A Design Methodology for Fault-Tolerant Neuromorphic Computing Using Bayesian Neural Network
Memristor crossbar arrays are a promising platform for neuromorphic computing. In practical scenarios, the synapse weights represented by the memristors for the underlying system are subject to process variations, in which the programmed weight when read out for inference is no longer deterministic...
Saved in:
Published in | Micromachines (Basel) Vol. 14; no. 10; p. 1840 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
27.09.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Memristor crossbar arrays are a promising platform for neuromorphic computing. In practical scenarios, the synapse weights represented by the memristors for the underlying system are subject to process variations, in which the programmed weight when read out for inference is no longer deterministic but a stochastic distribution. It is therefore highly desired to learn the weight distribution accounting for process variations, to ensure the same inference performance in memristor crossbar arrays as the design value. In this paper, we introduce a design methodology for fault-tolerant neuromorphic computing using a Bayesian neural network, which combines the variational Bayesian inference technique with a fault-aware variational posterior distribution. The proposed framework based on Bayesian inference incorporates the impacts of memristor deviations into algorithmic training, where the weight distributions of neural networks are optimized to accommodate uncertainties and minimize inference degradation. The experimental results confirm the capability of the proposed methodology to tolerate both process variations and noise, while achieving more robust computing in memristor crossbar arrays. |
---|---|
AbstractList | Memristor crossbar arrays are a promising platform for neuromorphic computing. In practical scenarios, the synapse weights represented by the memristors for the underlying system are subject to process variations, in which the programmed weight when read out for inference is no longer deterministic but a stochastic distribution. It is therefore highly desired to learn the weight distribution accounting for process variations, to ensure the same inference performance in memristor crossbar arrays as the design value. In this paper, we introduce a design methodology for fault-tolerant neuromorphic computing using a Bayesian neural network, which combines the variational Bayesian inference technique with a fault-aware variational posterior distribution. The proposed framework based on Bayesian inference incorporates the impacts of memristor deviations into algorithmic training, where the weight distributions of neural networks are optimized to accommodate uncertainties and minimize inference degradation. The experimental results confirm the capability of the proposed methodology to tolerate both process variations and noise, while achieving more robust computing in memristor crossbar arrays. Memristor crossbar arrays are a promising platform for neuromorphic computing. In practical scenarios, the synapse weights represented by the memristors for the underlying system are subject to process variations, in which the programmed weight when read out for inference is no longer deterministic but a stochastic distribution. It is therefore highly desired to learn the weight distribution accounting for process variations, to ensure the same inference performance in memristor crossbar arrays as the design value. In this paper, we introduce a design methodology for fault-tolerant neuromorphic computing using a Bayesian neural network, which combines the variational Bayesian inference technique with a fault-aware variational posterior distribution. The proposed framework based on Bayesian inference incorporates the impacts of memristor deviations into algorithmic training, where the weight distributions of neural networks are optimized to accommodate uncertainties and minimize inference degradation. The experimental results confirm the capability of the proposed methodology to tolerate both process variations and noise, while achieving more robust computing in memristor crossbar arrays.Memristor crossbar arrays are a promising platform for neuromorphic computing. In practical scenarios, the synapse weights represented by the memristors for the underlying system are subject to process variations, in which the programmed weight when read out for inference is no longer deterministic but a stochastic distribution. It is therefore highly desired to learn the weight distribution accounting for process variations, to ensure the same inference performance in memristor crossbar arrays as the design value. In this paper, we introduce a design methodology for fault-tolerant neuromorphic computing using a Bayesian neural network, which combines the variational Bayesian inference technique with a fault-aware variational posterior distribution. The proposed framework based on Bayesian inference incorporates the impacts of memristor deviations into algorithmic training, where the weight distributions of neural networks are optimized to accommodate uncertainties and minimize inference degradation. The experimental results confirm the capability of the proposed methodology to tolerate both process variations and noise, while achieving more robust computing in memristor crossbar arrays. |
Audience | Academic |
Author | Wei, Dongxu Xie, Xiaoru Gao, Di |
AuthorAffiliation | 3 The College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China 1 The School of Intelligent Manufacturing, Hangzhou Polytechnic, Hangzhou 311402, China; gaodi1995@outlook.com 2 The School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China |
AuthorAffiliation_xml | – name: 3 The College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China – name: 1 The School of Intelligent Manufacturing, Hangzhou Polytechnic, Hangzhou 311402, China; gaodi1995@outlook.com – name: 2 The School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China |
Author_xml | – sequence: 1 givenname: Di surname: Gao fullname: Gao, Di – sequence: 2 givenname: Xiaoru orcidid: 0000-0001-7307-2855 surname: Xie fullname: Xie, Xiaoru – sequence: 3 givenname: Dongxu orcidid: 0000-0002-9379-0181 surname: Wei fullname: Wei, Dongxu |
BookMark | eNpdkt-L1DAQx4uc4Hnei39BwRcR9syvNsmTrKv3A059uQMfhDBNp92sbbImrbL_vdndQz0TmAmT73wyE-Z5ceKDx6J4SckF55q8HR0VlFAlyJPilBHJFnVdfz355_ysOE9pQ_KSUmdzWnxblh8wud6Xn3BahzYMod-VXYjlJczDtLgLA0bwU_kZ5xjGELdrZ8tVGLfz5Hxf3qe9fQ-7DAF_UMGQ3fQrxO8viqcdDAnPH_xZcX_58W51vbj9cnWzWt4urBBqWjRIibRtKyQqXjW0tRUlygpLATSzqpM5SGjTAdPIkYGVrVDAu4ZgRbXkZ8XNkdsG2JhtdCPEnQngzCEQYm8gTs4OaIRiUHc1A6iIYKzThGOlpOCiUg1YnVnvjqzt3IzYWvRT7ugR9PGNd2vTh5-Gkpoofajm9QMhhh8zpsmMLlkcBvAY5mSYyl1KSZnK0lf_STdhjj7_1V7FFKWK74EXR1UPuQPnu5Aftnm3ODqbZ6BzOb6UkhGt-QH75phgY0gpYvenfErMflTM31HhvwFdIrLM |
Cites_doi | 10.1021/acsaelm.1c00078 10.3389/fnins.2017.00538 10.1145/2897937.2898010 10.1109/IJCNN.2016.7727298 10.1109/ISCA.2016.12 10.1109/TVLSI.2021.3063543 10.1109/TCAD.2005.862751 10.1145/3316781.3317742 10.1109/TCAD.2006.884403 10.1145/3240765.3240800 10.1038/s44172-023-00074-3 10.1109/HPCA.2017.55 10.1080/14686996.2020.1730236 10.1109/TCAD.2020.3000185 10.1109/DAC18074.2021.9586115 10.1109/ISSCC.2018.8310400 10.1145/3287624.3288744 10.1145/2744769.2744930 10.23919/DATE48585.2020.9116244 10.1080/01621459.2017.1285773 10.1109/TETC.2016.2581700 10.1145/3287624.3288743 10.23919/DATE.2017.7926952 10.1109/TC.2014.12 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION 7SP 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ L6V L7M M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.3390/mi14101840 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Engineering Research Database SciTech Premium Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2072-666X |
ExternalDocumentID | oai_doaj_org_article_482a6f62aa50422f903e58743458bac9 PMC10608997 A772099328 10_3390_mi14101840 |
GroupedDBID | 53G 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ADBBV ADMLS AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO ITC KQ8 L6V M7S MM. MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC PTHSS RPM TR2 TUS 7SP 7TB 8FD ABUWG AZQEC DWQXO FR3 L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c448t-be107cdd47e835b1dc5108c4c1aa92c8f75b101bfa29e3e2ac7d48a3fb0e51973 |
IEDL.DBID | BENPR |
ISSN | 2072-666X |
IngestDate | Wed Aug 27 01:30:39 EDT 2025 Thu Aug 21 18:36:17 EDT 2025 Fri Jul 11 11:49:11 EDT 2025 Fri Jul 25 10:51:35 EDT 2025 Tue Jul 01 05:45:31 EDT 2025 Tue Jul 01 03:41:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c448t-be107cdd47e835b1dc5108c4c1aa92c8f75b101bfa29e3e2ac7d48a3fb0e51973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9379-0181 0000-0001-7307-2855 |
OpenAccessLink | https://www.proquest.com/docview/2882811837?pq-origsite=%requestingapplication% |
PQID | 2882811837 |
PQPubID | 2032359 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_482a6f62aa50422f903e58743458bac9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10608997 proquest_miscellaneous_2883577128 proquest_journals_2882811837 gale_infotracacademiconefile_A772099328 crossref_primary_10_3390_mi14101840 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230927 |
PublicationDateYYYYMMDD | 2023-09-27 |
PublicationDate_xml | – month: 9 year: 2023 text: 20230927 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Micromachines (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Jain (ref_5) 2020; 40 ref_14 ref_13 ref_12 ref_11 ref_10 Ye (ref_21) 2023; 2 ref_31 ref_30 ref_19 ref_18 Rehman (ref_17) 2021; 3 Chen (ref_28) 2014; 64 Blei (ref_23) 2017; 112 ref_25 ref_24 Rehman (ref_16) 2020; 21 ref_22 ref_20 ref_1 Pouyan (ref_15) 2016; 6 ref_2 Gokmen (ref_3) 2017; 11 ref_29 ref_27 ref_26 ref_9 Roy (ref_6) 2021; 29 Visweswariah (ref_7) 2006; 25 Xiong (ref_8) 2007; 26 ref_4 |
References_xml | – volume: 3 start-page: 2832 year: 2021 ident: ref_17 article-title: Biomaterial-based nonvolatile resistive memory devices toward ecofriendliness and biocompatibility publication-title: ACS Appl. Electron. Mater. doi: 10.1021/acsaelm.1c00078 – ident: ref_30 – volume: 11 start-page: 538 year: 2017 ident: ref_3 article-title: Training deep convolutional neural networks with resistive cross-point devices publication-title: Front. Neurosci. doi: 10.3389/fnins.2017.00538 – ident: ref_19 doi: 10.1145/2897937.2898010 – ident: ref_24 – ident: ref_26 – ident: ref_31 doi: 10.1109/IJCNN.2016.7727298 – ident: ref_4 doi: 10.1109/ISCA.2016.12 – volume: 29 start-page: 730 year: 2021 ident: ref_6 article-title: TxSim: Modeling training of deep neural networks on resistive crossbar systems publication-title: IEEE Trans. Very Large Scale Integr. (VLSI) Syst. doi: 10.1109/TVLSI.2021.3063543 – volume: 25 start-page: 2170 year: 2006 ident: ref_7 article-title: First-order incremental block-based statistical timing analysis publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. doi: 10.1109/TCAD.2005.862751 – ident: ref_11 doi: 10.1145/3316781.3317742 – volume: 26 start-page: 619 year: 2007 ident: ref_8 article-title: Robust extraction of spatial correlation publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. doi: 10.1109/TCAD.2006.884403 – ident: ref_18 doi: 10.1145/3240765.3240800 – volume: 2 start-page: 25 year: 2023 ident: ref_21 article-title: Improving the robustness of analog deep neural networks through a Bayes-optimized noise injection approach publication-title: Commun. Eng. doi: 10.1038/s44172-023-00074-3 – ident: ref_2 doi: 10.1109/HPCA.2017.55 – ident: ref_25 – ident: ref_29 – ident: ref_27 – volume: 21 start-page: 147 year: 2020 ident: ref_16 article-title: Decade of 2D-materials-based RRAM devices: A review publication-title: Sci. Technol. Adv. Mater. doi: 10.1080/14686996.2020.1730236 – volume: 40 start-page: 326 year: 2020 ident: ref_5 article-title: RxNN: A framework for evaluating deep neural networks on resistive crossbars publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. doi: 10.1109/TCAD.2020.3000185 – ident: ref_20 doi: 10.1109/DAC18074.2021.9586115 – ident: ref_1 doi: 10.1109/ISSCC.2018.8310400 – ident: ref_10 doi: 10.1145/3287624.3288744 – ident: ref_12 doi: 10.1145/2744769.2744930 – ident: ref_13 doi: 10.23919/DATE48585.2020.9116244 – volume: 112 start-page: 859 year: 2017 ident: ref_23 article-title: Variational inference: A review for statisticians publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2017.1285773 – volume: 6 start-page: 207 year: 2016 ident: ref_15 article-title: Memristive crossbar memory lifetime evaluation and reconfiguration strategies publication-title: IEEE Trans. Emerg. Top. Comput. doi: 10.1109/TETC.2016.2581700 – ident: ref_22 – ident: ref_9 doi: 10.1145/3287624.3288743 – ident: ref_14 doi: 10.23919/DATE.2017.7926952 – volume: 64 start-page: 180 year: 2014 ident: ref_28 article-title: RRAM defect modeling and failure analysis based on march test and a novel squeeze-search scheme publication-title: IEEE Trans. Comput. doi: 10.1109/TC.2014.12 |
SSID | ssj0000779007 |
Score | 2.289194 |
Snippet | Memristor crossbar arrays are a promising platform for neuromorphic computing. In practical scenarios, the synapse weights represented by the memristors for... |
SourceID | doaj pubmedcentral proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 1840 |
SubjectTerms | Analysis Arrays Bayesian analysis Bayesian neural network Design Design engineering Expected values Fault tolerance memristor crossbar array Memristors Methods Neural networks Neuromorphic computing process variation Statistical inference variational inference |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTuQwDI0Qp-WAgAUxMKCsQOJU0SZpkx4HdkejleAEEgekyElTMRJ0EHQO_D12WoYZOOxlr23UunZd-zX2M2OnlXCYRziZgBZFokSVJ6UTZeKUVr5WutKxj_vqupjcqr93-d3SqC-qCevogTvFnSsjoKgLAZATXVVdpjLkBuOeyo0DH1v3MOYtgan4DSYavVR3fKQScf3505QqGgnPrESgSNT__XP8tURyKeaMt9hmnyzyUSfkNlsLzQ7bWKIQ_MnuR_x3LMLgV3EWdPxLzjET5WOYP7bJzewxYDhqeWTheJqhWqeed7Mc8AI8lgzwC3gL1E0ZV-Edr7vi8F12O_5zczlJ-okJiUeY1SYuIJrzVaV0wMzKZZVHlzNe-QygFN7UGg-mmatBlEEGAV5XyoCsXRqog1XusfVm1oR9xjPwaUUuSi2WNRTGZCBzjxkLRBLBATv50KJ97ogxLAIK0rX91PWAXZCCFyuIzDoeQBPb3sT2XyYesDMyjyWXQ2N46DsHUFAir7IjRAiY6KKkAzb8sKDtffHVCgQRBnGURJl_LU6jF9HWCDRhNo9rZK51RpcwK5ZfEX31TDN9iHzciKpp81Qf_I-HPWQ_aKI9laQIPWTr7cs8HGHe07rj-Iq_AwmsAIk priority: 102 providerName: Directory of Open Access Journals |
Title | A Design Methodology for Fault-Tolerant Neuromorphic Computing Using Bayesian Neural Network |
URI | https://www.proquest.com/docview/2882811837 https://www.proquest.com/docview/2883577128 https://pubmed.ncbi.nlm.nih.gov/PMC10608997 https://doaj.org/article/482a6f62aa50422f903e58743458bac9 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7R7QUOiKcIlJURSJyiJrYTOye0C10qpK4QaqUekCK_Aiu1SWmzB_49M0522wWJa2Il1ozH_mY88w3AO88t4ggrUqN4mUrui7SyvEqtVNI1UnkV67hPluXxmfxyXpyPAbebMa1ysyfGjdp3jmLkhxyhoEY0LNSHq18pdY2i29WxhcYe7OMWrPUE9udHy6_ftlGWjOj0MjXwkgr07w8vV5TZSH7NzkkUCfv_3Zb_TpW8c_YsHsHDETSy2aDlx3AvtE_gwR0qwafwfcY-xWQMdhJ7QsdoOUNEyhZmfdGnp91FwGOpZ5GN47JD8a4cG3o64AdYTB1gc_M7UFVlHIV_XA5J4s_gbHF0-vE4HTsnpA7drT61Ab06571UARGWzb1D09NOutyYijvdKHyY5bYxvAoicOOUl9qIxmaBKlnFc5i0XRteAMuNyzyZKpVaNqbUOjeicIhcTCQTTODtRor11UCQUaNjQbKub2WdwJwEvB1BpNbxQXf9ox5tpJaam7IpuTEFMZM1VSZCoRHiyEJb46oE3pN6ajI9VIYzYwUBTpRIrOoZegoIeHGmCRxsNFiPNnlT366gBN5sX6M10RWJaUO3jmNEoVROn9A7mt-Z-u6bdvUz8nKjd02XqOrl___-Cu5Tz3pKOuHqACb99Tq8RmTT2yns6cXn6biIpzE-8AcrrvxL |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VcgAOiE8RKGAEiFPUxHFi54DQlrJsaXdPW6kHJOM4DqzUJqXNCvVP8RuZcZJtFyRuvcaWY3nGnjf2zBuANyUvEEcUSWgkz0LByzTMC56HhZDCVkKW0udxT2fZ5FB8OUqPNuD3kAtDYZXDmegP6rKxdEe-zREKKkTDifxw-jOkqlH0ujqU0OjUYt9d_EKX7fz93i7K9y3n40_zj5OwryoQWnRF2rBw6PHYshTSIfoo4tKiWiorbGxMzq2qJH6M4qIyPHeJ48bKUiiTVEXkKMszwXFvwE2RoCWnzPTx59WdTkTkfZHsWFCxPdo-WVAcJXlRa3bPlwf41wj8HZh5xdKN78HdHqKyUadT92HD1Q_gzhXiwofwdcR2fegHm_oK1P5uniH-ZWOzPG7DeXPs0Ai2zHN_nDQozIVlXQUJHID5QAW2Yy4c5XD6XvjHWReS_ggOr2VFH8Nm3dTuCbDY2Kikg4ESOyuTKRWbJLWIk4ynLgzg9bCK-rSj49DoxtBa68u1DmCHFnjVgyi0_Yfm7Lvud6QWipusyrgxKfGgVXmUuFQhoBKpKozNA3hH4tG00VEY1vT5CjhRoszSI_RLEF7jTAPYGiSo-xPgXF_qawCvVs24d-lBxtSuWfo-SSplTEOoNcmvTX29pV788Czg6MvTk618-v-_v4Rbk_n0QB_szfafwW2OGI3CXbjcgs32bOmeI6ZqixdekRl8u-6d8we9hzcj |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHiKlAJGgDhFmzhOnBwQ2mW7aildVaiVekByHceBldqkj6xQ_xq_jhkn2XZB4tZrYtmWZ8b-xp75BuBdwXPEEXnka8kTX_Ai9rOcZ34upDClkIV0edx7s2T7UHw5io_W4HefC0Nhlf2e6DbqojZ0Rz7kCAVTRMORHJZdWMT-ZPrp7NynClL00tqX02hVZNde_UL37fLjzgRl_Z7z6dbB522_qzDgG3RLGj-36P2YohDSIhLJw8KgiqZGmFDrjJu0lPgxCPNS88xGlmsjC5HqqMwDSxmfEfZ7B9YleUUDWB9vzfa_LW94AqLyC2TLiRpFWTA8nVNUJflUK6egKxbw75Hwd5jmjXNv-hAedICVjVoNewRrtnoM92_QGD6B7yM2cYEgbM_Vo3Y39QzRMJvqxUnjH9QnFo_EhjkmkNMaRTs3rK0ngR0wF7bAxvrKUkana4UjztoA9adweCtr-gwGVV3Z58BCbYKCtglK8yx1kqahjmKDqEk7IkMP3varqM5acg6FTg2ttbpeaw_GtMDLFkSo7T7UFz9UZ59KpFwnZcK1jokVrcyCyMYpwisRp7k2mQcfSDyKzB6FYXSXvYATJQItNUIvBcE2ztSDzV6CqtsPLtW19nrwZvkbLZmeZ3Rl64VrE8VShtRFuiL5lamv_qnmPx0nOHr29IArN_4_-mu4i1ajvu7Mdl_APY6AjWJfuNyEQXOxsC8RYDX5q06TGRzftvH8ASPcPLU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Design+Methodology+for+Fault-Tolerant+Neuromorphic+Computing+Using+Bayesian+Neural+Network&rft.jtitle=Micromachines+%28Basel%29&rft.au=Gao%2C+Di&rft.au=Xie%2C+Xiaoru&rft.au=Wei%2C+Dongxu&rft.date=2023-09-27&rft.pub=MDPI+AG&rft.issn=2072-666X&rft.eissn=2072-666X&rft.volume=14&rft.issue=10&rft_id=info:doi/10.3390%2Fmi14101840&rft.externalDocID=A772099328 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-666X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-666X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-666X&client=summon |