start-page: 6341
  year: 2022
  ident: erlad4b47bib2
  article-title: A machine learning methodology for the generation of a parameterization of the hydroxyl radical
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-15-6341-2022
– volume: 23
  start-page: 4955
  year: 2023
  ident: erlad4b47bib6
  article-title: Exploring the drivers of tropospheric hydroxyl radical trends in the GFDL AM4.1 atmospheric chemistry-climate model
  publication-title: Atmos. Chem. Phys. Discuss.
  doi: 10.5194/acp-23-4955-2023
– volume: 16
  start-page: 12477
  year: 2016
  ident: erlad4b47bib20
  article-title: Global tropospheric hydroxyl distribution, budget and reactivity
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-16-12477-2016
– volume: 13
  start-page: 837
  year: 2013
  ident: erlad4b47bib41
  article-title: Decadal record of satellite carbon monoxide observations
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-13-837-2013
– volume: 15
  start-page: 12519
  year: 2015
  ident: erlad4b47bib8
  article-title: Diurnal, seasonal and long-term variations of global formaldehyde columns inferred from combined OMI and GOME-2 observations
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-15-12519-2015
– volume: 173
  start-page: 141
  year: 1971
  ident: erlad4b47bib21
  article-title: Normal atmosphere: large radical and formaldehyde concentrations predicted
  publication-title: Science
  doi: 10.1126/science.173.3992.141
– volume: 4
  start-page: 1905
  year: 2011
  ident: erlad4b47bib4
  article-title: An improved tropospheric NO2 column retrieval algorithm for the Ozone Monitoring Instrument
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-4-1905-2011
– volume: 110
  start-page: 130
  year: 2015
  ident: erlad4b47bib18
  article-title: US NO2 trends (2005–2013): EPA Air Quality System (AQS) data versus improved observations from the Ozone Monitoring Instrument (OMI)
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2015.03.055
– volume: 123
  start-page: 10774
  year: 2018
  ident: erlad4b47bib27
  article-title: Changes in global tropospheric OH expected as a result of climate change over the last several decades
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2018JD028388
– volume: 19
  start-page: 407
  year: 2019
  ident: erlad4b47bib25
  article-title: Constraints and biases in a tropospheric two-box model of OH
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-19-407-2019
– volume: 1
  year: 2022
  ident: erlad4b47bib14
  article-title: Understanding recent tropospheric ozone trends in the context of large internal variability: a new perspective from chemistry-climate model ensembles
  publication-title: Environ. Res. Clim.
  doi: 10.1088/2752-5295/ac9cc2
– volume: 23
  start-page: 6319
  year: 2023
  ident: erlad4b47bib3
  article-title: Constraining the hydroxyl (OH) radical in the tropics with satellite observations of its drivers–first steps toward assessing the feasibility of a global observation strategy
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-23-6319-2023
– volume: 24
  start-page: 1
  year: 2024
  ident: erlad4b47bib35
  article-title: Estimation of the atmospheric hydroxyl radical oxidative capacity using multiple hydrofluorocarbons (HFCs)
  publication-title: EGUsphere
  doi: 10.5194/acp-24-1415-2024
– volume: 115
  start-page: 8931
  year: 2018
  ident: erlad4b47bib37
  article-title: Modulation of hydroxyl variability by ENSO in the absence of external forcing
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.1807532115
– volume: 124
  start-page: 12380
  year: 2019
  ident: erlad4b47bib16
  article-title: The whole atmosphere community climate model version 6 (WACCM6)
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2019JD030943
– year: 2021
  ident: erlad4b47bib22
  article-title: IPCC, 2021: Summary for policymakers
– volume: 292
  start-page: 1882
  year: 2001
  ident: erlad4b47bib31
  article-title: Evidence for substantial variations of atmospheric hydroxyl radicals in the past two decades
  publication-title: Science
  doi: 10.1126/science.1058673
– volume: 118
  year: 2021
  ident: erlad4b47bib24
  article-title: Large uncertainties in global hydroxyl projections tied to fate of reactive nitrogen and carbon
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.2115204118
– volume: 122
  start-page: 1983
  year: 2017
  ident: erlad4b47bib26
  article-title: Quantifying the causes of differences in tropospheric OH within global models
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/2016JD026239
– volume: 19
  start-page: 13569
  year: 2019
  ident: erlad4b47bib42
  article-title: New constraints on biogenic emissions using satellite-based estimates of carbon monoxide fluxes
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-19-13569-2019
– volume: 114
  start-page: 5367
  year: 2017
  ident: erlad4b47bib36
  article-title: Ambiguity in the causes for decadal trends in atmospheric methane and hydroxyl
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.1616020114
– volume: 23
  start-page: 789
  year: 2023
  ident: erlad4b47bib43
  article-title: Reconciling the bottom-up and top-down estimates of the methane chemical sink using multiple observations
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-23-789-2023
SSID ssj0054578
Score 2.4109502
Snippet The hydroxyl radical (OH) lies at the nexus of climate and air quality as the primary oxidant for both reactive greenhouse gases and many hazardous air...
SourceID doaj
proquest
crossref
iop
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 64032
SubjectTerms Air pollution
Air quality
chemistry-climate interaction
Climate models
Climate variability
Greenhouse gases
hydroxyl radical
Hydroxyl radicals
Initial conditions
machine learning
Meteorological parameters
methane
Neural networks
Oxidants
Oxidizing agents
Satellite observation
satellite observations
Trends
SummonAdditionalLinks – databaseName: IOP Science Platform
  dbid: IOP
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbJ9pJLmrZZmnRbdGgOPXjXtmRZJqekZFkKaXJIIIeCkEYyhC72kjiF9td3ZMkbNi2hFHwQ9sh6jB6fpJlPhHyUGbOptCwx0lYJB2BJJUqX1Ea71PHKyN5R-PyrWFzzLzfFzRY5XvvCtKs49E8xGIiCQxVGgzg5QwyNfRRhhyfANbzcJi-YxInTe-9dXA7DMCKDUsZzyb_F2piHerp-nF0wyT_G5H6imb8k34YsBvuS79OHzkzh1xP2xv8swx7ZjQCUngTRV2TLNa_J-OzR3w0_xg5__4acYzOiwZOStjW9DfuHSwrLW4S6jv7ApXZg-v5J24ZeLGjXG9nSaP9F_XYS1Y3FQMb3yfX87OrzIok3MCSAy7YucVnGNAIuSDGrGZjCenwkahwlUxCQpYxLMM6WWpvCIfizzBWAa1tg-MiUjcmoaRv3llDt76AQlbEIYbDEUue6toXlpaudg6o-ILNBHwoiPbm_JWOp-mNyKZWvM-XrTIU6OyCf1jFWgZrjGdlTr-K1nCfV7l-gclRUjhJQgakw1zZnXNcIzbSwwDMtwGU1YBaPUJ8qdvL7ZxKjG3LuDgtRKaH8qSnL1criryZDK3uUY54rJ0fIVxz-Y0rvyE6OICuYrk3IqLt7cO8RJHXmQ98ZfgO9Eglg
  priority: 102
  providerName: IOP Publishing
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA-6vfgifuLHlDzogw9lbdNm6ZOoTIawKeJgbyG5pDIY7dym4H_vpc02RRj0oTTXNrnL3f3ydUfIlYiYCYVhgRYmCxIAFmS8Y4NcKxvaJNOiOijcH_DeMHkapSM_4Tb32yqXNrEy1KYEN0feZi6QSIz-ML2dfgQua5RbXfUpNLZJE02wEA3SvO8OXl6XthjhQUf4xUlUpzbCb1RvRCwudq52KVV-OaMqZj-6mHE5_WeYK2_zuEd2PUykd7Vc98mWLQ7IcXd9Kg0LvVrOD0kfhU3r8460zOm4nuWbUJiMEZBa-oUD4joe9zctC_rco4tqKyz1u7Som_ShqjB4EyVHZPjYfXvoBT5PQgA4uFoENoqYQlgEIbYsAp0ah2J4jrYsBA5RyBIB2pqOUjq1CNEMsyngCBQYXiJkx6RRlIU9IVS5TBE80waBBjJIqFjlJjVJx-bWQpafkvaSYRJ8EHGXy2Iiq8VsIaRjsXQsljWLT8nN6o1pHUBjA-29k8GKzoW-rh6Us3fpNUlyyEBnWGsTs0TlCKAUN5BEioONcsAqXqMEpVfF-Yaf0T90doaNyCSXbm2TxXJq8FOtZTdY06074tnm4nOyEyMCqveVtUhjMfu0F4hgFvrSd9MfNy_tMA
  priority: 102
  providerName: ProQuest
Title The impact of internal climate variability on OH trends between 2005 and 2014
URI https://iopscience.iop.org/article/10.1088/1748-9326/ad4b47
https://www.proquest.com/docview/3059927105
https://doaj.org/article/6c9cb9803d234af584a6dc41a6ce1fcf
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA9-XLyInzidIwc9eChrmzZLj042p6AbougtJC8JDEY3dAr-9740nR8I8yKUUtrXNnl5H798vUfIiUiYiYVhkRamiDIAFhW8YyOnlY1tVmhRbRS-ueWDh-z6KX_6lurLrwkL4YED49ocCtCFiJlJWaYc-kvFDWSJ4mATB85bX_R5i85UsMEICzqinpRENWoj7Ea1RqTiY-Zqn0rlmxOqYvWjaxlPZ78McuVl-ltks4aH9DwUa5us2HKH7Pe-dqPhw1odX3bJDTYyDfsc6dTRcRjdm1CYjBGIWvqGHeEQh_udTks6HNB5tQSW1quzqB_soao0eJFke-Sh37u_GER1foQIsFM1j2ySMIVwCGKsWQI6Nx69cIc2LAYOScwyAdqajlI6twjNDLM5YM8TGB7I0n2yVk5Le0Co8hkieKENAgxkkFCpciY3Wcc6a6FwDdJeMExCHTzc57CYyGoSWwjpWSw9i2VgcYOcfb4xC4EzltB2fRt80vmQ19UNFARZC4L8SxAa5BRbUNYq-LLkZ_QHnX3GShSSSz-nyVI5M_ip5kIMvuiYj2STIiDLD_-juEdkI0V8FFadNcna_PnVHiO-mesWWRX9yxZZ7_ZuR3etSrDxfDUc4XnIHj8AMRT6Bw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYoHNoL6guVlrY-wIFDtEnseJ1DVdGW7VJYuIDEzbXHTrXSKll2tyD-VH8jM3mwRUh7Q8ohip3YGc_j82NmGNvVifCx9iJy2ueRBBBRrvohKpwNcZC507Wj8OhUDS_kr8vsco3963xh6FhlpxNrRe0roDXynqBAIinaw-zr9CqirFG0u9ql0GjY4jjc3uCUbf7l6AeO716aDg7Pvw-jNqtABDgVWUQhSYRFEAExIpcEXObJ5qsCJT8GBUkspAYXfN9alwUENF6EDHC-BgIvHQv87jO2IQVacvJMH_zsND-Ckb5ut0JReHsI9lGZYCsUqddRApf_TF-dIQAN2riaPjIDtW0bvGSbLSjlBw0XvWJroXzNtg6XPnBY2CqB-Rs2QtbijXclrwo-btYUJxwmY4S_gV_j9LuJ_n3Lq5KfDfmiPnjL2zNhnJaYuC093iTyLbt4EvptsfWyKsM7xi3lpVC58whrkEDaprbwmZf9UIQAebHNeh3BDLQhyylzxsTUW-daGyKxIRKbhsTbbP_-jWkTrmNF3W80Bvf1KNB2_aCa_TGt3BoFObgce-1TIW2BcM0qDzKxCkJSAHZxD0fQtII_X9EYf1AvzPAncqMM7aSK1Ew9fmqnY4NlvSXbv19d_Jk9H56PTszJ0enxB_YiRezVnGjbYeuL2d_wEbHTwn2qGZaz308tIXfj6ydl
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RKlW99I3YQlsfyqGH7CZxHs6BQ1tYLaU8DkXi5tpjR0JdZVdsKKJ_ir_CT2IcexfRVqgXDpVysBLHHtszns_2zBjgvUi4iYXhkRamijJEHlVFaaNaKxvbrNKicxTe2y9GR9mX4_x4CS4XvjCTaZj6-5T0gYJ9FwaDODEgDE0ySrDDBcDVWTmYmjpYVe7ai3Nas802d7ZogDfSdLj97fMoCtcKREhrkTayScIVoQiMqYwEdW6c0i9qEv0YC0xingnU1pRK6dwSojHc5kgLNuT0iJhTuQ_gYc5JVzuPwYPD-dRPaKQU4Sz0b5Te0n3dFQGk0aiZf-iBTrkNn8LVvFu8TcuP_lmr-_jrt4iR_1G_PYMnAWizj56857Bkmxewsn3j10cfw8Q2ewl7JC7Me4yySc1O_D7pmOH4hCC9ZT8VCWpnR3zBJg07GLG2MyZmwc6NuW0zphpDiSR7BUf30rQVWG4mjV0FptxdG0WlDUE16mWhUlWb3GSlra3Fqu7BYM4DEkMYdncbyFh25gBCSDdO0o2T9OPUgw-LP6Y-BMkdeT85tlrkc8HDuxfEEDIwhCywQl0R1SblmaoJgqrCYJaoAm1SI5G4QTwkw2Q2u6MydiufPaVGVLKQ7nSYp5L4qwfrc86-ycddTKCUoG3--h9regePDreG8uvO_u4aPE4JV3prvXVYbk_P7BvCha1-28kig-_3zcTXuHdm9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+impact+of+internal+climate+variability+on+OH+trends+between+2005+and+2014&rft.jtitle=Environmental+research+letters&rft.au=Zhu%2C+Qindan&rft.au=Fiore%2C+Arlene+M&rft.au=Correa%2C+Gus&rft.au=Lamarque%2C+Jean-Francois&rft.date=2024-06-01&rft.issn=1748-9326&rft.eissn=1748-9326&rft.volume=19&rft.issue=6&rft.spage=64032&rft_id=info:doi/10.1088%2F1748-9326%2Fad4b47&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1748_9326_ad4b47
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-9326&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-9326&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-9326&client=summon