A Design Methodology for Fault-Tolerant Neuromorphic Computing Using Bayesian Neural Network

Memristor crossbar arrays are a promising platform for neuromorphic computing. In practical scenarios, the synapse weights represented by the memristors for the underlying system are subject to process variations, in which the programmed weight when read out for inference is no longer deterministic...

Full description

Saved in:
Bibliographic Details
Published inMicromachines (Basel) Vol. 14; no. 10; p. 1840
Main Authors Gao, Di, Xie, Xiaoru, Wei, Dongxu
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 27.09.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Memristor crossbar arrays are a promising platform for neuromorphic computing. In practical scenarios, the synapse weights represented by the memristors for the underlying system are subject to process variations, in which the programmed weight when read out for inference is no longer deterministic but a stochastic distribution. It is therefore highly desired to learn the weight distribution accounting for process variations, to ensure the same inference performance in memristor crossbar arrays as the design value. In this paper, we introduce a design methodology for fault-tolerant neuromorphic computing using a Bayesian neural network, which combines the variational Bayesian inference technique with a fault-aware variational posterior distribution. The proposed framework based on Bayesian inference incorporates the impacts of memristor deviations into algorithmic training, where the weight distributions of neural networks are optimized to accommodate uncertainties and minimize inference degradation. The experimental results confirm the capability of the proposed methodology to tolerate both process variations and noise, while achieving more robust computing in memristor crossbar arrays.
AbstractList Memristor crossbar arrays are a promising platform for neuromorphic computing. In practical scenarios, the synapse weights represented by the memristors for the underlying system are subject to process variations, in which the programmed weight when read out for inference is no longer deterministic but a stochastic distribution. It is therefore highly desired to learn the weight distribution accounting for process variations, to ensure the same inference performance in memristor crossbar arrays as the design value. In this paper, we introduce a design methodology for fault-tolerant neuromorphic computing using a Bayesian neural network, which combines the variational Bayesian inference technique with a fault-aware variational posterior distribution. The proposed framework based on Bayesian inference incorporates the impacts of memristor deviations into algorithmic training, where the weight distributions of neural networks are optimized to accommodate uncertainties and minimize inference degradation. The experimental results confirm the capability of the proposed methodology to tolerate both process variations and noise, while achieving more robust computing in memristor crossbar arrays.
Memristor crossbar arrays are a promising platform for neuromorphic computing. In practical scenarios, the synapse weights represented by the memristors for the underlying system are subject to process variations, in which the programmed weight when read out for inference is no longer deterministic but a stochastic distribution. It is therefore highly desired to learn the weight distribution accounting for process variations, to ensure the same inference performance in memristor crossbar arrays as the design value. In this paper, we introduce a design methodology for fault-tolerant neuromorphic computing using a Bayesian neural network, which combines the variational Bayesian inference technique with a fault-aware variational posterior distribution. The proposed framework based on Bayesian inference incorporates the impacts of memristor deviations into algorithmic training, where the weight distributions of neural networks are optimized to accommodate uncertainties and minimize inference degradation. The experimental results confirm the capability of the proposed methodology to tolerate both process variations and noise, while achieving more robust computing in memristor crossbar arrays.Memristor crossbar arrays are a promising platform for neuromorphic computing. In practical scenarios, the synapse weights represented by the memristors for the underlying system are subject to process variations, in which the programmed weight when read out for inference is no longer deterministic but a stochastic distribution. It is therefore highly desired to learn the weight distribution accounting for process variations, to ensure the same inference performance in memristor crossbar arrays as the design value. In this paper, we introduce a design methodology for fault-tolerant neuromorphic computing using a Bayesian neural network, which combines the variational Bayesian inference technique with a fault-aware variational posterior distribution. The proposed framework based on Bayesian inference incorporates the impacts of memristor deviations into algorithmic training, where the weight distributions of neural networks are optimized to accommodate uncertainties and minimize inference degradation. The experimental results confirm the capability of the proposed methodology to tolerate both process variations and noise, while achieving more robust computing in memristor crossbar arrays.
Audience Academic
Author Wei, Dongxu
Xie, Xiaoru
Gao, Di
AuthorAffiliation 3 The College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
1 The School of Intelligent Manufacturing, Hangzhou Polytechnic, Hangzhou 311402, China; gaodi1995@outlook.com
2 The School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
AuthorAffiliation_xml – name: 3 The College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
– name: 1 The School of Intelligent Manufacturing, Hangzhou Polytechnic, Hangzhou 311402, China; gaodi1995@outlook.com
– name: 2 The School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
Author_xml – sequence: 1
  givenname: Di
  surname: Gao
  fullname: Gao, Di
– sequence: 2
  givenname: Xiaoru
  orcidid: 0000-0001-7307-2855
  surname: Xie
  fullname: Xie, Xiaoru
– sequence: 3
  givenname: Dongxu
  orcidid: 0000-0002-9379-0181
  surname: Wei
  fullname: Wei, Dongxu
BookMark eNpdkt-L1DAQx4uc4Hnei39BwRcR9syvNsmTrKv3A059uQMfhDBNp92sbbImrbL_vdndQz0TmAmT73wyE-Z5ceKDx6J4SckF55q8HR0VlFAlyJPilBHJFnVdfz355_ysOE9pQ_KSUmdzWnxblh8wud6Xn3BahzYMod-VXYjlJczDtLgLA0bwU_kZ5xjGELdrZ8tVGLfz5Hxf3qe9fQ-7DAF_UMGQ3fQrxO8viqcdDAnPH_xZcX_58W51vbj9cnWzWt4urBBqWjRIibRtKyQqXjW0tRUlygpLATSzqpM5SGjTAdPIkYGVrVDAu4ZgRbXkZ8XNkdsG2JhtdCPEnQngzCEQYm8gTs4OaIRiUHc1A6iIYKzThGOlpOCiUg1YnVnvjqzt3IzYWvRT7ugR9PGNd2vTh5-Gkpoofajm9QMhhh8zpsmMLlkcBvAY5mSYyl1KSZnK0lf_STdhjj7_1V7FFKWK74EXR1UPuQPnu5Aftnm3ODqbZ6BzOb6UkhGt-QH75phgY0gpYvenfErMflTM31HhvwFdIrLM
Cites_doi 10.1021/acsaelm.1c00078
10.3389/fnins.2017.00538
10.1145/2897937.2898010
10.1109/IJCNN.2016.7727298
10.1109/ISCA.2016.12
10.1109/TVLSI.2021.3063543
10.1109/TCAD.2005.862751
10.1145/3316781.3317742
10.1109/TCAD.2006.884403
10.1145/3240765.3240800
10.1038/s44172-023-00074-3
10.1109/HPCA.2017.55
10.1080/14686996.2020.1730236
10.1109/TCAD.2020.3000185
10.1109/DAC18074.2021.9586115
10.1109/ISSCC.2018.8310400
10.1145/3287624.3288744
10.1145/2744769.2744930
10.23919/DATE48585.2020.9116244
10.1080/01621459.2017.1285773
10.1109/TETC.2016.2581700
10.1145/3287624.3288743
10.23919/DATE.2017.7926952
10.1109/TC.2014.12
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
7SP
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
L6V
L7M
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.3390/mi14101840
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
SciTech Premium Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2072-666X
ExternalDocumentID oai_doaj_org_article_482a6f62aa50422f903e58743458bac9
PMC10608997
A772099328
10_3390_mi14101840
GroupedDBID 53G
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
ITC
KQ8
L6V
M7S
MM.
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RPM
TR2
TUS
7SP
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c448t-be107cdd47e835b1dc5108c4c1aa92c8f75b101bfa29e3e2ac7d48a3fb0e51973
IEDL.DBID BENPR
ISSN 2072-666X
IngestDate Wed Aug 27 01:30:39 EDT 2025
Thu Aug 21 18:36:17 EDT 2025
Fri Jul 11 11:49:11 EDT 2025
Fri Jul 25 10:51:35 EDT 2025
Tue Jul 01 05:45:31 EDT 2025
Tue Jul 01 03:41:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c448t-be107cdd47e835b1dc5108c4c1aa92c8f75b101bfa29e3e2ac7d48a3fb0e51973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9379-0181
0000-0001-7307-2855
OpenAccessLink https://www.proquest.com/docview/2882811837?pq-origsite=%requestingapplication%
PQID 2882811837
PQPubID 2032359
ParticipantIDs doaj_primary_oai_doaj_org_article_482a6f62aa50422f903e58743458bac9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10608997
proquest_miscellaneous_2883577128
proquest_journals_2882811837
gale_infotracacademiconefile_A772099328
crossref_primary_10_3390_mi14101840
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230927
PublicationDateYYYYMMDD 2023-09-27
PublicationDate_xml – month: 9
  year: 2023
  text: 20230927
  day: 27
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Micromachines (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Jain (ref_5) 2020; 40
ref_14
ref_13
ref_12
ref_11
ref_10
Ye (ref_21) 2023; 2
ref_31
ref_30
ref_19
ref_18
Rehman (ref_17) 2021; 3
Chen (ref_28) 2014; 64
Blei (ref_23) 2017; 112
ref_25
ref_24
Rehman (ref_16) 2020; 21
ref_22
ref_20
ref_1
Pouyan (ref_15) 2016; 6
ref_2
Gokmen (ref_3) 2017; 11
ref_29
ref_27
ref_26
ref_9
Roy (ref_6) 2021; 29
Visweswariah (ref_7) 2006; 25
Xiong (ref_8) 2007; 26
ref_4
References_xml – volume: 3
  start-page: 2832
  year: 2021
  ident: ref_17
  article-title: Biomaterial-based nonvolatile resistive memory devices toward ecofriendliness and biocompatibility
  publication-title: ACS Appl. Electron. Mater.
  doi: 10.1021/acsaelm.1c00078
– ident: ref_30
– volume: 11
  start-page: 538
  year: 2017
  ident: ref_3
  article-title: Training deep convolutional neural networks with resistive cross-point devices
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2017.00538
– ident: ref_19
  doi: 10.1145/2897937.2898010
– ident: ref_24
– ident: ref_26
– ident: ref_31
  doi: 10.1109/IJCNN.2016.7727298
– ident: ref_4
  doi: 10.1109/ISCA.2016.12
– volume: 29
  start-page: 730
  year: 2021
  ident: ref_6
  article-title: TxSim: Modeling training of deep neural networks on resistive crossbar systems
  publication-title: IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
  doi: 10.1109/TVLSI.2021.3063543
– volume: 25
  start-page: 2170
  year: 2006
  ident: ref_7
  article-title: First-order incremental block-based statistical timing analysis
  publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
  doi: 10.1109/TCAD.2005.862751
– ident: ref_11
  doi: 10.1145/3316781.3317742
– volume: 26
  start-page: 619
  year: 2007
  ident: ref_8
  article-title: Robust extraction of spatial correlation
  publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
  doi: 10.1109/TCAD.2006.884403
– ident: ref_18
  doi: 10.1145/3240765.3240800
– volume: 2
  start-page: 25
  year: 2023
  ident: ref_21
  article-title: Improving the robustness of analog deep neural networks through a Bayes-optimized noise injection approach
  publication-title: Commun. Eng.
  doi: 10.1038/s44172-023-00074-3
– ident: ref_2
  doi: 10.1109/HPCA.2017.55
– ident: ref_25
– ident: ref_29
– ident: ref_27
– volume: 21
  start-page: 147
  year: 2020
  ident: ref_16
  article-title: Decade of 2D-materials-based RRAM devices: A review
  publication-title: Sci. Technol. Adv. Mater.
  doi: 10.1080/14686996.2020.1730236
– volume: 40
  start-page: 326
  year: 2020
  ident: ref_5
  article-title: RxNN: A framework for evaluating deep neural networks on resistive crossbars
  publication-title: IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
  doi: 10.1109/TCAD.2020.3000185
– ident: ref_20
  doi: 10.1109/DAC18074.2021.9586115
– ident: ref_1
  doi: 10.1109/ISSCC.2018.8310400
– ident: ref_10
  doi: 10.1145/3287624.3288744
– ident: ref_12
  doi: 10.1145/2744769.2744930
– ident: ref_13
  doi: 10.23919/DATE48585.2020.9116244
– volume: 112
  start-page: 859
  year: 2017
  ident: ref_23
  article-title: Variational inference: A review for statisticians
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2017.1285773
– volume: 6
  start-page: 207
  year: 2016
  ident: ref_15
  article-title: Memristive crossbar memory lifetime evaluation and reconfiguration strategies
  publication-title: IEEE Trans. Emerg. Top. Comput.
  doi: 10.1109/TETC.2016.2581700
– ident: ref_22
– ident: ref_9
  doi: 10.1145/3287624.3288743
– ident: ref_14
  doi: 10.23919/DATE.2017.7926952
– volume: 64
  start-page: 180
  year: 2014
  ident: ref_28
  article-title: RRAM defect modeling and failure analysis based on march test and a novel squeeze-search scheme
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.2014.12
SSID ssj0000779007
Score 2.289194
Snippet Memristor crossbar arrays are a promising platform for neuromorphic computing. In practical scenarios, the synapse weights represented by the memristors for...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1840
SubjectTerms Analysis
Arrays
Bayesian analysis
Bayesian neural network
Design
Design engineering
Expected values
Fault tolerance
memristor crossbar array
Memristors
Methods
Neural networks
Neuromorphic computing
process variation
Statistical inference
variational inference
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTuQwDI0Qp-WAgAUxMKCsQOJU0SZpkx4HdkejleAEEgekyElTMRJ0EHQO_D12WoYZOOxlr23UunZd-zX2M2OnlXCYRziZgBZFokSVJ6UTZeKUVr5WutKxj_vqupjcqr93-d3SqC-qCevogTvFnSsjoKgLAZATXVVdpjLkBuOeyo0DH1v3MOYtgan4DSYavVR3fKQScf3505QqGgnPrESgSNT__XP8tURyKeaMt9hmnyzyUSfkNlsLzQ7bWKIQ_MnuR_x3LMLgV3EWdPxLzjET5WOYP7bJzewxYDhqeWTheJqhWqeed7Mc8AI8lgzwC3gL1E0ZV-Edr7vi8F12O_5zczlJ-okJiUeY1SYuIJrzVaV0wMzKZZVHlzNe-QygFN7UGg-mmatBlEEGAV5XyoCsXRqog1XusfVm1oR9xjPwaUUuSi2WNRTGZCBzjxkLRBLBATv50KJ97ogxLAIK0rX91PWAXZCCFyuIzDoeQBPb3sT2XyYesDMyjyWXQ2N46DsHUFAir7IjRAiY6KKkAzb8sKDtffHVCgQRBnGURJl_LU6jF9HWCDRhNo9rZK51RpcwK5ZfEX31TDN9iHzciKpp81Qf_I-HPWQ_aKI9laQIPWTr7cs8HGHe07rj-Iq_AwmsAIk
  priority: 102
  providerName: Directory of Open Access Journals
Title A Design Methodology for Fault-Tolerant Neuromorphic Computing Using Bayesian Neural Network
URI https://www.proquest.com/docview/2882811837
https://www.proquest.com/docview/2883577128
https://pubmed.ncbi.nlm.nih.gov/PMC10608997
https://doaj.org/article/482a6f62aa50422f903e58743458bac9
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7R7QUOiKcIlJURSJyiJrYTOye0C10qpK4QaqUekCK_Aiu1SWmzB_49M0522wWJa2Il1ozH_mY88w3AO88t4ggrUqN4mUrui7SyvEqtVNI1UnkV67hPluXxmfxyXpyPAbebMa1ysyfGjdp3jmLkhxyhoEY0LNSHq18pdY2i29WxhcYe7OMWrPUE9udHy6_ftlGWjOj0MjXwkgr07w8vV5TZSH7NzkkUCfv_3Zb_TpW8c_YsHsHDETSy2aDlx3AvtE_gwR0qwafwfcY-xWQMdhJ7QsdoOUNEyhZmfdGnp91FwGOpZ5GN47JD8a4cG3o64AdYTB1gc_M7UFVlHIV_XA5J4s_gbHF0-vE4HTsnpA7drT61Ab06571UARGWzb1D09NOutyYijvdKHyY5bYxvAoicOOUl9qIxmaBKlnFc5i0XRteAMuNyzyZKpVaNqbUOjeicIhcTCQTTODtRor11UCQUaNjQbKub2WdwJwEvB1BpNbxQXf9ox5tpJaam7IpuTEFMZM1VSZCoRHiyEJb46oE3pN6ajI9VIYzYwUBTpRIrOoZegoIeHGmCRxsNFiPNnlT366gBN5sX6M10RWJaUO3jmNEoVROn9A7mt-Z-u6bdvUz8nKjd02XqOrl___-Cu5Tz3pKOuHqACb99Tq8RmTT2yns6cXn6biIpzE-8AcrrvxL
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VcgAOiE8RKGAEiFPUxHFi54DQlrJsaXdPW6kHJOM4DqzUJqXNCvVP8RuZcZJtFyRuvcaWY3nGnjf2zBuANyUvEEcUSWgkz0LByzTMC56HhZDCVkKW0udxT2fZ5FB8OUqPNuD3kAtDYZXDmegP6rKxdEe-zREKKkTDifxw-jOkqlH0ujqU0OjUYt9d_EKX7fz93i7K9y3n40_zj5OwryoQWnRF2rBw6PHYshTSIfoo4tKiWiorbGxMzq2qJH6M4qIyPHeJ48bKUiiTVEXkKMszwXFvwE2RoCWnzPTx59WdTkTkfZHsWFCxPdo-WVAcJXlRa3bPlwf41wj8HZh5xdKN78HdHqKyUadT92HD1Q_gzhXiwofwdcR2fegHm_oK1P5uniH-ZWOzPG7DeXPs0Ai2zHN_nDQozIVlXQUJHID5QAW2Yy4c5XD6XvjHWReS_ggOr2VFH8Nm3dTuCbDY2Kikg4ESOyuTKRWbJLWIk4ynLgzg9bCK-rSj49DoxtBa68u1DmCHFnjVgyi0_Yfm7Lvud6QWipusyrgxKfGgVXmUuFQhoBKpKozNA3hH4tG00VEY1vT5CjhRoszSI_RLEF7jTAPYGiSo-xPgXF_qawCvVs24d-lBxtSuWfo-SSplTEOoNcmvTX29pV788Czg6MvTk618-v-_v4Rbk_n0QB_szfafwW2OGI3CXbjcgs32bOmeI6ZqixdekRl8u-6d8we9hzcj
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHiKlAJGgDhFmzhOnBwQ2mW7aildVaiVekByHceBldqkj6xQ_xq_jhkn2XZB4tZrYtmWZ8b-xp75BuBdwXPEEXnka8kTX_Ai9rOcZ34upDClkIV0edx7s2T7UHw5io_W4HefC0Nhlf2e6DbqojZ0Rz7kCAVTRMORHJZdWMT-ZPrp7NynClL00tqX02hVZNde_UL37fLjzgRl_Z7z6dbB522_qzDgG3RLGj-36P2YohDSIhLJw8KgiqZGmFDrjJu0lPgxCPNS88xGlmsjC5HqqMwDSxmfEfZ7B9YleUUDWB9vzfa_LW94AqLyC2TLiRpFWTA8nVNUJflUK6egKxbw75Hwd5jmjXNv-hAedICVjVoNewRrtnoM92_QGD6B7yM2cYEgbM_Vo3Y39QzRMJvqxUnjH9QnFo_EhjkmkNMaRTs3rK0ngR0wF7bAxvrKUkana4UjztoA9adweCtr-gwGVV3Z58BCbYKCtglK8yx1kqahjmKDqEk7IkMP3varqM5acg6FTg2ttbpeaw_GtMDLFkSo7T7UFz9UZ59KpFwnZcK1jokVrcyCyMYpwisRp7k2mQcfSDyKzB6FYXSXvYATJQItNUIvBcE2ztSDzV6CqtsPLtW19nrwZvkbLZmeZ3Rl64VrE8VShtRFuiL5lamv_qnmPx0nOHr29IArN_4_-mu4i1ajvu7Mdl_APY6AjWJfuNyEQXOxsC8RYDX5q06TGRzftvH8ASPcPLU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Design+Methodology+for+Fault-Tolerant+Neuromorphic+Computing+Using+Bayesian+Neural+Network&rft.jtitle=Micromachines+%28Basel%29&rft.au=Gao%2C+Di&rft.au=Xie%2C+Xiaoru&rft.au=Wei%2C+Dongxu&rft.date=2023-09-27&rft.pub=MDPI+AG&rft.issn=2072-666X&rft.eissn=2072-666X&rft.volume=14&rft.issue=10&rft_id=info:doi/10.3390%2Fmi14101840&rft.externalDocID=A772099328
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-666X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-666X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-666X&client=summon