Quantum Hall drag of exciton condensate in graphene

An electronic double layer, subjected to a high magnetic field, can form an exciton condensate: a Bose–Einstein condensate of Coulomb-bound electron–hole pairs. Now, exciton condensation is reported for a graphene/boron-nitride/graphene structure. An exciton condensate is a Bose–Einstein condensate...

Full description

Saved in:
Bibliographic Details
Published inNature physics Vol. 13; no. 8; pp. 746 - 750
Main Authors Liu, Xiaomeng, Watanabe, Kenji, Taniguchi, Takashi, Halperin, Bertrand I., Kim, Philip
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.08.2017
Nature Publishing Group
Nature Publishing Group (NPG)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An electronic double layer, subjected to a high magnetic field, can form an exciton condensate: a Bose–Einstein condensate of Coulomb-bound electron–hole pairs. Now, exciton condensation is reported for a graphene/boron-nitride/graphene structure. An exciton condensate is a Bose–Einstein condensate of electron and hole pairs bound by the Coulomb interaction 1 , 2 . In an electronic double layer (EDL) subject to strong magnetic fields, filled Landau states in one layer bind with empty states of the other layer to form an exciton condensate 3 , 4 , 5 , 6 , 7 , 8 , 9 . Here we report exciton condensation in a bilayer graphene EDL separated by hexagonal boron nitride. Driving current in one graphene layer generates a near-quantized Hall voltage in the other layer, resulting in coherent exciton transport 4 , 6 . Owing to the strong Coulomb coupling across the atomically thin dielectric, quantum Hall drag in graphene appears at a temperature ten times higher than previously observed in a GaAs EDL. The wide-range tunability of densities and displacement fields enables exploration of a rich phase diagram of Bose–Einstein condensates across Landau levels with different filling factors and internal quantum degrees of freedom. The observed robust exciton condensation opens up opportunities to investigate various many-body exciton phases.
AbstractList An exciton condensate is a Bose-Einstein condensate of electron and hole pairs bound by the Coulomb interaction. In an electronic double layer (EDL) subject to strong magnetic fields, filled Landau states in one layer bind with empty states of the other layer to form an exciton condensate. Here we report exciton condensation in a bilayer graphene EDL separated by hexagonal boron nitride. Driving current in one graphene layer generates a near-quantized Hall voltage in the other layer, resulting in coherent exciton transport. Owing to the strong Coulomb coupling across the atomically thin dielectric, quantum Hall drag in graphene appears at a temperature ten times higher than previously observed in a GaAs EDL. The wide-range tunability of densities and displacement fields enables exploration of a rich phase diagram of Bose-Einstein condensates across Landau levels with different filling factors and internal quantum degrees of freedom. The observed robust exciton condensation opens up opportunities to investigate various many-body exciton phases.
Not provided.
An electronic double layer, subjected to a high magnetic field, can form an exciton condensate: a Bose–Einstein condensate of Coulomb-bound electron–hole pairs. Now, exciton condensation is reported for a graphene/boron-nitride/graphene structure. An exciton condensate is a Bose–Einstein condensate of electron and hole pairs bound by the Coulomb interaction 1 , 2 . In an electronic double layer (EDL) subject to strong magnetic fields, filled Landau states in one layer bind with empty states of the other layer to form an exciton condensate 3 , 4 , 5 , 6 , 7 , 8 , 9 . Here we report exciton condensation in a bilayer graphene EDL separated by hexagonal boron nitride. Driving current in one graphene layer generates a near-quantized Hall voltage in the other layer, resulting in coherent exciton transport 4 , 6 . Owing to the strong Coulomb coupling across the atomically thin dielectric, quantum Hall drag in graphene appears at a temperature ten times higher than previously observed in a GaAs EDL. The wide-range tunability of densities and displacement fields enables exploration of a rich phase diagram of Bose–Einstein condensates across Landau levels with different filling factors and internal quantum degrees of freedom. The observed robust exciton condensation opens up opportunities to investigate various many-body exciton phases.
An electronic double layer, subjected to a high magnetic field, can form an exciton condensate: a Bose–Einstein condensate of Coulomb-bound electron–hole pairs. Now, exciton condensation is reported for a graphene/boron-nitride/graphene structure.An exciton condensate is a Bose–Einstein condensate of electron and hole pairs bound by the Coulomb interaction1,2. In an electronic double layer (EDL) subject to strong magnetic fields, filled Landau states in one layer bind with empty states of the other layer to form an exciton condensate3,4,5,6,7,8,9. Here we report exciton condensation in a bilayer graphene EDL separated by hexagonal boron nitride. Driving current in one graphene layer generates a near-quantized Hall voltage in the other layer, resulting in coherent exciton transport4,6. Owing to the strong Coulomb coupling across the atomically thin dielectric, quantum Hall drag in graphene appears at a temperature ten times higher than previously observed in a GaAs EDL. The wide-range tunability of densities and displacement fields enables exploration of a rich phase diagram of Bose–Einstein condensates across Landau levels with different filling factors and internal quantum degrees of freedom. The observed robust exciton condensation opens up opportunities to investigate various many-body exciton phases.
Author Kim, Philip
Watanabe, Kenji
Taniguchi, Takashi
Halperin, Bertrand I.
Liu, Xiaomeng
Author_xml – sequence: 1
  givenname: Xiaomeng
  surname: Liu
  fullname: Liu, Xiaomeng
  organization: Department of Physics, Harvard University
– sequence: 2
  givenname: Kenji
  orcidid: 0000-0003-3701-8119
  surname: Watanabe
  fullname: Watanabe, Kenji
  organization: National Institute for Material Science
– sequence: 3
  givenname: Takashi
  surname: Taniguchi
  fullname: Taniguchi, Takashi
  organization: National Institute for Material Science
– sequence: 4
  givenname: Bertrand I.
  orcidid: 0000-0002-6999-1039
  surname: Halperin
  fullname: Halperin, Bertrand I.
  organization: Department of Physics, Harvard University
– sequence: 5
  givenname: Philip
  surname: Kim
  fullname: Kim, Philip
  email: pkim@physics.harvard.edu
  organization: Department of Physics, Harvard University
BackLink https://www.osti.gov/biblio/1535096$$D View this record in Osti.gov
BookMark eNp90FFLwzAQB_AgE9ymD36Dok8KdUmTpumjDHXCQAR9Dml73Tq6pCYpuG_jZ_GTGakMUfHp7uF3d39ugkbaaEDolOArgqmY6W69c4wQfoDGJGNpnDBBRvs-o0do4twGY5ZwQseIPfZK-34bLVTbRpVVq8jUEbyWjTc6Ko2uQDvlIWr0-9vKqm4NGo7RYa1aBydfdYqeb2-e5ot4-XB3P79exiVjwsdK1JmoOWaKY8JEUeOKgMAZFHlaM65wmRZJqhipeFJASSsMBVUioTmrMwIVnaKzYa9xvpEuZIJyHTJpKL0kKU1xzgM6H1BnzUsPzsuN6a0OuSQlQvCU0jz7T5E8SYnIOMdBzQZVWuOchVqGm8o3RnurmlYSLD-_LPdfDhMXPyY622yV3f1pLwfrgtErsN8y_MIfQWuNhw
CitedBy_id crossref_primary_10_1063_5_0083736
crossref_primary_10_1209_0295_5075_123_16001
crossref_primary_10_1126_science_abg1110
crossref_primary_10_1038_s41586_021_03947_9
crossref_primary_10_1103_PhysRevB_102_035146
crossref_primary_10_1103_PhysRevB_99_035113
crossref_primary_10_1016_j_jcis_2021_06_121
crossref_primary_10_1364_AOP_504035
crossref_primary_10_1103_PhysRevX_13_031023
crossref_primary_10_1088_1674_1056_aba605
crossref_primary_10_1038_s41567_023_02096_2
crossref_primary_10_1038_s42254_022_00464_0
crossref_primary_10_1021_acsami_3c18655
crossref_primary_10_1021_acs_nanolett_1c01705
crossref_primary_10_1021_acs_nanolett_4c05592
crossref_primary_10_1016_j_progsurf_2022_100679
crossref_primary_10_1021_acs_nanolett_9b05086
crossref_primary_10_1088_2053_1583_aadf40
crossref_primary_10_1016_j_progsurf_2021_100615
crossref_primary_10_1038_s42005_020_00461_8
crossref_primary_10_1103_PhysRevB_103_205108
crossref_primary_10_1021_acs_nanolett_3c01456
crossref_primary_10_1103_PhysRevB_109_085129
crossref_primary_10_1038_s41567_021_01289_x
crossref_primary_10_1002_pssb_202000564
crossref_primary_10_3390_nano10071286
crossref_primary_10_1103_PhysRevB_107_L041409
crossref_primary_10_1103_PhysRevB_110_115104
crossref_primary_10_1103_PhysRevB_110_L041115
crossref_primary_10_1103_PhysRevLett_128_157201
crossref_primary_10_1103_PhysRevB_109_155303
crossref_primary_10_1063_5_0026488
crossref_primary_10_1103_PRXEnergy_2_023002
crossref_primary_10_1063_5_0022557
crossref_primary_10_1038_s42005_018_0039_y
crossref_primary_10_1038_s42005_023_01428_1
crossref_primary_10_1021_acs_jpclett_3c00090
crossref_primary_10_1088_1361_648X_ab04c7
crossref_primary_10_1103_PhysRevB_110_035110
crossref_primary_10_1103_PhysRevResearch_2_013086
crossref_primary_10_1038_s42254_018_0016_0
crossref_primary_10_1103_PhysRevB_106_045303
crossref_primary_10_1103_PhysRevB_98_195414
crossref_primary_10_1103_PhysRevResearch_2_042044
crossref_primary_10_1016_j_mseb_2023_117078
crossref_primary_10_1126_science_aaw4194
crossref_primary_10_1016_j_physe_2020_114350
crossref_primary_10_1103_PhysRevX_14_011048
crossref_primary_10_1002_admt_202200032
crossref_primary_10_1103_PhysRevB_103_L201115
crossref_primary_10_1002_inf2_12121
crossref_primary_10_1021_acs_nanolett_1c03435
crossref_primary_10_1103_PhysRevB_105_245151
crossref_primary_10_1063_1_5042327
crossref_primary_10_1103_PhysRevLett_129_187701
crossref_primary_10_1103_PhysRevB_100_165309
crossref_primary_10_7498_aps_72_20230079
crossref_primary_10_1088_2053_1583_ab7629
crossref_primary_10_1103_PhysRevB_103_155125
crossref_primary_10_1016_j_physb_2019_01_042
crossref_primary_10_1134_S1027451024701581
crossref_primary_10_1038_s41567_022_01702_z
crossref_primary_10_1103_PhysRevB_106_224504
crossref_primary_10_1038_s41467_023_37197_2
crossref_primary_10_1103_PhysRevB_103_125156
crossref_primary_10_1002_inf2_12492
crossref_primary_10_1038_s41467_023_43799_7
crossref_primary_10_3390_condmat8020044
crossref_primary_10_1103_PhysRevB_98_045122
crossref_primary_10_1103_PhysRevB_110_235143
crossref_primary_10_1038_s41467_024_55486_2
crossref_primary_10_1063_5_0049595
crossref_primary_10_1038_s41467_024_46129_7
crossref_primary_10_1063_5_0133795
crossref_primary_10_1021_acsnano_7b07436
crossref_primary_10_1038_s41467_021_25104_6
crossref_primary_10_1103_PhysRevB_104_195432
crossref_primary_10_1126_sciadv_aay8409
crossref_primary_10_1103_PhysRevB_102_125420
crossref_primary_10_1103_PhysRevLett_131_036902
crossref_primary_10_1038_s41467_024_49406_7
crossref_primary_10_1063_5_0084564
crossref_primary_10_1021_jacs_4c06216
crossref_primary_10_1103_PhysRevB_105_L041409
crossref_primary_10_1146_annurev_conmatphys_060120_092219
crossref_primary_10_1007_s40544_022_0719_1
crossref_primary_10_1038_s41467_024_54021_7
crossref_primary_10_1103_PhysRevLett_122_186602
crossref_primary_10_1360_nso_20220060
crossref_primary_10_31857_S123456782301010X
crossref_primary_10_1088_2053_1583_ada043
crossref_primary_10_1007_s11664_023_10455_1
crossref_primary_10_1103_PhysRevB_102_075136
crossref_primary_10_1557_mrs_2020_125
crossref_primary_10_1038_s41467_023_37769_2
crossref_primary_10_1038_s41565_022_01104_5
crossref_primary_10_1038_s41467_018_08227_1
crossref_primary_10_1103_PhysRevB_111_L121106
crossref_primary_10_1063_1_5052674
crossref_primary_10_1063_1_5019655
crossref_primary_10_1038_s41567_023_02114_3
crossref_primary_10_1016_j_physleta_2018_07_007
crossref_primary_10_1021_acsnano_4c02784
crossref_primary_10_1002_inf2_12168
crossref_primary_10_1103_PhysRevB_101_195310
crossref_primary_10_1038_s41586_019_1591_7
crossref_primary_10_1021_acsmaterialslett_0c00277
crossref_primary_10_1103_PhysRevLett_127_247701
crossref_primary_10_1103_PhysRevResearch_2_043205
crossref_primary_10_1103_PhysRevMaterials_7_045001
crossref_primary_10_1103_PhysRevB_99_235415
crossref_primary_10_1063_1_5085007
crossref_primary_10_1103_PhysRevB_109_085416
crossref_primary_10_1103_PhysRevLett_128_066601
crossref_primary_10_1038_s41567_019_0546_0
crossref_primary_10_1021_acs_jpclett_4c03198
crossref_primary_10_1038_s41467_019_13711_3
crossref_primary_10_1038_s41567_019_0547_z
crossref_primary_10_1021_acs_nanolett_9b05002
crossref_primary_10_1103_PhysRevResearch_5_043176
crossref_primary_10_1038_s41586_024_08091_8
crossref_primary_10_1103_PhysRevB_105_035143
crossref_primary_10_1103_PhysRevB_104_165122
crossref_primary_10_1126_sciadv_aau6120
crossref_primary_10_1103_PhysRevB_105_L121105
crossref_primary_10_1103_PhysRevB_100_115401
crossref_primary_10_1088_2752_5724_ac49e3
crossref_primary_10_1038_s41565_018_0294_9
crossref_primary_10_1103_PhysRevB_109_L201401
crossref_primary_10_1103_PhysRevB_108_L121102
crossref_primary_10_1021_acsenergylett_0c02427
crossref_primary_10_1103_PhysRevLett_134_046601
crossref_primary_10_1038_s41567_021_01427_5
crossref_primary_10_1103_PhysRevB_102_235304
crossref_primary_10_1103_PhysRevA_102_033321
crossref_primary_10_1103_PhysRevB_110_045431
crossref_primary_10_1038_s41565_020_0650_4
crossref_primary_10_1021_acs_nanolett_2c03836
crossref_primary_10_1039_D4SC04149F
crossref_primary_10_1103_PhysRevB_111_125154
crossref_primary_10_1103_PhysRevB_106_195120
crossref_primary_10_1103_PhysRevLett_127_127702
crossref_primary_10_1103_PhysRevLett_133_217002
crossref_primary_10_1103_PhysRevB_99_085307
crossref_primary_10_1002_advs_202404436
crossref_primary_10_1103_PhysRevLett_119_257002
crossref_primary_10_1007_s12274_023_6325_3
crossref_primary_10_1103_PhysRevB_110_195307
crossref_primary_10_1134_S0021364022602974
crossref_primary_10_1103_PhysRevLett_124_197601
crossref_primary_10_1038_nphys4163
crossref_primary_10_1038_s41586_024_08274_3
crossref_primary_10_1103_PhysRevLett_120_177702
crossref_primary_10_1103_PhysRevLett_120_177701
crossref_primary_10_1002_qute_201900026
crossref_primary_10_1088_1367_2630_ad9cb4
crossref_primary_10_1103_PhysRevB_111_035417
crossref_primary_10_1002_admt_202000744
crossref_primary_10_1103_PhysRevX_14_021013
crossref_primary_10_1038_s42254_020_00276_0
crossref_primary_10_1088_1361_648X_ab8aff
crossref_primary_10_1103_PhysRevLett_123_206401
crossref_primary_10_1557_s43577_024_00772_z
crossref_primary_10_1038_s41467_023_37644_0
crossref_primary_10_1103_PhysRevLett_124_246801
crossref_primary_10_1103_PhysRevLett_124_097604
crossref_primary_10_1073_pnas_2301957120
crossref_primary_10_1039_C8CS00450A
crossref_primary_10_1103_Physics_11_39
crossref_primary_10_1103_PhysRevLett_129_237402
crossref_primary_10_1038_s41586_023_05879_y
crossref_primary_10_1103_PhysRevX_14_021047
crossref_primary_10_1038_s41467_024_54198_x
crossref_primary_10_1103_PhysRevB_101_081107
crossref_primary_10_1103_PhysRevLett_123_167203
crossref_primary_10_1103_PhysRevB_97_174503
crossref_primary_10_1103_PhysRevB_102_115127
crossref_primary_10_1038_s41467_020_16737_0
crossref_primary_10_1039_D0NR02786C
crossref_primary_10_1103_RevModPhys_92_045001
crossref_primary_10_1103_PhysRevResearch_4_013003
crossref_primary_10_1038_s42005_023_01277_y
crossref_primary_10_1038_s41567_021_01422_w
crossref_primary_10_1103_PhysRevMaterials_5_L050801
crossref_primary_10_1016_j_mtelec_2023_100070
crossref_primary_10_7498_aps_70_20210929
crossref_primary_10_1021_acs_nanolett_4c01411
crossref_primary_10_1038_s41567_022_01902_7
crossref_primary_10_1021_acs_nanolett_1c00360
crossref_primary_10_1103_RevModPhys_96_025002
crossref_primary_10_1073_pnas_2012811117
crossref_primary_10_1021_acs_jpclett_1c02368
crossref_primary_10_1103_PhysRevB_105_035405
crossref_primary_10_1103_PhysRevB_108_235131
crossref_primary_10_1103_PhysRevB_108_L241107
crossref_primary_10_1002_advs_202300574
crossref_primary_10_1103_PhysRevB_108_235135
Cites_doi 10.1126/science.1250270
10.1126/science.1251003
10.1038/nature03081
10.1103/PhysRevLett.110.146803
10.1126/science.1252875
10.1103/PhysRevB.87.115415
10.1103/PhysRevLett.117.046802
10.1103/PhysRevLett.102.026804
10.1038/nature10903
10.1103/PhysRevB.78.205310
10.1103/PhysRevB.51.5138
10.1146/annurev-conmatphys-031113-133832
10.1088/0953-8984/8/39/001
10.1103/PhysRevLett.84.5808
10.1038/nphys2441
10.1103/PhysRevB.78.121401
10.1103/PhysRevLett.117.046803
10.1103/PhysRevB.78.241401
10.1063/1.3662043
10.1038/nature11302
10.1038/nature05131
10.1103/PhysRevLett.93.036801
10.1103/PhysRevLett.93.036802
10.1038/nphys3143
10.1088/0953-8984/16/35/003
10.1126/science.1078082
10.1126/science.1140990
10.1103/RevModPhys.88.025003
10.1126/science.1244358
10.1126/science.1074464
10.1103/PhysRevLett.88.126804
10.1103/PhysRevLett.72.732
10.1103/PhysRevLett.69.1811
ContentType Journal Article
Copyright Springer Nature Limited 2017
Copyright Nature Publishing Group Aug 2017
Copyright_xml – notice: Springer Nature Limited 2017
– notice: Copyright Nature Publishing Group Aug 2017
CorporateAuthor Harvard Univ., Cambridge, MA (United States)
CorporateAuthor_xml – name: Harvard Univ., Cambridge, MA (United States)
DBID AAYXX
CITATION
3V.
7U5
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
L7M
M2P
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
PRINS
OTOTI
DOI 10.1038/nphys4116
DatabaseName CrossRef
ProQuest Central (Corporate)
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
ProQuest Central China
OSTI.GOV
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
ProQuest Central China
DatabaseTitleList ProQuest Central Student


ProQuest Central Student
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1745-2481
EndPage 750
ExternalDocumentID 1535096
10_1038_nphys4116
GroupedDBID 0R~
123
29M
39C
4.4
5BI
5M7
6OB
70F
88I
8FE
8FG
8FH
8R4
8R5
AARCD
AAYZH
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFO
ACGFS
ACGOD
ACMJI
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AHBCP
AHOSX
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ALPWD
AMTXH
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
CCPQU
DB5
DU5
DWQXO
EBS
EE.
EJD
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
GNUQQ
HCIFZ
HVGLF
HZ~
I-F
LGEZI
LK5
LOTEE
M2P
M7R
N9A
NADUK
NFIDA
NNMJJ
NXXTH
O9-
ODYON
P2P
P62
PCBAR
PHGZT
PQQKQ
PROAC
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
TUS
~8M
AAYXX
ACMFV
ACSTC
ATHPR
CITATION
PHGZM
3V.
7U5
7XB
8FD
8FK
L7M
PKEHL
PQEST
PQGLB
PQUKI
Q9U
PRINS
AADEA
AADWK
AAEEF
AAEXX
AAJMP
AAPBV
AAYJO
AAZLF
ABEEJ
ABGIJ
ABPTK
ABVXF
ACBMV
ACBRV
ACBYP
ACIGE
ACTTH
ACVWB
ADMDM
ADQMX
ADZGE
AEDAW
AEFTE
AGEZK
AGGBP
AGHTU
AHGBK
AJDOV
NYICJ
OTOTI
ID FETCH-LOGICAL-c448t-a8f78f604a60148bf0d1e807eb95f46a0c5b25a41d62bec3d0eb3a82394f71ed3
IEDL.DBID BENPR
ISSN 1745-2473
IngestDate Fri May 19 02:14:20 EDT 2023
Sat Aug 16 21:26:30 EDT 2025
Sat Aug 23 12:36:08 EDT 2025
Tue Jul 01 04:59:03 EDT 2025
Thu Apr 24 22:50:30 EDT 2025
Fri Apr 11 01:29:15 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c448t-a8f78f604a60148bf0d1e807eb95f46a0c5b25a41d62bec3d0eb3a82394f71ed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE Office of Science (SC)
SC0012260
ORCID 0000-0002-6999-1039
0000-0003-3701-8119
0000000269991039
0000000337018119
OpenAccessLink https://www.nature.com/articles/nphys4116.pdf
PQID 1925187660
PQPubID 27545
PageCount 5
ParticipantIDs osti_scitechconnect_1535096
proquest_journals_3188653397
proquest_journals_1925187660
crossref_citationtrail_10_1038_nphys4116
crossref_primary_10_1038_nphys4116
springer_journals_10_1038_nphys4116
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-08-01
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
PublicationTitle Nature physics
PublicationTitleAbbrev Nature Phys
PublicationYear 2017
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Publishing Group (NPG)
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Publishing Group (NPG)
References J Kasprzak (BFnphys4116_CR10) 2006; 443
K Lee (BFnphys4116_CR21) 2016; 117
PB Littlewood (BFnphys4116_CR1) 2004; 16
M Kellogg (BFnphys4116_CR7) 2004; 93
J Lambert (BFnphys4116_CR31) 2013; 87
JP Eisenstein (BFnphys4116_CR4) 2014; 5
B Skinner (BFnphys4116_CR25) 2016; 93
E Tutuc (BFnphys4116_CR8) 2004; 93
H Min (BFnphys4116_CR22) 2008; 78
GH Lee (BFnphys4116_CR26) 2011; 99
K Yang (BFnphys4116_CR16) 1994; 72
BFnphys4116_CR19
JIA Li (BFnphys4116_CR20) 2016; 117
X-G Wen (BFnphys4116_CR28) 1992; 69
K Lee (BFnphys4116_CR33) 2014; 345
BFnphys4116_CR37
BFnphys4116_CR12
RV Gorbachev (BFnphys4116_CR18) 2012; 8
BFnphys4116_CR34
BFnphys4116_CR13
M Kellogg (BFnphys4116_CR6) 2002; 88
L Wang (BFnphys4116_CR35) 2013; 342
IB Spielman (BFnphys4116_CR5) 2000; 84
BFnphys4116_CR3
A Perali (BFnphys4116_CR24) 2013; 110
BN Narozhny (BFnphys4116_CR27) 2016; 88
A Kou (BFnphys4116_CR30) 2014; 345
D Nandi (BFnphys4116_CR9) 2012; 488
K Moon (BFnphys4116_CR17) 1995; 51
AA High (BFnphys4116_CR14) 2012; 483
T Byrnes (BFnphys4116_CR11) 2014; 10
JA Seamons (BFnphys4116_CR15) 2009; 102
P Maher (BFnphys4116_CR32) 2014; 345
M Kharitonov (BFnphys4116_CR23) 2008; 78
NPR Hill (BFnphys4116_CR36) 1996; 8
D Snoke (BFnphys4116_CR2) 2002; 298
AR Champagne (BFnphys4116_CR29) 2008; 78
References_xml – volume: 345
  start-page: 55
  year: 2014
  ident: BFnphys4116_CR30
  publication-title: Science
  doi: 10.1126/science.1250270
– volume: 345
  start-page: 58
  year: 2014
  ident: BFnphys4116_CR33
  publication-title: Science
  doi: 10.1126/science.1251003
– volume: 93
  start-page: 2
  year: 2016
  ident: BFnphys4116_CR25
  publication-title: Phys. Rev. B
– ident: BFnphys4116_CR3
  doi: 10.1038/nature03081
– volume: 110
  start-page: 146803
  year: 2013
  ident: BFnphys4116_CR24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.146803
– ident: BFnphys4116_CR34
– volume: 345
  start-page: 61
  year: 2014
  ident: BFnphys4116_CR32
  publication-title: Science
  doi: 10.1126/science.1252875
– volume: 87
  start-page: 115415
  year: 2013
  ident: BFnphys4116_CR31
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.115415
– volume: 117
  start-page: 46802
  year: 2016
  ident: BFnphys4116_CR20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.046802
– volume: 102
  start-page: 26804
  year: 2009
  ident: BFnphys4116_CR15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.026804
– ident: BFnphys4116_CR19
– volume: 483
  start-page: 584
  year: 2012
  ident: BFnphys4116_CR14
  publication-title: Nature
  doi: 10.1038/nature10903
– volume: 78
  start-page: 205310
  year: 2008
  ident: BFnphys4116_CR29
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.78.205310
– volume: 51
  start-page: 5138
  year: 1995
  ident: BFnphys4116_CR17
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.51.5138
– volume: 5
  start-page: 159
  year: 2014
  ident: BFnphys4116_CR4
  publication-title: Annu. Rev. Condens. Matter Phys.
  doi: 10.1146/annurev-conmatphys-031113-133832
– volume: 8
  start-page: L557
  year: 1996
  ident: BFnphys4116_CR36
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/8/39/001
– volume: 84
  start-page: 5808
  year: 2000
  ident: BFnphys4116_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.84.5808
– volume: 8
  start-page: 896
  year: 2012
  ident: BFnphys4116_CR18
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2441
– volume: 78
  start-page: 121401
  year: 2008
  ident: BFnphys4116_CR22
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.78.121401
– volume: 117
  start-page: 46803
  year: 2016
  ident: BFnphys4116_CR21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.046803
– volume: 78
  start-page: 241401
  year: 2008
  ident: BFnphys4116_CR23
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.78.241401
– volume: 99
  start-page: 243114
  year: 2011
  ident: BFnphys4116_CR26
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3662043
– volume: 488
  start-page: 481
  year: 2012
  ident: BFnphys4116_CR9
  publication-title: Nature
  doi: 10.1038/nature11302
– volume: 443
  start-page: 409
  year: 2006
  ident: BFnphys4116_CR10
  publication-title: Nature
  doi: 10.1038/nature05131
– ident: BFnphys4116_CR37
– volume: 93
  start-page: 36801
  year: 2004
  ident: BFnphys4116_CR7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.036801
– volume: 93
  start-page: 36802
  year: 2004
  ident: BFnphys4116_CR8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.036802
– volume: 10
  start-page: 803
  year: 2014
  ident: BFnphys4116_CR11
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3143
– volume: 16
  start-page: S3597
  year: 2004
  ident: BFnphys4116_CR1
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/16/35/003
– volume: 298
  start-page: 1368
  year: 2002
  ident: BFnphys4116_CR2
  publication-title: Science
  doi: 10.1126/science.1078082
– ident: BFnphys4116_CR13
  doi: 10.1126/science.1140990
– volume: 88
  start-page: 25003
  year: 2016
  ident: BFnphys4116_CR27
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.88.025003
– volume: 342
  start-page: 614
  year: 2013
  ident: BFnphys4116_CR35
  publication-title: Science
  doi: 10.1126/science.1244358
– ident: BFnphys4116_CR12
  doi: 10.1126/science.1074464
– volume: 88
  start-page: 126804
  year: 2002
  ident: BFnphys4116_CR6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.126804
– volume: 72
  start-page: 732
  year: 1994
  ident: BFnphys4116_CR16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.72.732
– volume: 69
  start-page: 1811
  year: 1992
  ident: BFnphys4116_CR28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.69.1811
SSID ssj0042613
Score 2.6401556
Snippet An electronic double layer, subjected to a high magnetic field, can form an exciton condensate: a Bose–Einstein condensate of Coulomb-bound electron–hole...
An exciton condensate is a Bose-Einstein condensate of electron and hole pairs bound by the Coulomb interaction. In an electronic double layer (EDL) subject to...
Not provided.
SourceID osti
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 746
SubjectTerms 142/126
639/766/119/2791
639/766/119/2794
639/766/119/995
Atomic
Bilayers
Boron
Boron nitride
Bose-Einstein condensates
Carbon
Classical and Continuum Physics
Complex Systems
Condensation
Condensed Matter Physics
Degrees of freedom
Dielectric strength
Drag
Excitons
Gallium arsenide
Graphene
letter
Magnetic fields
Mathematical and Computational Physics
Matter & antimatter
Molecular
Optical and Plasma Physics
Phase diagrams
Physics
Quantum Hall effect
Quantum physics
Theoretical
Title Quantum Hall drag of exciton condensate in graphene
URI https://link.springer.com/article/10.1038/nphys4116
https://www.proquest.com/docview/1925187660
https://www.proquest.com/docview/3188653397
https://www.osti.gov/biblio/1535096
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5sRfAiPrE-yqIevIQm2U12cxIVa_FQVCz0FvYVEWpa-wB_vrNpUmspnrMJYWb3m28eOwNwFUgbSGG5l4XWOShUecpS48UhUwnjUihZVFt0406PPfWjfhlwm5RllRUmFkBthtrFyFu490SM3CThN6Mvz02NctnVcoRGDTYRggU6X5t3D93n1wqLnX9A51ciIy9knFa9haho5S50wAI36HzJItWHeLL-sM2VBGlhd9q7sFMSRnI71_AebNh8H7aKwk09OQD6MkPZzD5JRw4GxIzlOxlmxH5rPKk5QWcXcWWCfJJ85KRoTo3Ydgi99sPbfccrByF4Gr2nqSdFxkUW-0zGLgCoMt8EVvjcqiTKWCx9HakwkiwwcYg6ocZHF1kKN_U844E19Ajq-TC3x0Ako5QlFGlOollijTQ2VEhTtEqE4Vw34LoSRqrLLuFuWMUgLbLVVKQLuTXgYrF0NG-NsW7RqZNoivbcNaXVrnpHT1PEWdd3pgFnlaDT8uxMUuScUYAgHftrH_9uhAZcVrpZenv1D07-_8gpbIfOUhc1fWdQn45n9hx5xlQ1oSbaj81yS_0AjmzTXw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEJ_AGYIvRkDDcSgNauLLht22u-0-GEOQ44CTxAQS3tZ-rTE59-A-ov5T_I3M7N0iXIhvPG-3aafTX3_Tmc4AvE9MSIwOKip5IANF2MgG4aOMS5tLZbQ1dbTFWda7kCeX6eUS3DRvYSisssHEGqj90NEd-R7qns6Qm-Tq89V1RFWjyLvalNCYqcVp-PsbTbbxp-MvuL4fOO8enh_0onlVgcihKTKJjC6VLrNYmoxu02wZ-yToWAWbp6XMTOxSy1MjE59xnKDwMdqbRlMJ8VIlwQvsdxmeSRwK7SjdPWqQn6wRMXuAmUZcKtFkMhJ6r6KLCplQWfV7519riPv4AbddcMfWp1z3JbyY01O2P9OnNVgK1Tqs1GGibrwB4tsUV2L6i_XMYMD8yPxgw5KFPw5xoWJoWiOKjZG9sp8Vq1NhI5K-gosnEdBraFXDKmwCMyglmQskVbmTefDGB26RFDmba6-Ua8PHRhiFm-ckp9IYg6L2jQtd3MmtDbt3Ta9miTgea9QhiRbIHigFrqNYITcpENUpy00bthtBF_OdOi6Q4aYJHglZ_Ojnf2rXhnfN2tz7e3EEW__vZAdWe-df-0X_-Oy0A885cYQ6mnAbWpPRNLxBhjOxb2u1YvD9qfX4FuKaDn4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6FRKBeUHlUhAZY8ZC4WLF31971oUKFNkooikLVSr25-zKqFJySh1r-Gr-us44dShRxy9nrlT377cw3O7MzAO8j5SIlnQhy6ryDwnSgHbNBQrlOuVBSqzLbYpj0z_nXi_iiAX_quzA-rbLWiaWithPjz8i7iD2ZIDdJRTev0iJGR71P178C30HKR1rrdhpLiJy43zfovs0OBke41h8o7R2ffekHVYeBwKBbMg-UzIXMk5CrxJ-s6Ty0kZOhcDqNc56o0MSaxopHNqH4s8yG6Hsq6duJ5yJyluG8D6Al0CsKm9D6fDwcndZ2wPsmbHkdMw4oF6yua8Rkt_DHFjzyTdbvWcPmBHf1P0x3LThb2rzeLjyuyCo5XKLrCTRc8RQelkmjZvYM2PcFrsviJ-mr8ZjYqfpBJjlxtwa1REHQ0UadNkMuS64KUhbGRr36HM63IqI9aBaTwr0AojhjPGVIsVLDU2eVdVQjRTI6lVYI04aPtTAyU1Uo940yxlkZKWcyW8mtDW9XQ6-XZTk2Ddr3Es2QS_iCuMZnDpl5hjre17xpQ6cWdFbt21mGfDeO0EAk4cbHf0HYhnf12tx7e_0LXv5_kjfwCDGcfRsMT_Zhh3rCUKYWdqA5ny7cK6Q7c_26whWBy21D-Q7VfBQQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+Hall+drag+of+exciton+condensate+in+graphene&rft.jtitle=Nature+physics&rft.date=2017-08-01&rft.pub=Nature+Publishing+Group&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=13&rft.issue=8&rft.spage=746&rft.epage=750&rft_id=info:doi/10.1038%2Fnphys4116&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon