Chemical-looping gasification of biomass: Part II. Tar yields and distributions
Tar, as a kind of by-product in biomass gasification processes, can adversely affect the efficiency of biomass utilization. Chemical-looping technology has been proposed as a novel way to reduce the tar yield in biomass treatment. As the second part of a two-part series work, the tar evolution chara...
Saved in:
Published in | Biomass & bioenergy Vol. 108; pp. 178 - 189 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tar, as a kind of by-product in biomass gasification processes, can adversely affect the efficiency of biomass utilization. Chemical-looping technology has been proposed as a novel way to reduce the tar yield in biomass treatment. As the second part of a two-part series work, the tar evolution characteristic during the biomass-derived chemical-looping gasification (CLG) process using bimetallic Cu-Fe oxides as oxygen carrier (OC) was investigated. The tar collected from batch fluidized bed experiment with Cu5Fe5 (50 mol.% CuO + 50 mol.% Fe2O3) as OC was first analyzed by Gas Chromatography-Mass Spectrometer (GC-MS) to qualitatively determine the organic compounds contained. It was found that the relative molecular weight of the compounds was mostly concentrated at about 200. Subsequently, the effects of steam to biomass ratio (S/B, in weight), temperature, and oxygen carrier to biomass ratio (O/B, in weight) on tar reforming were investigated. The results indicated that the increase of temperature, S/B and O/B were all favorable for the decomposition and conversion of large molecular compounds in tar into small ones. In addition, quantitative analyses of the tar collected under the optimal conditions with different Cu-Fe mixed metal oxides as OCs were also conducted. It was found that the Cu composition in OC could promote the decomposition of small molecular compounds in tar, while the Fe composition was beneficial to decrease the yield of large molecular compounds in tar. Furthermore, synergistic reactivity of the bimetallic Cu-Fe OC was achieved for tar decomposition during the biomass-derived CLG process.
•The molecular mass of the main compounds in tar are concentrated at about 200.•Effects of temperature, S/B, O/B and Cu/Fe ratio on tar yield are discussed.•Cu poses high reforming reactivity on small molecular compounds in tar.•Fe is beneficial to reduce the yield of large molecular compounds in tar.•Bimetallic Cu-Fe oxide demonstrates synergistic effect on tar decomposition. |
---|---|
AbstractList | Tar, as a kind of by-product in biomass gasification processes, can adversely affect the efficiency of biomass utilization. Chemical-looping technology has been proposed as a novel way to reduce the tar yield in biomass treatment. As the second part of a two-part series work, the tar evolution characteristic during the biomass-derived chemical-looping gasification (CLG) process using bimetallic Cu-Fe oxides as oxygen carrier (OC) was investigated. The tar collected from batch fluidized bed experiment with Cu5Fe5 (50 mol.% CuO + 50 mol.% Fe2O3) as OC was first analyzed by Gas Chromatography-Mass Spectrometer (GC-MS) to qualitatively determine the organic compounds contained. It was found that the relative molecular weight of the compounds was mostly concentrated at about 200. Subsequently, the effects of steam to biomass ratio (S/B, in weight), temperature, and oxygen carrier to biomass ratio (O/B, in weight) on tar reforming were investigated. The results indicated that the increase of temperature, S/B and O/B were all favorable for the decomposition and conversion of large molecular compounds in tar into small ones. In addition, quantitative analyses of the tar collected under the optimal conditions with different Cu-Fe mixed metal oxides as OCs were also conducted. It was found that the Cu composition in OC could promote the decomposition of small molecular compounds in tar, while the Fe composition was beneficial to decrease the yield of large molecular compounds in tar. Furthermore, synergistic reactivity of the bimetallic Cu-Fe OC was achieved for tar decomposition during the biomass-derived CLG process. Tar, as a kind of by-product in biomass gasification processes, can adversely affect the efficiency of biomass utilization. Chemical-looping technology has been proposed as a novel way to reduce the tar yield in biomass treatment. As the second part of a two-part series work, the tar evolution characteristic during the biomass-derived chemical-looping gasification (CLG) process using bimetallic Cu-Fe oxides as oxygen carrier (OC) was investigated. The tar collected from batch fluidized bed experiment with Cu5Fe5 (50 mol.% CuO + 50 mol.% Fe2O3) as OC was first analyzed by Gas Chromatography-Mass Spectrometer (GC-MS) to qualitatively determine the organic compounds contained. It was found that the relative molecular weight of the compounds was mostly concentrated at about 200. Subsequently, the effects of steam to biomass ratio (S/B, in weight), temperature, and oxygen carrier to biomass ratio (O/B, in weight) on tar reforming were investigated. The results indicated that the increase of temperature, S/B and O/B were all favorable for the decomposition and conversion of large molecular compounds in tar into small ones. In addition, quantitative analyses of the tar collected under the optimal conditions with different Cu-Fe mixed metal oxides as OCs were also conducted. It was found that the Cu composition in OC could promote the decomposition of small molecular compounds in tar, while the Fe composition was beneficial to decrease the yield of large molecular compounds in tar. Furthermore, synergistic reactivity of the bimetallic Cu-Fe OC was achieved for tar decomposition during the biomass-derived CLG process. •The molecular mass of the main compounds in tar are concentrated at about 200.•Effects of temperature, S/B, O/B and Cu/Fe ratio on tar yield are discussed.•Cu poses high reforming reactivity on small molecular compounds in tar.•Fe is beneficial to reduce the yield of large molecular compounds in tar.•Bimetallic Cu-Fe oxide demonstrates synergistic effect on tar decomposition. |
Author | Tian, Xin Ma, Yuexin Zhao, Haibo Niu, Pengjie |
Author_xml | – sequence: 1 givenname: Xin surname: Tian fullname: Tian, Xin – sequence: 2 givenname: Pengjie surname: Niu fullname: Niu, Pengjie – sequence: 3 givenname: Yuexin surname: Ma fullname: Ma, Yuexin – sequence: 4 givenname: Haibo orcidid: 0000-0002-2693-4499 surname: Zhao fullname: Zhao, Haibo email: hzhao@mail.hust.edu.cn |
BookMark | eNqFkE1Lw0AQhhepYFv9C7JHL4mz2SSbiAel-FEo1EM9L5vNbN2SZutuKvTfm1i9eOlhGBje54V5JmTUuhYJuWYQM2D57SaurNv2g3ECTMSMxQDijIxZIXiUlFCOyBjKnEVlxtMLMglhA8BSSNmYLGcfuLVaNVHj3M62a7pWwZr-0lnXUmfoUK5CuKNvynd0Po_pSnl6sNjUgaq2prUNnbfVfgDCJTk3qgl49bun5P35aTV7jRbLl_nscRHpNC26SINhxuhclWmGHCEpIM2NQJEYrY2os4TrWhnBMsNEobiGoshLUWVpXSJWnE_JzbF3593nHkMntzZobBrVotsHmUACRc5B5H30_hjV3oXg0Uhtu5_3Oq9sIxnIwaPcyD-PcvAoGZO9xx7P_-E7b7fKH06DD0cQew9fFr0M2mKrsbYedSdrZ09VfANd4pQJ |
CitedBy_id | crossref_primary_10_1016_j_ijggc_2019_102898 crossref_primary_10_1016_j_energy_2020_118846 crossref_primary_10_1016_j_adapen_2021_100044 crossref_primary_10_2139_ssrn_4131059 crossref_primary_10_1016_j_biortech_2021_125011 crossref_primary_10_1016_j_matre_2024_100282 crossref_primary_10_1016_j_enconman_2019_03_084 crossref_primary_10_1016_j_fuproc_2019_04_009 crossref_primary_10_1007_s40095_021_00423_y crossref_primary_10_1016_j_cej_2024_158503 crossref_primary_10_1016_j_cej_2022_138935 crossref_primary_10_1039_D1GC04733G crossref_primary_10_1016_j_fuel_2022_124119 crossref_primary_10_1016_j_fuproc_2021_106937 crossref_primary_10_1016_j_heliyon_2023_e17943 crossref_primary_10_1016_j_fuproc_2022_107601 crossref_primary_10_1016_j_joei_2020_05_004 crossref_primary_10_1016_j_psep_2024_01_024 crossref_primary_10_1016_j_cej_2023_142860 crossref_primary_10_1021_acs_energyfuels_0c00989 crossref_primary_10_1016_j_enconman_2021_114876 crossref_primary_10_1016_j_ijggc_2023_103913 crossref_primary_10_1016_j_enconman_2022_115597 crossref_primary_10_1016_j_joei_2019_11_009 crossref_primary_10_1021_acs_energyfuels_8b02849 crossref_primary_10_1021_acs_energyfuels_2c03155 crossref_primary_10_1016_j_enconman_2019_112157 crossref_primary_10_1007_s13399_024_05607_0 crossref_primary_10_1016_j_fuel_2025_134419 crossref_primary_10_1016_j_cej_2023_143948 crossref_primary_10_1021_acssuschemeng_8b05546 crossref_primary_10_1002_cjce_23716 crossref_primary_10_1016_j_apenergy_2019_113502 crossref_primary_10_1016_j_enconman_2018_01_057 crossref_primary_10_1002_adsu_202000099 crossref_primary_10_1016_j_energy_2021_122204 crossref_primary_10_3390_atmos13060887 crossref_primary_10_1016_j_biombioe_2017_11_008 crossref_primary_10_1016_j_ccst_2024_100353 crossref_primary_10_1016_j_cej_2020_126679 crossref_primary_10_1016_j_fuel_2024_134228 crossref_primary_10_1016_j_fuproc_2019_05_021 crossref_primary_10_1016_j_fuel_2021_121269 crossref_primary_10_1021_acs_energyfuels_0c01022 crossref_primary_10_3390_app11157069 crossref_primary_10_1016_j_fuel_2023_128203 crossref_primary_10_1016_j_biombioe_2022_106645 crossref_primary_10_1016_j_fuel_2021_122193 crossref_primary_10_1016_j_cej_2024_155488 crossref_primary_10_1016_j_enconman_2021_114100 crossref_primary_10_1016_j_fuproc_2022_107371 crossref_primary_10_1021_acs_energyfuels_1c01800 crossref_primary_10_1016_j_enconman_2021_114263 crossref_primary_10_1016_j_fuproc_2022_107375 crossref_primary_10_1016_j_cjche_2020_09_024 crossref_primary_10_1021_acs_energyfuels_3c04532 crossref_primary_10_1016_j_fuel_2024_134065 crossref_primary_10_1021_acs_energyfuels_3c02750 crossref_primary_10_1007_s13399_023_04061_8 crossref_primary_10_1016_j_fuel_2020_117464 |
Cites_doi | 10.1016/j.biortech.2014.10.010 10.1016/j.rser.2011.02.018 10.1021/ef302091w 10.1016/j.rser.2013.10.013 10.1021/ef500369c 10.1016/j.fuel.2013.01.023 10.1016/j.biombioe.2017.03.015 10.1016/S0021-9673(01)81515-6 10.1016/j.pecs.2011.09.001 10.1016/j.fuel.2003.11.013 10.1021/ie300033e 10.1021/ie00005a006 10.1016/j.renene.2016.01.073 10.1016/j.biombioe.2017.11.008 10.1016/j.fuel.2016.04.024 10.1016/j.biombioe.2011.02.054 10.1016/j.apcatb.2012.12.022 10.1016/S0961-9534(02)00102-2 10.1021/ie0498403 10.1016/j.biortech.2009.03.045 10.1038/nature06937 10.1016/j.apcatb.2012.04.005 10.1007/s13399-012-0042-6 10.1016/j.apenergy.2013.01.063 10.1016/j.apcatb.2010.09.011 10.1021/ie3028262 10.1016/j.powtec.2007.03.008 10.1016/j.biombioe.2012.11.014 10.1002/aic.15034 10.1016/j.jaap.2011.01.010 10.1007/s13596-017-0257-y 10.1080/01614940701375134 10.1016/j.apenergy.2015.04.093 10.1016/j.proci.2014.07.010 10.1021/ie200645s 10.1016/j.biortech.2004.02.003 10.1016/j.apenergy.2015.04.042 10.1021/ef500132p |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd |
Copyright_xml | – notice: 2017 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.biombioe.2017.11.007 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1873-2909 |
EndPage | 189 |
ExternalDocumentID | 10_1016_j_biombioe_2017_11_007 S0961953417303823 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AATLK AAXUO ABFNM ABGRD ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SCC SDF SDG SES SEW SPC SPCBC SSA SSG SSJ SSR SSZ T5K VH1 WUQ ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c448t-c0f1ffc6a945e3e028046f7e72fccf7d523cdaf715f178a3c088697b54d9eeb33 |
IEDL.DBID | .~1 |
ISSN | 0961-9534 |
IngestDate | Fri Jul 11 06:51:37 EDT 2025 Tue Jul 01 01:49:47 EDT 2025 Thu Apr 24 23:11:49 EDT 2025 Fri Feb 23 02:27:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cu-Fe bimetallic oxygen carriers Biomass Tar Chemical-looping gasification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c448t-c0f1ffc6a945e3e028046f7e72fccf7d523cdaf715f178a3c088697b54d9eeb33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2693-4499 |
PQID | 2020863076 |
PQPubID | 24069 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2020863076 crossref_citationtrail_10_1016_j_biombioe_2017_11_007 crossref_primary_10_1016_j_biombioe_2017_11_007 elsevier_sciencedirect_doi_10_1016_j_biombioe_2017_11_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2018 2018-01-00 20180101 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: January 2018 |
PublicationDecade | 2010 |
PublicationTitle | Biomass & bioenergy |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Virginie, Adánez, Courson, de Diego, García-Labiano, Niznansky, Kiennemann, Gayan, Abad (bib21) 2012; 121 Siriwardane, Ksepko, Tian, Poston, Simonyi, Sciazko (bib26) 2013; 107 Keller, Leion, Mattisson, Thunman (bib13) 2014; 28 Li, Tamura, Nakagawa, Tomishige (bib16) 2015; 178 Lind, Seemann, Thunman (bib18) 2011; 50 Devi, Ptasinski, Janssen (bib3) 2003; 24 Keller, Fung, Leion, Mattisson (bib23) 2016; 180 Adanez, Abad, Garcia-Labiano, Gayan, Luis (bib9) 2012; 38 Dai, Li, Fan, Wei, Xu (bib14) 2012; 51 Rosenzweig, Karoly, Vicarelli, Neofotis, Wu, Casassa, Menzel, Root, Estrella, Seguin, Tryianowski, Liu, Rawlins, Imeson (bib1) 2008; 453 Wang, Yan, Lee, Zheng, Zhao, Zheng (bib29) 2011; 91 Gao, Li, Quan (bib34) 2009; 100 Cho, Mattisson, Lyngfelt (bib24) 2004; 83 Anis, Zainal (bib5) 2011; 15 Qadir, Singh, Akhtar, Ali, Arif (bib31) 2017; 17 Chen, Yao, Liu, Yan, Shan (bib35) 2016; 91 Abu El-Rub, Bramer, Brem (bib8) 2004; 43 Berguerand, Lind, Israelsson, Seemann, Biollaz, Thunman (bib38) 2012; 51 Assima, Dell'Orco, Navaee-Ardeh, Lavoie (bib6) 2017; 100 Cheah, Gaston, Parent, Jarvis, Vinzant, Smith, Thornburg, Nimlos, Marginibair (bib37) 2013; 134 Ma, Müller, Richter, Kriegel, Böhning, Beckmann, Glusing, Ruhe (bib15) 2013; 53 Michel, Rapagnà, Burg, Celso, Courson, Zimny, Gruber (bib32) 2011; 35 Siriwardane, Tian, Simonyi, Poston (bib25) 2013; 108 Larsson, Israelsson, Lind, Seemann, Thunman (bib19) 2014; 28 Byrd, Fowler, Hicks, Lovette, Borgerding (bib30) 1990; 503 Zhao, Guo, Zou (bib10) 2015; 157 P. Niu, Y. Ma, X. Tian, J. Ma, H. Zhao. Chemical looping gasification of biomass: Part I. Screening Cu-Fe metal oxides as oxygen carrier and optimizing experimental conditions. Biomass Bioenergy. Udomsirichakorn, Salam (bib2) 2014; 30 Virginie, Courson, Niznansky, Chaoui, Kiennemann (bib20) 2010; 101 Yang, Zhao, Wang, Zheng (bib28) 2014; 35 . Lv, Xiong, Chang, Wu, Chen, Zhu (bib36) 2004; 95 Siriwardane, Tian, Miller, Richards (bib27) 2015; 157 Torres, Pansare, Goodwin (bib7) 2007; 49 Pfeifer, Hofbauer (bib4) 2008; 180 Herguido, Corella, Gonzalezsaiz (bib33) 1992; 31 Lind, Berguerand, Seemann, Thunman (bib11) 2013; 27 Keller, Leion, Mattisson (bib22) 2016; 62 Lind, Israelsson, Seemann, Thunman (bib12) 2012; 2 Pfeifer (10.1016/j.biombioe.2017.11.007_bib4) 2008; 180 Michel (10.1016/j.biombioe.2017.11.007_bib32) 2011; 35 10.1016/j.biombioe.2017.11.007_bib17 Cheah (10.1016/j.biombioe.2017.11.007_bib37) 2013; 134 Abu El-Rub (10.1016/j.biombioe.2017.11.007_bib8) 2004; 43 Keller (10.1016/j.biombioe.2017.11.007_bib13) 2014; 28 Anis (10.1016/j.biombioe.2017.11.007_bib5) 2011; 15 Cho (10.1016/j.biombioe.2017.11.007_bib24) 2004; 83 Wang (10.1016/j.biombioe.2017.11.007_bib29) 2011; 91 Li (10.1016/j.biombioe.2017.11.007_bib16) 2015; 178 Gao (10.1016/j.biombioe.2017.11.007_bib34) 2009; 100 Lv (10.1016/j.biombioe.2017.11.007_bib36) 2004; 95 Qadir (10.1016/j.biombioe.2017.11.007_bib31) 2017; 17 Chen (10.1016/j.biombioe.2017.11.007_bib35) 2016; 91 Berguerand (10.1016/j.biombioe.2017.11.007_bib38) 2012; 51 Rosenzweig (10.1016/j.biombioe.2017.11.007_bib1) 2008; 453 Torres (10.1016/j.biombioe.2017.11.007_bib7) 2007; 49 Siriwardane (10.1016/j.biombioe.2017.11.007_bib27) 2015; 157 Yang (10.1016/j.biombioe.2017.11.007_bib28) 2014; 35 Adanez (10.1016/j.biombioe.2017.11.007_bib9) 2012; 38 Dai (10.1016/j.biombioe.2017.11.007_bib14) 2012; 51 Virginie (10.1016/j.biombioe.2017.11.007_bib21) 2012; 121 Keller (10.1016/j.biombioe.2017.11.007_bib22) 2016; 62 Devi (10.1016/j.biombioe.2017.11.007_bib3) 2003; 24 Assima (10.1016/j.biombioe.2017.11.007_bib6) 2017; 100 Virginie (10.1016/j.biombioe.2017.11.007_bib20) 2010; 101 Keller (10.1016/j.biombioe.2017.11.007_bib23) 2016; 180 Siriwardane (10.1016/j.biombioe.2017.11.007_bib26) 2013; 107 Lind (10.1016/j.biombioe.2017.11.007_bib11) 2013; 27 Lind (10.1016/j.biombioe.2017.11.007_bib18) 2011; 50 Byrd (10.1016/j.biombioe.2017.11.007_bib30) 1990; 503 Lind (10.1016/j.biombioe.2017.11.007_bib12) 2012; 2 Ma (10.1016/j.biombioe.2017.11.007_bib15) 2013; 53 Siriwardane (10.1016/j.biombioe.2017.11.007_bib25) 2013; 108 Zhao (10.1016/j.biombioe.2017.11.007_bib10) 2015; 157 Herguido (10.1016/j.biombioe.2017.11.007_bib33) 1992; 31 Udomsirichakorn (10.1016/j.biombioe.2017.11.007_bib2) 2014; 30 Larsson (10.1016/j.biombioe.2017.11.007_bib19) 2014; 28 |
References_xml | – volume: 38 start-page: 215 year: 2012 end-page: 282 ident: bib9 article-title: Progress in chemical-looping combustion and reforming technologies publication-title: Prog. Energy Combust. Sci. – volume: 91 start-page: 315 year: 2016 end-page: 322 ident: bib35 article-title: Biomass to hydrogen-rich syngas via catalytic steam reforming of bio-oil publication-title: Renew. Energy – volume: 53 start-page: 65 year: 2013 end-page: 71 ident: bib15 article-title: Investigation of combined catalyst and oxygen carrier systems for the partial oxidation of naphthalene as model tar from biomass gasification publication-title: Biomass & Bioenergy – volume: 17 start-page: 81 year: 2017 end-page: 87 ident: bib31 article-title: Phytochemical and GC-MS analysis of Saudi Arabian Ajwa variety of date seed oil and extracts obtained by the slow pyrolysis method publication-title: Orient. Pharm. Exp. Med. – volume: 157 start-page: 408 year: 2015 end-page: 415 ident: bib10 article-title: Chemical-looping auto-thermal reforming of biomass using Cu-based oxygen carrier publication-title: Appl. Energy – volume: 134 start-page: 34 year: 2013 end-page: 45 ident: bib37 article-title: Nickel cerium olivine catalyst for catalytic gasification of biomass publication-title: Appl. Catal. B Environ. – volume: 30 start-page: 565 year: 2014 end-page: 579 ident: bib2 article-title: Review of hydrogen-enriched gas production from steam gasification of biomass: the prospect of CaO-based chemical looping gasification publication-title: Renew. Sustain. Energy Rev. – volume: 50 start-page: 11553 year: 2011 end-page: 11562 ident: bib18 article-title: Continuous catalytic tar reforming of biomass derived raw gas with simultaneous catalyst regeneration publication-title: Ind. Eng. Chem. Res. – volume: 62 start-page: 38 year: 2016 end-page: 45 ident: bib22 article-title: Use of CuO/MgAl publication-title: AIChE J. – volume: 180 start-page: 448 year: 2016 end-page: 456 ident: bib23 article-title: Cu-impregnated alumina/silica bed materials for Chemical Looping Reforming of biomass gasification gas publication-title: Fuel – volume: 100 start-page: 4271 year: 2009 end-page: 4277 ident: bib34 article-title: A novel reforming method for hydrogen production from biomass steam gasification publication-title: Bioresour. Technol. – volume: 157 start-page: 348 year: 2015 end-page: 357 ident: bib27 article-title: Fluidized bed testing of commercially prepared MgO-promoted hematite and CuO–Fe publication-title: Appl. Energy – volume: 503 start-page: 359 year: 1990 end-page: 368 ident: bib30 article-title: Isotope dilution gas chromatography-mass spectrometry in the determination of benzene, toluene, styrene and acrylonitrile in mainstream cigarette smoke publication-title: J. Chromatogr. A – volume: 95 start-page: 95 year: 2004 end-page: 101 ident: bib36 article-title: An experimental study on biomass air-steam gasification in a fluidized bed publication-title: Bioresour. Technol. – volume: 43 start-page: 6911 year: 2004 end-page: 6919 ident: bib8 article-title: Review of catalysts for tar elimination in biomass gasification processes publication-title: Ind. Eng. Chem. Res. – volume: 83 start-page: 1215 year: 2004 end-page: 1225 ident: bib24 article-title: Comparison of iron-, nickel-, copper-and manganese-based oxygen carriers for chemical-looping combustion publication-title: Fuel – volume: 51 start-page: 11072 year: 2012 end-page: 11082 ident: bib14 article-title: Synthesis gas generation by chemical-looping reforming in a circulating fluidized bed reactor using perovskite LaFeO publication-title: Ind. Eng. Chem. Res. – volume: 180 start-page: 9 year: 2008 end-page: 16 ident: bib4 article-title: Development of catalytic tar decomposition downstream from a dual fluidized bed biomass steam gasifier publication-title: Powder Technol. – volume: 2 start-page: 133 year: 2012 end-page: 140 ident: bib12 article-title: Manganese oxide as catalyst for tar cleaning of biomass-derived gas publication-title: Biomass Convers. Biorefinery – volume: 453 start-page: 353 year: 2008 end-page: 357 ident: bib1 article-title: Attributing physical and biological impacts to anthropogenic climate change publication-title: Nature – volume: 121 start-page: 214 year: 2012 end-page: 222 ident: bib21 article-title: Effect of Fe–olivine on the tar content during biomass gasification in a dual fluidized bed publication-title: Appl. Catal. B Environ. – volume: 35 start-page: 2650 year: 2011 end-page: 2658 ident: bib32 article-title: Steam gasification of Miscanthus X Giganteus with olivine as catalyst production of syngas and analysis of tars (IR, NMR and GC/MS) publication-title: Biomass & Bioenergy – volume: 24 start-page: 125 year: 2003 end-page: 140 ident: bib3 article-title: A review of the primary measures for tar elimination in biomass gasification processes publication-title: Biomass & Bioenergy – volume: 108 year: 2013 ident: bib25 article-title: Synergetic effects of mixed copper–iron oxides oxygen carriers in chemical looping combustion publication-title: Fuel – volume: 91 start-page: 105 year: 2011 end-page: 113 ident: bib29 article-title: Characterization and evaluation of Fe publication-title: J. Anal. Appl. Pyrolysis – volume: 49 start-page: 407 year: 2007 end-page: 456 ident: bib7 article-title: Hot gas removal of tars, ammonia, and hydrogen sulfide from biomass gasification gas publication-title: Catal. Rev. – volume: 28 start-page: 3833 year: 2014 end-page: 3840 ident: bib13 article-title: Investigation of natural and synthetic bed materials for their utilization in chemical looping reforming for tar elimination in biomass-derived gasification gas publication-title: Energy & Fuels – volume: 35 start-page: 2811 year: 2014 end-page: 2818 ident: bib28 article-title: Synergistic effects of mixtures of iron ores and copper ores as oxygen carriers in chemical-looping combustion publication-title: Proc. Combust. Inst. – reference: P. Niu, Y. Ma, X. Tian, J. Ma, H. Zhao. Chemical looping gasification of biomass: Part I. Screening Cu-Fe metal oxides as oxygen carrier and optimizing experimental conditions. Biomass Bioenergy. – volume: 100 start-page: 98 year: 2017 end-page: 107 ident: bib6 article-title: Catalytic conversion of residual fine char recovered by aqueous scrubbing of syngas from urban biomass gasification publication-title: Biomass & Bioenergy – volume: 107 start-page: 111 year: 2013 end-page: 123 ident: bib26 article-title: Interaction of iron–copper mixed metal oxide oxygen carriers with simulated synthesis gas derived from steam gasification of coal publication-title: Appl. Energy – volume: 28 start-page: 2632 year: 2014 end-page: 2644 ident: bib19 article-title: Using ilmenite to reduce the tar yield in a dual fluidized bed gasification system publication-title: Energy & Fuels – volume: 101 start-page: 90 year: 2010 end-page: 100 ident: bib20 article-title: Characterization and reactivity in toluene reforming of a Fe/olivine catalyst designed for gas cleanup in biomass gasification publication-title: Appl. Catal. B Environ. – volume: 178 start-page: 53 year: 2015 end-page: 64 ident: bib16 article-title: Metal catalysts for steam reforming of tar derived from the gasification of lignocellulosic biomass publication-title: Bioresour. Technol. – reference: . – volume: 51 start-page: 16610 year: 2012 end-page: 16616 ident: bib38 article-title: Use of nickel oxide as a catalyst for tar elimination in a chemical-looping reforming reactor operated with biomass producer gas publication-title: Ind. Eng. Chem. Res. – volume: 27 start-page: 997 year: 2013 end-page: 1007 ident: bib11 article-title: Ilmenite and nickel as catalysts for upgrading of raw gas derived from biomass gasification publication-title: Energy & Fuels – volume: 15 start-page: 2355 year: 2011 end-page: 2377 ident: bib5 article-title: Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: a review publication-title: Renew. Sustain. Energy Rev. – volume: 31 start-page: 1274 year: 1992 end-page: 1282 ident: bib33 article-title: Steam gasification of lignocellulosic residues in a fluidized bed at a small pilot scale. Effect of the type of feedstock publication-title: Ind. Eng. Chem. Res. – volume: 178 start-page: 53 year: 2015 ident: 10.1016/j.biombioe.2017.11.007_bib16 article-title: Metal catalysts for steam reforming of tar derived from the gasification of lignocellulosic biomass publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.10.010 – volume: 15 start-page: 2355 issue: 5 year: 2011 ident: 10.1016/j.biombioe.2017.11.007_bib5 article-title: Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2011.02.018 – volume: 27 start-page: 997 issue: 2 year: 2013 ident: 10.1016/j.biombioe.2017.11.007_bib11 article-title: Ilmenite and nickel as catalysts for upgrading of raw gas derived from biomass gasification publication-title: Energy & Fuels doi: 10.1021/ef302091w – volume: 30 start-page: 565 issue: 2 year: 2014 ident: 10.1016/j.biombioe.2017.11.007_bib2 article-title: Review of hydrogen-enriched gas production from steam gasification of biomass: the prospect of CaO-based chemical looping gasification publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2013.10.013 – volume: 28 start-page: 3833 issue: 6 year: 2014 ident: 10.1016/j.biombioe.2017.11.007_bib13 article-title: Investigation of natural and synthetic bed materials for their utilization in chemical looping reforming for tar elimination in biomass-derived gasification gas publication-title: Energy & Fuels doi: 10.1021/ef500369c – volume: 108 year: 2013 ident: 10.1016/j.biombioe.2017.11.007_bib25 article-title: Synergetic effects of mixed copper–iron oxides oxygen carriers in chemical looping combustion publication-title: Fuel doi: 10.1016/j.fuel.2013.01.023 – volume: 100 start-page: 98 year: 2017 ident: 10.1016/j.biombioe.2017.11.007_bib6 article-title: Catalytic conversion of residual fine char recovered by aqueous scrubbing of syngas from urban biomass gasification publication-title: Biomass & Bioenergy doi: 10.1016/j.biombioe.2017.03.015 – volume: 503 start-page: 359 issue: 2 year: 1990 ident: 10.1016/j.biombioe.2017.11.007_bib30 article-title: Isotope dilution gas chromatography-mass spectrometry in the determination of benzene, toluene, styrene and acrylonitrile in mainstream cigarette smoke publication-title: J. Chromatogr. A doi: 10.1016/S0021-9673(01)81515-6 – volume: 38 start-page: 215 issue: 2 year: 2012 ident: 10.1016/j.biombioe.2017.11.007_bib9 article-title: Progress in chemical-looping combustion and reforming technologies publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2011.09.001 – volume: 83 start-page: 1215 issue: 9 year: 2004 ident: 10.1016/j.biombioe.2017.11.007_bib24 article-title: Comparison of iron-, nickel-, copper-and manganese-based oxygen carriers for chemical-looping combustion publication-title: Fuel doi: 10.1016/j.fuel.2003.11.013 – volume: 51 start-page: 11072 issue: 34 year: 2012 ident: 10.1016/j.biombioe.2017.11.007_bib14 article-title: Synthesis gas generation by chemical-looping reforming in a circulating fluidized bed reactor using perovskite LaFeO3-based oxygen carriers publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie300033e – volume: 31 start-page: 1274 issue: 5 year: 1992 ident: 10.1016/j.biombioe.2017.11.007_bib33 article-title: Steam gasification of lignocellulosic residues in a fluidized bed at a small pilot scale. Effect of the type of feedstock publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie00005a006 – volume: 91 start-page: 315 year: 2016 ident: 10.1016/j.biombioe.2017.11.007_bib35 article-title: Biomass to hydrogen-rich syngas via catalytic steam reforming of bio-oil publication-title: Renew. Energy doi: 10.1016/j.renene.2016.01.073 – ident: 10.1016/j.biombioe.2017.11.007_bib17 doi: 10.1016/j.biombioe.2017.11.008 – volume: 180 start-page: 448 year: 2016 ident: 10.1016/j.biombioe.2017.11.007_bib23 article-title: Cu-impregnated alumina/silica bed materials for Chemical Looping Reforming of biomass gasification gas publication-title: Fuel doi: 10.1016/j.fuel.2016.04.024 – volume: 35 start-page: 2650 issue: 7 year: 2011 ident: 10.1016/j.biombioe.2017.11.007_bib32 article-title: Steam gasification of Miscanthus X Giganteus with olivine as catalyst production of syngas and analysis of tars (IR, NMR and GC/MS) publication-title: Biomass & Bioenergy doi: 10.1016/j.biombioe.2011.02.054 – volume: 134 start-page: 34 year: 2013 ident: 10.1016/j.biombioe.2017.11.007_bib37 article-title: Nickel cerium olivine catalyst for catalytic gasification of biomass publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2012.12.022 – volume: 24 start-page: 125 issue: 2 year: 2003 ident: 10.1016/j.biombioe.2017.11.007_bib3 article-title: A review of the primary measures for tar elimination in biomass gasification processes publication-title: Biomass & Bioenergy doi: 10.1016/S0961-9534(02)00102-2 – volume: 43 start-page: 6911 issue: 22 year: 2004 ident: 10.1016/j.biombioe.2017.11.007_bib8 article-title: Review of catalysts for tar elimination in biomass gasification processes publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie0498403 – volume: 100 start-page: 4271 issue: 18 year: 2009 ident: 10.1016/j.biombioe.2017.11.007_bib34 article-title: A novel reforming method for hydrogen production from biomass steam gasification publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.03.045 – volume: 453 start-page: 353 issue: 7193 year: 2008 ident: 10.1016/j.biombioe.2017.11.007_bib1 article-title: Attributing physical and biological impacts to anthropogenic climate change publication-title: Nature doi: 10.1038/nature06937 – volume: 121 start-page: 214 year: 2012 ident: 10.1016/j.biombioe.2017.11.007_bib21 article-title: Effect of Fe–olivine on the tar content during biomass gasification in a dual fluidized bed publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2012.04.005 – volume: 2 start-page: 133 issue: 2 year: 2012 ident: 10.1016/j.biombioe.2017.11.007_bib12 article-title: Manganese oxide as catalyst for tar cleaning of biomass-derived gas publication-title: Biomass Convers. Biorefinery doi: 10.1007/s13399-012-0042-6 – volume: 107 start-page: 111 year: 2013 ident: 10.1016/j.biombioe.2017.11.007_bib26 article-title: Interaction of iron–copper mixed metal oxide oxygen carriers with simulated synthesis gas derived from steam gasification of coal publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.01.063 – volume: 101 start-page: 90 issue: 1 year: 2010 ident: 10.1016/j.biombioe.2017.11.007_bib20 article-title: Characterization and reactivity in toluene reforming of a Fe/olivine catalyst designed for gas cleanup in biomass gasification publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2010.09.011 – volume: 51 start-page: 16610 issue: 51 year: 2012 ident: 10.1016/j.biombioe.2017.11.007_bib38 article-title: Use of nickel oxide as a catalyst for tar elimination in a chemical-looping reforming reactor operated with biomass producer gas publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie3028262 – volume: 180 start-page: 9 issue: 1 year: 2008 ident: 10.1016/j.biombioe.2017.11.007_bib4 article-title: Development of catalytic tar decomposition downstream from a dual fluidized bed biomass steam gasifier publication-title: Powder Technol. doi: 10.1016/j.powtec.2007.03.008 – volume: 53 start-page: 65 issue: 28 year: 2013 ident: 10.1016/j.biombioe.2017.11.007_bib15 article-title: Investigation of combined catalyst and oxygen carrier systems for the partial oxidation of naphthalene as model tar from biomass gasification publication-title: Biomass & Bioenergy doi: 10.1016/j.biombioe.2012.11.014 – volume: 62 start-page: 38 issue: 1 year: 2016 ident: 10.1016/j.biombioe.2017.11.007_bib22 article-title: Use of CuO/MgAl2O4 and La0.8Sr0.2FeO3/γ-Al2O3 in chemical looping reforming system for tar removal from gasification gas publication-title: AIChE J. doi: 10.1002/aic.15034 – volume: 91 start-page: 105 issue: 1 year: 2011 ident: 10.1016/j.biombioe.2017.11.007_bib29 article-title: Characterization and evaluation of Fe2O3/Al2O3 oxygen carrier prepared by sol–gel combustion synthesis publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2011.01.010 – volume: 17 start-page: 81 issue: 1 year: 2017 ident: 10.1016/j.biombioe.2017.11.007_bib31 article-title: Phytochemical and GC-MS analysis of Saudi Arabian Ajwa variety of date seed oil and extracts obtained by the slow pyrolysis method publication-title: Orient. Pharm. Exp. Med. doi: 10.1007/s13596-017-0257-y – volume: 49 start-page: 407 issue: 4 year: 2007 ident: 10.1016/j.biombioe.2017.11.007_bib7 article-title: Hot gas removal of tars, ammonia, and hydrogen sulfide from biomass gasification gas publication-title: Catal. Rev. doi: 10.1080/01614940701375134 – volume: 157 start-page: 408 year: 2015 ident: 10.1016/j.biombioe.2017.11.007_bib10 article-title: Chemical-looping auto-thermal reforming of biomass using Cu-based oxygen carrier publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.04.093 – volume: 35 start-page: 2811 issue: 3 year: 2014 ident: 10.1016/j.biombioe.2017.11.007_bib28 article-title: Synergistic effects of mixtures of iron ores and copper ores as oxygen carriers in chemical-looping combustion publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2014.07.010 – volume: 50 start-page: 11553 issue: 20 year: 2011 ident: 10.1016/j.biombioe.2017.11.007_bib18 article-title: Continuous catalytic tar reforming of biomass derived raw gas with simultaneous catalyst regeneration publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie200645s – volume: 95 start-page: 95 issue: 1 year: 2004 ident: 10.1016/j.biombioe.2017.11.007_bib36 article-title: An experimental study on biomass air-steam gasification in a fluidized bed publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2004.02.003 – volume: 157 start-page: 348 year: 2015 ident: 10.1016/j.biombioe.2017.11.007_bib27 article-title: Fluidized bed testing of commercially prepared MgO-promoted hematite and CuO–Fe2O3 mixed metal oxide oxygen carriers for methane and coal chemical looping combustion publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.04.042 – volume: 28 start-page: 2632 issue: 4 year: 2014 ident: 10.1016/j.biombioe.2017.11.007_bib19 article-title: Using ilmenite to reduce the tar yield in a dual fluidized bed gasification system publication-title: Energy & Fuels doi: 10.1021/ef500132p |
SSID | ssj0014041 |
Score | 2.4687893 |
Snippet | Tar, as a kind of by-product in biomass gasification processes, can adversely affect the efficiency of biomass utilization. Chemical-looping technology has... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 178 |
SubjectTerms | Biomass byproducts Chemical-looping gasification Cu-Fe bimetallic oxygen carriers cupric oxide ferric oxide gas chromatography-mass spectrometry gasification iron molecular weight organic compounds oxygen quantitative analysis spectrometers steam Tar temperature |
Title | Chemical-looping gasification of biomass: Part II. Tar yields and distributions |
URI | https://dx.doi.org/10.1016/j.biombioe.2017.11.007 https://www.proquest.com/docview/2020863076 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT8IwEG-IvuiDUZSIH6Qmvg7Y6FrqGyEQ0IgmQsLb0nWtgZBBGDz44t_u3dgQjQkPPuxhy3Xprtfr3e7ud4Tce8Y1CNLigLiEDjPcOAoRaIVhYH27SnCJ1cjPA94bscexPy6Qdl4Lg2mVme7f6PRUW2dPahk3a4vJpPaGzUqkD1oYhBSjWVjBzgRKefVzm-aB6DFp1zwgxlAl26kSnlaxxB0uhMt0RRXRPLGt7N8H1C9VnZ4_3VNykhmOtLWZ2xkpmLhIjnfgBIuk1PmuWgPSbNsm5-QlhwVwZvO0QIq-qwRzhNJloXNLcYpgRj_QV_h42u9X6VAt6QemtyVUxRGNEGA3642VXJBRtzNs95ysk4Kjwf1aObpuXWs1V5L5pmEwnMq4FUZ4VmsrIvBGdaSscH3riqZqaNA9XIrQZ5E04G43SuQgnsfmklDtRlpEygsVB2PP86QOmS9tk2u3XtdNWSZ-zr5AZzDj2O1iFuT5ZNMgZ3uAbAcfJAC2l0ltO26xAdrYO0LmqxP8EJkAToO9Y-_y5QxgP2GQRMVmvk6AyAMvDzQfv_rH-6_JEdw1N_9qbsjBark2t2C9rMJKKp4VctjqP_UGXxMd7_Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgHIAD4ineBIlrt7VLk4UbQqCNx0BiSNyiNE0QCHWIjgP_HrtLeQmJA4deWqdKHcexa_szwEHiYkcgLRGKSxZxJ1xkCIFWOo7Wd2ykUFSNfDkQvVt-dpfeTcFxXQtDaZVB9090eqWtw51W4Gbr-eGhdUPNSlSKWhiFlKJZ0zBD6FRpA2aO-ue9wUcwgberBpZET9FK_qVQ-LFJVe54EWJmLJsE6EmdZX8_o35o6-oIOl2EhWA7sqPJ9JZgyhXLMP8FUXAZ1k4-C9eQNOzccgWuamSA6GlU1Uixe1NSmlC1MmzkGU0RLelDdo3fz_r9JhuaF_ZGGW4lM0XOcsLYDe2xylW4PT0ZHvei0EwhsuiBjSPb9rH3VhjFU9dxFFHlwksnE2-tlzk6pDY3Xsapj2XXdCyqH6FklvJcOfS4O2vQKEaFWwdm49zK3CSZEWjvJYmyGU-V7wobt9u2qzYgrdmnbUAap4YXT7pOKXvUNds1sR3dEI1s34DWx7jnCdbGnyNUvTr6m9RoPBD-HLtfL6fGLUVxElO40WuJRAk6eqj8xOY_3r8Hs73h5YW-6A_Ot2AOn3Qnv262oTF-eXU7aMyMs90grO9KRPKl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemical-looping+gasification+of+biomass%3A+Part+II.+Tar+yields+and+distributions&rft.jtitle=Biomass+%26+bioenergy&rft.au=Tian%2C+Xin&rft.au=Niu%2C+Pengjie&rft.au=Ma%2C+Yuexin&rft.au=Zhao%2C+Haibo&rft.date=2018-01-01&rft.issn=0961-9534&rft.volume=108+p.178-189&rft.spage=178&rft.epage=189&rft_id=info:doi/10.1016%2Fj.biombioe.2017.11.007&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0961-9534&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0961-9534&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0961-9534&client=summon |