Switzerland's PM10 and PM2.5 environmental increments show the importance of non-exhaust emissions

Atmospheric particulate matter (PM) is a priority pollutant for urban air pollution management because of its negative effects on human health and visibility. Emissions from road traffic have been a major focus of management over the past few decades, but non-exhaust emissions i.e., emissions from b...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric Environment: X Vol. 12; p. 100145
Main Authors Grange, Stuart K., Fischer, Andrea, Zellweger, Claudia, Alastuey, Andrés, Querol, Xavier, Jaffrezo, Jean-Luc, Weber, Samuël, Uzu, Gaëlle, Hueglin, Christoph
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Atmospheric particulate matter (PM) is a priority pollutant for urban air pollution management because of its negative effects on human health and visibility. Emissions from road traffic have been a major focus of management over the past few decades, but non-exhaust emissions i.e., emissions from brake, tyre, road wear, and the resuspension of dust have emerged to become a major source of unregulated PM in many locations. Here, a filter-based sampling campaign was conducted between 2018 and 2019 where a large number of PM constituents were quantified for five sites in Switzerland for both PM10 and PM2.5. This had the objective of investigating urban and urban-traffic PM increments in Switzerland. The results show that PM concentrations increased as the sampling locations moved along a rural to urban-traffic gradient. However, source apportionment analysis showed that sulfate-rich, nitrate-rich, and biogenic sources were not enhanced in urban environments, but road traffic and mineral dust sources were. The total mass enhancement for PM10 and PM2.5 were 2.4 μg m−3 and 2.0 μg m−3 for the urban environment while the corresponding urban-traffic enhancements were 5.7 μg m−3 and 2.8 μg m−3. Emissions from road traffic were estimated to contribute more than 75% to the urban increments and non-exhaust emissions contributed 48% (PM10) and 25% (PM2.5) to the total road traffic related increment at an urban background site and 62% (PM10) and 49% (PM2.5) at an urban-traffic site. Analysis of the composition of Switzerland's PM showed that elements associated with non-exhaust emissions, specifically the brake wear tracers of antimony, barium, copper, and iron were the metals with the greatest urban and urban-traffic enhancements. Critically, the urban increment of these elements was enhanced for both PM10 and PM2.5 by about the same magnitude as the urban-traffic increment (by 2–3 times), demonstrating non-exhaust emissions are encountered across urban areas, not just the urban-traffic environment. Therefore, non-exhaust emissions were an important contributor to the urban and urban-traffic PM10 and PM2.5 increments in Switzerland's urban areas. The relative contributions of non-exhaust emissions to the urban and urban-traffic increments could be expected to increase due to the introduction of further exhaust after-treatment technologies (such as gasoline particulate filters; GPFs) and the transition to a more electrified vehicle fleet. A management pivot will be required to control these non-exhaust emission pathways and although this work exclusively uses data from Switzerland, the conclusions are likely relevant to many other European urban areas. •Non-exhaust road traffic emissions significantly contaminate urban environments.•Non-exhaust emissions were a large contributor to Switzerland's urban increments.•Secondary and biogenic sources were not enhanced in Switzerland's urban areas.•Brake wear tracers were the most enhanced urban and urban-traffic PM components.•Characteristic elements from abrasion processes were enhanced in PM10 and PM2.5
AbstractList Atmospheric particulate matter (PM) is a priority pollutant for urban air pollution management because of its negative effects on human health and visibility. Emissions from road traffic have been a major focus of management over the past few decades, but non-exhaust emissions i.e., emissions from brake, tyre, road wear, and the resuspension of dust have emerged to become a major source of unregulated PM in many locations. Here, a filter-based sampling campaign was conducted between 2018 and 2019 where a large number of PM constituents were quantified for five sites in Switzerland for both PM10 and PM2.5. This had the objective of investigating urban and urban-traffic PM increments in Switzerland. The results show that PM concentrations increased as the sampling locations moved along a rural to urban-traffic gradient. However, source apportionment analysis showed that sulfate-rich, nitrate-rich, and biogenic sources were not enhanced in urban environments, but road traffic and mineral dust sources were. The total mass enhancement for PM10 and PM2.5 were 2.4 μg m−3 and 2.0 μg m−3 for the urban environment while the corresponding urban-traffic enhancements were 5.7 μg m−3 and 2.8 μg m−3. Emissions from road traffic were estimated to contribute more than 75% to the urban increments and non-exhaust emissions contributed 48% (PM10) and 25% (PM2.5) to the total road traffic related increment at an urban background site and 62% (PM10) and 49% (PM2.5) at an urban-traffic site. Analysis of the composition of Switzerland's PM showed that elements associated with non-exhaust emissions, specifically the brake wear tracers of antimony, barium, copper, and iron were the metals with the greatest urban and urban-traffic enhancements. Critically, the urban increment of these elements was enhanced for both PM10 and PM2.5 by about the same magnitude as the urban-traffic increment (by 2–3 times), demonstrating non-exhaust emissions are encountered across urban areas, not just the urban-traffic environment. Therefore, non-exhaust emissions were an important contributor to the urban and urban-traffic PM10 and PM2.5 increments in Switzerland's urban areas. The relative contributions of non-exhaust emissions to the urban and urban-traffic increments could be expected to increase due to the introduction of further exhaust after-treatment technologies (such as gasoline particulate filters; GPFs) and the transition to a more electrified vehicle fleet. A management pivot will be required to control these non-exhaust emission pathways and although this work exclusively uses data from Switzerland, the conclusions are likely relevant to many other European urban areas.
Atmospheric particulate matter (PM) is a priority pollutant for urban air pollution management because of its negative effects on human health and visibility. Emissions from road traffic have been a major focus of management over the past few decades, but non-exhaust emissions i.e., emissions from brake, tyre, road wear, and the resuspension of dust have emerged to become a major source of unregulated PM in many locations. Here, a filter-based sampling campaign was conducted between 2018 and 2019 where a large number of PM constituents were quantified for five sites in Switzerland for both PM10 and PM2.5. This had the objective of investigating urban and urban-traffic PM increments in Switzerland. The results show that PM concentrations increased as the sampling locations moved along a rural to urban-traffic gradient. However, source apportionment analysis showed that sulfate-rich, nitrate-rich, and biogenic sources were not enhanced in urban environments, but road traffic and mineral dust sources were. The total mass enhancement for PM10 and PM2.5 were 2.4 μg m−3 and 2.0 μg m−3 for the urban environment while the corresponding urban-traffic enhancements were 5.7 μg m−3 and 2.8 μg m−3. Emissions from road traffic were estimated to contribute more than 75% to the urban increments and non-exhaust emissions contributed 48% (PM10) and 25% (PM2.5) to the total road traffic related increment at an urban background site and 62% (PM10) and 49% (PM2.5) at an urban-traffic site. Analysis of the composition of Switzerland's PM showed that elements associated with non-exhaust emissions, specifically the brake wear tracers of antimony, barium, copper, and iron were the metals with the greatest urban and urban-traffic enhancements. Critically, the urban increment of these elements was enhanced for both PM10 and PM2.5 by about the same magnitude as the urban-traffic increment (by 2–3 times), demonstrating non-exhaust emissions are encountered across urban areas, not just the urban-traffic environment. Therefore, non-exhaust emissions were an important contributor to the urban and urban-traffic PM10 and PM2.5 increments in Switzerland's urban areas. The relative contributions of non-exhaust emissions to the urban and urban-traffic increments could be expected to increase due to the introduction of further exhaust after-treatment technologies (such as gasoline particulate filters; GPFs) and the transition to a more electrified vehicle fleet. A management pivot will be required to control these non-exhaust emission pathways and although this work exclusively uses data from Switzerland, the conclusions are likely relevant to many other European urban areas. •Non-exhaust road traffic emissions significantly contaminate urban environments.•Non-exhaust emissions were a large contributor to Switzerland's urban increments.•Secondary and biogenic sources were not enhanced in Switzerland's urban areas.•Brake wear tracers were the most enhanced urban and urban-traffic PM components.•Characteristic elements from abrasion processes were enhanced in PM10 and PM2.5
Atmospheric particulate matter (PM) is a priority pollutant for urban air pollution management because of its negative effects on human health and visibility. Emissions from road traffic have been a major focus of management over the past few decades, but non-exhaust emissions i.e., emissions from brake, tyre, road wear, and the resuspension of dust have emerged to become a major source of unregulated PM in many locations. Here, a filterbased sampling campaign was conducted between 2018 and 2019 where a large number of PM constituents were quantified for five sites in Switzerland for both PM 10 and PM 2.5 . This had the objective of investigating urban and urban-traffic PM increments in Switzerland. The results show that PM concentrations increased as the sampling locations moved along a rural to urban-traffic gradient. However, source apportionment analysis showed that sulfate-rich, nitrate-rich, and biogenic sources were not enhanced in urban environments, but road traffic and mineral dust sources were. The total mass enhancement for PM 10 and PM 2.5 were 2.4 μg m -3 and 2.0 μg m -3 for the urban environment while the corresponding urban-traffic enhancements were 5.7 μg m -3 and 2.8 μg m -3 .Emissions from road traffic were estimated to contribute more than 75% to the urban increments and nonexhaust emissions contributed 48% (PM 10 ) and 25% (PM 2.5 ) to the total road traffic related increment at an urban background site and 62% (PM 10 ) and 49% (PM 2.5 ) at an urban-traffic site. Analysis of the composition of Switzerland's PM showed that elements associated with non-exhaust emissions, specifically the brake wear tracers of antimony, barium, copper, and iron were the metals with the greatest urban and urban-traffic enhancements. Critically, the urban increment of these elements was enhanced for both PM 10 and PM 2.5 by about the same magnitude as the urban-traffic increment (by 2-3 times), demonstrating non-exhaust emissions are encountered across urban areas, not just the urban-traffic environment. Therefore, non-exhaust emissions were an important contributor to the urban and urban-traffic PM 10 and PM 2.5 increments in Switzerland's urban areas. The relative contributions of non-exhaust emissions to the urban and urban-traffic increments could be expected to increase due to the introduction of further exhaust after-treatment technologies (such as gasoline particulate filters; GPFs) and the transition to a more electrified vehicle fleet. A management pivot will be required to control these non-exhaust emission pathways and although this work exclusively uses data from Switzerland, the conclusions are likely relevant to many other European urban areas.
ArticleNumber 100145
Author Alastuey, Andrés
Uzu, Gaëlle
Hueglin, Christoph
Grange, Stuart K.
Jaffrezo, Jean-Luc
Weber, Samuël
Fischer, Andrea
Querol, Xavier
Zellweger, Claudia
Author_xml – sequence: 1
  givenname: Stuart K.
  orcidid: 0000-0003-4093-3596
  surname: Grange
  fullname: Grange, Stuart K.
  email: stuart.grange@empa.ch
  organization: Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
– sequence: 2
  givenname: Andrea
  surname: Fischer
  fullname: Fischer, Andrea
  organization: Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
– sequence: 3
  givenname: Claudia
  surname: Zellweger
  fullname: Zellweger, Claudia
  organization: Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
– sequence: 4
  givenname: Andrés
  surname: Alastuey
  fullname: Alastuey, Andrés
  organization: Institute of Environmental Assessment and Water Research, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
– sequence: 5
  givenname: Xavier
  surname: Querol
  fullname: Querol, Xavier
  organization: Institute of Environmental Assessment and Water Research, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
– sequence: 6
  givenname: Jean-Luc
  surname: Jaffrezo
  fullname: Jaffrezo, Jean-Luc
  organization: Université Grenoble Alpes, IRD, CNRS, Grenoble INP, IGE (Institute of Environmental Geosciences), 38 000, Grenoble, France
– sequence: 7
  givenname: Samuël
  surname: Weber
  fullname: Weber, Samuël
  organization: Université Grenoble Alpes, IRD, CNRS, Grenoble INP, IGE (Institute of Environmental Geosciences), 38 000, Grenoble, France
– sequence: 8
  givenname: Gaëlle
  surname: Uzu
  fullname: Uzu, Gaëlle
  organization: Université Grenoble Alpes, IRD, CNRS, Grenoble INP, IGE (Institute of Environmental Geosciences), 38 000, Grenoble, France
– sequence: 9
  givenname: Christoph
  orcidid: 0000-0002-6973-522X
  surname: Hueglin
  fullname: Hueglin, Christoph
  email: christoph.hueglin@empa.ch
  organization: Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
BackLink https://cnrs.hal.science/hal-04743390$$DView record in HAL
BookMark eNp9UcFu1DAQjVCRKKVfwMU3xCHL2HGc-MChqqCttAiklrM1ccasV9m4ss2W9uvrbUACDr3MPD3Ne_bMe10dzWGmqnrLYcWBqw_bFRIGXAkQvDDAZfuiOhathporwY_-wq-q05S2ACCElAr4cTVc3_n8QHHCeXyX2LcvHFiBBYhVy2je-xjmHc0ZJ-ZnG-mAE0ubcMfyhpjf3YaYcbbEgmPlZzX92uDPlBntfEo-zOlN9dLhlOj0dz-pvn_-dHN-Wa-_Xlydn61rK2Wf6wEGp7qmU73rG82VRlKOlNTcgW4db4fBtUJ1g2x7gb0b9VCK69CqUStum5PqavEdA27NbfQ7jPcmoDdPRIg_DMbs7URGQQPEJbado1JRqxbANsVVd04KKF7vF68NTv9YXZ6tzYED2cmm0bDnZVYvszaGlCI5Y33GXFbPEf1kOJhDTmZrnnIyh5zMklPRNv9p_zz2vOrjoqJyzr2naJL1VDIYfSSby77-Wf0jIJStrg
CitedBy_id crossref_primary_10_1371_journal_pone_0304402
crossref_primary_10_1093_gji_ggae108
crossref_primary_10_5194_acp_22_8701_2022
crossref_primary_10_1080_15226514_2024_2367137
crossref_primary_10_5194_acp_22_6021_2022
crossref_primary_10_5194_acp_22_7029_2022
crossref_primary_10_19206_CE_190606
crossref_primary_10_1029_2024JD040853
crossref_primary_10_1038_s41598_024_81376_0
Cites_doi 10.5194/acp-19-5187-2019
10.1007/s41810-018-0033-5
10.1016/j.scitotenv.2020.137302
10.1038/s41612-017-0010-8
10.1021/es300894r
10.1016/j.atmosenv.2013.03.040
10.5194/acp-20-409-2020
10.1016/S1352-2310(00)00110-2
10.1016/j.atmosenv.2004.08.037
10.1016/j.scitotenv.2014.04.064
10.1007/s10661-016-5377-1
10.5194/acp-14-3533-2014
10.1289/ehp.1103618
10.5194/amt-12-5247-2019
10.1073/pnas.2102791118
10.1016/j.atmosenv.2011.06.003
10.1016/j.atmosenv.2009.10.016
10.5194/acp-19-3357-2019
10.1016/S1352-2310(01)00361-2
10.1038/s41586-020-2902-8
10.1016/j.atmosenv.2012.08.067
10.1016/j.envpol.2020.115654
10.1016/j.atmosenv.2016.03.017
10.1016/j.atmosenv.2012.02.037
10.1016/j.scitotenv.2015.01.022
10.1016/j.atmosenv.2004.01.040
10.1016/j.atmosenv.2004.10.027
10.1016/j.atmosenv.2009.12.011
10.5194/acp-21-5415-2021
10.3155/1047-3289.58.2.234
10.1021/es070198o
10.5194/acp-18-6223-2018
10.1021/acs.est.8b05297
10.1016/j.chemosphere.2018.02.034
10.1016/S1352-2310(01)00122-4
10.1016/j.atmosenv.2018.05.062
10.1016/j.atmosenv.2012.02.036
10.1021/es035311z
10.3390/atmos10110698
10.1016/S0140-6736(17)30505-6
10.1016/j.atmosenv.2006.10.066
10.5194/acp-11-1813-2011
10.5194/amt-13-1867-2020
10.1038/ncomms4749
10.1007/s11783-016-0866-6
10.3390/atmos10060310
10.1016/j.atmosenv.2020.117886
10.1016/j.envint.2020.106329
10.1007/s10311-017-0611-9
10.1016/j.jaerosci.2008.05.007
ContentType Journal Article
Copyright 2021 The Authors
Attribution
Copyright_xml – notice: 2021 The Authors
– notice: Attribution
DBID 6I.
AAFTH
AAYXX
CITATION
1XC
VOOES
DOA
DOI 10.1016/j.aeaoa.2021.100145
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 2590-1621
ExternalDocumentID oai_doaj_org_article_6030e14a57fe4a5a96500c3a8f97f420
oai_HAL_hal_04743390v1
10_1016_j_aeaoa_2021_100145
S2590162121000459
GroupedDBID 0SF
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
M41
NCXOZ
OK1
ROL
SSZ
0R~
AAHBH
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
1XC
VOOES
ID FETCH-LOGICAL-c448t-b0bf673768f839169ae6fe6491f095f15bbf5267b4582a8fd9b8fdf7ac6d961c3
IEDL.DBID DOA
ISSN 2590-1621
IngestDate Wed Aug 27 01:29:00 EDT 2025
Sun Jun 29 06:11:00 EDT 2025
Tue Jul 01 04:16:25 EDT 2025
Thu Apr 24 23:11:28 EDT 2025
Tue Jul 25 21:01:28 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords PMF
Road traffic
Source apportionment
Particulate matter
Urban increment
Particulate matter Road traffic Source apportionment PMF Urban increment
Language English
License This is an open access article under the CC BY license.
Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c448t-b0bf673768f839169ae6fe6491f095f15bbf5267b4582a8fd9b8fdf7ac6d961c3
ORCID 0000-0003-4093-3596
0000-0002-6973-522X
OpenAccessLink https://doaj.org/article/6030e14a57fe4a5a96500c3a8f97f420
ParticipantIDs doaj_primary_oai_doaj_org_article_6030e14a57fe4a5a96500c3a8f97f420
hal_primary_oai_HAL_hal_04743390v1
crossref_citationtrail_10_1016_j_aeaoa_2021_100145
crossref_primary_10_1016_j_aeaoa_2021_100145
elsevier_sciencedirect_doi_10_1016_j_aeaoa_2021_100145
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
2021-12
2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationTitle Atmospheric Environment: X
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Gietl, Lawrence, Thorpe, Harrison (bib29) Jan. 2010; 44
Hartmann, Hüffer, Thompson, Hassellöv, Verschoor, Daugaard, Rist, Karlsson, Brennholt, Cole, Herrling, Hess, Ivleva, Lusher, Wagner, Feb (bib40) 2019; 53
Vanherle, Lopez-Aparicio, Grythe, Lükewille, Unterstaller, Mayeres (bib69) 2021
Zhang, Hu, Kleeman, Ying (bib75) Aug. 2014; 490
Grange (bib31) 2021
Gianini, Fischer, Gehrig, Ulrich, Wichser, Piot, Besombes, Hueglin (bib27) 2012; 54
Gianini, Gehrig, Fischer, Ulrich, Wichser, Hueglin (bib28) 2012; 54
Viana, Kuhlbusch, Querol, Alastuey, Harrison, Hopke, Winiwarter, Vallius, Szidat, Prvt, Hueglin, Bloemen, Whlin, Vecchi, Miranda, Kasper Giebl, Maenhaut, Hitzenberger (bib71) 2008; 39
Harrison, Allan, Carruthers, Heal, Lewis, Marner, Murrells, Williams (bib37) 2021
Charron, Polo-Rehn, Besombes, Golly, Buisson, Chanut, Marchand, Guillaud, Jaffrezo (bib11) 2019; 19
Mukherjee, Agrawal (bib51) 2017; 15
Wu, Lo, Stafford (bib74) Jan. 2021; 268
Amato, Pandolfi, Moreno, Furger, Pey, Alastuey, Bukowiecki, Prevot, Baltensperger, Querol (bib4) 2011; 45
Federal Office for the Environment (bib23) 2021
Hueglin, Gehrig, Baltensperger, Gysel, Monn, Vonmont (bib43) Feb. 2005; 39
Kupiainen, Klimont (bib47) 2007; 41
Adamiec, Jarosz-Krzemińska, Wieszała (bib2) 2016; 188
Grange, Uzu, Weber, Jaffrezo, Hueglin (bib35) 2019
Timmers, Achten, Amato (bib67) 2018
European Environment Agency (bib19) 2020
Hjortenkrans, Bergbäck, Häggerud (bib42) Aug. 2007; 41
Awad, Ma, Kamil, Ali, Zhang, Shuai (bib5) 2020; 718
Grange (bib32) 2021
Galvão, Santos, Lima, Reis, Orlando, Stuetz, May (bib26) 2018; 199
Luhana, Sokhi, Warner, Mao, Boulter, McCrae, Wright, Osborn (bib50) 2004
Federal Office for the Environment (bib24) 2021
OECD (bib53) 2020
Daellenbach, Uzu, Jiang, Cassagnes, Leni, Vlachou, Stefenelli, Canonaco, Weber, Segers, Kuenen, Schaap, Favez, Albinet, Aksoyoglu, Dommen, Baltensperger, Geiser, El Haddad, Jaffrezo, Prévôt (bib14) Nov. 2020; 587
Hüglin, Gianini, Gehrig (bib44) 2012
Amato, Alastuey, de la Rosa, Gonzalez Castanedo, Sánchez de la Campa, Pandolfi, Lozano, Contreras González, Querol (bib3) Apr. 2014; 14
Brown, Eberly, Paatero, Norris (bib9) Jun. 2015; 518–519
Lawrence, Sokhi, Ravindra, Mao, Prain, Bull (bib48) Oct. 2013; 77
European Commission (bib17) 2019
Federal Office for the Environment (bib21) 2017
Harrison, Jones, Gietl, Yin, Green (bib38) Jun. 2012; 46
Harrison, Vu, Jafar, Shi (bib39) 2021; 149
Barmpadimos, Hueglin, Keller, Henne, Prévôt (bib6) Feb. 2011; 11
Putaud, Van Dingenen, Alastuey, Bauer, Birmili, Cyrys, Flentje, Fuzzi, Gehrig, Hansson, Harrison, Herrmann, Hitzenberger, Hüglin, Jones, Kasper Giebl, Kiss, Kousa, Kuhlbusch, Löschau, Maenhaut, Molnar, Moreno, Pekkanen, Perrino, Pitz, Puxbaum, Querol, Rodriguez, Salma, Schwarz, Smolik, Schneider, Spindler, ten Brink, Tursic, Viana, Wiedensohler, Raes (bib57) Mar. 2010; 44
Weber, Salameh, Albinet, Alleman, Waked, Besombes, Jacob, Guillaud, Meshbah, Rocq, Hulin, Chrétien, Jaffrezo, Favez (bib72) 2019; 10
Pandolfi, Mooibroek, Hopke, van Pinxteren, Querol, Herrmann, Alastuey, Favez, Hüglin, Perdrix, Riffault, Sauvage, van der Swaluw, Tarasova, Colette (bib55) 2020; 20
Beddows, Harrison (bib7) 2021; 244
Ostro, Tobias, Querol, Alastuey, Amato, Pey, Pérez, Sunyer, Nov (bib54) 2011; 119
Hilker, Wang, Jeong, Healy, Sofowote, Debosz, Su, Noble, Munoz, Doerksen, White, Audette, Herod, Brook, Evans (bib41) 2019; 12
Norris, Duvall, Brown, Bai (bib52) 2014
(bib18) 2017
Grange, Carslaw, Lewis, Boleti, Hueglin (bib33) May 2018; 18
Harrison (bib36) 2018; 1
Resongles, Dietze, Green, Harrison, Ochoa-Gonzalez, Tremper, Weiss (bib61) 2021; 118
Sapkota, Symons, Kleissl, Wang, Parlange, Ondov, Breysse, Diette, Eggleston, Buckley (bib64) Jan. 2005; 39
Thunis, Degraeuwe, Pisoni, Trombetti, Peduzzi, Belis, Wilson, Clappier, Vignati (bib65) 2018; 187
Cohen, Brauer, Burnett, Anderson, Frostad, Estep, Balakrishnan, Brunekreef, Dandona, Dandona, Feigin, Freedman, Hubbell, Jobling, Kan, Knibbs, Liu, Martin, Morawska, Pope, Arden, Shin, Straif, Shaddick, Thomas, van Dingenen, van Donkelaar, Vos, Murray, Forouzanfar (bib13) Mar. 2017; 389
Querol, Alastuey, Ruiz, Artiñano, Hansson, Harrison, Buringh, ten Brink, Lutz, Bruckmann, Straehl, Schneider (bib59) Dec. 2004; 38
Diaz, Mock, Bernard, Bieker, Pniewska, Ragon, Rodriguez, Tietge, Wappelhorst (bib15) 2020
Grange, Lötscher, Fischer, Emmenegger, Hueglin (bib34) Apr. 2020; 13
Calas, Uzu, Besombes, Martins, Redaelli, Weber, Charron, Albinet, Chevrier, Brulfert, Mesbah, Favez, Jaffrezo (bib10) 2019; 10
Favez, Salameh, Jaffrezo (bib20) 2017
Rausch, Jaramillo-Vogel, Perseguers, Schnidrig, Grobéty, Yajan (bib60) 2022; 803
Lenschow, Abraham, Kutzner, Lutz, Preuß, Reichenbächer (bib49) 2001; 35
Van Dingenen, Raes, Putaud, Baltensperger, Charron, Facchini, Decesari, Fuzzi, Gehrig, Hansson, Harrison, Hüglin, Jones, Laj, Lorbeer, Maenhaut, Palmgren, Querol, Rodriguez, Schneider, Brink, Tunved, Tørseth, Wehner, Weingartner, Wiedensohler, Wåhlin (bib68) 2004; 38
Fine, Sioutas, Solomon (bib25) Feb. 2008; 58
World Health Organization (bib73) 2016
Achten, Amato, de Leeuw, de Miguel, Denby, van der Gon, Faustini, Filip, Gramstat, Grigoratos, Gustafsson, Harrison, Holman, Hopke, Hulskotte, Jozwicka, Kranenburg, Kreider, Kuenen, Kukutschová, Kupiainen, Martins, Minguillón, Moreno, Padoan, Panko, Querol, Reche, Robusté, Stafoggia, Timmers, Unice, Visschedijk (bib1) 2018
Hüglin, Grange (bib45) 2021
Chow, Riggio, Wang, Chen, Watson (bib12) Dec. 2018; 2
Grange (bib30) 2021
Platt, Haddad, Pieber, Huang, Zardini, Clairotte, Suarez-Bertoa, Barmet, Pfaffenberger, Wolf, Slowik, Fuller, Kalberer, Chirico, Dommen, Astorga, Zimmermann, Marchand, Hellebust, Temime-Roussel, Baltensperger, Prévôt, May (bib56) 2014; 5
Querol, Alastuey, Rodriguez, Plana, Ruiz, Cots, Massagué, Puig (bib58) Dec. 2001; 35
Ruellan, Cachier (bib62) 2001; 35
Timmers, Achten (bib66) 2016; 134
European Commission (bib16) 2004
Ivey, Holmes, Hu, Mulholland, Russell (bib46) 2016; 10
Samaké, Jaffrezo, Favez, Weber, Jacob, Albinet, Riffault, Perdrix, Waked, Golly, Salameh, Chevrier, Oliveira, Bonnaire, Besombes, Martins, Conil, Guillaud, Mesbah, Rocq, Robic, Hulin, Le Meur, Descheemaecker, Chretien, Marchand, Uzu (bib63) Mar. 2019; 19
Borlaza, Weber, Uzu, Jacob, Cañete, Micallef, Trébuchon, Slama, Favez, Jaffrezo (bib8) 2021; 21
Varrica, Bardelli, Dongarr, Tamburo (bib70) 2013; 64
Federal Office for the Environment (bib22) 2021
World Health Organization (10.1016/j.aeaoa.2021.100145_bib73)
Adamiec (10.1016/j.aeaoa.2021.100145_bib2) 2016; 188
Sapkota (10.1016/j.aeaoa.2021.100145_bib64) 2005; 39
Samaké (10.1016/j.aeaoa.2021.100145_bib63) 2019; 19
Norris (10.1016/j.aeaoa.2021.100145_bib52) 2014
Federal Office for the Environment (10.1016/j.aeaoa.2021.100145_bib22)
Harrison (10.1016/j.aeaoa.2021.100145_bib37) 2021
Vanherle (10.1016/j.aeaoa.2021.100145_bib69)
Platt (10.1016/j.aeaoa.2021.100145_bib56) 2014; 5
Galvão (10.1016/j.aeaoa.2021.100145_bib26) 2018; 199
Amato (10.1016/j.aeaoa.2021.100145_bib4) 2011; 45
Grange (10.1016/j.aeaoa.2021.100145_bib32)
Ostro (10.1016/j.aeaoa.2021.100145_bib54) 2011; 119
Awad (10.1016/j.aeaoa.2021.100145_bib5) 2020; 718
Gianini (10.1016/j.aeaoa.2021.100145_bib28) 2012; 54
Grange (10.1016/j.aeaoa.2021.100145_bib34) 2020; 13
Hilker (10.1016/j.aeaoa.2021.100145_bib41) 2019; 12
Daellenbach (10.1016/j.aeaoa.2021.100145_bib14) 2020; 587
Querol (10.1016/j.aeaoa.2021.100145_bib58) 2001; 35
Hjortenkrans (10.1016/j.aeaoa.2021.100145_bib42) 2007; 41
Borlaza (10.1016/j.aeaoa.2021.100145_bib8) 2021; 21
Barmpadimos (10.1016/j.aeaoa.2021.100145_bib6) 2011; 11
Ruellan (10.1016/j.aeaoa.2021.100145_bib62) 2001; 35
Weber (10.1016/j.aeaoa.2021.100145_bib72) 2019; 10
European Commission (10.1016/j.aeaoa.2021.100145_bib17)
Resongles (10.1016/j.aeaoa.2021.100145_bib61) 2021; 118
Achten (10.1016/j.aeaoa.2021.100145_bib1) 2018
Gietl (10.1016/j.aeaoa.2021.100145_bib29) 2010; 44
Zhang (10.1016/j.aeaoa.2021.100145_bib75) 2014; 490
Luhana (10.1016/j.aeaoa.2021.100145_bib50) 2004
Querol (10.1016/j.aeaoa.2021.100145_bib59) 2004; 38
Grange (10.1016/j.aeaoa.2021.100145_bib31)
Van Dingenen (10.1016/j.aeaoa.2021.100145_bib68) 2004; 38
Viana (10.1016/j.aeaoa.2021.100145_bib71) 2008; 39
Beddows (10.1016/j.aeaoa.2021.100145_bib7) 2021; 244
Cohen (10.1016/j.aeaoa.2021.100145_bib13) 2017; 389
Federal Office for the Environment (10.1016/j.aeaoa.2021.100145_bib23) 2021
Thunis (10.1016/j.aeaoa.2021.100145_bib65) 2018; 187
Kupiainen (10.1016/j.aeaoa.2021.100145_bib47) 2007; 41
Federal Office for the Environment (10.1016/j.aeaoa.2021.100145_bib24)
Brown (10.1016/j.aeaoa.2021.100145_bib9) 2015; 518–519
Grange (10.1016/j.aeaoa.2021.100145_bib33) 2018; 18
Hüglin (10.1016/j.aeaoa.2021.100145_bib45) 2021
Harrison (10.1016/j.aeaoa.2021.100145_bib38) 2012; 46
Wu (10.1016/j.aeaoa.2021.100145_bib74) 2021; 268
European Commission (10.1016/j.aeaoa.2021.100145_bib16)
Harrison (10.1016/j.aeaoa.2021.100145_bib36) 2018; 1
Hüglin (10.1016/j.aeaoa.2021.100145_bib44) 2012
Lenschow (10.1016/j.aeaoa.2021.100145_bib49) 2001; 35
(10.1016/j.aeaoa.2021.100145_bib18) 2017
European Environment Agency (10.1016/j.aeaoa.2021.100145_bib19) 2020
Rausch (10.1016/j.aeaoa.2021.100145_bib60) 2022; 803
Charron (10.1016/j.aeaoa.2021.100145_bib11) 2019; 19
Putaud (10.1016/j.aeaoa.2021.100145_bib57) 2010; 44
Grange (10.1016/j.aeaoa.2021.100145_bib35) 2019
Chow (10.1016/j.aeaoa.2021.100145_bib12) 2018; 2
Ivey (10.1016/j.aeaoa.2021.100145_bib46) 2016; 10
Fine (10.1016/j.aeaoa.2021.100145_bib25) 2008; 58
Diaz (10.1016/j.aeaoa.2021.100145_bib15)
Lawrence (10.1016/j.aeaoa.2021.100145_bib48) 2013; 77
Federal Office for the Environment (10.1016/j.aeaoa.2021.100145_bib21)
Harrison (10.1016/j.aeaoa.2021.100145_bib39) 2021; 149
Amato (10.1016/j.aeaoa.2021.100145_bib3) 2014; 14
Calas (10.1016/j.aeaoa.2021.100145_bib10) 2019; 10
Grange (10.1016/j.aeaoa.2021.100145_bib30) 2021
Hartmann (10.1016/j.aeaoa.2021.100145_bib40) 2019; 53
Varrica (10.1016/j.aeaoa.2021.100145_bib70) 2013; 64
Gianini (10.1016/j.aeaoa.2021.100145_bib27) 2012; 54
Hueglin (10.1016/j.aeaoa.2021.100145_bib43) 2005; 39
Timmers (10.1016/j.aeaoa.2021.100145_bib66) 2016; 134
Timmers (10.1016/j.aeaoa.2021.100145_bib67) 2018
Favez (10.1016/j.aeaoa.2021.100145_bib20) 2017
Mukherjee (10.1016/j.aeaoa.2021.100145_bib51) 2017; 15
Pandolfi (10.1016/j.aeaoa.2021.100145_bib55) 2020; 20
OECD (10.1016/j.aeaoa.2021.100145_bib53)
References_xml – volume: 5
  start-page: 3749
  year: 2014
  ident: bib56
  article-title: Two-stroke scooters are a dominant source of air pollution in many cities
  publication-title: Nat. Commun.
– volume: 718
  start-page: 137302
  year: 2020
  ident: bib5
  article-title: Particulate emissions from gasoline direct injection engines: a review of how current emission regulations are being met by automobile manufacturers
  publication-title: Sci. Total Environ.
– volume: 20
  start-page: 409
  year: 2020
  end-page: 429
  ident: bib55
  article-title: Long-range and local air pollution: what can we learn from chemical speciation of particulate matter at paired sites?
  publication-title: Atmos. Chem. Phys.
– year: 2021
  ident: bib32
  article-title: : interact with data generated by the EPA PMF tool. R package
– year: 2017
  ident: bib18
  article-title: CEN EN 16909: Ambient Air – Measurement of Elemental Carbon (EC) and Organic Carbon (OC) Collected on Filters
– volume: 134
  start-page: 10
  year: 2016
  end-page: 17
  ident: bib66
  article-title: Non-exhaust PM emissions from electric vehicles
  publication-title: Atmos. Environ.
– year: 2020
  ident: bib19
  article-title: Air Quality in Europe – 2019 Report
– year: 2021
  ident: bib30
  article-title: Data for Publication “Switzerland's PM
– volume: 41
  start-page: 5224
  year: Aug. 2007
  end-page: 5230
  ident: bib42
  article-title: Metal emissions from brake linings and tires: case studies of stockholm, Sweden 1995/1998 and 2005
  publication-title: Environ. Sci. Technol.
– year: 2021
  ident: bib24
  article-title: UNECE-CLRTAP Submission of air pollutant emissions for Switzerland 1980–2019, deliveries for LRTAP Convention – national emission inventories
– volume: 53
  start-page: 1039
  year: 2019
  end-page: 1047
  ident: bib40
  article-title: Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris
  publication-title: Environ. Sci. Technol.
– start-page: 261
  year: 2018
  end-page: 287
  ident: bib67
  article-title: Chapter 12 – non-exhaust PM emissions from battery electric vehicles
  publication-title: Non-Exhaust Emissions
– year: 2004
  ident: bib16
  article-title: Second position paper on particulate matter, CAFE working group on particulate matter
– volume: 199
  start-page: 546
  year: 2018
  end-page: 568
  ident: bib26
  article-title: Trends in analytical techniques applied to particulate matter characterization: a critical review of fundaments and applications
  publication-title: Chemosphere
– year: 2021
  ident: bib31
  article-title: : tools to conduct detailed characterisation of atmospheric particulate matter. R package
– volume: 35
  start-page: 23
  year: 2001
  end-page: 33
  ident: bib49
  article-title: Some ideas about the sources of PM10
  publication-title: Atmos. Environ.
– volume: 18
  start-page: 6223
  year: May 2018
  end-page: 6239
  ident: bib33
  article-title: Random forest meteorological normalisation models for Swiss PM
  publication-title: Atmos. Chem. Phys.
– year: 2016
  ident: bib73
  article-title: Ambient air pollution: a global assessment of exposure and burden of disease
– volume: 15
  start-page: 283
  year: 2017
  end-page: 309
  ident: bib51
  article-title: World air particulate matter: sources, distribution and health effects
  publication-title: Environ. Chem. Lett.
– volume: 803
  start-page: 149832
  year: 2022
  ident: bib60
  article-title: Automated identification and quantification of tire wear particles (TWP) in airborne dust: SEM/EDX single particle analysis coupled to a machine learning classifier
– volume: 10
  start-page: 14
  year: 2016
  ident: bib46
  article-title: A method for quantifying bias in modeled concentrations and source impacts for secondary particulate matter
  publication-title: Front. Environ. Sci. Eng.
– volume: 188
  start-page: 369
  year: 2016
  ident: bib2
  article-title: Heavy metals from non-exhaust vehicle emissions in urban and motorway road dusts
  publication-title: Environ. Monit. Assess.
– volume: 44
  start-page: 141
  year: Jan. 2010
  end-page: 146
  ident: bib29
  article-title: Identification of brake wear particles and derivation of a quantitative tracer for brake dust at a major road
  publication-title: Atmos. Environ.
– year: 2004
  ident: bib50
  article-title: Characterisation of Exhaust Particulate Emissions from Road Vehicles – Deliverable 8 – Measurement of Non-exhaust Particulate Matter
– volume: 118
  year: 2021
  ident: bib61
  article-title: Strong evidence for the continued contribution of lead deposited during the 20th century to the atmospheric environment in London of today
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– volume: 2
  start-page: 165
  year: Dec. 2018
  end-page: 172
  ident: bib12
  article-title: Measuring the organic carbon to organic matter multiplier with thermal/optical carbon-quadrupole mass spectrometer analyses
  publication-title: Aerosol Science and Engineering
– volume: 35
  start-page: 453
  year: 2001
  end-page: 468
  ident: bib62
  article-title: Characterisation of fresh particulate vehicular exhausts near a Paris high flow road
  publication-title: Atmos. Environ.
– year: 2021
  ident: bib69
  article-title: Transport Non-exhaust PM-emissions. An overview of emission estimates, relevance, trends and policies, ETC/ATNI Report 5/2020. European Topic Centre on Air pollution, transport, noise and industrial pollution
– volume: 58
  start-page: 234
  year: Feb. 2008
  end-page: 253
  ident: bib25
  article-title: Secondary particulate matter in the United States: insights from the particulate matter supersites program and related studies
  publication-title: J. Air Waste Manag. Assoc.
– volume: 38
  start-page: 6547
  year: Dec. 2004
  end-page: 6555
  ident: bib59
  article-title: Speciation and origin of PM10 and PM2.5 in selected European cities
  publication-title: Atmos. Environ.
– volume: 13
  start-page: 1867
  year: Apr. 2020
  end-page: 1885
  ident: bib34
  article-title: Evaluation of equivalent black carbon source apportionment using observations from Switzerland between 2008 and 2018
  publication-title: Atmos. Meas. Techniq.
– volume: 38
  start-page: 2561
  year: 2004
  end-page: 2577
  ident: bib68
  article-title: A European aerosol phenomenology – 1: physical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe
  publication-title: Atmos. Environ.
– volume: 39
  start-page: 637
  year: Feb. 2005
  end-page: 651
  ident: bib43
  article-title: Chemical characterisation of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland
  publication-title: Atmos. Environ.
– volume: 19
  start-page: 3357
  year: Mar. 2019
  end-page: 3374
  ident: bib63
  article-title: Polyols and glucose particulate species as tracers of primary biogenic organic aerosols at 28 French sites
  publication-title: Atmos. Chem. Phys.
– volume: 21
  start-page: 5415
  year: 2021
  end-page: 5437
  ident: bib8
  article-title: Disparities in particulate matter (PM
  publication-title: Atmos. Chem. Phys.
– volume: 518–519
  start-page: 626
  year: Jun. 2015
  end-page: 635
  ident: bib9
  article-title: Methods for estimating uncertainty in PMF solutions: examples with ambient air and water quality data and guidance on reporting PMF results
  publication-title: Sci. Total Environ.
– volume: 39
  start-page: 827
  year: 2008
  end-page: 849
  ident: bib71
  article-title: Source apportionment of particulate matter in Europe: a review of methods and results
  publication-title: J. Aerosol Sci.
– volume: 46
  start-page: 6523
  year: Jun. 2012
  end-page: 6529
  ident: bib38
  article-title: Estimation of the contributions of brake dust, tire wear, and resuspension to nonexhaust traffic particles derived from atmospheric measurements
  publication-title: Environ. Sci. Technol.
– start-page: 118592
  year: 2021
  ident: bib37
  article-title: Non-exhaust vehicle emissions of particulate matter and voc from road traffic: a review
– volume: 119
  start-page: 1781
  year: 2011
  end-page: 1787
  ident: bib54
  article-title: The effects of particulate matter sources on daily mortality: a case-crossover study of barcelona, Spain
  publication-title: Environ. Health Perspect.
– volume: 54
  start-page: 149
  year: 2012
  end-page: 158
  ident: bib27
  article-title: Comparative source apportionment of PM10 in Switzerland for 2008/2009 and 1998/1999 by positive matrix factorisation
  publication-title: Atmos. Environ.
– volume: 44
  start-page: 1308
  year: Mar. 2010
  end-page: 1320
  ident: bib57
  article-title: A European aerosol phenomenology – 3: physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe
  publication-title: Atmos. Environ.
– volume: 268
  start-page: 115654
  year: Jan. 2021
  ident: bib74
  article-title: Vehicle non-exhaust emissions – revealing the pathways from source to environmental exposure
  publication-title: Environ. Pollut.
– volume: 12
  start-page: 5247
  year: 2019
  end-page: 5261
  ident: bib41
  article-title: Traffic-related air pollution near roadways: discerning local impacts from background
  publication-title: Atmos. Meas. Techniq.
– volume: 10
  start-page: 310
  year: 2019
  ident: bib72
  article-title: Comparison of PM
  publication-title: Atmosphere
– year: 2021
  ident: bib22
  article-title: National air pollution monitoring network (NABEL)
– volume: 77
  start-page: 548
  year: Oct. 2013
  end-page: 557
  ident: bib48
  article-title: Source apportionment of traffic emissions of particulate matter using tunnel measurements
  publication-title: Atmos. Environ.
– volume: 54
  start-page: 97
  year: 2012
  end-page: 106
  ident: bib28
  article-title: Chemical composition of PM10 in Switzerland: an analysis for 2008/2009 and changes since 1998/1999
  publication-title: Atmos. Environ.
– volume: 10
  start-page: 698
  year: 2019
  ident: bib10
  article-title: Seasonal variations and chemical predictors of oxidative potential (OP) of particulate matter (PM), for seven urban French sites
  publication-title: Atmosphere
– volume: 587
  start-page: 414
  year: Nov. 2020
  end-page: 419
  ident: bib14
  article-title: Sources of particulate-matter air pollution and its oxidative potential in Europe
  publication-title: Nature
– volume: 11
  start-page: 1813
  year: Feb. 2011
  end-page: 1835
  ident: bib6
  article-title: Influence of meteorology on PM
  publication-title: Atmos. Chem. Phys.
– start-page: 93
  year: 2012
  ident: bib44
  article-title: Chemische Zusammensetzung und Quellen von Feinstaub. Untersuchungen an ausgewählten NABEL-Standorten. Schlussbericht, im Auftrag des Bundesamtes für Umwelt (BAFU)
  publication-title: Empa, Abt. für Luftfremdstoffe und Umwelttechnik
– year: 2017
  ident: bib21
  article-title: National air pollution monitoring network (NABEL)
– volume: 1
  start-page: 20175
  year: 2018
  ident: bib36
  article-title: Urban atmospheric chemistry: a very special case for study
  publication-title: NPJ Clim. Atmosp. Sci.
– volume: 149
  start-page: 106329
  year: 2021
  ident: bib39
  article-title: More mileage in reducing urban air pollution from road traffic
  publication-title: Environ. Int.
– volume: 187
  start-page: 93
  year: 2018
  end-page: 106
  ident: bib65
  article-title: PM
  publication-title: Atmos. Environ.
– volume: 41
  start-page: 2156
  year: 2007
  end-page: 2170
  ident: bib47
  article-title: Primary emissions of fine carbonaceous particles in Europe
  publication-title: Atmos. Environ.
– volume: 14
  start-page: 3533
  year: Apr. 2014
  end-page: 3544
  ident: bib3
  article-title: Trends of road dust emissions contributions on ambient air particulate levels at rural, urban and industrial sites in southern Spain
  publication-title: Atmos. Chem. Phys.
– volume: 244
  start-page: 117886
  year: 2021
  ident: bib7
  article-title: PM
  publication-title: Atmos. Environ.
– year: 2020
  ident: bib15
  article-title: European vehicle market statistics, 2020/2021
– year: 2021
  ident: bib23
  article-title: Switzerland's Informative Inventory Report 2021 (IIR). Submission under the UNECE Convention on Long-Range Transboundary Air Pollution, March, 2021
– volume: 19
  start-page: 5187
  year: 2019
  end-page: 5207
  ident: bib11
  article-title: Identification and quantification of particulate tracers of exhaust and non-exhaust vehicle emissions
  publication-title: Atmos. Chem. Phys.
– volume: 64
  start-page: 18
  year: 2013
  end-page: 24
  ident: bib70
  article-title: Speciation of Sb in airborne particulate matter, vehicle brake linings, and brake pad wear residues
  publication-title: Atmos. Environ.
– year: 2017
  ident: bib20
  article-title: Traitement harmonisé de jeux de données multi-sites pour l’étude de sources de PM par Positive Matrix Factorization
– year: 2021
  ident: bib45
  article-title: Chemical characterisation and source identification of PM
  publication-title: Empa, Swiss Federal Laboratories for Materials Science and Technology
– volume: 45
  start-page: 6777
  year: 2011
  end-page: 6787
  ident: bib4
  article-title: Sources and variability of inhalable road dust particles in three European cities
  publication-title: Atmos. Environ.
– year: 2019
  ident: bib17
  article-title: Air quality standards
– volume: 389
  start-page: 1907
  year: Mar. 2017
  end-page: 1918
  ident: bib13
  article-title: Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the global burden of diseases study 2015
  publication-title: Lancet
– volume: 35
  start-page: 6407
  year: Dec. 2001
  end-page: 6419
  ident: bib58
  article-title: PM10 and PM2.5 source apportionment in the Barcelona Metropolitan area, Catalonia, Spain
  publication-title: Atmos. Environ.
– volume: 490
  start-page: 171
  year: Aug. 2014
  end-page: 181
  ident: bib75
  article-title: Source apportionment of sulfate and nitrate particulate matter in the Eastern United States and effectiveness of emission control programs
  publication-title: Sci. Total Environ.
– year: 2019
  ident: bib35
  article-title: In preparation
  publication-title: Oxidative Potential of PM10 and PM2.5 in Switzerland between 2018
– year: 2014
  ident: bib52
  article-title: EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide
– year: 2018
  ident: bib1
  article-title: Non-exhaust Emissions: an Urban Air Quality Problem for Public Health; Impact and Mitigation Measures
– volume: 39
  start-page: 24
  year: Jan. 2005
  end-page: 32
  ident: bib64
  article-title: Impact of the 2002 Canadian forest fires on particulate matter air quality in baltimore city
  publication-title: Environ. Sci. Technol.
– year: 2020
  ident: bib53
  article-title: Non-exhaust particulate emissions from road transport. An ignored environmental policy challenge
– volume: 19
  start-page: 5187
  issue: 7
  year: 2019
  ident: 10.1016/j.aeaoa.2021.100145_bib11
  article-title: Identification and quantification of particulate tracers of exhaust and non-exhaust vehicle emissions
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-19-5187-2019
– year: 2021
  ident: 10.1016/j.aeaoa.2021.100145_bib30
– volume: 2
  start-page: 165
  issue: 4
  year: 2018
  ident: 10.1016/j.aeaoa.2021.100145_bib12
  article-title: Measuring the organic carbon to organic matter multiplier with thermal/optical carbon-quadrupole mass spectrometer analyses
  publication-title: Aerosol Science and Engineering
  doi: 10.1007/s41810-018-0033-5
– year: 2017
  ident: 10.1016/j.aeaoa.2021.100145_bib20
– volume: 718
  start-page: 137302
  year: 2020
  ident: 10.1016/j.aeaoa.2021.100145_bib5
  article-title: Particulate emissions from gasoline direct injection engines: a review of how current emission regulations are being met by automobile manufacturers
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.137302
– year: 2020
  ident: 10.1016/j.aeaoa.2021.100145_bib19
– volume: 1
  start-page: 20175
  issue: 1
  year: 2018
  ident: 10.1016/j.aeaoa.2021.100145_bib36
  article-title: Urban atmospheric chemistry: a very special case for study
  publication-title: NPJ Clim. Atmosp. Sci.
  doi: 10.1038/s41612-017-0010-8
– volume: 46
  start-page: 6523
  issue: 12
  year: 2012
  ident: 10.1016/j.aeaoa.2021.100145_bib38
  article-title: Estimation of the contributions of brake dust, tire wear, and resuspension to nonexhaust traffic particles derived from atmospheric measurements
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es300894r
– volume: 77
  start-page: 548
  year: 2013
  ident: 10.1016/j.aeaoa.2021.100145_bib48
  article-title: Source apportionment of traffic emissions of particulate matter using tunnel measurements
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2013.03.040
– volume: 20
  start-page: 409
  issue: 1
  year: 2020
  ident: 10.1016/j.aeaoa.2021.100145_bib55
  article-title: Long-range and local air pollution: what can we learn from chemical speciation of particulate matter at paired sites?
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-20-409-2020
– start-page: 261
  year: 2018
  ident: 10.1016/j.aeaoa.2021.100145_bib67
  article-title: Chapter 12 – non-exhaust PM emissions from battery electric vehicles
– ident: 10.1016/j.aeaoa.2021.100145_bib31
– ident: 10.1016/j.aeaoa.2021.100145_bib21
– volume: 35
  start-page: 453
  issue: 2
  year: 2001
  ident: 10.1016/j.aeaoa.2021.100145_bib62
  article-title: Characterisation of fresh particulate vehicular exhausts near a Paris high flow road
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(00)00110-2
– volume: 38
  start-page: 6547
  issue: 38
  year: 2004
  ident: 10.1016/j.aeaoa.2021.100145_bib59
  article-title: Speciation and origin of PM10 and PM2.5 in selected European cities
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2004.08.037
– ident: 10.1016/j.aeaoa.2021.100145_bib69
– volume: 490
  start-page: 171
  year: 2014
  ident: 10.1016/j.aeaoa.2021.100145_bib75
  article-title: Source apportionment of sulfate and nitrate particulate matter in the Eastern United States and effectiveness of emission control programs
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2014.04.064
– volume: 188
  start-page: 369
  issue: 6
  year: 2016
  ident: 10.1016/j.aeaoa.2021.100145_bib2
  article-title: Heavy metals from non-exhaust vehicle emissions in urban and motorway road dusts
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-016-5377-1
– volume: 14
  start-page: 3533
  issue: 7
  year: 2014
  ident: 10.1016/j.aeaoa.2021.100145_bib3
  article-title: Trends of road dust emissions contributions on ambient air particulate levels at rural, urban and industrial sites in southern Spain
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-14-3533-2014
– ident: 10.1016/j.aeaoa.2021.100145_bib32
– volume: 119
  start-page: 1781
  issue: 12
  year: 2011
  ident: 10.1016/j.aeaoa.2021.100145_bib54
  article-title: The effects of particulate matter sources on daily mortality: a case-crossover study of barcelona, Spain
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.1103618
– volume: 12
  start-page: 5247
  issue: 10
  year: 2019
  ident: 10.1016/j.aeaoa.2021.100145_bib41
  article-title: Traffic-related air pollution near roadways: discerning local impacts from background
  publication-title: Atmos. Meas. Techniq.
  doi: 10.5194/amt-12-5247-2019
– volume: 118
  issue: 26
  year: 2021
  ident: 10.1016/j.aeaoa.2021.100145_bib61
  article-title: Strong evidence for the continued contribution of lead deposited during the 20th century to the atmospheric environment in London of today
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.2102791118
– volume: 45
  start-page: 6777
  issue: 37
  year: 2011
  ident: 10.1016/j.aeaoa.2021.100145_bib4
  article-title: Sources and variability of inhalable road dust particles in three European cities
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2011.06.003
– volume: 44
  start-page: 141
  issue: 2
  year: 2010
  ident: 10.1016/j.aeaoa.2021.100145_bib29
  article-title: Identification of brake wear particles and derivation of a quantitative tracer for brake dust at a major road
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2009.10.016
– volume: 19
  start-page: 3357
  issue: 5
  year: 2019
  ident: 10.1016/j.aeaoa.2021.100145_bib63
  article-title: Polyols and glucose particulate species as tracers of primary biogenic organic aerosols at 28 French sites
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-19-3357-2019
– ident: 10.1016/j.aeaoa.2021.100145_bib53
– year: 2019
  ident: 10.1016/j.aeaoa.2021.100145_bib35
  article-title: In preparation
– volume: 35
  start-page: 6407
  issue: 36
  year: 2001
  ident: 10.1016/j.aeaoa.2021.100145_bib58
  article-title: PM10 and PM2.5 source apportionment in the Barcelona Metropolitan area, Catalonia, Spain
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(01)00361-2
– start-page: 93
  year: 2012
  ident: 10.1016/j.aeaoa.2021.100145_bib44
  article-title: Chemische Zusammensetzung und Quellen von Feinstaub. Untersuchungen an ausgewählten NABEL-Standorten. Schlussbericht, im Auftrag des Bundesamtes für Umwelt (BAFU)
  publication-title: Empa, Abt. für Luftfremdstoffe und Umwelttechnik
– volume: 587
  start-page: 414
  issue: 7834
  year: 2020
  ident: 10.1016/j.aeaoa.2021.100145_bib14
  article-title: Sources of particulate-matter air pollution and its oxidative potential in Europe
  publication-title: Nature
  doi: 10.1038/s41586-020-2902-8
– volume: 64
  start-page: 18
  year: 2013
  ident: 10.1016/j.aeaoa.2021.100145_bib70
  article-title: Speciation of Sb in airborne particulate matter, vehicle brake linings, and brake pad wear residues
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2012.08.067
– ident: 10.1016/j.aeaoa.2021.100145_bib73
– volume: 268
  start-page: 115654
  year: 2021
  ident: 10.1016/j.aeaoa.2021.100145_bib74
  article-title: Vehicle non-exhaust emissions – revealing the pathways from source to environmental exposure
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2020.115654
– ident: 10.1016/j.aeaoa.2021.100145_bib17
– year: 2017
  ident: 10.1016/j.aeaoa.2021.100145_bib18
– volume: 134
  start-page: 10
  year: 2016
  ident: 10.1016/j.aeaoa.2021.100145_bib66
  article-title: Non-exhaust PM emissions from electric vehicles
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2016.03.017
– volume: 54
  start-page: 97
  year: 2012
  ident: 10.1016/j.aeaoa.2021.100145_bib28
  article-title: Chemical composition of PM10 in Switzerland: an analysis for 2008/2009 and changes since 1998/1999
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2012.02.037
– volume: 518–519
  start-page: 626
  year: 2015
  ident: 10.1016/j.aeaoa.2021.100145_bib9
  article-title: Methods for estimating uncertainty in PMF solutions: examples with ambient air and water quality data and guidance on reporting PMF results
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.01.022
– volume: 38
  start-page: 2561
  issue: 16
  year: 2004
  ident: 10.1016/j.aeaoa.2021.100145_bib68
  article-title: A European aerosol phenomenology – 1: physical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2004.01.040
– volume: 39
  start-page: 637
  issue: 4
  year: 2005
  ident: 10.1016/j.aeaoa.2021.100145_bib43
  article-title: Chemical characterisation of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2004.10.027
– year: 2021
  ident: 10.1016/j.aeaoa.2021.100145_bib45
  article-title: Chemical characterisation and source identification of PM10 and PM2.5 in Switzerland, Project report
  publication-title: Empa, Swiss Federal Laboratories for Materials Science and Technology
– volume: 44
  start-page: 1308
  issue: 10
  year: 2010
  ident: 10.1016/j.aeaoa.2021.100145_bib57
  article-title: A European aerosol phenomenology – 3: physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2009.12.011
– volume: 21
  start-page: 5415
  issue: 7
  year: 2021
  ident: 10.1016/j.aeaoa.2021.100145_bib8
  article-title: Disparities in particulate matter (PM10) origins and oxidative potential at a city scale (Grenoble, France) – Part 1: source apportionment at three neighbouring sites
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-21-5415-2021
– volume: 58
  start-page: 234
  issue: 2
  year: 2008
  ident: 10.1016/j.aeaoa.2021.100145_bib25
  article-title: Secondary particulate matter in the United States: insights from the particulate matter supersites program and related studies
  publication-title: J. Air Waste Manag. Assoc.
  doi: 10.3155/1047-3289.58.2.234
– start-page: 118592
  year: 2021
  ident: 10.1016/j.aeaoa.2021.100145_bib37
– year: 2004
  ident: 10.1016/j.aeaoa.2021.100145_bib50
– volume: 41
  start-page: 5224
  issue: 15
  year: 2007
  ident: 10.1016/j.aeaoa.2021.100145_bib42
  article-title: Metal emissions from brake linings and tires: case studies of stockholm, Sweden 1995/1998 and 2005
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es070198o
– volume: 18
  start-page: 6223
  issue: 9
  year: 2018
  ident: 10.1016/j.aeaoa.2021.100145_bib33
  article-title: Random forest meteorological normalisation models for Swiss PM10 trend analysis
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-18-6223-2018
– volume: 53
  start-page: 1039
  issue: 3
  year: 2019
  ident: 10.1016/j.aeaoa.2021.100145_bib40
  article-title: Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b05297
– volume: 199
  start-page: 546
  year: 2018
  ident: 10.1016/j.aeaoa.2021.100145_bib26
  article-title: Trends in analytical techniques applied to particulate matter characterization: a critical review of fundaments and applications
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.02.034
– volume: 35
  start-page: 23
  issue: Suppl. 1
  year: 2001
  ident: 10.1016/j.aeaoa.2021.100145_bib49
  article-title: Some ideas about the sources of PM10
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(01)00122-4
– volume: 187
  start-page: 93
  year: 2018
  ident: 10.1016/j.aeaoa.2021.100145_bib65
  article-title: PM2.5 source allocation in European cities: a SHERPA modelling study
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2018.05.062
– year: 2021
  ident: 10.1016/j.aeaoa.2021.100145_bib23
– year: 2018
  ident: 10.1016/j.aeaoa.2021.100145_bib1
– volume: 54
  start-page: 149
  year: 2012
  ident: 10.1016/j.aeaoa.2021.100145_bib27
  article-title: Comparative source apportionment of PM10 in Switzerland for 2008/2009 and 1998/1999 by positive matrix factorisation
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2012.02.036
– volume: 39
  start-page: 24
  issue: 1
  year: 2005
  ident: 10.1016/j.aeaoa.2021.100145_bib64
  article-title: Impact of the 2002 Canadian forest fires on particulate matter air quality in baltimore city
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es035311z
– ident: 10.1016/j.aeaoa.2021.100145_bib24
– volume: 10
  start-page: 698
  issue: 11
  year: 2019
  ident: 10.1016/j.aeaoa.2021.100145_bib10
  article-title: Seasonal variations and chemical predictors of oxidative potential (OP) of particulate matter (PM), for seven urban French sites
  publication-title: Atmosphere
  doi: 10.3390/atmos10110698
– volume: 389
  start-page: 1907
  issue: 10082
  year: 2017
  ident: 10.1016/j.aeaoa.2021.100145_bib13
  article-title: Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the global burden of diseases study 2015
  publication-title: Lancet
  doi: 10.1016/S0140-6736(17)30505-6
– ident: 10.1016/j.aeaoa.2021.100145_bib22
– volume: 41
  start-page: 2156
  issue: 10
  year: 2007
  ident: 10.1016/j.aeaoa.2021.100145_bib47
  article-title: Primary emissions of fine carbonaceous particles in Europe
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2006.10.066
– volume: 11
  start-page: 1813
  issue: 4
  year: 2011
  ident: 10.1016/j.aeaoa.2021.100145_bib6
  article-title: Influence of meteorology on PM10 trends and variability in Switzerland from 1991 to 2008
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-11-1813-2011
– volume: 13
  start-page: 1867
  issue: 4
  year: 2020
  ident: 10.1016/j.aeaoa.2021.100145_bib34
  article-title: Evaluation of equivalent black carbon source apportionment using observations from Switzerland between 2008 and 2018
  publication-title: Atmos. Meas. Techniq.
  doi: 10.5194/amt-13-1867-2020
– volume: 5
  start-page: 3749
  issue: 1
  year: 2014
  ident: 10.1016/j.aeaoa.2021.100145_bib56
  article-title: Two-stroke scooters are a dominant source of air pollution in many cities
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4749
– ident: 10.1016/j.aeaoa.2021.100145_bib15
– volume: 10
  start-page: 14
  issue: 5
  year: 2016
  ident: 10.1016/j.aeaoa.2021.100145_bib46
  article-title: A method for quantifying bias in modeled concentrations and source impacts for secondary particulate matter
  publication-title: Front. Environ. Sci. Eng.
  doi: 10.1007/s11783-016-0866-6
– year: 2014
  ident: 10.1016/j.aeaoa.2021.100145_bib52
– volume: 10
  start-page: 310
  issue: 6
  year: 2019
  ident: 10.1016/j.aeaoa.2021.100145_bib72
  article-title: Comparison of PM10 sources profiles at 15 French sites using a harmonized constrained positive matrix factorization approach
  publication-title: Atmosphere
  doi: 10.3390/atmos10060310
– volume: 244
  start-page: 117886
  year: 2021
  ident: 10.1016/j.aeaoa.2021.100145_bib7
  article-title: PM10 and PM2.5 emission factors for non-exhaust particles from road vehicles: dependence upon vehicle mass and implications for battery electric vehicles
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2020.117886
– volume: 149
  start-page: 106329
  year: 2021
  ident: 10.1016/j.aeaoa.2021.100145_bib39
  article-title: More mileage in reducing urban air pollution from road traffic
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2020.106329
– ident: 10.1016/j.aeaoa.2021.100145_bib16
– volume: 15
  start-page: 283
  issue: 2
  year: 2017
  ident: 10.1016/j.aeaoa.2021.100145_bib51
  article-title: World air particulate matter: sources, distribution and health effects
  publication-title: Environ. Chem. Lett.
  doi: 10.1007/s10311-017-0611-9
– volume: 803
  start-page: 149832
  year: 2022
  ident: 10.1016/j.aeaoa.2021.100145_bib60
– volume: 39
  start-page: 827
  issue: 10
  year: 2008
  ident: 10.1016/j.aeaoa.2021.100145_bib71
  article-title: Source apportionment of particulate matter in Europe: a review of methods and results
  publication-title: J. Aerosol Sci.
  doi: 10.1016/j.jaerosci.2008.05.007
SSID ssj0002244601
Score 2.3570728
Snippet Atmospheric particulate matter (PM) is a priority pollutant for urban air pollution management because of its negative effects on human health and visibility....
SourceID doaj
hal
crossref
elsevier
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 100145
SubjectTerms Environmental Sciences
Particulate matter
PMF
Road traffic
Source apportionment
Urban increment
Title Switzerland's PM10 and PM2.5 environmental increments show the importance of non-exhaust emissions
URI https://dx.doi.org/10.1016/j.aeaoa.2021.100145
https://cnrs.hal.science/hal-04743390
https://doaj.org/article/6030e14a57fe4a5a96500c3a8f97f420
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BSxwxFA7VUy-i2OJqlSAFL40ms5nM5LiKsohbCq3gLSSZPHZFd6W7rcVf35dkZtm96MVLCCGZhPfezPteJvkeIV8RdDiJXz1mee2YlBKYRnTE8OVqgAcpm8QzO_quhrfy-q68W0n1Fc-EZXrgLLgzhVYYhLRlBQFLqxFScN-3NegKZJGidfR5K8HUfSJ1wTAn5T5GeM-ZUIXoKIfS4S4b7CyyDhUikRDFy0wrbimx9695p41xt8-a_M7VNtlqASMd5IXukA9hukvcz-fJ4iVf1D2Z0x8jwSlWsVKclnTl8hqOnEx93gOc0_l49kwR8dHJY4LdqHA6AzqdTVn4N44MQDSmf4sbaPNP5Pbq8tfFkLXZEpjHEGvBHHcQk86oGup4m1bboCAoqQUgjAJROgdloSoX_5Sh-BrtsIDKetVoJXz_M9nE-cIeoU2pveeyAcD4r6yqGqyNXFO-lKIG0fRI0QnL-JZKPGa0eDDdmbF7kyRsooRNlnCPfFsOespMGq93P49aWHaNNNipAY3DtMZh3jKOHlGdDk2LKDJSwEdNXp_9GDW-NvlwcGNiG5cIuvqa_xX777HEA_IxzptPyHwhm4vff8Ih4pyFO0om_R_p__Wm
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Switzerland%27s+PM10+and+PM2.5+environmental+increments+show+the+importance+of+non-exhaust+emissions&rft.jtitle=Atmospheric+Environment%3A+X&rft.au=Stuart+K.+Grange&rft.au=Andrea+Fischer&rft.au=Claudia+Zellweger&rft.au=Andr%C3%A9s+Alastuey&rft.date=2021-12-01&rft.pub=Elsevier&rft.issn=2590-1621&rft.eissn=2590-1621&rft.volume=12&rft.spage=100145&rft_id=info:doi/10.1016%2Fj.aeaoa.2021.100145&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6030e14a57fe4a5a96500c3a8f97f420
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1621&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1621&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1621&client=summon