Stable Responsive EMG Sequence Prediction and Adaptive Reinforcement With Temporal Convolutional Networks

Prediction of movement intentions from electromyographic (EMG) signals is typically performed with a pattern recognition approach, wherein a short dataframe of raw EMG is compressed into an instantaneous feature-encoding that is meaningful for classification. However, EMG signals are time-varying, i...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 67; no. 6; pp. 1707 - 1717
Main Authors Betthauser, Joseph L., Krall, John T., Bannowsky, Shain G., Levay, Gyorgy, Kaliki, Rahul R., Fifer, Matthew S., Thakor, Nitish V.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Prediction of movement intentions from electromyographic (EMG) signals is typically performed with a pattern recognition approach, wherein a short dataframe of raw EMG is compressed into an instantaneous feature-encoding that is meaningful for classification. However, EMG signals are time-varying, implying that a frame-wise approach may not sufficiently incorporate temporal context into predictions, leading to erratic and unstable prediction behavior. Objective: We demonstrate that sequential prediction models and, specifically, temporal convolutional networks are able to leverage useful temporal information from EMG to achieve superior predictive performance. Methods: We compare this approach to other sequential and frame-wise models predicting 3 simultaneous hand and wrist degrees-of-freedom from 2 amputee and 13 non-amputee human subjects in a minimally constrained experiment. We also compare these models on the publicly available Ninapro and CapgMyo amputee and non-amputee datasets. Results: Temporal convolutional networks yield predictions that are more accurate and stable <inline-formula><tex-math notation="LaTeX">(p < 0.001)</tex-math></inline-formula> than frame-wise models, especially during inter-class transitions, with an average response delay of 4.6 ms <inline-formula><tex-math notation="LaTeX">(p < 0.001)</tex-math></inline-formula> and simpler feature-encoding. Their performance can be further improved with adaptive reinforcement training. Significance: Sequential models that incorporate temporal information from EMG achieve superior movement prediction performance and these models allow for novel types of interactive training. Conclusions: Addressing EMG decoding as a sequential modeling problem will lead to enhancements in the reliability, responsiveness, and movement complexity available from prosthesis control systems.
AbstractList Prediction of movement intentions from electromyographic (EMG) signals is typically performed with a pattern recognition approach, wherein a short dataframe of raw EMG is compressed into an instantaneous feature-encoding that is meaningful for classification. However, EMG signals are time-varying, implying that a frame-wise approach may not sufficiently incorporate temporal context into predictions, leading to erratic and unstable prediction behavior. Objective: We demonstrate that sequential prediction models and, specifically, temporal convolutional networks are able to leverage useful temporal information from EMG to achieve superior predictive performance. Methods: We compare this approach to other sequential and frame-wise models predicting 3 simultaneous hand and wrist degrees-of-freedom from 2 amputee and 13 non-amputee human subjects in a minimally constrained experiment. We also compare these models on the publicly available Ninapro and CapgMyo amputee and non-amputee datasets. Results: Temporal convolutional networks yield predictions that are more accurate and stable <inline-formula><tex-math notation="LaTeX">(p < 0.001)</tex-math></inline-formula> than frame-wise models, especially during inter-class transitions, with an average response delay of 4.6 ms <inline-formula><tex-math notation="LaTeX">(p < 0.001)</tex-math></inline-formula> and simpler feature-encoding. Their performance can be further improved with adaptive reinforcement training. Significance: Sequential models that incorporate temporal information from EMG achieve superior movement prediction performance and these models allow for novel types of interactive training. Conclusions: Addressing EMG decoding as a sequential modeling problem will lead to enhancements in the reliability, responsiveness, and movement complexity available from prosthesis control systems.
Prediction of movement intentions from electromyographic (EMG) signals is typically performed with a pattern recognition approach, wherein a short dataframe of raw EMG is compressed into an instantaneous feature-encoding that is meaningful for classification. However, EMG signals are time-varying, implying that a frame-wise approach may not sufficiently incorporate temporal context into predictions, leading to erratic and unstable prediction behavior. Objective: We demonstrate that sequential prediction models and, specifically, temporal convolutional networks are able to leverage useful temporal information from EMG to achieve superior predictive performance. Methods: We compare this approach to other sequential and frame-wise models predicting 3 simultaneous hand and wrist degrees-of-freedom from 2 amputee and 13 non-amputee human subjects in a minimally constrained experiment. We also compare these models on the publicly available Ninapro and CapgMyo amputee and non-amputee datasets. Results: Temporal convolutional networks yield predictions that are more accurate and stable [Formula Omitted] than frame-wise models, especially during inter-class transitions, with an average response delay of 4.6 ms [Formula Omitted] and simpler feature-encoding. Their performance can be further improved with adaptive reinforcement training. Significance: Sequential models that incorporate temporal information from EMG achieve superior movement prediction performance and these models allow for novel types of interactive training. Conclusions: Addressing EMG decoding as a sequential modeling problem will lead to enhancements in the reliability, responsiveness, and movement complexity available from prosthesis control systems.
Prediction of movement intentions from electromyographic (EMG) signals is typically performed with a pattern recognition approach, wherein a short dataframe of raw EMG is compressed into an instantaneous feature-encoding that is meaningful for classification. However, EMG signals are time-varying, implying that a frame-wise approach may not sufficiently incorporate temporal context into predictions, leading to erratic and unstable prediction behavior.Prediction of movement intentions from electromyographic (EMG) signals is typically performed with a pattern recognition approach, wherein a short dataframe of raw EMG is compressed into an instantaneous feature-encoding that is meaningful for classification. However, EMG signals are time-varying, implying that a frame-wise approach may not sufficiently incorporate temporal context into predictions, leading to erratic and unstable prediction behavior.We demonstrate that sequential prediction models and, specifically, temporal convolutional networks are able to leverage useful temporal information from EMG to achieve superior predictive performance.OBJECTIVEWe demonstrate that sequential prediction models and, specifically, temporal convolutional networks are able to leverage useful temporal information from EMG to achieve superior predictive performance.We compare this approach to other sequential and frame-wise models predicting 3 simultaneous hand and wrist degrees-of-freedom from 2 amputee and 13 non-amputee human subjects in a minimally constrained experiment. We also compare these models on the publicly available Ninapro and CapgMyo amputee and non-amputee datasets.METHODSWe compare this approach to other sequential and frame-wise models predicting 3 simultaneous hand and wrist degrees-of-freedom from 2 amputee and 13 non-amputee human subjects in a minimally constrained experiment. We also compare these models on the publicly available Ninapro and CapgMyo amputee and non-amputee datasets.Temporal convolutional networks yield predictions that are more accurate and stable than frame-wise models, especially during inter-class transitions, with an average response delay of 4.6 ms and simpler feature-encoding. Their performance can be further improved with adaptive reinforcement training.RESULTSTemporal convolutional networks yield predictions that are more accurate and stable than frame-wise models, especially during inter-class transitions, with an average response delay of 4.6 ms and simpler feature-encoding. Their performance can be further improved with adaptive reinforcement training.Sequential models that incorporate temporal information from EMG achieve superior movement prediction performance and these models allow for novel types of interactive training.SIGNIFICANCESequential models that incorporate temporal information from EMG achieve superior movement prediction performance and these models allow for novel types of interactive training.Addressing EMG decoding as a sequential modeling problem will lead to enhancements in the reliability, responsiveness, and movement complexity available from prosthesis control systems.CONCLUSIONSAddressing EMG decoding as a sequential modeling problem will lead to enhancements in the reliability, responsiveness, and movement complexity available from prosthesis control systems.
Prediction of movement intentions from electromyographic (EMG) signals is typically performed with a pattern recognition approach, wherein a short dataframe of raw EMG is compressed into an instantaneous featureencoding that is meaningful for classification. However, EMG signals are time-varying, implying that a frame-wise approach may not sufficiently incorporate temporal context into predictions, leading to erratic and unstable prediction behavior.
Prediction of movement intentions from electromyographic (EMG) signals is typically performed with a pattern recognition approach, wherein a short dataframe of raw EMG is compressed into an instantaneous feature-encoding that is meaningful for classification. However, EMG signals are time-varying, implying that a frame-wise approach may not sufficiently incorporate temporal context into predictions, leading to erratic and unstable prediction behavior. We demonstrate that sequential prediction models and, specifically, temporal convolutional networks are able to leverage useful temporal information from EMG to achieve superior predictive performance. We compare this approach to other sequential and frame-wise models predicting 3 simultaneous hand and wrist degrees-of-freedom from 2 amputee and 13 non-amputee human subjects in a minimally constrained experiment. We also compare these models on the publicly available Ninapro and CapgMyo amputee and non-amputee datasets. Temporal convolutional networks yield predictions that are more accurate and stable than frame-wise models, especially during inter-class transitions, with an average response delay of 4.6 ms and simpler feature-encoding. Their performance can be further improved with adaptive reinforcement training. Sequential models that incorporate temporal information from EMG achieve superior movement prediction performance and these models allow for novel types of interactive training. Addressing EMG decoding as a sequential modeling problem will lead to enhancements in the reliability, responsiveness, and movement complexity available from prosthesis control systems.
Author Fifer, Matthew S.
Bannowsky, Shain G.
Levay, Gyorgy
Betthauser, Joseph L.
Krall, John T.
Thakor, Nitish V.
Kaliki, Rahul R.
Author_xml – sequence: 1
  givenname: Joseph L.
  orcidid: 0000-0002-7173-1703
  surname: Betthauser
  fullname: Betthauser, Joseph L.
  email: jbettha1@jhu.edu
  organization: Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, USA
– sequence: 2
  givenname: John T.
  orcidid: 0000-0002-2636-1205
  surname: Krall
  fullname: Krall, John T.
  organization: Department of Biomedical EngineeringThe Johns Hopkins University
– sequence: 3
  givenname: Shain G.
  surname: Bannowsky
  fullname: Bannowsky, Shain G.
  organization: Department of Biomedical EngineeringThe Johns Hopkins University
– sequence: 4
  givenname: Gyorgy
  surname: Levay
  fullname: Levay, Gyorgy
  organization: Infinite Biomedical TechnologiesLLC
– sequence: 5
  givenname: Rahul R.
  surname: Kaliki
  fullname: Kaliki, Rahul R.
  organization: Infinite Biomedical TechnologiesLLC
– sequence: 6
  givenname: Matthew S.
  orcidid: 0000-0003-3425-7552
  surname: Fifer
  fullname: Fifer, Matthew S.
  organization: Research and Exploratory Development DepartmentJohns Hopkins University Applied Physics Lab
– sequence: 7
  givenname: Nitish V.
  orcidid: 0000-0002-9981-9395
  surname: Thakor
  fullname: Thakor, Nitish V.
  organization: Department of Biomedical EngineeringThe Johns Hopkins University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31545709$$D View this record in MEDLINE/PubMed
BookMark eNp9kk9v1DAQxS1URLeFD4CQUCQuXLL4bxKfUFktBakF1C7iaDn2hLpk7WAni_j2ONptBT3gizWa3xs9z_MJOvLBA0LPCV4SguWbzbvL9ZJiIpdUcsawfIQWRIimpIKRI7TAmDSlzL1jdJLSbS55w6sn6JgRwUWN5QK561G3PRRXkIbgk9tBsb48L67h5wTeQPElgnVmdMEX2tvizOphnKErcL4L0cAW_Fh8c-NNsYHtEKLui1Xwu9BPsyhXn2D8FeKP9BQ97nSf4NnhPkVf3683qw_lxefzj6uzi9Jw3oyl6awkLReWU4OZbYgxpDWCgxTa1BWrsO4EAOnqytqqIboFIjppuagqSoCxU_R2P3eY2i1Yk_1lU2qIbqvjbxW0U_92vLtR38NOEcxlTRnNE14fJsSQ15BGtXXJQN9rD2FKilJZ5SNpk9FXD9DbMMX87ExxLGrGqmq29PJvS_de7mLIQL0HTAwpReiUcaOeF5gduj5bU3Pgag5czYGrQ-BZSR4o74b_T_Nir3EAcM83-WvUWLA_HZa32w
CODEN IEBEAX
CitedBy_id crossref_primary_10_1007_s11063_024_11690_1
crossref_primary_10_1109_JSEN_2022_3194678
crossref_primary_10_1007_s10489_022_03297_7
crossref_primary_10_1109_MSP_2021_3057298
crossref_primary_10_1371_journal_pone_0276436
crossref_primary_10_1016_j_compbiomed_2024_109479
crossref_primary_10_1186_s42234_021_00062_y
crossref_primary_10_1109_TNSRE_2022_3193666
crossref_primary_10_3390_prosthesis5040088
crossref_primary_10_1088_1741_2552_ac6d7b
crossref_primary_10_1109_JSEN_2023_3345731
crossref_primary_10_1109_ACCESS_2021_3052305
crossref_primary_10_1016_j_inffus_2023_01_002
crossref_primary_10_1016_j_eswa_2023_120445
crossref_primary_10_1109_THMS_2024_3371099
crossref_primary_10_1016_j_ins_2024_120667
crossref_primary_10_3390_s22103661
crossref_primary_10_1109_ACCESS_2021_3114341
crossref_primary_10_1016_j_bspc_2025_107771
crossref_primary_10_1038_s41597_022_01484_2
crossref_primary_10_1109_JSEN_2024_3377247
crossref_primary_10_1016_j_bbe_2022_02_005
crossref_primary_10_1016_j_measurement_2023_113944
crossref_primary_10_1109_TBME_2023_3274053
crossref_primary_10_1109_LRA_2021_3091698
crossref_primary_10_1109_TCDS_2022_3167042
crossref_primary_10_1109_TBME_2023_3261336
crossref_primary_10_3389_fnins_2021_621885
crossref_primary_10_1016_j_bspc_2024_106686
crossref_primary_10_1109_JSEN_2021_3098120
crossref_primary_10_1088_1741_2552_abe20d
crossref_primary_10_1109_TNSRE_2024_3523943
crossref_primary_10_3390_s22051694
crossref_primary_10_1016_j_bspc_2023_105846
crossref_primary_10_1088_1741_2552_ac89b4
crossref_primary_10_1002_ar_25004
crossref_primary_10_1109_TIM_2023_3291798
crossref_primary_10_1080_10255842_2023_2287419
crossref_primary_10_1109_JBHI_2024_3457026
crossref_primary_10_3389_fnins_2021_657958
Cites_doi 10.1109/TBME.2003.813539
10.1038/srep36571
10.1016/S0893-6080(99)00032-5
10.1109/10.204774
10.1109/ICRA.2016.7487305
10.1109/MASSP.1986.1165342
10.1162/neco.1997.9.8.1735
10.3389/fnbot.2016.00009
10.1038/35016072
10.1007/978-3-319-46487-9_3
10.1109/TNSRE.2016.2562180
10.1109/TNSRE.2018.2861465
10.1016/j.neuron.2017.05.025
10.1109/CVPRW.2017.207
10.1145/3065386
10.1016/j.neunet.2005.06.042
10.1109/EMBC.2015.7318567
10.1109/TBME.2011.2113182
10.1142/S0219843612500077
10.1111/aor.13004
10.1109/TBME.2013.2296274
10.1186/1743-0003-8-25
10.2307/2280779
10.1109/CVPR.2017.113
10.1109/TBME.2017.2719400
10.1109/NER.2019.8717169
10.1002/1099-1115(200012)14:8<829::AID-ACS623>3.0.CO;2-L
10.1109/TIT.1967.1053964
10.1613/jair.953
10.1109/TNSRE.2007.891391
10.1109/JBHI.2018.2878907
10.1109/TBME.2004.836492
10.1109/TNSRE.2010.2100828
10.1109/TBME.2013.2238939
10.1109/TPAMI.2016.2644615
10.1109/TBME.2011.2155063
10.1371/journal.pone.0186132
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
DOI 10.1109/TBME.2019.2943309
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 1717
ExternalDocumentID PMC10497232
31545709
10_1109_TBME_2019_2943309
8846705
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Johns Hopkins University Applied Physics Laboratory Graduate Research Fellowship
– fundername: NINDS NIH HHS
  grantid: U44 NS108894
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
ID FETCH-LOGICAL-c448t-cfd91b45d42c03d81cc1bc54e95ac76360af5ee1f76dd681abe15f9d456621e33
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Thu Aug 21 18:36:28 EDT 2025
Fri Jul 11 16:43:43 EDT 2025
Mon Jun 30 10:11:56 EDT 2025
Thu Apr 03 06:56:59 EDT 2025
Tue Jul 01 03:28:32 EDT 2025
Thu Apr 24 22:55:37 EDT 2025
Wed Aug 27 02:39:28 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c448t-cfd91b45d42c03d81cc1bc54e95ac76360af5ee1f76dd681abe15f9d456621e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3425-7552
0000-0002-2636-1205
0000-0002-7173-1703
0000-0002-9981-9395
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/10497232
PMID 31545709
PQID 2405733663
PQPubID 85474
PageCount 11
ParticipantIDs proquest_journals_2405733663
pubmed_primary_31545709
proquest_miscellaneous_2296666928
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10497232
ieee_primary_8846705
crossref_citationtrail_10_1109_TBME_2019_2943309
crossref_primary_10_1109_TBME_2019_2943309
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
mendez (ref37) 0
ref12
ref15
ref36
ref14
ref31
ref33
ref11
ref10
ref2
ref1
ref39
ref17
ref16
ref19
ref18
breiman (ref40) 1984
ravitz (ref38) 2013; 31
chollet (ref42) 2018
ref46
ref24
ref45
ref23
ref26
ref25
ref20
ref41
atzori (ref34) 2014; 1
ref22
ref44
ref21
ref28
bai (ref27) 2018
ref29
ref8
ref7
levenshtein (ref32) 1966; 10
ref9
ref4
ref3
ref6
lea (ref43) 2018
ref5
luce (ref30) 1959
References_xml – year: 1959
  ident: ref30
  publication-title: Individual Choice Behavior A Theoretical Analysis
– ident: ref2
  doi: 10.1109/TBME.2003.813539
– ident: ref35
  doi: 10.1038/srep36571
– ident: ref3
  doi: 10.1016/S0893-6080(99)00032-5
– volume: 1
  year: 2014
  ident: ref34
  article-title: Electromyography data for non-invasive naturally-controlled robotic hand prostheses
  publication-title: Data Science Journal
– ident: ref1
  doi: 10.1109/10.204774
– ident: ref31
  doi: 10.1109/ICRA.2016.7487305
– ident: ref17
  doi: 10.1109/MASSP.1986.1165342
– ident: ref19
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref4
  doi: 10.3389/fnbot.2016.00009
– ident: ref29
  doi: 10.1038/35016072
– ident: ref24
  doi: 10.1007/978-3-319-46487-9_3
– ident: ref14
  doi: 10.1109/TNSRE.2016.2562180
– ident: ref6
  doi: 10.1109/TNSRE.2018.2861465
– year: 2018
  ident: ref43
– ident: ref22
  doi: 10.1016/j.neuron.2017.05.025
– ident: ref25
  doi: 10.1109/CVPRW.2017.207
– ident: ref46
  doi: 10.1145/3065386
– year: 2018
  ident: ref27
  article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling
– year: 2018
  ident: ref42
– ident: ref20
  doi: 10.1016/j.neunet.2005.06.042
– ident: ref33
  doi: 10.1109/EMBC.2015.7318567
– ident: ref10
  doi: 10.1109/TBME.2011.2113182
– ident: ref5
  doi: 10.1142/S0219843612500077
– ident: ref21
  doi: 10.1111/aor.13004
– ident: ref13
  doi: 10.1109/TBME.2013.2296274
– ident: ref7
  doi: 10.1186/1743-0003-8-25
– ident: ref44
  doi: 10.2307/2280779
– ident: ref26
  doi: 10.1109/CVPR.2017.113
– ident: ref12
  doi: 10.1109/TBME.2017.2719400
– ident: ref23
  doi: 10.1109/NER.2019.8717169
– ident: ref41
  doi: 10.1002/1099-1115(200012)14:8<829::AID-ACS623>3.0.CO;2-L
– ident: ref39
  doi: 10.1109/TIT.1967.1053964
– ident: ref45
  doi: 10.1613/jair.953
– year: 0
  ident: ref37
  article-title: Evaluation of classifiers performance using the Myo armband
  publication-title: Myoelectric Controls and Upper Limb Prosthetics Symposium MEC
– ident: ref15
  doi: 10.1109/TNSRE.2007.891391
– ident: ref9
  doi: 10.1109/JBHI.2018.2878907
– volume: 31
  start-page: 366
  year: 2013
  ident: ref38
  article-title: Revolutionizing prosthetics-Phase 3
  publication-title: Johns Hopkins APL Tech Dig
– ident: ref18
  doi: 10.1109/TBME.2004.836492
– ident: ref16
  doi: 10.1109/TNSRE.2010.2100828
– ident: ref8
  doi: 10.1109/TBME.2013.2238939
– ident: ref28
  doi: 10.1109/TPAMI.2016.2644615
– year: 1984
  ident: ref40
  publication-title: Classification and Regression Trees
– ident: ref11
  doi: 10.1109/TBME.2011.2155063
– volume: 10
  start-page: 707
  year: 1966
  ident: ref32
  article-title: Binary codes capable of correcting deletions, insertions, and reversals
  publication-title: Soviet Phys
– ident: ref36
  doi: 10.1371/journal.pone.0186132
SSID ssj0014846
Score 2.5447729
Snippet Prediction of movement intentions from electromyographic (EMG) signals is typically performed with a pattern recognition approach, wherein a short dataframe of...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1707
SubjectTerms Amputation
amputee
Amputees
Artificial Limbs
Biomedical monitoring
Computational modeling
Control systems
Convolution
Decoding
ED-TCN
Electromyographic (EMG)
Electromyography
Hand
Humans
latency
Movement
Networks
Neural networks
Pattern recognition
Performance prediction
Prediction models
Predictive models
Prostheses
Prosthetics
Recurrent neural networks
reinforcement
Reinforcement learning
Reproducibility of Results
sequence
Signal classification
stability
Stability analysis
temporal convolutional network (TCN)
Training
Wrist
Title Stable Responsive EMG Sequence Prediction and Adaptive Reinforcement With Temporal Convolutional Networks
URI https://ieeexplore.ieee.org/document/8846705
https://www.ncbi.nlm.nih.gov/pubmed/31545709
https://www.proquest.com/docview/2405733663
https://www.proquest.com/docview/2296666928
https://pubmed.ncbi.nlm.nih.gov/PMC10497232
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb5wwEB6lOVTtoY-kD9q0cqWeqrLBYIx9TKNNo0pEVbtRc0PYHpRVV2yUsDnk18cDXpSNoqo3wAMYzRjP8xuAz9YWJkFN7iUrYpEVPK55XcTSGtXoRGKiqFC4PJHHp-LHWX62BV_HWhhE7JPPcEKHfSzfLe2KXGX7ijZLAix95A23oVZrjBgINRTlJNwv4FSLEMHkid6ffSunlMSlJ_66t9_1xh7UN1V5SL-8nyZ5Z985eg7lesZDusnfyaozE3tzD8zxfz_pBTwLCig7GCTmJWxhuwNP78AS7sDjMgTcd2HulVGzQPYrpNJeI5uW39nvkIDNfl4SKTGX1a1jB66-oP-np-8RWW3vfGR_5t05mw0gWAt2uGyvg8D7s5MhD_3qFZweTWeHx3HozhBbb9J1sW2c5kbkTqQ2yZznteXG5gJ1XtuCYMjqJkfkTSGdk4rXBnneaOc1NplyzLLXsN0uW3wLTKOSVmfGSCyExFw1BedaoFdHnXWuiSBZ86uyAbqcOmgsqt6ESXRFLK6IxVVgcQRfxlsuBtyOfxHvEmdGwsCUCPbWQlGFlX1VpWKAkJRZBJ_GYb8mKdBSt7hceZrUG5FS6lRF8GaQofHZGemsBb1TbUjXSEB435sj7fy8x_32ljP1iEvfPTzd9_AkJWdA7yLag-3ucoUfvMbUmY_9UrkFKGUUZg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VReJx4NHyCBQwEidEtnHiOPGxVFsWaFYItqK3KLYn6opVtmqzPfDr8STeqFtViFsSTxJHM5N5-jPAe2MyHaGi9JIRoUgyHla8ykJpdF6rSGKU00LhYionJ-LraXq6BR-HtTCI2DWf4YgOu1q-XZoVpcr2czKWBFh6x9n9lPertYaagcj7ZTkRdyocK-FrmDxS-7NPxZjauNTIXXcRvNqwQt22Krd5mDcbJa9ZnqNHUKzn3Dec_B6tWj0yf27AOf7vRz2Gh94FZQe9zDyBLWx24ME1YMIduFv4kvsuzJ07qhfIfvhm2itk4-Iz--lbsNn3CyIl9rKqsezAVuf0B3X0HSar6dKP7Ne8PWOzHgZrwQ6XzZUXeXc27TvRL5_CydF4djgJ_f4MoXFBXRua2iquRWpFbKLEOm4brk0qUKWVyQiIrKpTRF5n0lqZ80ojT2tlnc8mY45J8gy2m2WDL4ApzKVRidYSMyExzeuMcyXQOaTWWFsHEK35VRoPXk57aCzKLoiJVEksLonFpWdxAB-GW8575I5_Ee8SZwZCz5QA9tZCUXrdvixj0YNIyiSAd8Ow00oqtVQNLleOJnZhpJQqzgN43svQ8OyEvNaM3plvSNdAQIjfmyPN_KxD_naxM-0SF7-8fbpv4d5kVhyXx1-m317B_ZhSA13CaA-224sVvnb-U6vfdGrzF6vaF68
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stable+Responsive+EMG+Sequence+Prediction+and+Adaptive+Reinforcement+With+Temporal+Convolutional+Networks&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Betthauser%2C+Joseph+L.&rft.au=Krall%2C+John+T.&rft.au=Bannowsky%2C+Shain+G.&rft.au=Levay%2C+Gyorgy&rft.date=2020-06-01&rft.pub=IEEE&rft.issn=0018-9294&rft.volume=67&rft.issue=6&rft.spage=1707&rft.epage=1717&rft_id=info:doi/10.1109%2FTBME.2019.2943309&rft.externalDocID=8846705
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon