Fabrication and reliability evaluation of Yb0.3Co4Sb12/Mo–Ti/Mo–Cu/Ni thermoelectric joints

Joining p- and n-type thermoelectric materials with electrodes is the key technique to fabricate a thermoelectric device. Due to its large oxidation resistance and good weld adaptability, Ni is a good electrode material in practical applications. However, the diffusion between Ni and skutterudite th...

Full description

Saved in:
Bibliographic Details
Published inCeramics international Vol. 41; no. 6; pp. 7590 - 7595
Main Authors Fan, X.C., Gu, M., Shi, X., Chen, L.D., Bai, S.Q., Nunna, R.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Joining p- and n-type thermoelectric materials with electrodes is the key technique to fabricate a thermoelectric device. Due to its large oxidation resistance and good weld adaptability, Ni is a good electrode material in practical applications. However, the diffusion between Ni and skutterudite thermoelectric materials limits its application in fabricating a skutterudite-based device. In this study, Mo–Cu and Mo–Ti alloys were designed as the buffer and barrier layers respectively to join Ni electrodes with Yb0.3Co4Sb12 by a one-step spark plasma sintering process. A thermal shock test between 25°C and 550°C allowed us to conclude that Mo55Cu45 alloy is the most suitable buffer layer, which can greatly reduce thermal residual stress. The influence of Mo content on the evolution of the Mo–Ti/Yb0.3Co4Sb12 interfacial microstructure and electrical contact resistance during the accelerated aging at 550°C was studied. After adding a small amount of Mo to Ti, the growth rate of the diffusion layer between Ti and Yb0.3Co4Sb12 decreased. The contact resistivity remained below 9μΩcm2 after 12 days of aging at 550°C, indicating that the joints had high thermal duration stability. However, excess Mo will lead to a CTE mismatch between Mo–Ti and Yb0.3Co4Sb12. Thus, it has been concluded that 5at% of Mo is the optimum composition.
AbstractList Joining p- and n-type thermoelectric materials with electrodes is the key technique to fabricate a thermoelectric device. Due to its large oxidation resistance and good weld adaptability, Ni is a good electrode material in practical applications. However, the diffusion between Ni and skutterudite thermoelectric materials limits its application in fabricating a skutterudite-based device. In this study, Mo–Cu and Mo–Ti alloys were designed as the buffer and barrier layers respectively to join Ni electrodes with Yb0.3Co4Sb12 by a one-step spark plasma sintering process. A thermal shock test between 25°C and 550°C allowed us to conclude that Mo55Cu45 alloy is the most suitable buffer layer, which can greatly reduce thermal residual stress. The influence of Mo content on the evolution of the Mo–Ti/Yb0.3Co4Sb12 interfacial microstructure and electrical contact resistance during the accelerated aging at 550°C was studied. After adding a small amount of Mo to Ti, the growth rate of the diffusion layer between Ti and Yb0.3Co4Sb12 decreased. The contact resistivity remained below 9μΩcm2 after 12 days of aging at 550°C, indicating that the joints had high thermal duration stability. However, excess Mo will lead to a CTE mismatch between Mo–Ti and Yb0.3Co4Sb12. Thus, it has been concluded that 5at% of Mo is the optimum composition.
Author Chen, L.D.
Nunna, R.
Bai, S.Q.
Fan, X.C.
Gu, M.
Shi, X.
Author_xml – sequence: 1
  givenname: X.C.
  surname: Fan
  fullname: Fan, X.C.
  organization: State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 DingXi Road, Shanghai 200050, China
– sequence: 2
  givenname: M.
  surname: Gu
  fullname: Gu, M.
  organization: CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
– sequence: 3
  givenname: X.
  surname: Shi
  fullname: Shi, X.
  organization: State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 DingXi Road, Shanghai 200050, China
– sequence: 4
  givenname: L.D.
  surname: Chen
  fullname: Chen, L.D.
  organization: State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 DingXi Road, Shanghai 200050, China
– sequence: 5
  givenname: S.Q.
  surname: Bai
  fullname: Bai, S.Q.
  email: bsq@mail.sic.ac.cn
  organization: CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
– sequence: 6
  givenname: R.
  surname: Nunna
  fullname: Nunna, R.
  organization: State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 DingXi Road, Shanghai 200050, China
BookMark eNqFkEtOwzAURS0EEm1hCygbSOp_nBkoooBUYEAZMLIc51k4SmPkpJU6Yw_skJWQKjBmdAdP9-i-M0enXegAoSuCM4KJXDaZhWi2vhsyionIMM2wYidoRlTOUlYIeYpmmOY0VYrTczTv-waPxYLjGdIrU0VvzeBDl5iuTiK03lS-9cMhgb1pd9MpuOStwhkrA3-pCF0-hu_Pr42fstwtn3wyvEPcBmjBDiMxacK4qL9AZ860PVz-5gK9rm435X26fr57KG_WqeVcDWnNam5rKUAVUgkrMeaCWuNERY1kQhBKHRUKnClcXglR55U0knPqLLG5BbZAcuLaGPo-gtMf0W9NPGiC9VGTbvSfJn3UpDHVo6axeD0VYVy39xB1bz10Fmofx090Hfx_iB8saXiG
CitedBy_id crossref_primary_10_1016_j_jallcom_2016_05_268
crossref_primary_10_1002_ente_202001008
crossref_primary_10_1016_j_jallcom_2015_11_057
crossref_primary_10_1039_C5CP04000K
crossref_primary_10_1016_j_jmat_2024_02_015
crossref_primary_10_1016_j_vacuum_2023_112196
crossref_primary_10_1002_aenm_202102012
crossref_primary_10_1016_j_jmat_2019_04_004
crossref_primary_10_1007_s11664_017_5306_2
crossref_primary_10_1016_j_ceramint_2015_12_061
crossref_primary_10_1007_s11664_018_6091_2
crossref_primary_10_1021_acsami_3c14591
crossref_primary_10_1016_j_jallcom_2024_175185
crossref_primary_10_1016_j_ceramint_2022_05_131
crossref_primary_10_1039_D1DT04001D
crossref_primary_10_1016_j_measurement_2024_114811
crossref_primary_10_1007_s11669_020_00799_0
crossref_primary_10_1021_acsami_3c01623
crossref_primary_10_1016_j_jallcom_2019_152917
crossref_primary_10_1002_cnma_202200551
crossref_primary_10_1016_j_ceramint_2016_02_001
crossref_primary_10_1021_acsaem_8b00064
crossref_primary_10_1039_D0TA06471H
crossref_primary_10_1016_j_mtener_2023_101370
crossref_primary_10_1016_j_jallcom_2016_12_386
crossref_primary_10_3390_ma13051130
crossref_primary_10_1016_j_actamat_2022_118455
crossref_primary_10_1016_j_calphad_2017_09_004
crossref_primary_10_1063_1_5046826
crossref_primary_10_1016_S1003_6326_16_64202_4
crossref_primary_10_1021_acsami_0c14180
crossref_primary_10_3390_app7090952
Cites_doi 10.1126/science.272.5266.1325
10.1016/j.mseb.2010.02.022
10.1103/PhysRevB.56.15081
10.1016/j.microrel.2011.03.033
10.1016/0038-1101(82)90036-3
10.1149/1.2749330
10.1016/j.jallcom.2014.05.087
10.1016/j.applthermaleng.2014.01.074
10.1063/1.3598116
10.1016/j.mseb.2013.06.023
10.1016/j.ceramint.2012.11.051
10.1063/1.2180449
10.1016/j.jallcom.2013.09.124
10.1016/j.mssp.2010.10.016
10.1557/jmr.2011.84
10.1016/j.jallcom.2011.12.130
ContentType Journal Article
Copyright 2015 Elsevier Ltd and Techna Group S.r.l.
Copyright_xml – notice: 2015 Elsevier Ltd and Techna Group S.r.l.
DBID AAYXX
CITATION
DOI 10.1016/j.ceramint.2015.02.083
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3956
EndPage 7595
ExternalDocumentID 10_1016_j_ceramint_2015_02_083
S0272884215003028
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SMS
SPC
SPCBC
SSM
SSZ
T5K
WUQ
XPP
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
ID FETCH-LOGICAL-c448t-d3d4cd65e89685c600452caf5b2a6355122f258efa9f7b55d7b6a6442fc1c7ce3
IEDL.DBID AIKHN
ISSN 0272-8842
IngestDate Thu Sep 26 16:33:25 EDT 2024
Fri Feb 23 02:30:34 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords TE
E. Electrode
CTE
C. Thermal shock resistance
Yb–SKD
SEM
SKD
C. Diffusion
EPMA
B. Interface
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c448t-d3d4cd65e89685c600452caf5b2a6355122f258efa9f7b55d7b6a6442fc1c7ce3
PageCount 6
ParticipantIDs crossref_primary_10_1016_j_ceramint_2015_02_083
elsevier_sciencedirect_doi_10_1016_j_ceramint_2015_02_083
PublicationCentury 2000
PublicationDate 2015-07-01
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-07-01
  day: 01
PublicationDecade 2010
PublicationTitle Ceramics international
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ballikaya, Uher (bib5) 2014; 585
Gu, Xia, Li, Chen (bib18) 2014; 610
Sales, Chakoumakos, Keppens (bib8) 1997; B56
Zhao, Teng (bib16) 2012; 517
Zhang, Rogl, Grytsiva, Pucheggerc, Koppensteinerd (bib11) 2010; 170
Sales, Williams (bib7) 1996; 272
Geng, Wang (bib14) 2003; 6
Wojciechowski, Zybala, Mania (bib15) 2011; 51
Gray (bib1) 1972
Cao, Lu, Hu (bib13) 2011; 32
Liao, Chen (bib20) 2007; 10
Shi, Bai (bib6) 2011; 26
Marlow (bib19) 1982; 25
Zhao, Tan (bib3) 2014; 66
Dong, Huang, Zhou, Wan, Chen (bib9) 2013; 39
Salvadora, Waldoa, Wonga, Tessemab (bib10) 2013; B178
Yang, Liu, Zhang (bib12) 2011; 109
Daefalla, Tawati, Jamel Basha (bib4) 2014; 30
Funahashi, Mikami, Mihara, Urata, Ando (bib2) 2013; 99
Zhao, Tang, Liu, Chen (bib17) 2010; 13
Dong (10.1016/j.ceramint.2015.02.083_bib9) 2013; 39
Wojciechowski (10.1016/j.ceramint.2015.02.083_bib15) 2011; 51
Sales (10.1016/j.ceramint.2015.02.083_bib8) 1997; B56
Yang (10.1016/j.ceramint.2015.02.083_bib12) 2011; 109
Zhao (10.1016/j.ceramint.2015.02.083_bib16) 2012; 517
Geng (10.1016/j.ceramint.2015.02.083_bib14) 2003; 6
Liao (10.1016/j.ceramint.2015.02.083_bib20) 2007; 10
Daefalla (10.1016/j.ceramint.2015.02.083_bib4) 2014; 30
Zhao (10.1016/j.ceramint.2015.02.083_bib17) 2010; 13
Zhang (10.1016/j.ceramint.2015.02.083_bib11) 2010; 170
Marlow (10.1016/j.ceramint.2015.02.083_bib19) 1982; 25
Sales (10.1016/j.ceramint.2015.02.083_bib7) 1996; 272
Gray (10.1016/j.ceramint.2015.02.083_bib1) 1972
Funahashi (10.1016/j.ceramint.2015.02.083_bib2) 2013; 99
Cao (10.1016/j.ceramint.2015.02.083_bib13) 2011; 32
Ballikaya (10.1016/j.ceramint.2015.02.083_bib5) 2014; 585
Gu (10.1016/j.ceramint.2015.02.083_bib18) 2014; 610
Zhao (10.1016/j.ceramint.2015.02.083_bib3) 2014; 66
Shi (10.1016/j.ceramint.2015.02.083_bib6) 2011; 26
Salvadora (10.1016/j.ceramint.2015.02.083_bib10) 2013; B178
References_xml – volume: B178
  start-page: 1087
  year: 2013
  end-page: 1096
  ident: bib10
  article-title: Thermoelectric and mechanical properties of melt spun and spark plasma sintered n-type Yb- and Ba-filled skutterudites
  publication-title: Mater. Sci. Eng.
  contributor:
    fullname: Tessemab
– volume: B56
  start-page: 15081
  year: 1997
  end-page: 15089
  ident: bib8
  article-title: Filled skutterudite antimonides: electron crystals and phonon glasses
  publication-title: Phys. Rev.
  contributor:
    fullname: Keppens
– volume: 585
  start-page: 168
  year: 2014
  end-page: 172
  ident: bib5
  article-title: Enhanced thermoelectric performance of optimized Ba, Yb filled and Fe substituted skutterudite compounds
  publication-title: J. Alloy. Compd.
  contributor:
    fullname: Uher
– volume: 6
  start-page: 335
  year: 2003
  end-page: 339
  ident: bib14
  article-title: High temperaure oxiation behavior of pure Ni and its sputtered nanocrystalline coating
  publication-title: J. China Soc. Corros. Prot.
  contributor:
    fullname: Wang
– volume: 39
  start-page: 4551
  year: 2013
  end-page: 4557
  ident: bib9
  article-title: Improved oxidation resistance of thermoelectric skutterudites coated with composite glass
  publication-title: Ceram. Int.
  contributor:
    fullname: Chen
– start-page: 4
  year: 1972
  end-page: 120
  ident: bib1
  publication-title: American Institute of Physics Handbook
  contributor:
    fullname: Gray
– volume: 10
  start-page: 23
  year: 2007
  end-page: 25
  ident: bib20
  article-title: Effect of interfacial compound formation on contact resistivity of soldered junctions between bismuth telluride-based thermoelements and copper
  publication-title: Electrochem. Solid-State Lett.
  contributor:
    fullname: Chen
– volume: 51
  start-page: 1198
  year: 2011
  end-page: 1202
  ident: bib15
  article-title: High temperature CoSb
  publication-title: Microelectron. Reliab.
  contributor:
    fullname: Mania
– volume: 26
  start-page: 1745
  year: 2011
  end-page: 1754
  ident: bib6
  article-title: Realization of high thermoelectric performance in n-type partially filled skutterudites
  publication-title: J. Mater. Res.
  contributor:
    fullname: Bai
– volume: 170
  start-page: 26
  year: 2010
  end-page: 31
  ident: bib11
  article-title: Mechanical properties of filled antimonide skutterudites
  publication-title: Mater. Sci. Eng. B
  contributor:
    fullname: Koppensteinerd
– volume: 25
  start-page: 91
  year: 1982
  end-page: 94
  ident: bib19
  article-title: The effect of contact size and non-zero metal resistance on the determination of specific contact resistance
  publication-title: Solid-State Electron.
  contributor:
    fullname: Marlow
– volume: 517
  start-page: 198
  year: 2012
  end-page: 203
  ident: bib16
  article-title: Fabrication and reliability evaluation of CoSb
  publication-title: J. Alloy. Compd.
  contributor:
    fullname: Teng
– volume: 99
  start-page: 066117
  year: 2013
  ident: bib2
  article-title: A portable thermoelectric power generating module composed of oxide devices
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Ando
– volume: 610
  start-page: 665
  year: 2014
  end-page: 670
  ident: bib18
  article-title: Microstructural evolution of the interfacial layer in the Ti–Al/Yb
  publication-title: J. Alloy. Compd.
  contributor:
    fullname: Chen
– volume: 272
  start-page: 1325
  year: 1996
  end-page: 1328
  ident: bib7
  article-title: Filled skutterudite antimonides: a new class of thermoelectric materials
  publication-title: Science
  contributor:
    fullname: Williams
– volume: 109
  start-page: 123517
  year: 2011
  ident: bib12
  article-title: Thermodynamic and mechanical properties of crystalline CoSb
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Zhang
– volume: 32
  start-page: 147
  year: 2011
  end-page: 150
  ident: bib13
  article-title: Effect of microstructure and temperature on oxidation behavior of pure copper
  publication-title: Trans. Mater. Heat Treat.
  contributor:
    fullname: Hu
– volume: 30
  start-page: 1737
  year: 2014
  end-page: 1739
  ident: bib4
  article-title: Thermoelectric power (TEP) of semiconducting CoO–NiO–P
  publication-title: Ceram. Int.
  contributor:
    fullname: Jamel Basha
– volume: 13
  start-page: 221
  year: 2010
  end-page: 224
  ident: bib17
  article-title: Fabrication of a CoSb
  publication-title: Mater. Sci. Semicond. Process.
  contributor:
    fullname: Chen
– volume: 66
  start-page: 15
  year: 2014
  end-page: 24
  ident: bib3
  article-title: A review of thermoelectric cooling: materials, modeling and applications
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Tan
– volume: 272
  start-page: 1325
  year: 1996
  ident: 10.1016/j.ceramint.2015.02.083_bib7
  article-title: Filled skutterudite antimonides: a new class of thermoelectric materials
  publication-title: Science
  doi: 10.1126/science.272.5266.1325
  contributor:
    fullname: Sales
– volume: 170
  start-page: 26
  year: 2010
  ident: 10.1016/j.ceramint.2015.02.083_bib11
  article-title: Mechanical properties of filled antimonide skutterudites
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/j.mseb.2010.02.022
  contributor:
    fullname: Zhang
– volume: 6
  start-page: 335
  year: 2003
  ident: 10.1016/j.ceramint.2015.02.083_bib14
  article-title: High temperaure oxiation behavior of pure Ni and its sputtered nanocrystalline coating
  publication-title: J. China Soc. Corros. Prot.
  contributor:
    fullname: Geng
– volume: B56
  start-page: 15081
  year: 1997
  ident: 10.1016/j.ceramint.2015.02.083_bib8
  article-title: Filled skutterudite antimonides: electron crystals and phonon glasses
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevB.56.15081
  contributor:
    fullname: Sales
– volume: 51
  start-page: 1198
  year: 2011
  ident: 10.1016/j.ceramint.2015.02.083_bib15
  article-title: High temperature CoSb3–Cu junctions
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2011.03.033
  contributor:
    fullname: Wojciechowski
– volume: 32
  start-page: 147
  year: 2011
  ident: 10.1016/j.ceramint.2015.02.083_bib13
  article-title: Effect of microstructure and temperature on oxidation behavior of pure copper
  publication-title: Trans. Mater. Heat Treat.
  contributor:
    fullname: Cao
– volume: 25
  start-page: 91
  year: 1982
  ident: 10.1016/j.ceramint.2015.02.083_bib19
  article-title: The effect of contact size and non-zero metal resistance on the determination of specific contact resistance
  publication-title: Solid-State Electron.
  doi: 10.1016/0038-1101(82)90036-3
  contributor:
    fullname: Marlow
– volume: 10
  start-page: 23
  year: 2007
  ident: 10.1016/j.ceramint.2015.02.083_bib20
  article-title: Effect of interfacial compound formation on contact resistivity of soldered junctions between bismuth telluride-based thermoelements and copper
  publication-title: Electrochem. Solid-State Lett.
  doi: 10.1149/1.2749330
  contributor:
    fullname: Liao
– start-page: 4
  year: 1972
  ident: 10.1016/j.ceramint.2015.02.083_bib1
  contributor:
    fullname: Gray
– volume: 610
  start-page: 665
  year: 2014
  ident: 10.1016/j.ceramint.2015.02.083_bib18
  article-title: Microstructural evolution of the interfacial layer in the Ti–Al/Yb0.6Co4Sb12 thermoelectric joints at high temperature
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2014.05.087
  contributor:
    fullname: Gu
– volume: 66
  start-page: 15
  year: 2014
  ident: 10.1016/j.ceramint.2015.02.083_bib3
  article-title: A review of thermoelectric cooling: materials, modeling and applications
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2014.01.074
  contributor:
    fullname: Zhao
– volume: 109
  start-page: 123517
  year: 2011
  ident: 10.1016/j.ceramint.2015.02.083_bib12
  article-title: Thermodynamic and mechanical properties of crystalline CoSb3: a molecular dynamics simulation study
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3598116
  contributor:
    fullname: Yang
– volume: 30
  start-page: 1737
  year: 2014
  ident: 10.1016/j.ceramint.2015.02.083_bib4
  article-title: Thermoelectric power (TEP) of semiconducting CoO–NiO–P2O5 glasses
  publication-title: Ceram. Int.
  contributor:
    fullname: Daefalla
– volume: B178
  start-page: 1087
  year: 2013
  ident: 10.1016/j.ceramint.2015.02.083_bib10
  article-title: Thermoelectric and mechanical properties of melt spun and spark plasma sintered n-type Yb- and Ba-filled skutterudites
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/j.mseb.2013.06.023
  contributor:
    fullname: Salvadora
– volume: 39
  start-page: 4551
  year: 2013
  ident: 10.1016/j.ceramint.2015.02.083_bib9
  article-title: Improved oxidation resistance of thermoelectric skutterudites coated with composite glass
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2012.11.051
  contributor:
    fullname: Dong
– volume: 99
  start-page: 066117
  year: 2013
  ident: 10.1016/j.ceramint.2015.02.083_bib2
  article-title: A portable thermoelectric power generating module composed of oxide devices
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2180449
  contributor:
    fullname: Funahashi
– volume: 585
  start-page: 168
  year: 2014
  ident: 10.1016/j.ceramint.2015.02.083_bib5
  article-title: Enhanced thermoelectric performance of optimized Ba, Yb filled and Fe substituted skutterudite compounds
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2013.09.124
  contributor:
    fullname: Ballikaya
– volume: 13
  start-page: 221
  year: 2010
  ident: 10.1016/j.ceramint.2015.02.083_bib17
  article-title: Fabrication of a CoSb3-based thermoelectric module
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2010.10.016
  contributor:
    fullname: Zhao
– volume: 26
  start-page: 1745
  year: 2011
  ident: 10.1016/j.ceramint.2015.02.083_bib6
  article-title: Realization of high thermoelectric performance in n-type partially filled skutterudites
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2011.84
  contributor:
    fullname: Shi
– volume: 517
  start-page: 198
  year: 2012
  ident: 10.1016/j.ceramint.2015.02.083_bib16
  article-title: Fabrication and reliability evaluation of CoSb3/W–Cu thermoelectric element
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2011.12.130
  contributor:
    fullname: Zhao
SSID ssj0016940
Score 2.3122892
Snippet Joining p- and n-type thermoelectric materials with electrodes is the key technique to fabricate a thermoelectric device. Due to its large oxidation resistance...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 7590
SubjectTerms B. Interface
C. Diffusion
C. Thermal shock resistance
E. Electrode
Title Fabrication and reliability evaluation of Yb0.3Co4Sb12/Mo–Ti/Mo–Cu/Ni thermoelectric joints
URI https://dx.doi.org/10.1016/j.ceramint.2015.02.083
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGH7Zx0UP4ifOj5GD165r2qbpcQzHVLbLNpinkKQpdLh21O3gRfwP_kN_icna6gTBgxAoCbwQnqTvR_K-TwBuXNUVSghuYSJdy3O6oUVdSixFlLmmUoHwTO3waEyGM-9-7s9r0K9qYUxaZan7C52-1dbliF2iaa-SxJ7ogApT6mmbZXYqpnVoanOEaQOavbuH4fjrMoGEXnHUEuifXwvsFAovOlLlfJmkJq3S8bf0ndT93Ubt2J3BIRyUDiPqFXM6gppKj2F_h0bwBNiAi7w8e0M8jVCunpKCf_sFfdN5oyxGj0LHz_3MmwgH26Ps4-19mhTf_sYeJ8i4g8useBsnkWiR6Tk_n8JscDvtD63y4QRL6mhrbUVu5MmI-IqGhPqSbHnTJY99gblxMByMY-xTFfMwDoTvR4EgXDtGOJaODKRyz6CRZqk6ByQJ0aOCKy48w2PIdXO7NMIKixBL3AK7goqtCn4MViWOLVgFLjPgsi5mGtwWhBWi7MdKM63E_5C9-IfsJeyZXpFqewWNdb5R19qhWIs21DuvTrvcNp8WSc0l
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGA5zO6gH8RPnZw5ea9e0TdPjKI7Obb1sg3kKSZpCh2tH3Q7e_A_-Q3-JydrqBMGDUCikvBCeJu_7JHnfJwDc2bLDJefMQFjYhmN1fIPYBBsSS31MJT3u6NrhUYTDqfM4c2cNENS1MDqtsvL9pU_feOuqxazQNJdpao7VggoR4qiYpUcqIjugpdiAr2Znq9sfhNHXYQL2nXKrxVOTXxlsFQrP74Us2CLNdFql5W7kO4n9e4zaiju9Q3BQEUbYLft0BBoyOwb7WzKCJ4D2GC-qvTfIshgW8jkt9bdf4becN8wT-MTV-jnInTG3kDnKP97eJ2n5DtZmlEJNBxd5eTdOKuA8V31-OQXT3sMkCI3q4gRDqNXWyojt2BExdiXxMXEF3uimC5a4HDFNMCyEEuQSmTA_8bjrxh7HTBEjlAhLeELaZ6CZ5Zk8B1BgrFo5k4w7WseQqcfukBhJxH0kUBuYNVR0Wepj0DpxbE5rcKkGl3YQVeC2gV8jSn_8aaqc-B-2F_-wvQW74WQ0pMN-NLgEe_pLmXZ7BZqrYi2vFblY8Ztq8HwCEJHPGQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fabrication+and+reliability+evaluation+of+Yb0.3Co4Sb12%2FMo%E2%80%93Ti%2FMo%E2%80%93Cu%2FNi+thermoelectric+joints&rft.jtitle=Ceramics+international&rft.au=Fan%2C+X.C.&rft.au=Gu%2C+M.&rft.au=Shi%2C+X.&rft.au=Chen%2C+L.D.&rft.date=2015-07-01&rft.issn=0272-8842&rft.volume=41&rft.issue=6&rft.spage=7590&rft.epage=7595&rft_id=info:doi/10.1016%2Fj.ceramint.2015.02.083&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ceramint_2015_02_083
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-8842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-8842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-8842&client=summon