Chemical-looping gasification of biomass: Part II. Tar yields and distributions

Tar, as a kind of by-product in biomass gasification processes, can adversely affect the efficiency of biomass utilization. Chemical-looping technology has been proposed as a novel way to reduce the tar yield in biomass treatment. As the second part of a two-part series work, the tar evolution chara...

Full description

Saved in:
Bibliographic Details
Published inBiomass & bioenergy Vol. 108; pp. 178 - 189
Main Authors Tian, Xin, Niu, Pengjie, Ma, Yuexin, Zhao, Haibo
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tar, as a kind of by-product in biomass gasification processes, can adversely affect the efficiency of biomass utilization. Chemical-looping technology has been proposed as a novel way to reduce the tar yield in biomass treatment. As the second part of a two-part series work, the tar evolution characteristic during the biomass-derived chemical-looping gasification (CLG) process using bimetallic Cu-Fe oxides as oxygen carrier (OC) was investigated. The tar collected from batch fluidized bed experiment with Cu5Fe5 (50 mol.% CuO + 50 mol.% Fe2O3) as OC was first analyzed by Gas Chromatography-Mass Spectrometer (GC-MS) to qualitatively determine the organic compounds contained. It was found that the relative molecular weight of the compounds was mostly concentrated at about 200. Subsequently, the effects of steam to biomass ratio (S/B, in weight), temperature, and oxygen carrier to biomass ratio (O/B, in weight) on tar reforming were investigated. The results indicated that the increase of temperature, S/B and O/B were all favorable for the decomposition and conversion of large molecular compounds in tar into small ones. In addition, quantitative analyses of the tar collected under the optimal conditions with different Cu-Fe mixed metal oxides as OCs were also conducted. It was found that the Cu composition in OC could promote the decomposition of small molecular compounds in tar, while the Fe composition was beneficial to decrease the yield of large molecular compounds in tar. Furthermore, synergistic reactivity of the bimetallic Cu-Fe OC was achieved for tar decomposition during the biomass-derived CLG process. •The molecular mass of the main compounds in tar are concentrated at about 200.•Effects of temperature, S/B, O/B and Cu/Fe ratio on tar yield are discussed.•Cu poses high reforming reactivity on small molecular compounds in tar.•Fe is beneficial to reduce the yield of large molecular compounds in tar.•Bimetallic Cu-Fe oxide demonstrates synergistic effect on tar decomposition.
AbstractList Tar, as a kind of by-product in biomass gasification processes, can adversely affect the efficiency of biomass utilization. Chemical-looping technology has been proposed as a novel way to reduce the tar yield in biomass treatment. As the second part of a two-part series work, the tar evolution characteristic during the biomass-derived chemical-looping gasification (CLG) process using bimetallic Cu-Fe oxides as oxygen carrier (OC) was investigated. The tar collected from batch fluidized bed experiment with Cu5Fe5 (50 mol.% CuO + 50 mol.% Fe2O3) as OC was first analyzed by Gas Chromatography-Mass Spectrometer (GC-MS) to qualitatively determine the organic compounds contained. It was found that the relative molecular weight of the compounds was mostly concentrated at about 200. Subsequently, the effects of steam to biomass ratio (S/B, in weight), temperature, and oxygen carrier to biomass ratio (O/B, in weight) on tar reforming were investigated. The results indicated that the increase of temperature, S/B and O/B were all favorable for the decomposition and conversion of large molecular compounds in tar into small ones. In addition, quantitative analyses of the tar collected under the optimal conditions with different Cu-Fe mixed metal oxides as OCs were also conducted. It was found that the Cu composition in OC could promote the decomposition of small molecular compounds in tar, while the Fe composition was beneficial to decrease the yield of large molecular compounds in tar. Furthermore, synergistic reactivity of the bimetallic Cu-Fe OC was achieved for tar decomposition during the biomass-derived CLG process.
Tar, as a kind of by-product in biomass gasification processes, can adversely affect the efficiency of biomass utilization. Chemical-looping technology has been proposed as a novel way to reduce the tar yield in biomass treatment. As the second part of a two-part series work, the tar evolution characteristic during the biomass-derived chemical-looping gasification (CLG) process using bimetallic Cu-Fe oxides as oxygen carrier (OC) was investigated. The tar collected from batch fluidized bed experiment with Cu5Fe5 (50 mol.% CuO + 50 mol.% Fe2O3) as OC was first analyzed by Gas Chromatography-Mass Spectrometer (GC-MS) to qualitatively determine the organic compounds contained. It was found that the relative molecular weight of the compounds was mostly concentrated at about 200. Subsequently, the effects of steam to biomass ratio (S/B, in weight), temperature, and oxygen carrier to biomass ratio (O/B, in weight) on tar reforming were investigated. The results indicated that the increase of temperature, S/B and O/B were all favorable for the decomposition and conversion of large molecular compounds in tar into small ones. In addition, quantitative analyses of the tar collected under the optimal conditions with different Cu-Fe mixed metal oxides as OCs were also conducted. It was found that the Cu composition in OC could promote the decomposition of small molecular compounds in tar, while the Fe composition was beneficial to decrease the yield of large molecular compounds in tar. Furthermore, synergistic reactivity of the bimetallic Cu-Fe OC was achieved for tar decomposition during the biomass-derived CLG process. •The molecular mass of the main compounds in tar are concentrated at about 200.•Effects of temperature, S/B, O/B and Cu/Fe ratio on tar yield are discussed.•Cu poses high reforming reactivity on small molecular compounds in tar.•Fe is beneficial to reduce the yield of large molecular compounds in tar.•Bimetallic Cu-Fe oxide demonstrates synergistic effect on tar decomposition.
Author Tian, Xin
Ma, Yuexin
Zhao, Haibo
Niu, Pengjie
Author_xml – sequence: 1
  givenname: Xin
  surname: Tian
  fullname: Tian, Xin
– sequence: 2
  givenname: Pengjie
  surname: Niu
  fullname: Niu, Pengjie
– sequence: 3
  givenname: Yuexin
  surname: Ma
  fullname: Ma, Yuexin
– sequence: 4
  givenname: Haibo
  orcidid: 0000-0002-2693-4499
  surname: Zhao
  fullname: Zhao, Haibo
  email: hzhao@mail.hust.edu.cn
BookMark eNqFkE1Lw0AQhhepYFv9C7JHL4mz2SSbiAel-FEo1EM9L5vNbN2SZutuKvTfm1i9eOlhGBje54V5JmTUuhYJuWYQM2D57SaurNv2g3ECTMSMxQDijIxZIXiUlFCOyBjKnEVlxtMLMglhA8BSSNmYLGcfuLVaNVHj3M62a7pWwZr-0lnXUmfoUK5CuKNvynd0Po_pSnl6sNjUgaq2prUNnbfVfgDCJTk3qgl49bun5P35aTV7jRbLl_nscRHpNC26SINhxuhclWmGHCEpIM2NQJEYrY2os4TrWhnBMsNEobiGoshLUWVpXSJWnE_JzbF3593nHkMntzZobBrVotsHmUACRc5B5H30_hjV3oXg0Uhtu5_3Oq9sIxnIwaPcyD-PcvAoGZO9xx7P_-E7b7fKH06DD0cQew9fFr0M2mKrsbYedSdrZ09VfANd4pQJ
CitedBy_id crossref_primary_10_1016_j_ijggc_2019_102898
crossref_primary_10_1016_j_energy_2020_118846
crossref_primary_10_1016_j_adapen_2021_100044
crossref_primary_10_2139_ssrn_4131059
crossref_primary_10_1016_j_biortech_2021_125011
crossref_primary_10_1016_j_matre_2024_100282
crossref_primary_10_1016_j_enconman_2019_03_084
crossref_primary_10_1016_j_fuproc_2019_04_009
crossref_primary_10_1007_s40095_021_00423_y
crossref_primary_10_1016_j_cej_2024_158503
crossref_primary_10_1016_j_cej_2022_138935
crossref_primary_10_1039_D1GC04733G
crossref_primary_10_1016_j_fuel_2022_124119
crossref_primary_10_1016_j_fuproc_2021_106937
crossref_primary_10_1016_j_heliyon_2023_e17943
crossref_primary_10_1016_j_fuproc_2022_107601
crossref_primary_10_1016_j_joei_2020_05_004
crossref_primary_10_1016_j_psep_2024_01_024
crossref_primary_10_1016_j_cej_2023_142860
crossref_primary_10_1021_acs_energyfuels_0c00989
crossref_primary_10_1016_j_enconman_2021_114876
crossref_primary_10_1016_j_ijggc_2023_103913
crossref_primary_10_1016_j_enconman_2022_115597
crossref_primary_10_1016_j_joei_2019_11_009
crossref_primary_10_1021_acs_energyfuels_8b02849
crossref_primary_10_1021_acs_energyfuels_2c03155
crossref_primary_10_1016_j_enconman_2019_112157
crossref_primary_10_1007_s13399_024_05607_0
crossref_primary_10_1016_j_fuel_2025_134419
crossref_primary_10_1016_j_cej_2023_143948
crossref_primary_10_1021_acssuschemeng_8b05546
crossref_primary_10_1002_cjce_23716
crossref_primary_10_1016_j_apenergy_2019_113502
crossref_primary_10_1016_j_enconman_2018_01_057
crossref_primary_10_1002_adsu_202000099
crossref_primary_10_1016_j_energy_2021_122204
crossref_primary_10_3390_atmos13060887
crossref_primary_10_1016_j_biombioe_2017_11_008
crossref_primary_10_1016_j_ccst_2024_100353
crossref_primary_10_1016_j_cej_2020_126679
crossref_primary_10_1016_j_fuel_2024_134228
crossref_primary_10_1016_j_fuproc_2019_05_021
crossref_primary_10_1016_j_fuel_2021_121269
crossref_primary_10_1021_acs_energyfuels_0c01022
crossref_primary_10_3390_app11157069
crossref_primary_10_1016_j_fuel_2023_128203
crossref_primary_10_1016_j_biombioe_2022_106645
crossref_primary_10_1016_j_fuel_2021_122193
crossref_primary_10_1016_j_cej_2024_155488
crossref_primary_10_1016_j_enconman_2021_114100
crossref_primary_10_1016_j_fuproc_2022_107371
crossref_primary_10_1021_acs_energyfuels_1c01800
crossref_primary_10_1016_j_enconman_2021_114263
crossref_primary_10_1016_j_fuproc_2022_107375
crossref_primary_10_1016_j_cjche_2020_09_024
crossref_primary_10_1021_acs_energyfuels_3c04532
crossref_primary_10_1016_j_fuel_2024_134065
crossref_primary_10_1021_acs_energyfuels_3c02750
crossref_primary_10_1007_s13399_023_04061_8
crossref_primary_10_1016_j_fuel_2020_117464
Cites_doi 10.1016/j.biortech.2014.10.010
10.1016/j.rser.2011.02.018
10.1021/ef302091w
10.1016/j.rser.2013.10.013
10.1021/ef500369c
10.1016/j.fuel.2013.01.023
10.1016/j.biombioe.2017.03.015
10.1016/S0021-9673(01)81515-6
10.1016/j.pecs.2011.09.001
10.1016/j.fuel.2003.11.013
10.1021/ie300033e
10.1021/ie00005a006
10.1016/j.renene.2016.01.073
10.1016/j.biombioe.2017.11.008
10.1016/j.fuel.2016.04.024
10.1016/j.biombioe.2011.02.054
10.1016/j.apcatb.2012.12.022
10.1016/S0961-9534(02)00102-2
10.1021/ie0498403
10.1016/j.biortech.2009.03.045
10.1038/nature06937
10.1016/j.apcatb.2012.04.005
10.1007/s13399-012-0042-6
10.1016/j.apenergy.2013.01.063
10.1016/j.apcatb.2010.09.011
10.1021/ie3028262
10.1016/j.powtec.2007.03.008
10.1016/j.biombioe.2012.11.014
10.1002/aic.15034
10.1016/j.jaap.2011.01.010
10.1007/s13596-017-0257-y
10.1080/01614940701375134
10.1016/j.apenergy.2015.04.093
10.1016/j.proci.2014.07.010
10.1021/ie200645s
10.1016/j.biortech.2004.02.003
10.1016/j.apenergy.2015.04.042
10.1021/ef500132p
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.biombioe.2017.11.007
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1873-2909
EndPage 189
ExternalDocumentID 10_1016_j_biombioe_2017_11_007
S0961953417303823
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AATLK
AAXUO
ABFNM
ABGRD
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSA
SSG
SSJ
SSR
SSZ
T5K
VH1
WUQ
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c448t-c0f1ffc6a945e3e028046f7e72fccf7d523cdaf715f178a3c088697b54d9eeb33
IEDL.DBID .~1
ISSN 0961-9534
IngestDate Fri Jul 11 06:51:37 EDT 2025
Tue Jul 01 01:49:47 EDT 2025
Thu Apr 24 23:11:49 EDT 2025
Fri Feb 23 02:27:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cu-Fe bimetallic oxygen carriers
Biomass
Tar
Chemical-looping gasification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c448t-c0f1ffc6a945e3e028046f7e72fccf7d523cdaf715f178a3c088697b54d9eeb33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2693-4499
PQID 2020863076
PQPubID 24069
PageCount 12
ParticipantIDs proquest_miscellaneous_2020863076
crossref_citationtrail_10_1016_j_biombioe_2017_11_007
crossref_primary_10_1016_j_biombioe_2017_11_007
elsevier_sciencedirect_doi_10_1016_j_biombioe_2017_11_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2018
2018-01-00
20180101
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: January 2018
PublicationDecade 2010
PublicationTitle Biomass & bioenergy
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Virginie, Adánez, Courson, de Diego, García-Labiano, Niznansky, Kiennemann, Gayan, Abad (bib21) 2012; 121
Siriwardane, Ksepko, Tian, Poston, Simonyi, Sciazko (bib26) 2013; 107
Keller, Leion, Mattisson, Thunman (bib13) 2014; 28
Li, Tamura, Nakagawa, Tomishige (bib16) 2015; 178
Lind, Seemann, Thunman (bib18) 2011; 50
Devi, Ptasinski, Janssen (bib3) 2003; 24
Keller, Fung, Leion, Mattisson (bib23) 2016; 180
Adanez, Abad, Garcia-Labiano, Gayan, Luis (bib9) 2012; 38
Dai, Li, Fan, Wei, Xu (bib14) 2012; 51
Rosenzweig, Karoly, Vicarelli, Neofotis, Wu, Casassa, Menzel, Root, Estrella, Seguin, Tryianowski, Liu, Rawlins, Imeson (bib1) 2008; 453
Wang, Yan, Lee, Zheng, Zhao, Zheng (bib29) 2011; 91
Gao, Li, Quan (bib34) 2009; 100
Cho, Mattisson, Lyngfelt (bib24) 2004; 83
Anis, Zainal (bib5) 2011; 15
Qadir, Singh, Akhtar, Ali, Arif (bib31) 2017; 17
Chen, Yao, Liu, Yan, Shan (bib35) 2016; 91
Abu El-Rub, Bramer, Brem (bib8) 2004; 43
Berguerand, Lind, Israelsson, Seemann, Biollaz, Thunman (bib38) 2012; 51
Assima, Dell'Orco, Navaee-Ardeh, Lavoie (bib6) 2017; 100
Cheah, Gaston, Parent, Jarvis, Vinzant, Smith, Thornburg, Nimlos, Marginibair (bib37) 2013; 134
Ma, Müller, Richter, Kriegel, Böhning, Beckmann, Glusing, Ruhe (bib15) 2013; 53
Michel, Rapagnà, Burg, Celso, Courson, Zimny, Gruber (bib32) 2011; 35
Siriwardane, Tian, Simonyi, Poston (bib25) 2013; 108
Larsson, Israelsson, Lind, Seemann, Thunman (bib19) 2014; 28
Byrd, Fowler, Hicks, Lovette, Borgerding (bib30) 1990; 503
Zhao, Guo, Zou (bib10) 2015; 157
P. Niu, Y. Ma, X. Tian, J. Ma, H. Zhao. Chemical looping gasification of biomass: Part I. Screening Cu-Fe metal oxides as oxygen carrier and optimizing experimental conditions. Biomass Bioenergy.
Udomsirichakorn, Salam (bib2) 2014; 30
Virginie, Courson, Niznansky, Chaoui, Kiennemann (bib20) 2010; 101
Yang, Zhao, Wang, Zheng (bib28) 2014; 35
.
Lv, Xiong, Chang, Wu, Chen, Zhu (bib36) 2004; 95
Siriwardane, Tian, Miller, Richards (bib27) 2015; 157
Torres, Pansare, Goodwin (bib7) 2007; 49
Pfeifer, Hofbauer (bib4) 2008; 180
Herguido, Corella, Gonzalezsaiz (bib33) 1992; 31
Lind, Berguerand, Seemann, Thunman (bib11) 2013; 27
Keller, Leion, Mattisson (bib22) 2016; 62
Lind, Israelsson, Seemann, Thunman (bib12) 2012; 2
Pfeifer (10.1016/j.biombioe.2017.11.007_bib4) 2008; 180
Michel (10.1016/j.biombioe.2017.11.007_bib32) 2011; 35
10.1016/j.biombioe.2017.11.007_bib17
Cheah (10.1016/j.biombioe.2017.11.007_bib37) 2013; 134
Abu El-Rub (10.1016/j.biombioe.2017.11.007_bib8) 2004; 43
Keller (10.1016/j.biombioe.2017.11.007_bib13) 2014; 28
Anis (10.1016/j.biombioe.2017.11.007_bib5) 2011; 15
Cho (10.1016/j.biombioe.2017.11.007_bib24) 2004; 83
Wang (10.1016/j.biombioe.2017.11.007_bib29) 2011; 91
Li (10.1016/j.biombioe.2017.11.007_bib16) 2015; 178
Gao (10.1016/j.biombioe.2017.11.007_bib34) 2009; 100
Lv (10.1016/j.biombioe.2017.11.007_bib36) 2004; 95
Qadir (10.1016/j.biombioe.2017.11.007_bib31) 2017; 17
Chen (10.1016/j.biombioe.2017.11.007_bib35) 2016; 91
Berguerand (10.1016/j.biombioe.2017.11.007_bib38) 2012; 51
Rosenzweig (10.1016/j.biombioe.2017.11.007_bib1) 2008; 453
Torres (10.1016/j.biombioe.2017.11.007_bib7) 2007; 49
Siriwardane (10.1016/j.biombioe.2017.11.007_bib27) 2015; 157
Yang (10.1016/j.biombioe.2017.11.007_bib28) 2014; 35
Adanez (10.1016/j.biombioe.2017.11.007_bib9) 2012; 38
Dai (10.1016/j.biombioe.2017.11.007_bib14) 2012; 51
Virginie (10.1016/j.biombioe.2017.11.007_bib21) 2012; 121
Keller (10.1016/j.biombioe.2017.11.007_bib22) 2016; 62
Devi (10.1016/j.biombioe.2017.11.007_bib3) 2003; 24
Assima (10.1016/j.biombioe.2017.11.007_bib6) 2017; 100
Virginie (10.1016/j.biombioe.2017.11.007_bib20) 2010; 101
Keller (10.1016/j.biombioe.2017.11.007_bib23) 2016; 180
Siriwardane (10.1016/j.biombioe.2017.11.007_bib26) 2013; 107
Lind (10.1016/j.biombioe.2017.11.007_bib11) 2013; 27
Lind (10.1016/j.biombioe.2017.11.007_bib18) 2011; 50
Byrd (10.1016/j.biombioe.2017.11.007_bib30) 1990; 503
Lind (10.1016/j.biombioe.2017.11.007_bib12) 2012; 2
Ma (10.1016/j.biombioe.2017.11.007_bib15) 2013; 53
Siriwardane (10.1016/j.biombioe.2017.11.007_bib25) 2013; 108
Zhao (10.1016/j.biombioe.2017.11.007_bib10) 2015; 157
Herguido (10.1016/j.biombioe.2017.11.007_bib33) 1992; 31
Udomsirichakorn (10.1016/j.biombioe.2017.11.007_bib2) 2014; 30
Larsson (10.1016/j.biombioe.2017.11.007_bib19) 2014; 28
References_xml – volume: 38
  start-page: 215
  year: 2012
  end-page: 282
  ident: bib9
  article-title: Progress in chemical-looping combustion and reforming technologies
  publication-title: Prog. Energy Combust. Sci.
– volume: 91
  start-page: 315
  year: 2016
  end-page: 322
  ident: bib35
  article-title: Biomass to hydrogen-rich syngas via catalytic steam reforming of bio-oil
  publication-title: Renew. Energy
– volume: 53
  start-page: 65
  year: 2013
  end-page: 71
  ident: bib15
  article-title: Investigation of combined catalyst and oxygen carrier systems for the partial oxidation of naphthalene as model tar from biomass gasification
  publication-title: Biomass & Bioenergy
– volume: 17
  start-page: 81
  year: 2017
  end-page: 87
  ident: bib31
  article-title: Phytochemical and GC-MS analysis of Saudi Arabian Ajwa variety of date seed oil and extracts obtained by the slow pyrolysis method
  publication-title: Orient. Pharm. Exp. Med.
– volume: 157
  start-page: 408
  year: 2015
  end-page: 415
  ident: bib10
  article-title: Chemical-looping auto-thermal reforming of biomass using Cu-based oxygen carrier
  publication-title: Appl. Energy
– volume: 134
  start-page: 34
  year: 2013
  end-page: 45
  ident: bib37
  article-title: Nickel cerium olivine catalyst for catalytic gasification of biomass
  publication-title: Appl. Catal. B Environ.
– volume: 30
  start-page: 565
  year: 2014
  end-page: 579
  ident: bib2
  article-title: Review of hydrogen-enriched gas production from steam gasification of biomass: the prospect of CaO-based chemical looping gasification
  publication-title: Renew. Sustain. Energy Rev.
– volume: 50
  start-page: 11553
  year: 2011
  end-page: 11562
  ident: bib18
  article-title: Continuous catalytic tar reforming of biomass derived raw gas with simultaneous catalyst regeneration
  publication-title: Ind. Eng. Chem. Res.
– volume: 62
  start-page: 38
  year: 2016
  end-page: 45
  ident: bib22
  article-title: Use of CuO/MgAl
  publication-title: AIChE J.
– volume: 180
  start-page: 448
  year: 2016
  end-page: 456
  ident: bib23
  article-title: Cu-impregnated alumina/silica bed materials for Chemical Looping Reforming of biomass gasification gas
  publication-title: Fuel
– volume: 100
  start-page: 4271
  year: 2009
  end-page: 4277
  ident: bib34
  article-title: A novel reforming method for hydrogen production from biomass steam gasification
  publication-title: Bioresour. Technol.
– volume: 157
  start-page: 348
  year: 2015
  end-page: 357
  ident: bib27
  article-title: Fluidized bed testing of commercially prepared MgO-promoted hematite and CuO–Fe
  publication-title: Appl. Energy
– volume: 503
  start-page: 359
  year: 1990
  end-page: 368
  ident: bib30
  article-title: Isotope dilution gas chromatography-mass spectrometry in the determination of benzene, toluene, styrene and acrylonitrile in mainstream cigarette smoke
  publication-title: J. Chromatogr. A
– volume: 95
  start-page: 95
  year: 2004
  end-page: 101
  ident: bib36
  article-title: An experimental study on biomass air-steam gasification in a fluidized bed
  publication-title: Bioresour. Technol.
– volume: 43
  start-page: 6911
  year: 2004
  end-page: 6919
  ident: bib8
  article-title: Review of catalysts for tar elimination in biomass gasification processes
  publication-title: Ind. Eng. Chem. Res.
– volume: 83
  start-page: 1215
  year: 2004
  end-page: 1225
  ident: bib24
  article-title: Comparison of iron-, nickel-, copper-and manganese-based oxygen carriers for chemical-looping combustion
  publication-title: Fuel
– volume: 51
  start-page: 11072
  year: 2012
  end-page: 11082
  ident: bib14
  article-title: Synthesis gas generation by chemical-looping reforming in a circulating fluidized bed reactor using perovskite LaFeO
  publication-title: Ind. Eng. Chem. Res.
– volume: 180
  start-page: 9
  year: 2008
  end-page: 16
  ident: bib4
  article-title: Development of catalytic tar decomposition downstream from a dual fluidized bed biomass steam gasifier
  publication-title: Powder Technol.
– volume: 2
  start-page: 133
  year: 2012
  end-page: 140
  ident: bib12
  article-title: Manganese oxide as catalyst for tar cleaning of biomass-derived gas
  publication-title: Biomass Convers. Biorefinery
– volume: 453
  start-page: 353
  year: 2008
  end-page: 357
  ident: bib1
  article-title: Attributing physical and biological impacts to anthropogenic climate change
  publication-title: Nature
– volume: 121
  start-page: 214
  year: 2012
  end-page: 222
  ident: bib21
  article-title: Effect of Fe–olivine on the tar content during biomass gasification in a dual fluidized bed
  publication-title: Appl. Catal. B Environ.
– volume: 35
  start-page: 2650
  year: 2011
  end-page: 2658
  ident: bib32
  article-title: Steam gasification of Miscanthus X Giganteus with olivine as catalyst production of syngas and analysis of tars (IR, NMR and GC/MS)
  publication-title: Biomass & Bioenergy
– volume: 24
  start-page: 125
  year: 2003
  end-page: 140
  ident: bib3
  article-title: A review of the primary measures for tar elimination in biomass gasification processes
  publication-title: Biomass & Bioenergy
– volume: 108
  year: 2013
  ident: bib25
  article-title: Synergetic effects of mixed copper–iron oxides oxygen carriers in chemical looping combustion
  publication-title: Fuel
– volume: 91
  start-page: 105
  year: 2011
  end-page: 113
  ident: bib29
  article-title: Characterization and evaluation of Fe
  publication-title: J. Anal. Appl. Pyrolysis
– volume: 49
  start-page: 407
  year: 2007
  end-page: 456
  ident: bib7
  article-title: Hot gas removal of tars, ammonia, and hydrogen sulfide from biomass gasification gas
  publication-title: Catal. Rev.
– volume: 28
  start-page: 3833
  year: 2014
  end-page: 3840
  ident: bib13
  article-title: Investigation of natural and synthetic bed materials for their utilization in chemical looping reforming for tar elimination in biomass-derived gasification gas
  publication-title: Energy & Fuels
– volume: 35
  start-page: 2811
  year: 2014
  end-page: 2818
  ident: bib28
  article-title: Synergistic effects of mixtures of iron ores and copper ores as oxygen carriers in chemical-looping combustion
  publication-title: Proc. Combust. Inst.
– reference: P. Niu, Y. Ma, X. Tian, J. Ma, H. Zhao. Chemical looping gasification of biomass: Part I. Screening Cu-Fe metal oxides as oxygen carrier and optimizing experimental conditions. Biomass Bioenergy.
– volume: 100
  start-page: 98
  year: 2017
  end-page: 107
  ident: bib6
  article-title: Catalytic conversion of residual fine char recovered by aqueous scrubbing of syngas from urban biomass gasification
  publication-title: Biomass & Bioenergy
– volume: 107
  start-page: 111
  year: 2013
  end-page: 123
  ident: bib26
  article-title: Interaction of iron–copper mixed metal oxide oxygen carriers with simulated synthesis gas derived from steam gasification of coal
  publication-title: Appl. Energy
– volume: 28
  start-page: 2632
  year: 2014
  end-page: 2644
  ident: bib19
  article-title: Using ilmenite to reduce the tar yield in a dual fluidized bed gasification system
  publication-title: Energy & Fuels
– volume: 101
  start-page: 90
  year: 2010
  end-page: 100
  ident: bib20
  article-title: Characterization and reactivity in toluene reforming of a Fe/olivine catalyst designed for gas cleanup in biomass gasification
  publication-title: Appl. Catal. B Environ.
– volume: 178
  start-page: 53
  year: 2015
  end-page: 64
  ident: bib16
  article-title: Metal catalysts for steam reforming of tar derived from the gasification of lignocellulosic biomass
  publication-title: Bioresour. Technol.
– reference: .
– volume: 51
  start-page: 16610
  year: 2012
  end-page: 16616
  ident: bib38
  article-title: Use of nickel oxide as a catalyst for tar elimination in a chemical-looping reforming reactor operated with biomass producer gas
  publication-title: Ind. Eng. Chem. Res.
– volume: 27
  start-page: 997
  year: 2013
  end-page: 1007
  ident: bib11
  article-title: Ilmenite and nickel as catalysts for upgrading of raw gas derived from biomass gasification
  publication-title: Energy & Fuels
– volume: 15
  start-page: 2355
  year: 2011
  end-page: 2377
  ident: bib5
  article-title: Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 31
  start-page: 1274
  year: 1992
  end-page: 1282
  ident: bib33
  article-title: Steam gasification of lignocellulosic residues in a fluidized bed at a small pilot scale. Effect of the type of feedstock
  publication-title: Ind. Eng. Chem. Res.
– volume: 178
  start-page: 53
  year: 2015
  ident: 10.1016/j.biombioe.2017.11.007_bib16
  article-title: Metal catalysts for steam reforming of tar derived from the gasification of lignocellulosic biomass
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.10.010
– volume: 15
  start-page: 2355
  issue: 5
  year: 2011
  ident: 10.1016/j.biombioe.2017.11.007_bib5
  article-title: Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2011.02.018
– volume: 27
  start-page: 997
  issue: 2
  year: 2013
  ident: 10.1016/j.biombioe.2017.11.007_bib11
  article-title: Ilmenite and nickel as catalysts for upgrading of raw gas derived from biomass gasification
  publication-title: Energy & Fuels
  doi: 10.1021/ef302091w
– volume: 30
  start-page: 565
  issue: 2
  year: 2014
  ident: 10.1016/j.biombioe.2017.11.007_bib2
  article-title: Review of hydrogen-enriched gas production from steam gasification of biomass: the prospect of CaO-based chemical looping gasification
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2013.10.013
– volume: 28
  start-page: 3833
  issue: 6
  year: 2014
  ident: 10.1016/j.biombioe.2017.11.007_bib13
  article-title: Investigation of natural and synthetic bed materials for their utilization in chemical looping reforming for tar elimination in biomass-derived gasification gas
  publication-title: Energy & Fuels
  doi: 10.1021/ef500369c
– volume: 108
  year: 2013
  ident: 10.1016/j.biombioe.2017.11.007_bib25
  article-title: Synergetic effects of mixed copper–iron oxides oxygen carriers in chemical looping combustion
  publication-title: Fuel
  doi: 10.1016/j.fuel.2013.01.023
– volume: 100
  start-page: 98
  year: 2017
  ident: 10.1016/j.biombioe.2017.11.007_bib6
  article-title: Catalytic conversion of residual fine char recovered by aqueous scrubbing of syngas from urban biomass gasification
  publication-title: Biomass & Bioenergy
  doi: 10.1016/j.biombioe.2017.03.015
– volume: 503
  start-page: 359
  issue: 2
  year: 1990
  ident: 10.1016/j.biombioe.2017.11.007_bib30
  article-title: Isotope dilution gas chromatography-mass spectrometry in the determination of benzene, toluene, styrene and acrylonitrile in mainstream cigarette smoke
  publication-title: J. Chromatogr. A
  doi: 10.1016/S0021-9673(01)81515-6
– volume: 38
  start-page: 215
  issue: 2
  year: 2012
  ident: 10.1016/j.biombioe.2017.11.007_bib9
  article-title: Progress in chemical-looping combustion and reforming technologies
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2011.09.001
– volume: 83
  start-page: 1215
  issue: 9
  year: 2004
  ident: 10.1016/j.biombioe.2017.11.007_bib24
  article-title: Comparison of iron-, nickel-, copper-and manganese-based oxygen carriers for chemical-looping combustion
  publication-title: Fuel
  doi: 10.1016/j.fuel.2003.11.013
– volume: 51
  start-page: 11072
  issue: 34
  year: 2012
  ident: 10.1016/j.biombioe.2017.11.007_bib14
  article-title: Synthesis gas generation by chemical-looping reforming in a circulating fluidized bed reactor using perovskite LaFeO3-based oxygen carriers
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie300033e
– volume: 31
  start-page: 1274
  issue: 5
  year: 1992
  ident: 10.1016/j.biombioe.2017.11.007_bib33
  article-title: Steam gasification of lignocellulosic residues in a fluidized bed at a small pilot scale. Effect of the type of feedstock
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie00005a006
– volume: 91
  start-page: 315
  year: 2016
  ident: 10.1016/j.biombioe.2017.11.007_bib35
  article-title: Biomass to hydrogen-rich syngas via catalytic steam reforming of bio-oil
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.01.073
– ident: 10.1016/j.biombioe.2017.11.007_bib17
  doi: 10.1016/j.biombioe.2017.11.008
– volume: 180
  start-page: 448
  year: 2016
  ident: 10.1016/j.biombioe.2017.11.007_bib23
  article-title: Cu-impregnated alumina/silica bed materials for Chemical Looping Reforming of biomass gasification gas
  publication-title: Fuel
  doi: 10.1016/j.fuel.2016.04.024
– volume: 35
  start-page: 2650
  issue: 7
  year: 2011
  ident: 10.1016/j.biombioe.2017.11.007_bib32
  article-title: Steam gasification of Miscanthus X Giganteus with olivine as catalyst production of syngas and analysis of tars (IR, NMR and GC/MS)
  publication-title: Biomass & Bioenergy
  doi: 10.1016/j.biombioe.2011.02.054
– volume: 134
  start-page: 34
  year: 2013
  ident: 10.1016/j.biombioe.2017.11.007_bib37
  article-title: Nickel cerium olivine catalyst for catalytic gasification of biomass
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2012.12.022
– volume: 24
  start-page: 125
  issue: 2
  year: 2003
  ident: 10.1016/j.biombioe.2017.11.007_bib3
  article-title: A review of the primary measures for tar elimination in biomass gasification processes
  publication-title: Biomass & Bioenergy
  doi: 10.1016/S0961-9534(02)00102-2
– volume: 43
  start-page: 6911
  issue: 22
  year: 2004
  ident: 10.1016/j.biombioe.2017.11.007_bib8
  article-title: Review of catalysts for tar elimination in biomass gasification processes
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie0498403
– volume: 100
  start-page: 4271
  issue: 18
  year: 2009
  ident: 10.1016/j.biombioe.2017.11.007_bib34
  article-title: A novel reforming method for hydrogen production from biomass steam gasification
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2009.03.045
– volume: 453
  start-page: 353
  issue: 7193
  year: 2008
  ident: 10.1016/j.biombioe.2017.11.007_bib1
  article-title: Attributing physical and biological impacts to anthropogenic climate change
  publication-title: Nature
  doi: 10.1038/nature06937
– volume: 121
  start-page: 214
  year: 2012
  ident: 10.1016/j.biombioe.2017.11.007_bib21
  article-title: Effect of Fe–olivine on the tar content during biomass gasification in a dual fluidized bed
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2012.04.005
– volume: 2
  start-page: 133
  issue: 2
  year: 2012
  ident: 10.1016/j.biombioe.2017.11.007_bib12
  article-title: Manganese oxide as catalyst for tar cleaning of biomass-derived gas
  publication-title: Biomass Convers. Biorefinery
  doi: 10.1007/s13399-012-0042-6
– volume: 107
  start-page: 111
  year: 2013
  ident: 10.1016/j.biombioe.2017.11.007_bib26
  article-title: Interaction of iron–copper mixed metal oxide oxygen carriers with simulated synthesis gas derived from steam gasification of coal
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.01.063
– volume: 101
  start-page: 90
  issue: 1
  year: 2010
  ident: 10.1016/j.biombioe.2017.11.007_bib20
  article-title: Characterization and reactivity in toluene reforming of a Fe/olivine catalyst designed for gas cleanup in biomass gasification
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2010.09.011
– volume: 51
  start-page: 16610
  issue: 51
  year: 2012
  ident: 10.1016/j.biombioe.2017.11.007_bib38
  article-title: Use of nickel oxide as a catalyst for tar elimination in a chemical-looping reforming reactor operated with biomass producer gas
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie3028262
– volume: 180
  start-page: 9
  issue: 1
  year: 2008
  ident: 10.1016/j.biombioe.2017.11.007_bib4
  article-title: Development of catalytic tar decomposition downstream from a dual fluidized bed biomass steam gasifier
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2007.03.008
– volume: 53
  start-page: 65
  issue: 28
  year: 2013
  ident: 10.1016/j.biombioe.2017.11.007_bib15
  article-title: Investigation of combined catalyst and oxygen carrier systems for the partial oxidation of naphthalene as model tar from biomass gasification
  publication-title: Biomass & Bioenergy
  doi: 10.1016/j.biombioe.2012.11.014
– volume: 62
  start-page: 38
  issue: 1
  year: 2016
  ident: 10.1016/j.biombioe.2017.11.007_bib22
  article-title: Use of CuO/MgAl2O4 and La0.8Sr0.2FeO3/γ-Al2O3 in chemical looping reforming system for tar removal from gasification gas
  publication-title: AIChE J.
  doi: 10.1002/aic.15034
– volume: 91
  start-page: 105
  issue: 1
  year: 2011
  ident: 10.1016/j.biombioe.2017.11.007_bib29
  article-title: Characterization and evaluation of Fe2O3/Al2O3 oxygen carrier prepared by sol–gel combustion synthesis
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2011.01.010
– volume: 17
  start-page: 81
  issue: 1
  year: 2017
  ident: 10.1016/j.biombioe.2017.11.007_bib31
  article-title: Phytochemical and GC-MS analysis of Saudi Arabian Ajwa variety of date seed oil and extracts obtained by the slow pyrolysis method
  publication-title: Orient. Pharm. Exp. Med.
  doi: 10.1007/s13596-017-0257-y
– volume: 49
  start-page: 407
  issue: 4
  year: 2007
  ident: 10.1016/j.biombioe.2017.11.007_bib7
  article-title: Hot gas removal of tars, ammonia, and hydrogen sulfide from biomass gasification gas
  publication-title: Catal. Rev.
  doi: 10.1080/01614940701375134
– volume: 157
  start-page: 408
  year: 2015
  ident: 10.1016/j.biombioe.2017.11.007_bib10
  article-title: Chemical-looping auto-thermal reforming of biomass using Cu-based oxygen carrier
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.04.093
– volume: 35
  start-page: 2811
  issue: 3
  year: 2014
  ident: 10.1016/j.biombioe.2017.11.007_bib28
  article-title: Synergistic effects of mixtures of iron ores and copper ores as oxygen carriers in chemical-looping combustion
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2014.07.010
– volume: 50
  start-page: 11553
  issue: 20
  year: 2011
  ident: 10.1016/j.biombioe.2017.11.007_bib18
  article-title: Continuous catalytic tar reforming of biomass derived raw gas with simultaneous catalyst regeneration
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie200645s
– volume: 95
  start-page: 95
  issue: 1
  year: 2004
  ident: 10.1016/j.biombioe.2017.11.007_bib36
  article-title: An experimental study on biomass air-steam gasification in a fluidized bed
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2004.02.003
– volume: 157
  start-page: 348
  year: 2015
  ident: 10.1016/j.biombioe.2017.11.007_bib27
  article-title: Fluidized bed testing of commercially prepared MgO-promoted hematite and CuO–Fe2O3 mixed metal oxide oxygen carriers for methane and coal chemical looping combustion
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.04.042
– volume: 28
  start-page: 2632
  issue: 4
  year: 2014
  ident: 10.1016/j.biombioe.2017.11.007_bib19
  article-title: Using ilmenite to reduce the tar yield in a dual fluidized bed gasification system
  publication-title: Energy & Fuels
  doi: 10.1021/ef500132p
SSID ssj0014041
Score 2.4687893
Snippet Tar, as a kind of by-product in biomass gasification processes, can adversely affect the efficiency of biomass utilization. Chemical-looping technology has...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 178
SubjectTerms Biomass
byproducts
Chemical-looping gasification
Cu-Fe bimetallic oxygen carriers
cupric oxide
ferric oxide
gas chromatography-mass spectrometry
gasification
iron
molecular weight
organic compounds
oxygen
quantitative analysis
spectrometers
steam
Tar
temperature
Title Chemical-looping gasification of biomass: Part II. Tar yields and distributions
URI https://dx.doi.org/10.1016/j.biombioe.2017.11.007
https://www.proquest.com/docview/2020863076
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT8IwEG-IvuiDUZSIH6Qmvg7Y6FrqGyEQ0IgmQsLb0nWtgZBBGDz44t_u3dgQjQkPPuxhy3Xprtfr3e7ud4Tce8Y1CNLigLiEDjPcOAoRaIVhYH27SnCJ1cjPA94bscexPy6Qdl4Lg2mVme7f6PRUW2dPahk3a4vJpPaGzUqkD1oYhBSjWVjBzgRKefVzm-aB6DFp1zwgxlAl26kSnlaxxB0uhMt0RRXRPLGt7N8H1C9VnZ4_3VNykhmOtLWZ2xkpmLhIjnfgBIuk1PmuWgPSbNsm5-QlhwVwZvO0QIq-qwRzhNJloXNLcYpgRj_QV_h42u9X6VAt6QemtyVUxRGNEGA3642VXJBRtzNs95ysk4Kjwf1aObpuXWs1V5L5pmEwnMq4FUZ4VmsrIvBGdaSscH3riqZqaNA9XIrQZ5E04G43SuQgnsfmklDtRlpEygsVB2PP86QOmS9tk2u3XtdNWSZ-zr5AZzDj2O1iFuT5ZNMgZ3uAbAcfJAC2l0ltO26xAdrYO0LmqxP8EJkAToO9Y-_y5QxgP2GQRMVmvk6AyAMvDzQfv_rH-6_JEdw1N_9qbsjBark2t2C9rMJKKp4VctjqP_UGXxMd7_Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgHIAD4ineBIlrt7VLk4UbQqCNx0BiSNyiNE0QCHWIjgP_HrtLeQmJA4deWqdKHcexa_szwEHiYkcgLRGKSxZxJ1xkCIFWOo7Wd2ykUFSNfDkQvVt-dpfeTcFxXQtDaZVB9090eqWtw51W4Gbr-eGhdUPNSlSKWhiFlKJZ0zBD6FRpA2aO-ue9wUcwgberBpZET9FK_qVQ-LFJVe54EWJmLJsE6EmdZX8_o35o6-oIOl2EhWA7sqPJ9JZgyhXLMP8FUXAZ1k4-C9eQNOzccgWuamSA6GlU1Uixe1NSmlC1MmzkGU0RLelDdo3fz_r9JhuaF_ZGGW4lM0XOcsLYDe2xylW4PT0ZHvei0EwhsuiBjSPb9rH3VhjFU9dxFFHlwksnE2-tlzk6pDY3Xsapj2XXdCyqH6FklvJcOfS4O2vQKEaFWwdm49zK3CSZEWjvJYmyGU-V7wobt9u2qzYgrdmnbUAap4YXT7pOKXvUNds1sR3dEI1s34DWx7jnCdbGnyNUvTr6m9RoPBD-HLtfL6fGLUVxElO40WuJRAk6eqj8xOY_3r8Hs73h5YW-6A_Ot2AOn3Qnv262oTF-eXU7aMyMs90grO9KRPKl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemical-looping+gasification+of+biomass%3A+Part+II.+Tar+yields+and+distributions&rft.jtitle=Biomass+%26+bioenergy&rft.au=Tian%2C+Xin&rft.au=Niu%2C+Pengjie&rft.au=Ma%2C+Yuexin&rft.au=Zhao%2C+Haibo&rft.date=2018-01-01&rft.issn=0961-9534&rft.volume=108+p.178-189&rft.spage=178&rft.epage=189&rft_id=info:doi/10.1016%2Fj.biombioe.2017.11.007&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0961-9534&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0961-9534&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0961-9534&client=summon