A global anthropogenic emission inventory of atmospheric pollutants from sector- and fuel-specific sources (1970–2017): an application of the Community Emissions Data System (CEDS)
Global anthropogenic emission inventories remain vital for understanding the sources of atmospheric pollution and the associated impacts on the environment, human health, and society. Rapid changes in today's society require that these inventories provide contemporary estimates of multiple atmo...
Saved in:
Published in | Earth system science data Vol. 12; no. 4; pp. 3413 - 3442 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Katlenburg-Lindau
Copernicus GmbH
15.12.2020
Copernicus Publications |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Global anthropogenic emission inventories remain vital
for understanding the sources of atmospheric pollution and the associated impacts on the environment, human health, and society.
Rapid changes in today's society require that these inventories provide
contemporary estimates of multiple atmospheric pollutants with both source
sector and fuel type information to understand and effectively mitigate
future impacts. To fill this need, we have updated the open-source Community
Emissions Data System (CEDS) (Hoesly et al., 2019) to
develop a new global emission inventory, CEDSGBD-MAPS. This inventory
includes emissions of seven key atmospheric pollutants (NOx; CO;
SO2; NH3; non-methane volatile organic compounds, NMVOCs; black carbon, BC; organic carbon, OC) over the time period from 1970–2017
and reports annual country-total emissions as a function of 11 anthropogenic
sectors (agriculture; energy generation; industrial processes;
on-road and non-road transportation; separate residential, commercial, and other
sectors (RCO); waste; solvent use; and international shipping) and four fuel
categories (total coal, solid biofuel, the sum of liquid-fuel and
natural-gas combustion, and remaining process-level emissions). The
CEDSGBD-MAPS inventory additionally includes monthly global gridded
(0.5∘ × 0.5∘) emission fluxes for each compound, sector, and fuel type to facilitate their
use in earth system models. CEDSGBD-MAPS utilizes updated activity
data, updates to the core CEDS default scaling procedure, and modifications
to the final procedures for emissions gridding and aggregation. Relative to the previous CEDS inventory (Hoesly et
al., 2018), these updates extend the emission estimates from 2014 to 2017
and improve the overall agreement between CEDS and two widely used global
bottom-up emission inventories. The CEDSGBD-MAPS inventory provides the
most contemporary global emission estimates to date for these key
atmospheric pollutants and is the first to provide global estimates for
these species as a function of multiple fuel types and source
sectors. Dominant sources of global NOx and SO2 emissions in 2017
include the combustion of oil, gas, and coal in the energy and industry
sectors as well as on-road transportation and international shipping for
NOx. Dominant sources of global CO emissions in 2017 include on-road
transportation and residential biofuel combustion. Dominant global sources
of carbonaceous aerosol in 2017 include residential biofuel combustion,
on-road transportation (BC only), and emissions from the waste
sector. Global emissions of NOx, SO2, CO, BC, and OC all peak in
2012 or earlier, with more recent emission reductions driven by large
changes in emissions from China, North America, and Europe. In contrast,
global emissions of NH3 and NMVOCs continuously increase between 1970
and 2017, with agriculture as a major source of global NH3
emissions and solvent use, energy, residential, and the on-road transport
sectors as major sources of global NMVOCs. Due to similar development
methods and underlying datasets, the CEDSGBD-MAPS emissions are
expected to have consistent sources of uncertainty as other bottom-up
inventories. The CEDSGBD-MAPS source
code is publicly available online through GitHub:
https://github.com/emcduffie/CEDS/tree/CEDS_GBD-MAPS (last access: 1 December 2020). The
CEDSGBD-MAPS emission inventory dataset (both annual country-total and
monthly global gridded files) is publicly available under https://doi.org/10.5281/zenodo.3754964
(McDuffie et al., 2020c). |
---|---|
AbstractList | Global anthropogenic emission inventories remain vital
for understanding the sources of atmospheric pollution and the associated impacts on the environment, human health, and society.
Rapid changes in today's society require that these inventories provide
contemporary estimates of multiple atmospheric pollutants with both source
sector and fuel type information to understand and effectively mitigate
future impacts. To fill this need, we have updated the open-source Community
Emissions Data System (CEDS) (Hoesly et al., 2019) to
develop a new global emission inventory, CEDSGBD-MAPS. This inventory
includes emissions of seven key atmospheric pollutants (NOx; CO;
SO2; NH3; non-methane volatile organic compounds, NMVOCs; black carbon, BC; organic carbon, OC) over the time period from 1970–2017
and reports annual country-total emissions as a function of 11 anthropogenic
sectors (agriculture; energy generation; industrial processes;
on-road and non-road transportation; separate residential, commercial, and other
sectors (RCO); waste; solvent use; and international shipping) and four fuel
categories (total coal, solid biofuel, the sum of liquid-fuel and
natural-gas combustion, and remaining process-level emissions). The
CEDSGBD-MAPS inventory additionally includes monthly global gridded
(0.5∘ × 0.5∘) emission fluxes for each compound, sector, and fuel type to facilitate their
use in earth system models. CEDSGBD-MAPS utilizes updated activity
data, updates to the core CEDS default scaling procedure, and modifications
to the final procedures for emissions gridding and aggregation. Relative to the previous CEDS inventory (Hoesly et
al., 2018), these updates extend the emission estimates from 2014 to 2017
and improve the overall agreement between CEDS and two widely used global
bottom-up emission inventories. The CEDSGBD-MAPS inventory provides the
most contemporary global emission estimates to date for these key
atmospheric pollutants and is the first to provide global estimates for
these species as a function of multiple fuel types and source
sectors. Dominant sources of global NOx and SO2 emissions in 2017
include the combustion of oil, gas, and coal in the energy and industry
sectors as well as on-road transportation and international shipping for
NOx. Dominant sources of global CO emissions in 2017 include on-road
transportation and residential biofuel combustion. Dominant global sources
of carbonaceous aerosol in 2017 include residential biofuel combustion,
on-road transportation (BC only), and emissions from the waste
sector. Global emissions of NOx, SO2, CO, BC, and OC all peak in
2012 or earlier, with more recent emission reductions driven by large
changes in emissions from China, North America, and Europe. In contrast,
global emissions of NH3 and NMVOCs continuously increase between 1970
and 2017, with agriculture as a major source of global NH3
emissions and solvent use, energy, residential, and the on-road transport
sectors as major sources of global NMVOCs. Due to similar development
methods and underlying datasets, the CEDSGBD-MAPS emissions are
expected to have consistent sources of uncertainty as other bottom-up
inventories. The CEDSGBD-MAPS source
code is publicly available online through GitHub:
https://github.com/emcduffie/CEDS/tree/CEDS_GBD-MAPS (last access: 1 December 2020). The
CEDSGBD-MAPS emission inventory dataset (both annual country-total and
monthly global gridded files) is publicly available under https://doi.org/10.5281/zenodo.3754964
(McDuffie et al., 2020c). Global anthropogenic emission inventories remain vital for understanding the sources of atmospheric pollution and the associated impacts on the environment, human health, and society. Rapid changes in today's society require that these inventories provide contemporary estimates of multiple atmospheric pollutants with both source sector and fuel type information to understand and effectively mitigate future impacts. To fill this need, we have updated the open-source Community Emissions Data System (CEDS) (Hoesly et al., 2019) to develop a new global emission inventory, CEDS GBD-MAPS . This inventory includes emissions of seven key atmospheric pollutants (NO x ; CO; SO 2 ; NH 3 ; non-methane volatile organic compounds, NMVOCs; black carbon, BC; organic carbon, OC) over the time period from 1970–2017 and reports annual country-total emissions as a function of 11 anthropogenic sectors (agriculture; energy generation; industrial processes; on-road and non-road transportation; separate residential, commercial, and other sectors (RCO); waste; solvent use; and international shipping) and four fuel categories (total coal, solid biofuel, the sum of liquid-fuel and natural-gas combustion, and remaining process-level emissions). The CEDS GBD-MAPS inventory additionally includes monthly global gridded (0.5 ∘ × 0.5 ∘ ) emission fluxes for each compound, sector, and fuel type to facilitate their use in earth system models. CEDS GBD-MAPS utilizes updated activity data, updates to the core CEDS default scaling procedure, and modifications to the final procedures for emissions gridding and aggregation. Relative to the previous CEDS inventory (Hoesly et al., 2018), these updates extend the emission estimates from 2014 to 2017 and improve the overall agreement between CEDS and two widely used global bottom-up emission inventories. The CEDS GBD-MAPS inventory provides the most contemporary global emission estimates to date for these key atmospheric pollutants and is the first to provide global estimates for these species as a function of multiple fuel types and source sectors. Dominant sources of global NO x and SO 2 emissions in 2017 include the combustion of oil, gas, and coal in the energy and industry sectors as well as on-road transportation and international shipping for NO x . Dominant sources of global CO emissions in 2017 include on-road transportation and residential biofuel combustion. Dominant global sources of carbonaceous aerosol in 2017 include residential biofuel combustion, on-road transportation (BC only), and emissions from the waste sector. Global emissions of NO x , SO 2 , CO, BC, and OC all peak in 2012 or earlier, with more recent emission reductions driven by large changes in emissions from China, North America, and Europe. In contrast, global emissions of NH 3 and NMVOCs continuously increase between 1970 and 2017, with agriculture as a major source of global NH 3 emissions and solvent use, energy, residential, and the on-road transport sectors as major sources of global NMVOCs. Due to similar development methods and underlying datasets, the CEDS GBD-MAPS emissions are expected to have consistent sources of uncertainty as other bottom-up inventories. The CEDS GBD-MAPS source code is publicly available online through GitHub: https://github.com/emcduffie/CEDS/tree/CEDS_GBD-MAPS (last access: 1 December 2020). The CEDS GBD-MAPS emission inventory dataset (both annual country-total and monthly global gridded files) is publicly available under https://doi.org/10.5281/zenodo.3754964 (McDuffie et al., 2020c). Global anthropogenic emission inventories remain vital for understanding the sources of atmospheric pollution and the associated impacts on the environment, human health, and society. Rapid changes in today's society require that these inventories provide contemporary estimates of multiple atmospheric pollutants with both source sector and fuel type information to understand and effectively mitigate future impacts. To fill this need, we have updated the open-source Community Emissions Data System (CEDS) (Hoesly et al., 2019) to develop a new global emission inventory, CEDSGBD-MAPS. This inventory includes emissions of seven key atmospheric pollutants (NOx; CO; SO2; NH3; non-methane volatile organic compounds, NMVOCs; black carbon, BC; organic carbon, OC) over the time period from 1970–2017 and reports annual country-total emissions as a function of 11 anthropogenic sectors (agriculture; energy generation; industrial processes; on-road and non-road transportation; separate residential, commercial, and other sectors (RCO); waste; solvent use; and international shipping) and four fuel categories (total coal, solid biofuel, the sum of liquid-fuel and natural-gas combustion, and remaining process-level emissions). The CEDSGBD-MAPS inventory additionally includes monthly global gridded (0.5∘ × 0.5∘) emission fluxes for each compound, sector, and fuel type to facilitate their use in earth system models. CEDSGBD-MAPS utilizes updated activity data, updates to the core CEDS default scaling procedure, and modifications to the final procedures for emissions gridding and aggregation. Relative to the previous CEDS inventory (Hoesly et al., 2018), these updates extend the emission estimates from 2014 to 2017 and improve the overall agreement between CEDS and two widely used global bottom-up emission inventories. The CEDSGBD-MAPS inventory provides the most contemporary global emission estimates to date for these key atmospheric pollutants and is the first to provide global estimates for these species as a function of multiple fuel types and source sectors. Dominant sources of global NOx and SO2 emissions in 2017 include the combustion of oil, gas, and coal in the energy and industry sectors as well as on-road transportation and international shipping for NOx. Dominant sources of global CO emissions in 2017 include on-road transportation and residential biofuel combustion. Dominant global sources of carbonaceous aerosol in 2017 include residential biofuel combustion, on-road transportation (BC only), and emissions from the waste sector. Global emissions of NOx, SO2, CO, BC, and OC all peak in 2012 or earlier, with more recent emission reductions driven by large changes in emissions from China, North America, and Europe. In contrast, global emissions of NH3 and NMVOCs continuously increase between 1970 and 2017, with agriculture as a major source of global NH3 emissions and solvent use, energy, residential, and the on-road transport sectors as major sources of global NMVOCs. Due to similar development methods and underlying datasets, the CEDSGBD-MAPS emissions are expected to have consistent sources of uncertainty as other bottom-up inventories. The CEDSGBD-MAPS source code is publicly available online through GitHub:https://github.com/emcduffie/CEDS/tree/CEDS_GBD-MAPS (last access: 1 December 2020). The CEDSGBD-MAPS emission inventory dataset (both annual country-total and monthly global gridded files) is publicly available under 10.5281/zenodo.3754964 (McDuffie et al., 2020c). |
Author | Tibrewal, Kushal Venkataraman, Chandra Brauer, Michael McDuffie, Erin E. Zheng, Bo Smith, Steven J. Crippa, Monica Martin, Randall V. O'Rourke, Patrick Marais, Eloise A. |
Author_xml | – sequence: 1 givenname: Erin E. orcidid: 0000-0002-6845-6077 surname: McDuffie fullname: McDuffie, Erin E. – sequence: 2 givenname: Steven J. orcidid: 0000-0003-3248-5607 surname: Smith fullname: Smith, Steven J. – sequence: 3 givenname: Patrick orcidid: 0000-0002-0357-112X surname: O'Rourke fullname: O'Rourke, Patrick – sequence: 4 givenname: Kushal orcidid: 0000-0003-1009-4250 surname: Tibrewal fullname: Tibrewal, Kushal – sequence: 5 givenname: Chandra surname: Venkataraman fullname: Venkataraman, Chandra – sequence: 6 givenname: Eloise A. surname: Marais fullname: Marais, Eloise A. – sequence: 7 givenname: Bo orcidid: 0000-0001-8344-3445 surname: Zheng fullname: Zheng, Bo – sequence: 8 givenname: Monica surname: Crippa fullname: Crippa, Monica – sequence: 9 givenname: Michael orcidid: 0000-0002-9103-9343 surname: Brauer fullname: Brauer, Michael – sequence: 10 givenname: Randall V. orcidid: 0000-0003-2632-8402 surname: Martin fullname: Martin, Randall V. |
BookMark | eNp9kc9u1DAQxiNUJNrCA3CzxKU9hPpfYptbtV1opUocCmfL64x3vUriYDuV9sY78C48EE-C060Q4sBpRqPf981ovrPqZAwjVNVbgt83RPErSKmrCa0ZJ6ymmOIX1SmRbVuzhrQnf_WvqrOU9hi3nIjmtPp5jbZ92JgemTHvYpjCFkZvEQw-JR9G5MdHGHOIBxQcMnkIadpBLMQU-n7ORZWQi2FACWzB6uLTITdDX6cJrHeFTGGOFhK6IErgX99_UEzE5YcCIjNNvbcmL4uKfd4BWoVhmEefD2j9fEJCNyYb9HBIGQZ0sVrfPFy-rl460yd481zPq68f119Wt_X95093q-v72nIuc90pR6QQRirKpKQUqGMNY4IpaBW3nRAbx6loJGud4IoKS60Exl0DolFyw86ru6NvF8xeT9EPJh50MF4_DULcahOztz1oTDtFcdsIxRvOjDAtUIkJkZITwwUuXu-OXlMM32ZIWe_LY8Zyvqa8VUoUZqHIkbIxpBTB_dlKsF6i1kvUmlC9RK2XqItG_KOxPj99NUfj-_8ofwOBbLEd |
CitedBy_id | crossref_primary_10_1016_j_eiar_2024_107620 crossref_primary_10_1016_j_envsci_2023_02_006 crossref_primary_10_5194_essd_14_4757_2022 crossref_primary_10_1007_s41810_024_00254_4 crossref_primary_10_1016_j_atmosenv_2024_120326 crossref_primary_10_1021_acs_est_3c05474 crossref_primary_10_1016_j_atmosenv_2023_120034 crossref_primary_10_5194_acp_24_8049_2024 crossref_primary_10_1038_s41586_024_07547_1 crossref_primary_10_1029_2021GL096838 crossref_primary_10_1088_1748_9326_acb729 crossref_primary_10_3389_fenvs_2023_1125979 crossref_primary_10_1016_j_fmre_2024_02_013 crossref_primary_10_1038_s43016_023_00741_w crossref_primary_10_1038_s41893_024_01366_y crossref_primary_10_1016_j_envres_2022_114386 crossref_primary_10_1016_j_horiz_2024_100130 crossref_primary_10_5194_essd_14_491_2022 crossref_primary_10_1029_2022GH000711 crossref_primary_10_1029_2022GL098986 crossref_primary_10_1016_j_jes_2025_02_006 crossref_primary_10_2139_ssrn_4948659 crossref_primary_10_5194_acp_24_4733_2024 crossref_primary_10_5194_acp_24_6275_2024 crossref_primary_10_1016_j_atmosres_2025_108079 crossref_primary_10_5194_acp_22_14037_2022 crossref_primary_10_5194_acp_22_14751_2022 crossref_primary_10_1016_j_scib_2023_12_026 crossref_primary_10_1016_j_jhazmat_2025_137308 crossref_primary_10_1038_s41612_024_00563_y crossref_primary_10_1016_j_scitotenv_2023_163653 crossref_primary_10_5194_gmd_15_7767_2022 crossref_primary_10_1007_s11738_024_03762_5 crossref_primary_10_5194_acp_25_2725_2025 crossref_primary_10_5194_acp_24_8317_2024 crossref_primary_10_1029_2021JD035687 crossref_primary_10_1021_acs_est_4c00339 crossref_primary_10_5194_essd_14_1359_2022 crossref_primary_10_1016_j_uncres_2024_100127 crossref_primary_10_1016_j_envpol_2024_124707 crossref_primary_10_1080_14680629_2025_2474008 crossref_primary_10_1021_acsearthspacechem_4c00258 crossref_primary_10_5194_gmd_14_5487_2021 crossref_primary_10_5194_acp_23_12505_2023 crossref_primary_10_1007_s11356_024_35729_x crossref_primary_10_5194_acp_24_6593_2024 crossref_primary_10_5194_acp_21_18589_2021 crossref_primary_10_1029_2023JD039496 crossref_primary_10_1016_j_scitotenv_2024_174805 crossref_primary_10_5194_acp_23_4149_2023 crossref_primary_10_1029_2023GL105761 crossref_primary_10_1016_j_apr_2024_102131 crossref_primary_10_5194_gmd_17_1443_2024 crossref_primary_10_1016_j_atmosenv_2025_121163 crossref_primary_10_1016_j_aeaoa_2022_100164 crossref_primary_10_1097_EE9_0000000000000355 crossref_primary_10_5194_acp_22_8683_2022 crossref_primary_10_1016_j_oneear_2024_06_010 crossref_primary_10_1016_j_envpol_2024_124720 crossref_primary_10_1039_D2EA00023G crossref_primary_10_1016_j_atmosres_2023_106798 crossref_primary_10_1016_j_envpol_2024_123870 crossref_primary_10_1021_acsestair_4c00097 crossref_primary_10_3390_atmos14050891 crossref_primary_10_1002_cssc_202402031 crossref_primary_10_1016_j_trd_2023_103620 crossref_primary_10_1016_j_atmosenv_2023_120163 crossref_primary_10_5194_acp_24_9555_2024 crossref_primary_10_1016_j_atmosenv_2023_120280 crossref_primary_10_1016_j_enpol_2022_113021 crossref_primary_10_1016_j_scitotenv_2023_163191 crossref_primary_10_5194_acp_21_10881_2021 crossref_primary_10_1021_acs_est_4c08082 crossref_primary_10_1016_j_scib_2021_11_007 crossref_primary_10_1029_2021JD034770 crossref_primary_10_1007_s11869_023_01357_6 crossref_primary_10_1097_EDE_0000000000001455 crossref_primary_10_1007_s11356_024_33813_w crossref_primary_10_5194_acp_24_13285_2024 crossref_primary_10_1016_S2542_5196_21_00255_2 crossref_primary_10_3390_atmos13020241 crossref_primary_10_5194_acp_23_15235_2023 crossref_primary_10_5194_acp_25_597_2025 crossref_primary_10_1016_j_scitotenv_2024_170822 crossref_primary_10_1016_j_cogsc_2024_100897 crossref_primary_10_1016_j_envdev_2024_101095 crossref_primary_10_5194_acp_21_1889_2021 crossref_primary_10_1088_2752_5309_ad4202 crossref_primary_10_1038_s41586_024_07714_4 crossref_primary_10_1088_1748_9326_ad3cf9 crossref_primary_10_4236_gep_2024_125007 crossref_primary_10_1088_1748_9326_ac2c34 crossref_primary_10_5194_essd_13_3691_2021 crossref_primary_10_1038_s44284_024_00084_y crossref_primary_10_1029_2022GL099470 crossref_primary_10_1029_2021GL092783 crossref_primary_10_1088_1748_9326_ad281f crossref_primary_10_5194_acp_21_13835_2021 crossref_primary_10_1039_D4EM00232F crossref_primary_10_1016_j_envint_2023_107805 crossref_primary_10_5194_acp_21_15901_2021 crossref_primary_10_1021_acs_energyfuels_4c03495 crossref_primary_10_1016_j_atmosenv_2022_119254 crossref_primary_10_1016_j_apcatb_2024_124352 crossref_primary_10_1038_s41612_025_00985_2 crossref_primary_10_5194_acp_23_8727_2023 crossref_primary_10_1088_1748_9326_aca91f crossref_primary_10_1016_j_aeaoa_2021_100114 crossref_primary_10_1080_10962247_2023_2274348 crossref_primary_10_3390_met14010109 crossref_primary_10_5194_acp_23_4203_2023 crossref_primary_10_3390_atmos13081297 crossref_primary_10_1029_2023JD039610 crossref_primary_10_1016_j_envpol_2021_118310 crossref_primary_10_1038_s41467_024_52247_z crossref_primary_10_1029_2022JD037170 crossref_primary_10_5194_acp_22_13753_2022 crossref_primary_10_1088_2752_5309_acfb2e crossref_primary_10_5194_acp_24_6719_2024 crossref_primary_10_5194_acp_23_5023_2023 crossref_primary_10_1029_2022GL099908 crossref_primary_10_5194_essd_16_501_2024 crossref_primary_10_1038_s43247_023_00969_1 crossref_primary_10_1371_journal_pone_0298539 crossref_primary_10_3389_fmars_2024_1418634 crossref_primary_10_1038_s43247_024_01324_8 crossref_primary_10_1021_acs_estlett_3c00266 crossref_primary_10_1039_D2EA00027J crossref_primary_10_1039_D3EA00174A crossref_primary_10_1029_2021GL096009 crossref_primary_10_1126_sciadv_ado1482 crossref_primary_10_1016_j_indic_2024_100455 crossref_primary_10_1016_j_jes_2022_07_019 crossref_primary_10_1016_j_trd_2023_103780 crossref_primary_10_5194_acp_24_12079_2024 crossref_primary_10_1029_2022JD037623 crossref_primary_10_1038_s41612_024_00758_3 crossref_primary_10_1088_1748_9326_ac3e22 crossref_primary_10_5194_acp_22_9583_2022 crossref_primary_10_1016_j_envres_2024_120363 crossref_primary_10_5194_acp_22_11455_2022 crossref_primary_10_5194_acp_23_15253_2023 crossref_primary_10_1007_s10653_024_01867_x crossref_primary_10_5194_acp_22_15981_2022 crossref_primary_10_5194_essd_16_2261_2024 crossref_primary_10_1038_s41467_021_23853_y crossref_primary_10_5194_acp_24_7623_2024 crossref_primary_10_1029_2023GL103778 crossref_primary_10_1016_j_xinn_2021_100182 crossref_primary_10_1021_acs_estlett_2c00203 crossref_primary_10_5194_acp_23_5403_2023 crossref_primary_10_1016_j_apr_2023_101810 crossref_primary_10_1029_2023JD039314 crossref_primary_10_1016_j_scitotenv_2023_167622 crossref_primary_10_1029_2022GL097947 crossref_primary_10_1016_j_apgeochem_2022_105400 crossref_primary_10_1038_s41467_025_57161_6 crossref_primary_10_1016_j_scitotenv_2023_168272 crossref_primary_10_1016_j_envint_2023_108387 crossref_primary_10_5194_acp_23_12525_2023 crossref_primary_10_1038_s41597_023_01963_0 crossref_primary_10_1016_j_egyr_2022_10_343 crossref_primary_10_1016_S2468_2667_23_00106_8 crossref_primary_10_1007_s43630_023_00369_6 crossref_primary_10_1021_acs_estlett_4c01041 crossref_primary_10_5194_essd_13_5027_2021 crossref_primary_10_5194_acp_24_2239_2024 crossref_primary_10_1016_j_envint_2024_108526 crossref_primary_10_1029_2022GH000673 crossref_primary_10_3390_su16156298 crossref_primary_10_5194_acp_24_13047_2024 crossref_primary_10_5194_acp_24_13361_2024 crossref_primary_10_1126_sciadv_abm4435 crossref_primary_10_1016_j_scitotenv_2022_161134 crossref_primary_10_1016_j_jclepro_2023_138107 crossref_primary_10_1080_02786826_2022_2051425 crossref_primary_10_3390_rs15194813 crossref_primary_10_1021_acs_est_2c01175 crossref_primary_10_5194_essd_17_277_2025 crossref_primary_10_5194_acp_24_13975_2024 crossref_primary_10_5194_essd_13_5213_2021 crossref_primary_10_3390_atmos14020234 crossref_primary_10_1021_acsestair_4c00120 crossref_primary_10_17721_2306_5680_2023_2_5 crossref_primary_10_1007_s11356_023_30194_4 crossref_primary_10_1016_j_atmosenv_2024_120988 crossref_primary_10_5194_acp_24_3925_2024 crossref_primary_10_1021_acsestair_4c00004 crossref_primary_10_1093_nsr_nwae264 crossref_primary_10_3390_atmos14060975 crossref_primary_10_5194_acp_24_4569_2024 crossref_primary_10_1038_s41561_023_01254_8 crossref_primary_10_1016_j_chemosphere_2024_141438 crossref_primary_10_1080_10962247_2024_2380333 crossref_primary_10_22389_0016_7126_2023_1001_11_31_42 crossref_primary_10_5194_acp_24_3009_2024 crossref_primary_10_1080_23748834_2024_2376389 crossref_primary_10_1016_j_ocecoaman_2022_106064 crossref_primary_10_5194_acp_24_10363_2024 crossref_primary_10_1016_j_chemosphere_2023_139195 crossref_primary_10_1080_02786826_2022_2114312 crossref_primary_10_1080_02786826_2022_2114311 crossref_primary_10_1016_j_epsl_2021_117300 crossref_primary_10_1016_j_jphotochem_2023_114889 crossref_primary_10_1016_j_envint_2023_107835 crossref_primary_10_1289_EHP14418 crossref_primary_10_1016_j_rse_2023_113917 crossref_primary_10_1029_2023JG007667 crossref_primary_10_1039_D2EA00051B crossref_primary_10_1016_j_scitotenv_2024_175073 crossref_primary_10_1021_acs_est_3c01823 crossref_primary_10_4491_eer_2023_384 crossref_primary_10_1016_j_scitotenv_2022_161157 crossref_primary_10_1088_1748_9326_ace91e crossref_primary_10_1021_acsearthspacechem_2c00150 crossref_primary_10_5194_gmd_17_3507_2024 crossref_primary_10_1016_j_envpol_2021_118105 crossref_primary_10_1016_j_energy_2021_122559 crossref_primary_10_1136_bmj_2023_077784 crossref_primary_10_1016_j_ecotra_2024_100359 crossref_primary_10_1029_2022GL102061 crossref_primary_10_1021_acs_est_2c03967 crossref_primary_10_5194_acp_23_13191_2023 crossref_primary_10_1021_acs_est_3c04106 crossref_primary_10_1016_j_trd_2024_104308 crossref_primary_10_1029_2023JD038939 crossref_primary_10_1021_acs_est_2c09264 crossref_primary_10_1016_j_scitotenv_2023_162892 crossref_primary_10_3390_pollutants3030026 crossref_primary_10_5194_gmd_17_4821_2024 crossref_primary_10_1029_2021JD036202 crossref_primary_10_5194_acp_23_14039_2023 crossref_primary_10_1039_D4EA00137K crossref_primary_10_1021_acs_est_2c07641 crossref_primary_10_1088_1748_9326_ace466 crossref_primary_10_1525_elementa_2023_00052 crossref_primary_10_1016_j_oneear_2020_12_016 crossref_primary_10_1016_j_jenvman_2021_114079 crossref_primary_10_1016_j_uclim_2023_101488 crossref_primary_10_1051_e3sconf_202339302006 crossref_primary_10_1029_2022MS003458 crossref_primary_10_3389_fclim_2024_1383337 crossref_primary_10_1021_acsestair_3c00054 crossref_primary_10_1038_s41467_025_56218_w crossref_primary_10_1088_2515_7620_ac8b69 crossref_primary_10_1016_j_rsase_2023_101083 crossref_primary_10_1016_j_buildenv_2024_112068 crossref_primary_10_5194_acp_21_8747_2021 crossref_primary_10_5194_acp_23_6271_2023 crossref_primary_10_5194_acp_25_923_2025 crossref_primary_10_1038_s41612_024_00683_5 crossref_primary_10_1088_1748_9326_acdc3d crossref_primary_10_1073_pnas_2307587120 crossref_primary_10_5194_acp_22_15313_2022 crossref_primary_10_5572_ajae_2021_147 crossref_primary_10_34133_remotesensing_0142 crossref_primary_10_1016_j_envint_2021_107020 crossref_primary_10_1093_nsr_nwaf040 crossref_primary_10_1016_j_atmosenv_2024_120422 crossref_primary_10_1021_acs_est_4c01980 crossref_primary_10_5194_acp_21_13311_2021 crossref_primary_10_1016_j_envpol_2022_119645 crossref_primary_10_5194_acp_23_10267_2023 crossref_primary_10_5194_essd_16_4351_2024 crossref_primary_10_3390_environments11110229 crossref_primary_10_5194_gmd_16_1569_2023 crossref_primary_10_5194_acp_23_10075_2023 crossref_primary_10_1016_S2542_5196_24_00098_6 crossref_primary_10_1007_s11356_024_34020_3 crossref_primary_10_1088_1748_9326_ac9009 crossref_primary_10_1126_science_adi0858 crossref_primary_10_1038_s41467_025_58237_z crossref_primary_10_1038_s41586_022_05447_w crossref_primary_10_5194_acp_23_4185_2023 crossref_primary_10_5194_gmd_16_1053_2023 crossref_primary_10_5194_acp_21_16051_2021 crossref_primary_10_1029_2022GL100223 |
Cites_doi | 10.1016/j.atmosenv.2013.05.051 10.1021/acs.est.8b07076 10.5194/acp-11-9839-2011 10.1016/0960-1686(93)90356-4 10.1016/j.envsci.2005.06.008 10.1021/es405723w 10.5194/acp-17-8681-2017 10.1038/nature14677 10.1007/s11356-013-2051-9 10.5194/acp-18-2259-2018 10.1029/1999RG000078 10.5194/acp-15-10529-2015 10.5194/essd-9-697-2017 10.1093/nsr/nwx150 10.1029/2003JD003697 10.1021/acs.est.9b04958 10.5194/acp-18-8017-2018 10.1088/1748-9326/aa65a4 10.1016/j.atmosenv.2014.09.081 10.5194/essd-11-1411-2019 10.5194/gmd-4-625-2011 10.1038/s41598-017-14639-8 10.1038/nclimate1560 10.1021/es502250z 10.5194/acp-16-4605-2016 10.1002/qj.49709640815 10.1016/j.envsoft.2011.07.012 10.1016/j.atmosenv.2010.11.045 10.5194/gmd-11-369-2018 10.1039/C7FD00011A 10.1021/acs.est.6b02602 10.5194/acp-17-935-2017 10.5194/acp-17-1227-2017 10.5194/acp-19-15691-2019 10.5194/acp-9-5131-2009 10.1126/science.1207824 10.5194/acp-13-11019-2013 10.5194/acp-18-14095-2018 10.1111/tpj.13298 10.5194/acp-16-13561-2016 10.1016/j.atmosenv.2013.08.068 10.5194/acp-15-411-2015 10.1175/BAMS-D-19-0030.1 10.1002/2013EF000196 10.1073/pnas.1819989116 10.1038/srep00265 10.1038/s41586-019-1554-z 10.1029/2010GL046476 10.1016/0004-6981(87)90077-1 10.5194/acp-18-10497-2018 10.5194/acp-15-11411-2015 10.1021/es3003348 10.5194/acp-19-5165-2019 10.1038/ngeo2724 10.1126/science.1180353 10.1029/2020EF001520 10.1016/j.envres.2018.01.042 10.5194/acp-15-6503-2015 10.1126/science.aaq0524 10.1126/science.1094678 10.1088/1748-9326/10/11/114015 10.5194/acp-11-931-2011 10.1111/j.1466-8238.2010.00587.x 10.1016/S0140-6736(18)32225-6 10.1029/2001JD001062 10.5194/gmd-5-1471-2012 10.1016/j.atmosenv.2004.12.041 10.1021/acs.est.5b03243 10.1002/jgrd.50171 10.1088/1748-9326/10/11/114003 10.1029/2004GL021216 10.1029/2006GB002840 10.1002/2013JD021130 10.5194/gmd-13-461-2020 10.1080/23754931.2015.1014272 10.5194/acp-11-2295-2011 10.5194/essd-10-1987-2018 10.1029/2011GL050273 10.5194/gmd-12-1443-2019 10.1029/GL005i001p00017 10.5194/acp-17-7683-2017 |
ContentType | Journal Article |
Copyright | 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SN 7TG 7TN 7UA 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W H8D H96 HCIFZ KL. L.G L6V L7M M7S PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS DOA |
DOI | 10.5194/essd-12-3413-2020 |
DatabaseName | CrossRef Ecology Abstracts Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Continental Europe Database Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection (UHCL Subscription) Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Agriculture |
EISSN | 1866-3516 |
EndPage | 3442 |
ExternalDocumentID | oai_doaj_org_article_02d92065794543a7a6e280118841a470 10_5194_essd_12_3413_2020 |
GeographicLocations | United States--US Europe China Africa India |
GeographicLocations_xml | – name: China – name: Africa – name: Europe – name: United States--US – name: India |
GroupedDBID | 5VS 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABDBF ABJCF ABUWG ACIWK ACPRK ACUHS ADBBV AEGXH AENEX AEUYN AFKRA AFPKN AFRAH AHGZY ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION ESX GROUPED_DOAJ H13 HCIFZ IAO IEA IGS ISR ITC KQ8 L6V LK5 M7R M7S OK1 PCBAR PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS Q2X RKB RNS TR2 TUS ZBA 7SN 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W H8D H96 KL. L.G L7M PKEHL PQEST PQGLB PQUKI PUEGO |
ID | FETCH-LOGICAL-c448t-d9f1877a89238822e2f3533739e694cd77bf4275836f74927c2c8e34f5e7598b3 |
IEDL.DBID | BENPR |
ISSN | 1866-3516 1866-3508 |
IngestDate | Mon Sep 01 19:38:17 EDT 2025 Fri Jul 25 09:53:06 EDT 2025 Tue Jul 01 02:14:31 EDT 2025 Thu Apr 24 23:10:26 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c448t-d9f1877a89238822e2f3533739e694cd77bf4275836f74927c2c8e34f5e7598b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2632-8402 0000-0001-8344-3445 0000-0002-0357-112X 0000-0002-9103-9343 0000-0002-6845-6077 0000-0003-1009-4250 0000-0003-3248-5607 |
OpenAccessLink | https://www.proquest.com/docview/2469977030?pq-origsite=%requestingapplication% |
PQID | 2469977030 |
PQPubID | 105729 |
PageCount | 30 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_02d92065794543a7a6e280118841a470 proquest_journals_2469977030 crossref_primary_10_5194_essd_12_3413_2020 crossref_citationtrail_10_5194_essd_12_3413_2020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-15 |
PublicationDateYYYYMMDD | 2020-12-15 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Katlenburg-Lindau |
PublicationPlace_xml | – name: Katlenburg-Lindau |
PublicationTitle | Earth system science data |
PublicationYear | 2020 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref13 ref12 ref15 ref128 ref14 ref129 ref97 ref126 ref96 ref127 ref11 ref99 ref124 ref10 ref98 ref125 ref17 ref16 ref19 ref18 ref93 ref92 ref95 ref94 ref130 ref91 ref90 ref89 ref86 ref85 ref88 ref87 ref82 ref81 ref84 ref83 ref80 ref79 ref108 ref78 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref2 ref1 ref71 ref111 ref70 ref112 ref73 ref72 ref110 ref68 ref119 ref67 ref117 ref69 ref118 ref64 ref115 ref63 ref116 ref66 ref113 ref65 ref114 ref60 ref122 ref123 ref62 ref120 ref61 ref121 |
References_xml | – ident: ref1 – ident: ref85 – ident: ref116 – ident: ref24 – ident: ref109 doi: 10.1016/j.atmosenv.2013.05.051 – ident: ref103 doi: 10.1021/acs.est.8b07076 – ident: ref79 doi: 10.5194/acp-11-9839-2011 – ident: ref93 doi: 10.1016/0960-1686(93)90356-4 – ident: ref53 – ident: ref102 doi: 10.1016/j.envsci.2005.06.008 – ident: ref30 – ident: ref18 doi: 10.1021/es405723w – ident: ref113 – ident: ref36 – ident: ref66 doi: 10.5194/acp-17-8681-2017 – ident: ref78 doi: 10.1038/nature14677 – ident: ref6 – ident: ref8 doi: 10.1007/s11356-013-2051-9 – ident: ref63 doi: 10.5194/acp-18-2259-2018 – ident: ref51 doi: 10.1029/1999RG000078 – ident: ref108 doi: 10.5194/acp-15-10529-2015 – ident: ref121 doi: 10.5194/essd-9-697-2017 – ident: ref47 – ident: ref75 doi: 10.1093/nsr/nwx150 – ident: ref12 doi: 10.1029/2003JD003697 – ident: ref81 doi: 10.1021/acs.est.9b04958 – ident: ref122 doi: 10.5194/acp-18-8017-2018 – ident: ref16 – ident: ref33 – ident: ref97 doi: 10.1088/1748-9326/aa65a4 – ident: ref114 – ident: ref100 doi: 10.1016/j.atmosenv.2014.09.081 – ident: ref130 doi: 10.5194/essd-11-1411-2019 – ident: ref58 – ident: ref125 doi: 10.5194/gmd-4-625-2011 – ident: ref120 – ident: ref74 doi: 10.1038/s41598-017-14639-8 – ident: ref49 doi: 10.1038/nclimate1560 – ident: ref41 – ident: ref126 doi: 10.1021/es502250z – ident: ref60 – ident: ref67 doi: 10.5194/acp-16-4605-2016 – ident: ref105 – ident: ref27 doi: 10.1002/qj.49709640815 – ident: ref4 doi: 10.1016/j.envsoft.2011.07.012 – ident: ref7 doi: 10.1016/j.atmosenv.2010.11.045 – ident: ref52 doi: 10.5194/gmd-11-369-2018 – ident: ref55 – ident: ref70 doi: 10.1039/C7FD00011A – ident: ref15 – ident: ref80 doi: 10.1021/acs.est.6b02602 – ident: ref38 – ident: ref111 – ident: ref76 doi: 10.5194/acp-17-935-2017 – ident: ref119 – ident: ref46 – ident: ref54 doi: 10.5194/acp-17-1227-2017 – ident: ref92 doi: 10.5194/acp-19-15691-2019 – ident: ref21 – ident: ref127 doi: 10.5194/acp-9-5131-2009 – ident: ref9 doi: 10.1126/science.1207824 – ident: ref68 doi: 10.5194/acp-13-11019-2013 – ident: ref10 – ident: ref35 – ident: ref129 doi: 10.5194/acp-18-14095-2018 – ident: ref37 – ident: ref3 doi: 10.1111/tpj.13298 – ident: ref89 – ident: ref5 – ident: ref112 doi: 10.5194/acp-16-13561-2016 – ident: ref20 – ident: ref43 – ident: ref32 doi: 10.1016/j.atmosenv.2013.08.068 – ident: ref2 doi: 10.5194/acp-15-411-2015 – ident: ref123 doi: 10.1175/BAMS-D-19-0030.1 – ident: ref28 doi: 10.1002/2013EF000196 – ident: ref73 doi: 10.1073/pnas.1819989116 – ident: ref95 – ident: ref19 doi: 10.1038/srep00265 – ident: ref104 doi: 10.1038/s41586-019-1554-z – ident: ref57 – ident: ref11 – ident: ref34 – ident: ref71 doi: 10.1029/2010GL046476 – ident: ref86 – ident: ref61 – ident: ref101 doi: 10.1016/0004-6981(87)90077-1 – ident: ref77 doi: 10.5194/acp-18-10497-2018 – ident: ref117 – ident: ref62 doi: 10.5194/acp-15-11411-2015 – ident: ref40 – ident: ref23 doi: 10.1021/es3003348 – ident: ref26 doi: 10.5194/acp-19-5165-2019 – ident: ref106 – ident: ref88 doi: 10.1038/ngeo2724 – ident: ref64 doi: 10.1126/science.1180353 – ident: ref39 doi: 10.1029/2020EF001520 – ident: ref99 doi: 10.1016/j.envres.2018.01.042 – ident: ref29 doi: 10.5194/acp-15-6503-2015 – ident: ref83 doi: 10.1126/science.aaq0524 – ident: ref107 doi: 10.1126/science.1094678 – ident: ref124 doi: 10.1088/1748-9326/10/11/114015 – ident: ref72 doi: 10.5194/acp-11-931-2011 – ident: ref118 – ident: ref65 doi: 10.1111/j.1466-8238.2010.00587.x – ident: ref45 – ident: ref44 doi: 10.1016/S0140-6736(18)32225-6 – ident: ref17 doi: 10.1029/2001JD001062 – ident: ref50 doi: 10.5194/gmd-5-1471-2012 – ident: ref82 doi: 10.1016/j.atmosenv.2004.12.041 – ident: ref94 doi: 10.1021/acs.est.5b03243 – ident: ref110 – ident: ref14 doi: 10.1002/jgrd.50171 – ident: ref69 doi: 10.1088/1748-9326/10/11/114003 – ident: ref91 doi: 10.1029/2004GL021216 – ident: ref90 – ident: ref13 doi: 10.1029/2006GB002840 – ident: ref59 – ident: ref84 – ident: ref96 doi: 10.1002/2013JD021130 – ident: ref115 – ident: ref42 doi: 10.5194/gmd-13-461-2020 – ident: ref31 doi: 10.1080/23754931.2015.1014272 – ident: ref128 doi: 10.5194/acp-11-2295-2011 – ident: ref98 – ident: ref25 doi: 10.5194/essd-10-1987-2018 – ident: ref87 doi: 10.1029/2011GL050273 – ident: ref48 doi: 10.5194/gmd-12-1443-2019 – ident: ref22 doi: 10.1029/GL005i001p00017 – ident: ref56 doi: 10.5194/acp-17-7683-2017 |
SSID | ssj0064175 |
Score | 2.612501 |
Snippet | Global anthropogenic emission inventories remain vital
for understanding the sources of atmospheric pollution and the associated impacts on the environment,... Global anthropogenic emission inventories remain vital for understanding the sources of atmospheric pollution and the associated impacts on the environment,... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 3413 |
SubjectTerms | Aerosols Aggregation Agriculture Air pollution Annual Anthropogenic factors Atmospheric models Biofuels Black carbon Carbon Carbon monoxide Carbon monoxide emissions Coal-fired power plants Combustion Consumption Datasets Emission inventories Emissions Emissions control Energy Energy industry Environmental impact Estimates Fluxes Global aerosols Human influences Industrial plant emissions Liquid fuels Natural gas Nitrogen compounds Nitrogen dioxide Nitrogen oxides open climate campaign Organic carbon Organic compounds Pollutants Pollution sources Procedures Residential energy Road transportation Roads & highways Scaling Shipping Solvents Source code Sulfur dioxide Trends VOCs Volatile organic compounds |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEBYlUOil9Jduk5Q59JAURGxJtqTc0mTTUGgvbSA3IcsSBNLdEDuHvfUd-i59oD5JZyRvWCikl1yNbAvPeOYbSfN9jL1vu1rErks8qCpyau3kNvUNb3trRfIypMzd-eVre3auPl80FxtSX3QmrNADlw93UIneCsyT6DeNkl77NgpD7ZJG1V7pXK1jzlsXUyUGt6rOFLvE5sYlYpCyn4loRR1gAOkzUx-Gb_QREvreyEiZuP-fuJyTzekz9nRCiXBUZvecPYqLF-zxp6zCu3rJfh9BIfIAP-kcoBtcBiDtNlr9gst8lHx5s4JlAj_-WA7EHoAjrknZmISDB6DGEhjyoj3H5_SQbuMVp85LOj0EZVV_gL3a6urPz1-YwvX-IQ6EjT1vejwiSJjaTMYVzKcpDHDiRw-FEB32jucn3_ZfsfPT-ffjMz4JMKDllBl5b1NttPYGUSAicRFFkggPtbSxtSr0WndJCaw4ZJu0skIHEUyUKjVRN9Z08jXbWiwX8Q2D0FZWGIR3WN-oZILvtUQkUafGNzKlbsaqtRFcmNjJSSTjymGVQnZzZDdXC0d2c2S3Gftwd8t1oea4b_BHsuzdQGLVzhfQ19zka-5_vjZjO2u_cNOvPjihWosgGoPl24d4xzZ7QvMlD62bHbY13tzGXcQ9Y_cuu_hfSJf7Ug priority: 102 providerName: Directory of Open Access Journals |
Title | A global anthropogenic emission inventory of atmospheric pollutants from sector- and fuel-specific sources (1970–2017): an application of the Community Emissions Data System (CEDS) |
URI | https://www.proquest.com/docview/2469977030 https://doaj.org/article/02d92065794543a7a6e280118841a470 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3BbtQwELVoV0hwQFBALZSVDxxapKgb24ltLmi3u9sKiQoBlXqzHMeuKpXNskkPe-Mf-Bc-iC9hxvGWSki9Jo5laSbjN2PPe4S8Lauc-aoKmRMjn2FrZ6ZDXWRlrTULlrsQuTs_nZWn5-LjRXGRCm5tula5iYkxUNeNwxr5EYM8DrAK-OSH5Y8MVaPwdDVJaGyRAYRgBcnXYDI7-_xlE4tLkUeqXWR1yzhgkf5cE1CLOIJAUkfGPgjj4Cso-H1nZ4oE_v_F57jpzJ-SJwkt0nFv3mfkgV_skMfjy1VizPA75OFJ1OZdPye_x7Sn96A2qR-Ac1w5iopuWBOjV_GCebNa0yZQ231vWuQUgBFL1DtGOeGWYrsJbWMpP4N5ahpu_HWG_Zh4p4j2tf6WHuRajv78_AUbuzx8DwPpnZNwnB5wJU3NJ92aztISWjq1naU9TTo9OJ5Nvx6-IOfz2bfj0yzJMoA9heqyWodcSWkVYEPA58yzwAE0Sq59qYWrpayCYJCH8DJIoZl0zCnPRSi8LLSq-EuyvWgWfpdQV440UwD6IOsRQTlbSw74Ig-FLXgI1R4ZbUxiXOIsR-mMawO5C1rRoBVNzgxa0aAV98i720-WPWHHfYMnaOfbgci1HR80q0uTfl0zYrVmgNQgchWCW2lLzxQ27CqRWyFhkv2Nl5gUAFrzz11f3f_6NXmEK0FPzIt9st2tbvwbwDldNSRban4yJIPxZDqZD5NrD2PV4C-mzf7F |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKEQIOCAqIQgEfQGqRoia2E8dICC3d3W7pz4VW6s11HLuqVDbLJhXaG-_Ae3DkgXgSZpykVELqrdfEsSzNeOZzxvN9hLzJioS5ovCRFbGLsLUzUr5Mo6xUinnDrQ_cnfsH2eRIfD5Oj5fIr74XBq9V9jExBOqysviPfJPBOQ6wCvjkx9m3CFWjsLraS2i0brHrFt_hyFZ_2BmCfd8yNh4dbk2iTlUAliPyJiqVT3IpTQ7QBuAlc8xzwDySK5cpYUspCy8YwGieeSkUk5bZ3HHhUydTlRcc5r1FbgvOFe6ofLzdR_5MJIHYFznkIg7Ip62iAkYSmxC2ysAPCEkDPBPlxa_kwSAX8F82CClu_JA86LApHbTO9IgsuekKuT84nXf8HG6F3NkOSsCLx-T3gLZkItR0WgvgimeWon4c_oGjZ-E6ezVf0MpT03ytamQwgBEzVFdG8eKaYnMLrUPhIIJ5Suov3HmE3Z94g4m2lYWaridKxn9-_AQYITfew0B6pe6O0wOKpV2rS7Ogo24JNR2axtCWlJ2ub42GXzaekKMbMddTsjytpu4ZoTaLFcsBYsIZS_jcmlJyQDOJT03KvS9WSdybRNuOIR2FOs41nJTQihqtqBOm0YoarbhK3l1-MmvpQa4b_AntfDkQmb3Dg2p-qrtAoWNWKga4EOJkKriRJnMsx_bgXCRGSJhkrfcS3YWbWv_bHM-vf_2a3J0c7u_pvZ2D3RfkHq4KvTJJ18hyM79wLwFhNcWr4NaUnNz0PvoLiZw0vQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLXKVCBY8CggCgW8AKlFSmfiOLGNhNC006GltAKViu5M4thVRZkMk4zQsOIf-BcW_Ao7voR7E6dUIHXXBdvEY1meY9_j-N5zCHmUZCGzWeYCw3s2wNLOQLk8DpJcKebSyLhau3NnN9nc5y8P4oM58qOthcG0ynZPrDfqvDD4jbzL4BwHXAUw2XU-LeL1YPh8_ClABym8aW3tNBqIbNvZZzi-lc-2BvBfP2ZsuPF2fTPwDgMwNC6rIFculEKkEmgOUE1mmYuA_4hI2URxkwuROc6AUkeJE1wxYZiRNuIutiJWMoug3wtkXiYyZh0yvzbcefOujQMJD2uZX1SUCyLgQc2dKjAm3oVNLK_VAiGEAE7RbPxUVKzNA_6JDXXAG14jP9upavJcPqxOq2zVfPlLRfL_nMvr5Krn4bTfLJwbZM6OFsiV_uHEa5HYBXLxRe16PLtJvvdpI5xCU-8rAcvuyFD0ysOvjfSoTt0vJjNaOJpWH4sS1RqgxRidpNGouaRYyEPL-pIkgH5y6qb2OMBKV8zWos0tSkmXQyV6v75-A8okVp5CQ3oqxwC7B8ZOfVlPNaMbfgglHaRVShsBerq8vjHYW7lF9s9lCm-TzqgY2TuEmqSnmAQ6DedJ7qRJcxEBcwtdnMaRc9ki6bWA08arwaMpybGGUyFiVCNGdcg0YlQjRhfJk5OfjBsplLMaryGKTxqiinn9oJgcar8p6h7LFQMODDEh5lEq0sQyiaXQkocpF9DJUotf7bfWUv8B792zXz8klwDV-tXW7vY9chkHhUsujJdIp5pM7X0gk1X2wK9aSt6fN7h_A00-gMY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+global+anthropogenic+emission+inventory+of+atmospheric+pollutants+from+sector-+and+fuel-specific+sources+%281970%E2%80%932017%29%3A+an+application+of+the+Community+Emissions+Data+System+%28CEDS%29&rft.jtitle=Earth+system+science+data&rft.au=McDuffie%2C+Erin+E&rft.au=Smith%2C+Steven+J&rft.au=O%27Rourke%2C+Patrick&rft.au=Tibrewal%2C+Kushal&rft.date=2020-12-15&rft.pub=Copernicus+GmbH&rft.issn=1866-3508&rft.eissn=1866-3516&rft.volume=12&rft.issue=4&rft.spage=3413&rft.epage=3442&rft_id=info:doi/10.5194%2Fessd-12-3413-2020&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1866-3516&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1866-3516&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1866-3516&client=summon |