Quantum Hall drag of exciton condensate in graphene
An electronic double layer, subjected to a high magnetic field, can form an exciton condensate: a Bose–Einstein condensate of Coulomb-bound electron–hole pairs. Now, exciton condensation is reported for a graphene/boron-nitride/graphene structure. An exciton condensate is a Bose–Einstein condensate...
Saved in:
Published in | Nature physics Vol. 13; no. 8; pp. 746 - 750 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.08.2017
Nature Publishing Group Nature Publishing Group (NPG) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An electronic double layer, subjected to a high magnetic field, can form an exciton condensate: a Bose–Einstein condensate of Coulomb-bound electron–hole pairs. Now, exciton condensation is reported for a graphene/boron-nitride/graphene structure.
An exciton condensate is a Bose–Einstein condensate of electron and hole pairs bound by the Coulomb interaction
1
,
2
. In an electronic double layer (EDL) subject to strong magnetic fields, filled Landau states in one layer bind with empty states of the other layer to form an exciton condensate
3
,
4
,
5
,
6
,
7
,
8
,
9
. Here we report exciton condensation in a bilayer graphene EDL separated by hexagonal boron nitride. Driving current in one graphene layer generates a near-quantized Hall voltage in the other layer, resulting in coherent exciton transport
4
,
6
. Owing to the strong Coulomb coupling across the atomically thin dielectric, quantum Hall drag in graphene appears at a temperature ten times higher than previously observed in a GaAs EDL. The wide-range tunability of densities and displacement fields enables exploration of a rich phase diagram of Bose–Einstein condensates across Landau levels with different filling factors and internal quantum degrees of freedom. The observed robust exciton condensation opens up opportunities to investigate various many-body exciton phases. |
---|---|
AbstractList | An exciton condensate is a Bose-Einstein condensate of electron and hole pairs bound by the Coulomb interaction. In an electronic double layer (EDL) subject to strong magnetic fields, filled Landau states in one layer bind with empty states of the other layer to form an exciton condensate. Here we report exciton condensation in a bilayer graphene EDL separated by hexagonal boron nitride. Driving current in one graphene layer generates a near-quantized Hall voltage in the other layer, resulting in coherent exciton transport. Owing to the strong Coulomb coupling across the atomically thin dielectric, quantum Hall drag in graphene appears at a temperature ten times higher than previously observed in a GaAs EDL. The wide-range tunability of densities and displacement fields enables exploration of a rich phase diagram of Bose-Einstein condensates across Landau levels with different filling factors and internal quantum degrees of freedom. The observed robust exciton condensation opens up opportunities to investigate various many-body exciton phases. Not provided. An electronic double layer, subjected to a high magnetic field, can form an exciton condensate: a Bose–Einstein condensate of Coulomb-bound electron–hole pairs. Now, exciton condensation is reported for a graphene/boron-nitride/graphene structure. An exciton condensate is a Bose–Einstein condensate of electron and hole pairs bound by the Coulomb interaction 1 , 2 . In an electronic double layer (EDL) subject to strong magnetic fields, filled Landau states in one layer bind with empty states of the other layer to form an exciton condensate 3 , 4 , 5 , 6 , 7 , 8 , 9 . Here we report exciton condensation in a bilayer graphene EDL separated by hexagonal boron nitride. Driving current in one graphene layer generates a near-quantized Hall voltage in the other layer, resulting in coherent exciton transport 4 , 6 . Owing to the strong Coulomb coupling across the atomically thin dielectric, quantum Hall drag in graphene appears at a temperature ten times higher than previously observed in a GaAs EDL. The wide-range tunability of densities and displacement fields enables exploration of a rich phase diagram of Bose–Einstein condensates across Landau levels with different filling factors and internal quantum degrees of freedom. The observed robust exciton condensation opens up opportunities to investigate various many-body exciton phases. An electronic double layer, subjected to a high magnetic field, can form an exciton condensate: a Bose–Einstein condensate of Coulomb-bound electron–hole pairs. Now, exciton condensation is reported for a graphene/boron-nitride/graphene structure.An exciton condensate is a Bose–Einstein condensate of electron and hole pairs bound by the Coulomb interaction1,2. In an electronic double layer (EDL) subject to strong magnetic fields, filled Landau states in one layer bind with empty states of the other layer to form an exciton condensate3,4,5,6,7,8,9. Here we report exciton condensation in a bilayer graphene EDL separated by hexagonal boron nitride. Driving current in one graphene layer generates a near-quantized Hall voltage in the other layer, resulting in coherent exciton transport4,6. Owing to the strong Coulomb coupling across the atomically thin dielectric, quantum Hall drag in graphene appears at a temperature ten times higher than previously observed in a GaAs EDL. The wide-range tunability of densities and displacement fields enables exploration of a rich phase diagram of Bose–Einstein condensates across Landau levels with different filling factors and internal quantum degrees of freedom. The observed robust exciton condensation opens up opportunities to investigate various many-body exciton phases. |
Author | Kim, Philip Watanabe, Kenji Taniguchi, Takashi Halperin, Bertrand I. Liu, Xiaomeng |
Author_xml | – sequence: 1 givenname: Xiaomeng surname: Liu fullname: Liu, Xiaomeng organization: Department of Physics, Harvard University – sequence: 2 givenname: Kenji orcidid: 0000-0003-3701-8119 surname: Watanabe fullname: Watanabe, Kenji organization: National Institute for Material Science – sequence: 3 givenname: Takashi surname: Taniguchi fullname: Taniguchi, Takashi organization: National Institute for Material Science – sequence: 4 givenname: Bertrand I. orcidid: 0000-0002-6999-1039 surname: Halperin fullname: Halperin, Bertrand I. organization: Department of Physics, Harvard University – sequence: 5 givenname: Philip surname: Kim fullname: Kim, Philip email: pkim@physics.harvard.edu organization: Department of Physics, Harvard University |
BackLink | https://www.osti.gov/biblio/1535096$$D View this record in Osti.gov |
BookMark | eNp90FFLwzAQB_AgE9ymD36Dok8KdUmTpumjDHXCQAR9Dml73Tq6pCYpuG_jZ_GTGakMUfHp7uF3d39ugkbaaEDolOArgqmY6W69c4wQfoDGJGNpnDBBRvs-o0do4twGY5ZwQseIPfZK-34bLVTbRpVVq8jUEbyWjTc6Ko2uQDvlIWr0-9vKqm4NGo7RYa1aBydfdYqeb2-e5ot4-XB3P79exiVjwsdK1JmoOWaKY8JEUeOKgMAZFHlaM65wmRZJqhipeFJASSsMBVUioTmrMwIVnaKzYa9xvpEuZIJyHTJpKL0kKU1xzgM6H1BnzUsPzsuN6a0OuSQlQvCU0jz7T5E8SYnIOMdBzQZVWuOchVqGm8o3RnurmlYSLD-_LPdfDhMXPyY622yV3f1pLwfrgtErsN8y_MIfQWuNhw |
CitedBy_id | crossref_primary_10_1063_5_0083736 crossref_primary_10_1209_0295_5075_123_16001 crossref_primary_10_1126_science_abg1110 crossref_primary_10_1038_s41586_021_03947_9 crossref_primary_10_1103_PhysRevB_102_035146 crossref_primary_10_1103_PhysRevB_99_035113 crossref_primary_10_1016_j_jcis_2021_06_121 crossref_primary_10_1364_AOP_504035 crossref_primary_10_1103_PhysRevX_13_031023 crossref_primary_10_1088_1674_1056_aba605 crossref_primary_10_1038_s41567_023_02096_2 crossref_primary_10_1038_s42254_022_00464_0 crossref_primary_10_1021_acsami_3c18655 crossref_primary_10_1021_acs_nanolett_1c01705 crossref_primary_10_1021_acs_nanolett_4c05592 crossref_primary_10_1016_j_progsurf_2022_100679 crossref_primary_10_1021_acs_nanolett_9b05086 crossref_primary_10_1088_2053_1583_aadf40 crossref_primary_10_1016_j_progsurf_2021_100615 crossref_primary_10_1038_s42005_020_00461_8 crossref_primary_10_1103_PhysRevB_103_205108 crossref_primary_10_1021_acs_nanolett_3c01456 crossref_primary_10_1103_PhysRevB_109_085129 crossref_primary_10_1038_s41567_021_01289_x crossref_primary_10_1002_pssb_202000564 crossref_primary_10_3390_nano10071286 crossref_primary_10_1103_PhysRevB_107_L041409 crossref_primary_10_1103_PhysRevB_110_115104 crossref_primary_10_1103_PhysRevB_110_L041115 crossref_primary_10_1103_PhysRevLett_128_157201 crossref_primary_10_1103_PhysRevB_109_155303 crossref_primary_10_1063_5_0026488 crossref_primary_10_1103_PRXEnergy_2_023002 crossref_primary_10_1063_5_0022557 crossref_primary_10_1038_s42005_018_0039_y crossref_primary_10_1038_s42005_023_01428_1 crossref_primary_10_1021_acs_jpclett_3c00090 crossref_primary_10_1088_1361_648X_ab04c7 crossref_primary_10_1103_PhysRevB_110_035110 crossref_primary_10_1103_PhysRevResearch_2_013086 crossref_primary_10_1038_s42254_018_0016_0 crossref_primary_10_1103_PhysRevB_106_045303 crossref_primary_10_1103_PhysRevB_98_195414 crossref_primary_10_1103_PhysRevResearch_2_042044 crossref_primary_10_1016_j_mseb_2023_117078 crossref_primary_10_1126_science_aaw4194 crossref_primary_10_1016_j_physe_2020_114350 crossref_primary_10_1103_PhysRevX_14_011048 crossref_primary_10_1002_admt_202200032 crossref_primary_10_1103_PhysRevB_103_L201115 crossref_primary_10_1002_inf2_12121 crossref_primary_10_1021_acs_nanolett_1c03435 crossref_primary_10_1103_PhysRevB_105_245151 crossref_primary_10_1063_1_5042327 crossref_primary_10_1103_PhysRevLett_129_187701 crossref_primary_10_1103_PhysRevB_100_165309 crossref_primary_10_7498_aps_72_20230079 crossref_primary_10_1088_2053_1583_ab7629 crossref_primary_10_1103_PhysRevB_103_155125 crossref_primary_10_1016_j_physb_2019_01_042 crossref_primary_10_1134_S1027451024701581 crossref_primary_10_1038_s41567_022_01702_z crossref_primary_10_1103_PhysRevB_106_224504 crossref_primary_10_1038_s41467_023_37197_2 crossref_primary_10_1103_PhysRevB_103_125156 crossref_primary_10_1002_inf2_12492 crossref_primary_10_1038_s41467_023_43799_7 crossref_primary_10_3390_condmat8020044 crossref_primary_10_1103_PhysRevB_98_045122 crossref_primary_10_1103_PhysRevB_110_235143 crossref_primary_10_1038_s41467_024_55486_2 crossref_primary_10_1063_5_0049595 crossref_primary_10_1038_s41467_024_46129_7 crossref_primary_10_1063_5_0133795 crossref_primary_10_1021_acsnano_7b07436 crossref_primary_10_1038_s41467_021_25104_6 crossref_primary_10_1103_PhysRevB_104_195432 crossref_primary_10_1126_sciadv_aay8409 crossref_primary_10_1103_PhysRevB_102_125420 crossref_primary_10_1103_PhysRevLett_131_036902 crossref_primary_10_1038_s41467_024_49406_7 crossref_primary_10_1063_5_0084564 crossref_primary_10_1021_jacs_4c06216 crossref_primary_10_1103_PhysRevB_105_L041409 crossref_primary_10_1146_annurev_conmatphys_060120_092219 crossref_primary_10_1007_s40544_022_0719_1 crossref_primary_10_1038_s41467_024_54021_7 crossref_primary_10_1103_PhysRevLett_122_186602 crossref_primary_10_1360_nso_20220060 crossref_primary_10_31857_S123456782301010X crossref_primary_10_1088_2053_1583_ada043 crossref_primary_10_1007_s11664_023_10455_1 crossref_primary_10_1103_PhysRevB_102_075136 crossref_primary_10_1557_mrs_2020_125 crossref_primary_10_1038_s41467_023_37769_2 crossref_primary_10_1038_s41565_022_01104_5 crossref_primary_10_1038_s41467_018_08227_1 crossref_primary_10_1103_PhysRevB_111_L121106 crossref_primary_10_1063_1_5052674 crossref_primary_10_1063_1_5019655 crossref_primary_10_1038_s41567_023_02114_3 crossref_primary_10_1016_j_physleta_2018_07_007 crossref_primary_10_1021_acsnano_4c02784 crossref_primary_10_1002_inf2_12168 crossref_primary_10_1103_PhysRevB_101_195310 crossref_primary_10_1038_s41586_019_1591_7 crossref_primary_10_1021_acsmaterialslett_0c00277 crossref_primary_10_1103_PhysRevLett_127_247701 crossref_primary_10_1103_PhysRevResearch_2_043205 crossref_primary_10_1103_PhysRevMaterials_7_045001 crossref_primary_10_1103_PhysRevB_99_235415 crossref_primary_10_1063_1_5085007 crossref_primary_10_1103_PhysRevB_109_085416 crossref_primary_10_1103_PhysRevLett_128_066601 crossref_primary_10_1038_s41567_019_0546_0 crossref_primary_10_1021_acs_jpclett_4c03198 crossref_primary_10_1038_s41467_019_13711_3 crossref_primary_10_1038_s41567_019_0547_z crossref_primary_10_1021_acs_nanolett_9b05002 crossref_primary_10_1103_PhysRevResearch_5_043176 crossref_primary_10_1038_s41586_024_08091_8 crossref_primary_10_1103_PhysRevB_105_035143 crossref_primary_10_1103_PhysRevB_104_165122 crossref_primary_10_1126_sciadv_aau6120 crossref_primary_10_1103_PhysRevB_105_L121105 crossref_primary_10_1103_PhysRevB_100_115401 crossref_primary_10_1088_2752_5724_ac49e3 crossref_primary_10_1038_s41565_018_0294_9 crossref_primary_10_1103_PhysRevB_109_L201401 crossref_primary_10_1103_PhysRevB_108_L121102 crossref_primary_10_1021_acsenergylett_0c02427 crossref_primary_10_1103_PhysRevLett_134_046601 crossref_primary_10_1038_s41567_021_01427_5 crossref_primary_10_1103_PhysRevB_102_235304 crossref_primary_10_1103_PhysRevA_102_033321 crossref_primary_10_1103_PhysRevB_110_045431 crossref_primary_10_1038_s41565_020_0650_4 crossref_primary_10_1021_acs_nanolett_2c03836 crossref_primary_10_1039_D4SC04149F crossref_primary_10_1103_PhysRevB_111_125154 crossref_primary_10_1103_PhysRevB_106_195120 crossref_primary_10_1103_PhysRevLett_127_127702 crossref_primary_10_1103_PhysRevLett_133_217002 crossref_primary_10_1103_PhysRevB_99_085307 crossref_primary_10_1002_advs_202404436 crossref_primary_10_1103_PhysRevLett_119_257002 crossref_primary_10_1007_s12274_023_6325_3 crossref_primary_10_1103_PhysRevB_110_195307 crossref_primary_10_1134_S0021364022602974 crossref_primary_10_1103_PhysRevLett_124_197601 crossref_primary_10_1038_nphys4163 crossref_primary_10_1038_s41586_024_08274_3 crossref_primary_10_1103_PhysRevLett_120_177702 crossref_primary_10_1103_PhysRevLett_120_177701 crossref_primary_10_1002_qute_201900026 crossref_primary_10_1088_1367_2630_ad9cb4 crossref_primary_10_1103_PhysRevB_111_035417 crossref_primary_10_1002_admt_202000744 crossref_primary_10_1103_PhysRevX_14_021013 crossref_primary_10_1038_s42254_020_00276_0 crossref_primary_10_1088_1361_648X_ab8aff crossref_primary_10_1103_PhysRevLett_123_206401 crossref_primary_10_1557_s43577_024_00772_z crossref_primary_10_1038_s41467_023_37644_0 crossref_primary_10_1103_PhysRevLett_124_246801 crossref_primary_10_1103_PhysRevLett_124_097604 crossref_primary_10_1073_pnas_2301957120 crossref_primary_10_1039_C8CS00450A crossref_primary_10_1103_Physics_11_39 crossref_primary_10_1103_PhysRevLett_129_237402 crossref_primary_10_1038_s41586_023_05879_y crossref_primary_10_1103_PhysRevX_14_021047 crossref_primary_10_1038_s41467_024_54198_x crossref_primary_10_1103_PhysRevB_101_081107 crossref_primary_10_1103_PhysRevLett_123_167203 crossref_primary_10_1103_PhysRevB_97_174503 crossref_primary_10_1103_PhysRevB_102_115127 crossref_primary_10_1038_s41467_020_16737_0 crossref_primary_10_1039_D0NR02786C crossref_primary_10_1103_RevModPhys_92_045001 crossref_primary_10_1103_PhysRevResearch_4_013003 crossref_primary_10_1038_s42005_023_01277_y crossref_primary_10_1038_s41567_021_01422_w crossref_primary_10_1103_PhysRevMaterials_5_L050801 crossref_primary_10_1016_j_mtelec_2023_100070 crossref_primary_10_7498_aps_70_20210929 crossref_primary_10_1021_acs_nanolett_4c01411 crossref_primary_10_1038_s41567_022_01902_7 crossref_primary_10_1021_acs_nanolett_1c00360 crossref_primary_10_1103_RevModPhys_96_025002 crossref_primary_10_1073_pnas_2012811117 crossref_primary_10_1021_acs_jpclett_1c02368 crossref_primary_10_1103_PhysRevB_105_035405 crossref_primary_10_1103_PhysRevB_108_235131 crossref_primary_10_1103_PhysRevB_108_L241107 crossref_primary_10_1002_advs_202300574 crossref_primary_10_1103_PhysRevB_108_235135 |
Cites_doi | 10.1126/science.1250270 10.1126/science.1251003 10.1038/nature03081 10.1103/PhysRevLett.110.146803 10.1126/science.1252875 10.1103/PhysRevB.87.115415 10.1103/PhysRevLett.117.046802 10.1103/PhysRevLett.102.026804 10.1038/nature10903 10.1103/PhysRevB.78.205310 10.1103/PhysRevB.51.5138 10.1146/annurev-conmatphys-031113-133832 10.1088/0953-8984/8/39/001 10.1103/PhysRevLett.84.5808 10.1038/nphys2441 10.1103/PhysRevB.78.121401 10.1103/PhysRevLett.117.046803 10.1103/PhysRevB.78.241401 10.1063/1.3662043 10.1038/nature11302 10.1038/nature05131 10.1103/PhysRevLett.93.036801 10.1103/PhysRevLett.93.036802 10.1038/nphys3143 10.1088/0953-8984/16/35/003 10.1126/science.1078082 10.1126/science.1140990 10.1103/RevModPhys.88.025003 10.1126/science.1244358 10.1126/science.1074464 10.1103/PhysRevLett.88.126804 10.1103/PhysRevLett.72.732 10.1103/PhysRevLett.69.1811 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2017 Copyright Nature Publishing Group Aug 2017 |
Copyright_xml | – notice: Springer Nature Limited 2017 – notice: Copyright Nature Publishing Group Aug 2017 |
CorporateAuthor | Harvard Univ., Cambridge, MA (United States) |
CorporateAuthor_xml | – name: Harvard Univ., Cambridge, MA (United States) |
DBID | AAYXX CITATION 3V. 7U5 7XB 88I 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO GNUQQ HCIFZ L7M M2P P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U PRINS OTOTI |
DOI | 10.1038/nphys4116 |
DatabaseName | CrossRef ProQuest Central (Corporate) Solid State and Superconductivity Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection Advanced Technologies Database with Aerospace Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic ProQuest Central China OSTI.GOV |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) ProQuest Central China |
DatabaseTitleList | ProQuest Central Student ProQuest Central Student |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1745-2481 |
EndPage | 750 |
ExternalDocumentID | 1535096 10_1038_nphys4116 |
GroupedDBID | 0R~ 123 29M 39C 4.4 5BI 5M7 6OB 70F 88I 8FE 8FG 8FH 8R4 8R5 AARCD AAYZH ABAWZ ABDBF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFO ACGFS ACGOD ACMJI ACUHS ADBBV ADFRT AENEX AEUYN AFANA AFBBN AFKRA AFSHS AFWHJ AGAYW AHBCP AHOSX AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ALPWD AMTXH ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ CCPQU DB5 DU5 DWQXO EBS EE. EJD ESX EXGXG F5P FEDTE FQGFK FSGXE GNUQQ HCIFZ HVGLF HZ~ I-F LGEZI LK5 LOTEE M2P M7R N9A NADUK NFIDA NNMJJ NXXTH O9- ODYON P2P P62 PCBAR PHGZT PQQKQ PROAC Q2X RNS RNT RNTTT SHXYY SIXXV SJN SNYQT SOJ TAOOD TBHMF TDRGL TSG TUS ~8M AAYXX ACMFV ACSTC ATHPR CITATION PHGZM 3V. 7U5 7XB 8FD 8FK L7M PKEHL PQEST PQGLB PQUKI Q9U PRINS AADEA AADWK AAEEF AAEXX AAJMP AAPBV AAYJO AAZLF ABEEJ ABGIJ ABPTK ABVXF ACBMV ACBRV ACBYP ACIGE ACTTH ACVWB ADMDM ADQMX ADZGE AEDAW AEFTE AGEZK AGGBP AGHTU AHGBK AJDOV NYICJ OTOTI |
ID | FETCH-LOGICAL-c448t-a8f78f604a60148bf0d1e807eb95f46a0c5b25a41d62bec3d0eb3a82394f71ed3 |
IEDL.DBID | BENPR |
ISSN | 1745-2473 |
IngestDate | Fri May 19 02:14:20 EDT 2023 Sat Aug 16 21:26:30 EDT 2025 Sat Aug 23 12:36:08 EDT 2025 Tue Jul 01 04:59:03 EDT 2025 Thu Apr 24 22:50:30 EDT 2025 Fri Apr 11 01:29:15 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c448t-a8f78f604a60148bf0d1e807eb95f46a0c5b25a41d62bec3d0eb3a82394f71ed3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE Office of Science (SC) SC0012260 |
ORCID | 0000-0002-6999-1039 0000-0003-3701-8119 0000000269991039 0000000337018119 |
OpenAccessLink | https://www.nature.com/articles/nphys4116.pdf |
PQID | 1925187660 |
PQPubID | 27545 |
PageCount | 5 |
ParticipantIDs | osti_scitechconnect_1535096 proquest_journals_3188653397 proquest_journals_1925187660 crossref_citationtrail_10_1038_nphys4116 crossref_primary_10_1038_nphys4116 springer_journals_10_1038_nphys4116 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-08-01 |
PublicationDateYYYYMMDD | 2017-08-01 |
PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: United States |
PublicationTitle | Nature physics |
PublicationTitleAbbrev | Nature Phys |
PublicationYear | 2017 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Publishing Group (NPG) |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Publishing Group (NPG) |
References | J Kasprzak (BFnphys4116_CR10) 2006; 443 K Lee (BFnphys4116_CR21) 2016; 117 PB Littlewood (BFnphys4116_CR1) 2004; 16 M Kellogg (BFnphys4116_CR7) 2004; 93 J Lambert (BFnphys4116_CR31) 2013; 87 JP Eisenstein (BFnphys4116_CR4) 2014; 5 B Skinner (BFnphys4116_CR25) 2016; 93 E Tutuc (BFnphys4116_CR8) 2004; 93 H Min (BFnphys4116_CR22) 2008; 78 GH Lee (BFnphys4116_CR26) 2011; 99 K Yang (BFnphys4116_CR16) 1994; 72 BFnphys4116_CR19 JIA Li (BFnphys4116_CR20) 2016; 117 X-G Wen (BFnphys4116_CR28) 1992; 69 K Lee (BFnphys4116_CR33) 2014; 345 BFnphys4116_CR37 BFnphys4116_CR12 RV Gorbachev (BFnphys4116_CR18) 2012; 8 BFnphys4116_CR34 BFnphys4116_CR13 M Kellogg (BFnphys4116_CR6) 2002; 88 L Wang (BFnphys4116_CR35) 2013; 342 IB Spielman (BFnphys4116_CR5) 2000; 84 BFnphys4116_CR3 A Perali (BFnphys4116_CR24) 2013; 110 BN Narozhny (BFnphys4116_CR27) 2016; 88 A Kou (BFnphys4116_CR30) 2014; 345 D Nandi (BFnphys4116_CR9) 2012; 488 K Moon (BFnphys4116_CR17) 1995; 51 AA High (BFnphys4116_CR14) 2012; 483 T Byrnes (BFnphys4116_CR11) 2014; 10 JA Seamons (BFnphys4116_CR15) 2009; 102 P Maher (BFnphys4116_CR32) 2014; 345 M Kharitonov (BFnphys4116_CR23) 2008; 78 NPR Hill (BFnphys4116_CR36) 1996; 8 D Snoke (BFnphys4116_CR2) 2002; 298 AR Champagne (BFnphys4116_CR29) 2008; 78 |
References_xml | – volume: 345 start-page: 55 year: 2014 ident: BFnphys4116_CR30 publication-title: Science doi: 10.1126/science.1250270 – volume: 345 start-page: 58 year: 2014 ident: BFnphys4116_CR33 publication-title: Science doi: 10.1126/science.1251003 – volume: 93 start-page: 2 year: 2016 ident: BFnphys4116_CR25 publication-title: Phys. Rev. B – ident: BFnphys4116_CR3 doi: 10.1038/nature03081 – volume: 110 start-page: 146803 year: 2013 ident: BFnphys4116_CR24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.146803 – ident: BFnphys4116_CR34 – volume: 345 start-page: 61 year: 2014 ident: BFnphys4116_CR32 publication-title: Science doi: 10.1126/science.1252875 – volume: 87 start-page: 115415 year: 2013 ident: BFnphys4116_CR31 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.115415 – volume: 117 start-page: 46802 year: 2016 ident: BFnphys4116_CR20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.046802 – volume: 102 start-page: 26804 year: 2009 ident: BFnphys4116_CR15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.026804 – ident: BFnphys4116_CR19 – volume: 483 start-page: 584 year: 2012 ident: BFnphys4116_CR14 publication-title: Nature doi: 10.1038/nature10903 – volume: 78 start-page: 205310 year: 2008 ident: BFnphys4116_CR29 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.78.205310 – volume: 51 start-page: 5138 year: 1995 ident: BFnphys4116_CR17 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.51.5138 – volume: 5 start-page: 159 year: 2014 ident: BFnphys4116_CR4 publication-title: Annu. Rev. Condens. Matter Phys. doi: 10.1146/annurev-conmatphys-031113-133832 – volume: 8 start-page: L557 year: 1996 ident: BFnphys4116_CR36 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/8/39/001 – volume: 84 start-page: 5808 year: 2000 ident: BFnphys4116_CR5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.84.5808 – volume: 8 start-page: 896 year: 2012 ident: BFnphys4116_CR18 publication-title: Nat. Phys. doi: 10.1038/nphys2441 – volume: 78 start-page: 121401 year: 2008 ident: BFnphys4116_CR22 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.78.121401 – volume: 117 start-page: 46803 year: 2016 ident: BFnphys4116_CR21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.046803 – volume: 78 start-page: 241401 year: 2008 ident: BFnphys4116_CR23 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.78.241401 – volume: 99 start-page: 243114 year: 2011 ident: BFnphys4116_CR26 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3662043 – volume: 488 start-page: 481 year: 2012 ident: BFnphys4116_CR9 publication-title: Nature doi: 10.1038/nature11302 – volume: 443 start-page: 409 year: 2006 ident: BFnphys4116_CR10 publication-title: Nature doi: 10.1038/nature05131 – ident: BFnphys4116_CR37 – volume: 93 start-page: 36801 year: 2004 ident: BFnphys4116_CR7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.036801 – volume: 93 start-page: 36802 year: 2004 ident: BFnphys4116_CR8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.036802 – volume: 10 start-page: 803 year: 2014 ident: BFnphys4116_CR11 publication-title: Nat. Phys. doi: 10.1038/nphys3143 – volume: 16 start-page: S3597 year: 2004 ident: BFnphys4116_CR1 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/16/35/003 – volume: 298 start-page: 1368 year: 2002 ident: BFnphys4116_CR2 publication-title: Science doi: 10.1126/science.1078082 – ident: BFnphys4116_CR13 doi: 10.1126/science.1140990 – volume: 88 start-page: 25003 year: 2016 ident: BFnphys4116_CR27 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.88.025003 – volume: 342 start-page: 614 year: 2013 ident: BFnphys4116_CR35 publication-title: Science doi: 10.1126/science.1244358 – ident: BFnphys4116_CR12 doi: 10.1126/science.1074464 – volume: 88 start-page: 126804 year: 2002 ident: BFnphys4116_CR6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.126804 – volume: 72 start-page: 732 year: 1994 ident: BFnphys4116_CR16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.72.732 – volume: 69 start-page: 1811 year: 1992 ident: BFnphys4116_CR28 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.69.1811 |
SSID | ssj0042613 |
Score | 2.6401556 |
Snippet | An electronic double layer, subjected to a high magnetic field, can form an exciton condensate: a Bose–Einstein condensate of Coulomb-bound electron–hole... An exciton condensate is a Bose-Einstein condensate of electron and hole pairs bound by the Coulomb interaction. In an electronic double layer (EDL) subject to... Not provided. |
SourceID | osti proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 746 |
SubjectTerms | 142/126 639/766/119/2791 639/766/119/2794 639/766/119/995 Atomic Bilayers Boron Boron nitride Bose-Einstein condensates Carbon Classical and Continuum Physics Complex Systems Condensation Condensed Matter Physics Degrees of freedom Dielectric strength Drag Excitons Gallium arsenide Graphene letter Magnetic fields Mathematical and Computational Physics Matter & antimatter Molecular Optical and Plasma Physics Phase diagrams Physics Quantum Hall effect Quantum physics Theoretical |
Title | Quantum Hall drag of exciton condensate in graphene |
URI | https://link.springer.com/article/10.1038/nphys4116 https://www.proquest.com/docview/1925187660 https://www.proquest.com/docview/3188653397 https://www.osti.gov/biblio/1535096 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5sRfAiPrE-yqIevIQm2U12cxIVa_FQVCz0FvYVEWpa-wB_vrNpUmspnrMJYWb3m28eOwNwFUgbSGG5l4XWOShUecpS48UhUwnjUihZVFt0406PPfWjfhlwm5RllRUmFkBthtrFyFu490SM3CThN6Mvz02NctnVcoRGDTYRggU6X5t3D93n1wqLnX9A51ciIy9knFa9haho5S50wAI36HzJItWHeLL-sM2VBGlhd9q7sFMSRnI71_AebNh8H7aKwk09OQD6MkPZzD5JRw4GxIzlOxlmxH5rPKk5QWcXcWWCfJJ85KRoTo3Ydgi99sPbfccrByF4Gr2nqSdFxkUW-0zGLgCoMt8EVvjcqiTKWCx9HakwkiwwcYg6ocZHF1kKN_U844E19Ajq-TC3x0Ako5QlFGlOollijTQ2VEhTtEqE4Vw34LoSRqrLLuFuWMUgLbLVVKQLuTXgYrF0NG-NsW7RqZNoivbcNaXVrnpHT1PEWdd3pgFnlaDT8uxMUuScUYAgHftrH_9uhAZcVrpZenv1D07-_8gpbIfOUhc1fWdQn45n9hx5xlQ1oSbaj81yS_0AjmzTXw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEJ_AGYIvRkDDcSgNauLLht22u-0-GEOQ44CTxAQS3tZ-rTE59-A-ov5T_I3M7N0iXIhvPG-3aafTX3_Tmc4AvE9MSIwOKip5IANF2MgG4aOMS5tLZbQ1dbTFWda7kCeX6eUS3DRvYSisssHEGqj90NEd-R7qns6Qm-Tq89V1RFWjyLvalNCYqcVp-PsbTbbxp-MvuL4fOO8enh_0onlVgcihKTKJjC6VLrNYmoxu02wZ-yToWAWbp6XMTOxSy1MjE59xnKDwMdqbRlMJ8VIlwQvsdxmeSRwK7SjdPWqQn6wRMXuAmUZcKtFkMhJ6r6KLCplQWfV7519riPv4AbddcMfWp1z3JbyY01O2P9OnNVgK1Tqs1GGibrwB4tsUV2L6i_XMYMD8yPxgw5KFPw5xoWJoWiOKjZG9sp8Vq1NhI5K-gosnEdBraFXDKmwCMyglmQskVbmTefDGB26RFDmba6-Ua8PHRhiFm-ckp9IYg6L2jQtd3MmtDbt3Ta9miTgea9QhiRbIHigFrqNYITcpENUpy00bthtBF_OdOi6Q4aYJHglZ_Ojnf2rXhnfN2tz7e3EEW__vZAdWe-df-0X_-Oy0A885cYQ6mnAbWpPRNLxBhjOxb2u1YvD9qfX4FuKaDn4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6FRKBeUHlUhAZY8ZC4WLF31971oUKFNkooikLVSr25-zKqFJySh1r-Gr-us44dShRxy9nrlT377cw3O7MzAO8j5SIlnQhy6ryDwnSgHbNBQrlOuVBSqzLbYpj0z_nXi_iiAX_quzA-rbLWiaWithPjz8i7iD2ZIDdJRTev0iJGR71P178C30HKR1rrdhpLiJy43zfovs0OBke41h8o7R2ffekHVYeBwKBbMg-UzIXMk5CrxJ-s6Ty0kZOhcDqNc56o0MSaxopHNqH4s8yG6Hsq6duJ5yJyluG8D6Al0CsKm9D6fDwcndZ2wPsmbHkdMw4oF6yua8Rkt_DHFjzyTdbvWcPmBHf1P0x3LThb2rzeLjyuyCo5XKLrCTRc8RQelkmjZvYM2PcFrsviJ-mr8ZjYqfpBJjlxtwa1REHQ0UadNkMuS64KUhbGRr36HM63IqI9aBaTwr0AojhjPGVIsVLDU2eVdVQjRTI6lVYI04aPtTAyU1Uo940yxlkZKWcyW8mtDW9XQ6-XZTk2Ddr3Es2QS_iCuMZnDpl5hjre17xpQ6cWdFbt21mGfDeO0EAk4cbHf0HYhnf12tx7e_0LXv5_kjfwCDGcfRsMT_Zhh3rCUKYWdqA5ny7cK6Q7c_26whWBy21D-Q7VfBQQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Hall+drag+of+exciton+condensate+in+graphene&rft.jtitle=Nature+physics&rft.date=2017-08-01&rft.pub=Nature+Publishing+Group&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=13&rft.issue=8&rft.spage=746&rft.epage=750&rft_id=info:doi/10.1038%2Fnphys4116&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon |