A Deep Learning Prediction Model for Structural Deformation Based on Temporal Convolutional Networks
The structural engineering is subject to various subjective and objective factors, the deformation is usually inevitable, the deformation monitoring data usually are nonstationary and nonlinear, and the deformation prediction is a difficult problem in the field of structural monitoring. Aiming at th...
Saved in:
Published in | Computational intelligence and neuroscience Vol. 2021; no. 1; p. 8829639 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Hindawi
2021
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1687-5265 1687-5273 1687-5273 |
DOI | 10.1155/2021/8829639 |
Cover
Loading…
Abstract | The structural engineering is subject to various subjective and objective factors, the deformation is usually inevitable, the deformation monitoring data usually are nonstationary and nonlinear, and the deformation prediction is a difficult problem in the field of structural monitoring. Aiming at the problems of the traditional structural deformation prediction methods, a structural deformation prediction model is proposed based on temporal convolutional networks (TCNs) in this study. The proposed model uses a one-dimensional dilated causal convolution to reduce the model parameters, expand the receptive field, and prevent future information leakage. By obtaining the long-term memory of time series, the internal time characteristics of structural deformation data can be effectively mined. The network hyperparameters of the TCN model are optimized by the orthogonal experiment, which determines the optimal combination of model parameters. The experimental results show that the predicted values of the proposed model are highly consistent with the actual monitored values. The average RMSE, MAPE, and MAE with the optimized model parameters reduce 44.15%, 82.03%, and 66.48%, respectively, and the average running time is reduced by 45.41% compared with the results without optimization parameters. The average RMSE, MAE, and MAPE reduce by 26.88%, 62.16%, and 40.83%, respectively, compared with WNN, DBN-SVR, GRU, and LSTM models. |
---|---|
AbstractList | The structural engineering is subject to various subjective and objective factors, the deformation is usually inevitable, the deformation monitoring data usually are nonstationary and nonlinear, and the deformation prediction is a difficult problem in the field of structural monitoring. Aiming at the problems of the traditional structural deformation prediction methods, a structural deformation prediction model is proposed based on temporal convolutional networks (TCNs) in this study. The proposed model uses a one-dimensional dilated causal convolution to reduce the model parameters, expand the receptive field, and prevent future information leakage. By obtaining the long-term memory of time series, the internal time characteristics of structural deformation data can be effectively mined. The network hyperparameters of the TCN model are optimized by the orthogonal experiment, which determines the optimal combination of model parameters. The experimental results show that the predicted values of the proposed model are highly consistent with the actual monitored values. The average RMSE, MAPE, and MAE with the optimized model parameters reduce 44.15%, 82.03%, and 66.48%, respectively, and the average running time is reduced by 45.41% compared with the results without optimization parameters. The average RMSE, MAE, and MAPE reduce by 26.88%, 62.16%, and 40.83%, respectively, compared with WNN, DBN-SVR, GRU, and LSTM models. The structural engineering is subject to various subjective and objective factors, the deformation is usually inevitable, the deformation monitoring data usually are nonstationary and nonlinear, and the deformation prediction is a difficult problem in the field of structural monitoring. Aiming at the problems of the traditional structural deformation prediction methods, a structural deformation prediction model is proposed based on temporal convolutional networks (TCNs) in this study. The proposed model uses a one-dimensional dilated causal convolution to reduce the model parameters, expand the receptive field, and prevent future information leakage. By obtaining the long-term memory of time series, the internal time characteristics of structural deformation data can be effectively mined. The network hyperparameters of the TCN model are optimized by the orthogonal experiment, which determines the optimal combination of model parameters. The experimental results show that the predicted values of the proposed model are highly consistent with the actual monitored values. The average RMSE, MAPE, and MAE with the optimized model parameters reduce 44.15%, 82.03%, and 66.48%, respectively, and the average running time is reduced by 45.41% compared with the results without optimization parameters. The average RMSE, MAE, and MAPE reduce by 26.88%, 62.16%, and 40.83%, respectively, compared with WNN, DBN-SVR, GRU, and LSTM models.The structural engineering is subject to various subjective and objective factors, the deformation is usually inevitable, the deformation monitoring data usually are nonstationary and nonlinear, and the deformation prediction is a difficult problem in the field of structural monitoring. Aiming at the problems of the traditional structural deformation prediction methods, a structural deformation prediction model is proposed based on temporal convolutional networks (TCNs) in this study. The proposed model uses a one-dimensional dilated causal convolution to reduce the model parameters, expand the receptive field, and prevent future information leakage. By obtaining the long-term memory of time series, the internal time characteristics of structural deformation data can be effectively mined. The network hyperparameters of the TCN model are optimized by the orthogonal experiment, which determines the optimal combination of model parameters. The experimental results show that the predicted values of the proposed model are highly consistent with the actual monitored values. The average RMSE, MAPE, and MAE with the optimized model parameters reduce 44.15%, 82.03%, and 66.48%, respectively, and the average running time is reduced by 45.41% compared with the results without optimization parameters. The average RMSE, MAE, and MAPE reduce by 26.88%, 62.16%, and 40.83%, respectively, compared with WNN, DBN-SVR, GRU, and LSTM models. |
Author | Wang, Lixin Gan, Wenjuan Ma, Enlin Luo, Xianglong Chen, Yonghong |
AuthorAffiliation | 1 School of Information and Engineering, Chang'an University, Xi'an 710064, China 2 China Railway First Survey and Design Institute Group Co., Ltd., Xi'an 710043, China 3 School of Highway, Chang'an University, Xi'an 710064, China |
AuthorAffiliation_xml | – name: 1 School of Information and Engineering, Chang'an University, Xi'an 710064, China – name: 3 School of Highway, Chang'an University, Xi'an 710064, China – name: 2 China Railway First Survey and Design Institute Group Co., Ltd., Xi'an 710043, China |
Author_xml | – sequence: 1 givenname: Xianglong orcidid: 0000-0002-1116-1438 surname: Luo fullname: Luo, Xianglong organization: School of Information and EngineeringChang’an UniversityXi’an 710064Chinachd.edu.cn – sequence: 2 givenname: Wenjuan orcidid: 0000-0002-9360-2777 surname: Gan fullname: Gan, Wenjuan organization: School of Information and EngineeringChang’an UniversityXi’an 710064Chinachd.edu.cn – sequence: 3 givenname: Lixin orcidid: 0000-0003-0797-3596 surname: Wang fullname: Wang, Lixin organization: China Railway First Survey and Design Institute Group Co., Ltd.Xi’an 710043Chinafsdi.com.cn – sequence: 4 givenname: Yonghong orcidid: 0000-0003-0214-5169 surname: Chen fullname: Chen, Yonghong organization: School of Information and EngineeringChang’an UniversityXi’an 710064Chinachd.edu.cn – sequence: 5 givenname: Enlin orcidid: 0000-0002-0222-9701 surname: Ma fullname: Ma, Enlin organization: School of HighwayChang’an UniversityXi’an 710064Chinachd.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33986794$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kdtvFCEUxolpYy_65rOZxBcT3RaYYYAXk7raS7JeEuszYeHQUmdghZk2_vcyu9tGm-gTB87vfHzwHaCdEAMg9ILgI0IYO6aYkmMhqGxr-QTtk1bwGaO83nmoW7aHDnK-wZhxhulTtFfXUrRcNvvInlQfAFbVAnQKPlxVXxNYbwYfQ_UpWugqF1P1bUijGcaku0KXg16vgfc6g61KcQn9Kk7deQy3sRunbtl9huEuph_5Gdp1usvwfLseou-nHy_n57PFl7OL-cliZppGDDPBQWohCVDnmG2aJbVWE8t1bTDWsqmJtNYJTVutTbNkmHPunGkogCN1jetD9G6juxqXPVgDYSim1Cr5XqdfKmqv_u4Ef62u4q0SmEtKSRF4vRVI8ecIeVC9zwa6TgeIY1aUUUG4kHS669Uj9CaOqbx6TeGWM85poV7-6ejByn0ABaAbwKSYcwKnjB_Wv1sM-k4RrKaU1ZSy2qZcht4-GrrX_Qf-ZoNf-2D1nf8__Rs3OLXa |
CitedBy_id | crossref_primary_10_3390_app14166889 crossref_primary_10_1108_EC_08_2022_0578 crossref_primary_10_1016_j_eij_2023_05_007 crossref_primary_10_3390_math10040610 crossref_primary_10_1016_j_autcon_2023_105222 crossref_primary_10_1016_j_multra_2025_100191 crossref_primary_10_1093_jigpal_jzae034 crossref_primary_10_1016_j_apenergy_2024_124169 crossref_primary_10_1063_5_0207462 crossref_primary_10_3390_app13074559 crossref_primary_10_1061_JMCEE7_MTENG_16578 crossref_primary_10_1063_5_0212652 crossref_primary_10_1142_S021812662450316X crossref_primary_10_1155_2024_1041791 crossref_primary_10_1007_s13369_024_09351_5 crossref_primary_10_1016_j_engstruct_2022_114285 crossref_primary_10_3390_e24030335 crossref_primary_10_1016_j_oceaneng_2023_113911 crossref_primary_10_26442_20751753_2023_1_202095 |
Cites_doi | 10.1016/j.measurement.2020.108289 10.1016/j.enggeo.2017.11.014 10.1016/j.enggeo.2011.03.003 10.1002/stc.2170 10.1016/s0266-352x(01)00011-8 10.3390/s18010298 10.1109/tip.2018.2877483 10.4028/www.scientific.net/amm.29-32.1717 10.1007/s10346-012-0350-8 10.1016/j.jbusres.2015.03.031 10.1155/2016/6708183 10.1016/j.advengsoft.2013.06.019 10.4028/www.scientific.net/amm.864.341 10.1155/2018/3054295 10.1155/2019/9283584 10.4028/www.scientific.net/amm.204-208.520 10.4028/www.scientific.net/amm.80-81.516 10.1109/TGRS.2020.2963848 10.1155/2020/8831965 10.1007/s12303-014-0012-z 10.1002/stc.492 10.4028/www.scientific.net/amm.423-426.1144 10.1109/TIM.2020.3026804 10.1016/j.engstruct.2010.12.011 10.3390/s18124436 10.1007/s11071-019-05252-7 10.1088/1755-1315/108/3/032034 10.1109/TCC.2014.2350475 10.1007/s10346-018-01127-x 10.1016/s1003-6326(13)62717-x 10.1155/2018/1712653 10.1007/s11071-019-05149-5 10.1016/j.tust.2013.12.009 10.1002/for.2655 10.1109/LGRS.2019.2936652 10.1016/j.scs.2020.102320 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Xianglong Luo et al. Copyright © 2021 Xianglong Luo et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 Copyright © 2021 Xianglong Luo et al. 2021 |
Copyright_xml | – notice: Copyright © 2021 Xianglong Luo et al. – notice: Copyright © 2021 Xianglong Luo et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 – notice: Copyright © 2021 Xianglong Luo et al. 2021 |
DBID | RHU RHW RHX AAYXX CITATION NPM 3V. 7QF 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7X7 7XB 8AL 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU CWDGH DWQXO F28 FR3 FYUFA GHDGH GNUQQ H8D H8G HCIFZ JG9 JQ2 K7- K9. KR7 L6V L7M LK8 L~C L~D M0N M0S M1P M7P M7S P5Z P62 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS Q9U 7X8 5PM |
DOI | 10.1155/2021/8829639 |
DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef PubMed ProQuest Central (Corporate) Aluminium Industry Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection ProQuest One Community College Middle East & Africa Database ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni) PML(ProQuest Medical Library) Biological Science Database Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering collection ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database ProQuest One Psychology Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection ProQuest Engineering Collection Middle East & Africa Database Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1687-5273 |
Editor | Yuan, Qiangqiang |
Editor_xml | – sequence: 1 givenname: Qiangqiang surname: Yuan fullname: Yuan, Qiangqiang |
ExternalDocumentID | PMC8079221 33986794 10_1155_2021_8829639 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Key R&D Program of China grantid: 2018YFC0808706 |
GroupedDBID | --- 188 29F 2WC 3V. 4.4 53G 5GY 5VS 6J9 7X7 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAFWJ AAJEY AAKPC ABDBF ABIVO ABJCF ABUWG ACGFO ACIWK ACM ACPRK ADBBV ADRAZ AENEX AFKRA AHMBA AINHJ ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI CCPQU CS3 CWDGH DIK DWQXO E3Z EBD EBS EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE I-F IAO ICD INH INR IPY ITC K6V K7- KQ8 L6V LK8 M0N M1P M48 M7P M7S MK~ O5R O5S OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO PSYQQ PTHSS Q2X RHU RHW RHX RNS RPM SV3 TR2 TUS UKHRP XH6 ~8M 0R~ 24P 2UF AAYXX ACCMX ACUHS C1A CITATION EJD H13 IHR IL9 OVT PGMZT PHGZM PHGZT UZ4 CNMHZ CVCKV NPM 7QF 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7XB 8AL 8BQ 8FD 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c448t-87e9a891e2ff5d44b2dda1d7a3c00a94319ddf8a26aac4b50777ffc42eef13303 |
IEDL.DBID | M48 |
ISSN | 1687-5265 1687-5273 |
IngestDate | Thu Aug 21 17:24:16 EDT 2025 Fri Sep 05 13:29:23 EDT 2025 Fri Jul 25 09:32:17 EDT 2025 Thu Apr 03 07:05:42 EDT 2025 Tue Jul 01 01:38:53 EDT 2025 Thu Apr 24 23:03:23 EDT 2025 Sun Jun 02 18:51:56 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright © 2021 Xianglong Luo et al. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c448t-87e9a891e2ff5d44b2dda1d7a3c00a94319ddf8a26aac4b50777ffc42eef13303 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Academic Editor: Qiangqiang Yuan |
ORCID | 0000-0002-1116-1438 0000-0003-0214-5169 0000-0003-0797-3596 0000-0002-9360-2777 0000-0002-0222-9701 |
OpenAccessLink | https://www.proquest.com/docview/2520675772?pq-origsite=%requestingapplication% |
PMID | 33986794 |
PQID | 2520675772 |
PQPubID | 237303 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8079221 proquest_miscellaneous_2528178920 proquest_journals_2520675772 pubmed_primary_33986794 crossref_citationtrail_10_1155_2021_8829639 crossref_primary_10_1155_2021_8829639 hindawi_primary_10_1155_2021_8829639 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-00-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021-00-00 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Computational intelligence and neuroscience |
PublicationTitleAlternate | Comput Intell Neurosci |
PublicationYear | 2021 |
Publisher | Hindawi John Wiley & Sons, Inc |
Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
References | Xu B. (e_1_2_9_16_2) 2016; 41 e_1_2_9_30_2 e_1_2_9_33_2 e_1_2_9_34_2 e_1_2_9_12_2 e_1_2_9_31_2 e_1_2_9_32_2 e_1_2_9_37_2 e_1_2_9_38_2 e_1_2_9_35_2 e_1_2_9_15_2 e_1_2_9_36_2 e_1_2_9_18_2 e_1_2_9_17_2 e_1_2_9_39_2 e_1_2_9_19_2 e_1_2_9_40_2 e_1_2_9_41_2 e_1_2_9_21_2 e_1_2_9_20_2 Deng J. (e_1_2_9_10_2) 1989; 1 e_1_2_9_23_2 e_1_2_9_42_2 e_1_2_9_22_2 e_1_2_9_43_2 e_1_2_9_7_2 e_1_2_9_6_2 e_1_2_9_5_2 Chen Y. (e_1_2_9_13_2) 2008; 42 e_1_2_9_4_2 e_1_2_9_3_2 e_1_2_9_2_2 e_1_2_9_1_2 Chen G. L. (e_1_2_9_14_2) 2016; 44 e_1_2_9_9_2 e_1_2_9_8_2 e_1_2_9_25_2 e_1_2_9_24_2 Zhu H. C. (e_1_2_9_11_2) 2013; 35 e_1_2_9_27_2 e_1_2_9_26_2 e_1_2_9_29_2 e_1_2_9_28_2 |
References_xml | – volume: 42 start-page: 157 year: 2008 ident: e_1_2_9_13_2 article-title: Application of model prediction technology to bridge health monitoring publication-title: Zhejiang University Engineering Science – ident: e_1_2_9_38_2 doi: 10.1016/j.measurement.2020.108289 – ident: e_1_2_9_9_2 doi: 10.1016/j.enggeo.2017.11.014 – ident: e_1_2_9_35_2 – ident: e_1_2_9_7_2 doi: 10.1016/j.enggeo.2011.03.003 – ident: e_1_2_9_8_2 doi: 10.1002/stc.2170 – ident: e_1_2_9_19_2 doi: 10.1016/s0266-352x(01)00011-8 – ident: e_1_2_9_28_2 doi: 10.3390/s18010298 – ident: e_1_2_9_37_2 doi: 10.1109/tip.2018.2877483 – ident: e_1_2_9_20_2 doi: 10.4028/www.scientific.net/amm.29-32.1717 – ident: e_1_2_9_5_2 doi: 10.1007/s10346-012-0350-8 – volume: 44 start-page: 962 year: 2016 ident: e_1_2_9_14_2 article-title: Study on separation and forecast of long term deflection based on time series analysis publication-title: Journal of Tongji University (Natural Science) – ident: e_1_2_9_1_2 doi: 10.1016/j.jbusres.2015.03.031 – ident: e_1_2_9_18_2 doi: 10.1155/2016/6708183 – ident: e_1_2_9_2_2 doi: 10.1016/j.advengsoft.2013.06.019 – ident: e_1_2_9_12_2 doi: 10.4028/www.scientific.net/amm.864.341 – ident: e_1_2_9_25_2 doi: 10.1155/2018/3054295 – ident: e_1_2_9_33_2 doi: 10.1155/2019/9283584 – ident: e_1_2_9_21_2 doi: 10.4028/www.scientific.net/amm.204-208.520 – ident: e_1_2_9_4_2 doi: 10.4028/www.scientific.net/amm.80-81.516 – ident: e_1_2_9_30_2 doi: 10.1109/TGRS.2020.2963848 – ident: e_1_2_9_29_2 doi: 10.1155/2020/8831965 – ident: e_1_2_9_6_2 doi: 10.1007/s12303-014-0012-z – ident: e_1_2_9_23_2 doi: 10.1002/stc.492 – ident: e_1_2_9_26_2 doi: 10.4028/www.scientific.net/amm.423-426.1144 – ident: e_1_2_9_43_2 doi: 10.1109/TIM.2020.3026804 – ident: e_1_2_9_22_2 doi: 10.1016/j.engstruct.2010.12.011 – ident: e_1_2_9_34_2 doi: 10.3390/s18124436 – ident: e_1_2_9_42_2 doi: 10.1007/s11071-019-05252-7 – ident: e_1_2_9_17_2 doi: 10.1088/1755-1315/108/3/032034 – ident: e_1_2_9_15_2 doi: 10.1109/TCC.2014.2350475 – ident: e_1_2_9_32_2 doi: 10.1007/s10346-018-01127-x – ident: e_1_2_9_3_2 doi: 10.1016/s1003-6326(13)62717-x – ident: e_1_2_9_27_2 doi: 10.1155/2018/1712653 – ident: e_1_2_9_39_2 doi: 10.1007/s11071-019-05149-5 – volume: 41 start-page: 61 year: 2016 ident: e_1_2_9_16_2 article-title: Application of time series analysis method in deformation data processing publication-title: Journal of Geomatics – ident: e_1_2_9_36_2 – ident: e_1_2_9_24_2 doi: 10.1016/j.tust.2013.12.009 – ident: e_1_2_9_41_2 doi: 10.1002/for.2655 – volume: 35 start-page: 53 year: 2013 ident: e_1_2_9_11_2 article-title: Landslide deformation prediction based on grey and fuzzy-Markov chain model publication-title: Journal of China Three Gorges University (Natural Sciences) – ident: e_1_2_9_31_2 doi: 10.1109/LGRS.2019.2936652 – volume: 1 start-page: 1 year: 1989 ident: e_1_2_9_10_2 article-title: Introduction to grey system theory publication-title: Journal of Grey System – ident: e_1_2_9_40_2 doi: 10.1016/j.scs.2020.102320 |
SSID | ssj0057502 |
Score | 2.3716688 |
Snippet | The structural engineering is subject to various subjective and objective factors, the deformation is usually inevitable, the deformation monitoring data... |
SourceID | pubmedcentral proquest pubmed crossref hindawi |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8829639 |
SubjectTerms | Accuracy Algorithms Construction Convolution Deep learning Deformation Deformation effects Fuzzy logic Long term memory Markov analysis Mathematical models Methods Monitoring Monitoring systems Neural networks Optimization Parameters Prediction models Principal components analysis Receptive field Regression analysis Statistical analysis Structural engineering System theory Time series |
SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BElIviAIt4UuuBL1UURPHjuPjlg-tekBIgLS3yIntgrRkVyxQ9d8zk3gjlraCWyxPFMsztt-zJ88Ah6mW0tdKxNLLJBa-yGKtqjzGRltutCZNO8q2OM-H1-LnSI6CSNLs7yN8XO2InqffEQhiqOhlWMYAI1I-HM0nXAQcXWphjuOF1N7n-e2v3l1YeVZviPL-vv0XsHydH_liwTlbh7WAFNmgc-1HWHLNBmwOGmTJd3_YV9bmbrab4ptgB-zEuSkLaqm_2MU9HcBQpzO67WzMEJuyy1YrlnQ20Lr_a5H9wIXMMny46mSqxux40jyFkMTSeZcpPtuC67PTq-NhHO5PiGskXQ840TltCp067r20QlTcWpNaZbI6SYxG6KCt9YXhuTG1qBAZKuV9LbhzHqlrkn2ClWbSuG1gurK1dSKz6FaRV6Tq5UhHxssilSpREXyb921ZB3FxuuNiXLYkQ8qSPFEGT0Rw1FtPO1GN_9gdBje9YbY392EZRuCs5JKE6SWShwi-9NU4duhAxDRu8tjaFKkqNE8i-Ny5vP9QlmnSIhQRqIVg6A1Il3uxprm9afW5i0RpztOd97V-Fz5QsdvW2YMVDAW3j0DnoTpow_wZR332PA priority: 102 providerName: Hindawi Publishing – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fT9wwDLbYoUl7mRjsRwdDmcT2MlW0adI0T-hgIMTDCW0g8ValTQJIt95txzbtv8du07KbBry1iqWmteN8dtzPADupltLXSsTSyyQWvshirao8xklbbrQmTjuqtpjkx-fi5EJehITbIpRV9j6xddR2VlOOfJdLIhqXCAb35t9j6hpFp6uhhcYTWEUXXMgRrO4fTk6_9L4YsUhXdZjjUiIi-L70XUqK-tNdxJdogXppU3p6RdHw7-v_Yc5_Syf_2ouO1uB5AJFs3Gn9Bay4Zh02xg0G0N_-sI-sLets8-UbYMfss3NzFohUL9npDzqbIX0waoQ2ZQhb2deWRpYoOFB6-KGR7eMeZxlenHUMVlN2MGt-BWvFu0lXRL54CedHh2cHx3ForRDXGI_doA902hQ6ddx7aYWouLUmtcpkdZIYjahCW-sLw3NjalEhaFTK-1pw5zxGtUn2CkbNrHFvgOnK1taJzKLGRV4R4Zcjihkvi1SqREXwqf-2ZR14x6n9xbRs4w8pS9JEGTQRwYdBet7xbdwjtxPU9IjYVq_DMizORXlnShG8H4ZxWdFZiWnc7GcrU6Sq0DyJ4HWn8uFBWaaJplBEoJaMYRAgyu7lkeb6qqXuLhKlOU_fPjytTXhGL9FlerZghCbg3iH2uam2g4HfArN8Ads priority: 102 providerName: ProQuest |
Title | A Deep Learning Prediction Model for Structural Deformation Based on Temporal Convolutional Networks |
URI | https://dx.doi.org/10.1155/2021/8829639 https://www.ncbi.nlm.nih.gov/pubmed/33986794 https://www.proquest.com/docview/2520675772 https://www.proquest.com/docview/2528178920 https://pubmed.ncbi.nlm.nih.gov/PMC8079221 |
Volume | 2021 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLf2ISReEDBgHeMUpMELKrRp0jQPCN1tO05InKaxk-6tSpuETbr1xjY-9t9j90vcNAQvaau4ShvbtZ24PwPsxVpKXyoRSi-jUPgsCbUq0hAf2nKjNWHaUbbFNJ3MxKe5nK9BV220ncCrO0M7qic1u1y8_fXt5gMq_Pta4aWk-D1-h54iypJeh020SSnJ92fR7yegT9JkH6aoUgQ51qXA37p7xTjdO6Wo-OfZXb7n7RTKP2zS-CE8aJ1JNmy4_wjWXPUYtoYVBtLnN-w1q9M763XzLbBDduDcBWsBVb-yo0vaoyG-MCqItmDovrIvNZwsQXEgdf9jIxuhrbMMT04aJKsF219WP1qpxatpk0x-9QRm48OT_UnYllgIS4zLrvFb6LTJdOy499IKUXBrTWyVScooMhq9C22tzwxPjSlFgc6jUt6XgjvnMbqNkqewUS0rtw1MF7a0TiQWOS_SgoC_HEHNeJnFUkUqgDfd3OZliz9OZTAWeR2HSJkTJ_KWEwG86qkvGtyNv9DttWz6B9lux8O8k7GcS8KulxhfBPCy70b1oj0TU7nl95omi1WmeRTAs4bl_UBJogmuUASgVoShJyDo7tWe6uy0hvDOIqU5j3f-Y9zncJ_epFn22YUNlAP3Ah2h62IA62qusM3GHwewORwdjMZ4HB1Oj44HtfxjezyZ_wahMwo_ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXBJRHoICRWi4oauLYcXxAaGlZtrSskNhKvQUntttK2-zCFqr-KX4jM3nBIh6n3hJ5lIfnG3vGHn8DsBFrKX2pRCi9jELhsyTUqkhD_GjLjdbEaUfZFuN0dCDeHcrDFfjenYWhtMpuTKwHajsraY18i0siGpfoDL6afw6pahTtrnYlNBpY7LmLcwzZFi93d1C_m5wP30y2R2FbVSAsMRQ5Q_N32mQ6dtx7aYUouLUmtsokZRQZjROqttZnhqfGlKJAf0kp70vBnfMY0EUJPvcKXBVJoomrPxu-7UZ-9HyaHMcUDZdo57tEeylpjSHeQm8W8a6XpsBrxxR7n5_8ycP9PVHzl5lveAtuti4rGzQYuw0rrroDa4MKw_XTC_ac1Umk9er8GtgB23Fuzlra1iP24QvtBJH2GZVdmzJ0ktnHmrSWCD9Quj8-yV7jjGoZXkwavqwp255V31rbwLtxk7K-uAsHl9Ll92C1mlXuATBd2NI6kVjEl0gLohdzRGjjZRZLFakAXnR9m5ctyzkV25jmdbQjZU6ayFtNBLDZS88bdo-_yG20avqP2Hqnw7wdChb5T-AG8KxvRiOmnRlTudnXWiaLVaZ5FMD9RuX9ixBnRIooAlBLYOgFiCB8uaU6Oa6JwrNIac7jh__-rKdwfTR5v5_v7473HsEN-qFmjWkdVhEO7jF6XWfFkxrqDD5dtm39AKQjPp0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEFAegQJGarmgaBPHjuMDQttuVy1FqxW0Um8hiW1aackubKHqX-PXMZM4C4t4nHpLlFEenm88M_bkG4CtWEvpKiVC6WQUCpcloVZlGuJLG15oTZx2VG0xTvePxZsTebIG37t_YaisspsTm4nazCpaI-9zSUTjEoPBvvNlEZPh6PX8c0gdpGintWun0ULk0F5eYPq2eHUwRF1vcz7aO9rdD32HgbDCtOQcpwKri0zHljsnjRAlN6aIjSqSKooKjc5VG-OygqdFUYkSYyelnKsEt9ZhchcleN9rsK7QK2Y9WN_ZG0_edX4A46C24jFFMyYS-q7sXkpacYj7GNsi-vWKQ7x-Spn4xdmf4t3fyzZ_8YOj23DLB7Bs0CLuDqzZ-i5sDGpM3j9dshesKSlt1uo3wAzY0No58ySuH9nkC-0LERYYNWGbMgyZ2fuGwpboP1B6-TMl20H_ahgeHLXsWVO2O6u_eUvBs3FbwL64B8dXMuj3oVfPavsQmC5NZaxIDKJNpCWRjVmit3Eyi6WKVAAvu7HNK895Tq03pnmT-0iZkyZyr4kAtpfS85br4y9yW15N_xHb7HSY-4lhkf-EcQDPl5fRpGmfpqjt7Gsjk8Uq0zwK4EGr8uWDkkQTRaIIQK2AYSlAdOGrV-qz04Y2PIuU5jx-9O_XegY30K7ytwfjw8dwk76nXXDahB6iwT7BEOy8fOqxzuDDVZvXD-IkRDg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning+Prediction+Model+for+Structural+Deformation+Based+on+Temporal+Convolutional+Networks&rft.jtitle=Computational+intelligence+and+neuroscience&rft.au=Luo%2C+Xianglong&rft.au=Gan%2C+Wenjuan&rft.au=Wang%2C+Lixin&rft.au=Chen%2C+Yonghong&rft.date=2021&rft.issn=1687-5273&rft.eissn=1687-5273&rft.volume=2021&rft.spage=8829639&rft_id=info:doi/10.1155%2F2021%2F8829639&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5265&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5265&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5265&client=summon |