A Deep Learning Prediction Model for Structural Deformation Based on Temporal Convolutional Networks

The structural engineering is subject to various subjective and objective factors, the deformation is usually inevitable, the deformation monitoring data usually are nonstationary and nonlinear, and the deformation prediction is a difficult problem in the field of structural monitoring. Aiming at th...

Full description

Saved in:
Bibliographic Details
Published inComputational intelligence and neuroscience Vol. 2021; no. 1; p. 8829639
Main Authors Luo, Xianglong, Gan, Wenjuan, Wang, Lixin, Chen, Yonghong, Ma, Enlin
Format Journal Article
LanguageEnglish
Published United States Hindawi 2021
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1687-5265
1687-5273
1687-5273
DOI10.1155/2021/8829639

Cover

Loading…
Abstract The structural engineering is subject to various subjective and objective factors, the deformation is usually inevitable, the deformation monitoring data usually are nonstationary and nonlinear, and the deformation prediction is a difficult problem in the field of structural monitoring. Aiming at the problems of the traditional structural deformation prediction methods, a structural deformation prediction model is proposed based on temporal convolutional networks (TCNs) in this study. The proposed model uses a one-dimensional dilated causal convolution to reduce the model parameters, expand the receptive field, and prevent future information leakage. By obtaining the long-term memory of time series, the internal time characteristics of structural deformation data can be effectively mined. The network hyperparameters of the TCN model are optimized by the orthogonal experiment, which determines the optimal combination of model parameters. The experimental results show that the predicted values of the proposed model are highly consistent with the actual monitored values. The average RMSE, MAPE, and MAE with the optimized model parameters reduce 44.15%, 82.03%, and 66.48%, respectively, and the average running time is reduced by 45.41% compared with the results without optimization parameters. The average RMSE, MAE, and MAPE reduce by 26.88%, 62.16%, and 40.83%, respectively, compared with WNN, DBN-SVR, GRU, and LSTM models.
AbstractList The structural engineering is subject to various subjective and objective factors, the deformation is usually inevitable, the deformation monitoring data usually are nonstationary and nonlinear, and the deformation prediction is a difficult problem in the field of structural monitoring. Aiming at the problems of the traditional structural deformation prediction methods, a structural deformation prediction model is proposed based on temporal convolutional networks (TCNs) in this study. The proposed model uses a one-dimensional dilated causal convolution to reduce the model parameters, expand the receptive field, and prevent future information leakage. By obtaining the long-term memory of time series, the internal time characteristics of structural deformation data can be effectively mined. The network hyperparameters of the TCN model are optimized by the orthogonal experiment, which determines the optimal combination of model parameters. The experimental results show that the predicted values of the proposed model are highly consistent with the actual monitored values. The average RMSE, MAPE, and MAE with the optimized model parameters reduce 44.15%, 82.03%, and 66.48%, respectively, and the average running time is reduced by 45.41% compared with the results without optimization parameters. The average RMSE, MAE, and MAPE reduce by 26.88%, 62.16%, and 40.83%, respectively, compared with WNN, DBN-SVR, GRU, and LSTM models.
The structural engineering is subject to various subjective and objective factors, the deformation is usually inevitable, the deformation monitoring data usually are nonstationary and nonlinear, and the deformation prediction is a difficult problem in the field of structural monitoring. Aiming at the problems of the traditional structural deformation prediction methods, a structural deformation prediction model is proposed based on temporal convolutional networks (TCNs) in this study. The proposed model uses a one-dimensional dilated causal convolution to reduce the model parameters, expand the receptive field, and prevent future information leakage. By obtaining the long-term memory of time series, the internal time characteristics of structural deformation data can be effectively mined. The network hyperparameters of the TCN model are optimized by the orthogonal experiment, which determines the optimal combination of model parameters. The experimental results show that the predicted values of the proposed model are highly consistent with the actual monitored values. The average RMSE, MAPE, and MAE with the optimized model parameters reduce 44.15%, 82.03%, and 66.48%, respectively, and the average running time is reduced by 45.41% compared with the results without optimization parameters. The average RMSE, MAE, and MAPE reduce by 26.88%, 62.16%, and 40.83%, respectively, compared with WNN, DBN-SVR, GRU, and LSTM models.The structural engineering is subject to various subjective and objective factors, the deformation is usually inevitable, the deformation monitoring data usually are nonstationary and nonlinear, and the deformation prediction is a difficult problem in the field of structural monitoring. Aiming at the problems of the traditional structural deformation prediction methods, a structural deformation prediction model is proposed based on temporal convolutional networks (TCNs) in this study. The proposed model uses a one-dimensional dilated causal convolution to reduce the model parameters, expand the receptive field, and prevent future information leakage. By obtaining the long-term memory of time series, the internal time characteristics of structural deformation data can be effectively mined. The network hyperparameters of the TCN model are optimized by the orthogonal experiment, which determines the optimal combination of model parameters. The experimental results show that the predicted values of the proposed model are highly consistent with the actual monitored values. The average RMSE, MAPE, and MAE with the optimized model parameters reduce 44.15%, 82.03%, and 66.48%, respectively, and the average running time is reduced by 45.41% compared with the results without optimization parameters. The average RMSE, MAE, and MAPE reduce by 26.88%, 62.16%, and 40.83%, respectively, compared with WNN, DBN-SVR, GRU, and LSTM models.
Author Wang, Lixin
Gan, Wenjuan
Ma, Enlin
Luo, Xianglong
Chen, Yonghong
AuthorAffiliation 1 School of Information and Engineering, Chang'an University, Xi'an 710064, China
2 China Railway First Survey and Design Institute Group Co., Ltd., Xi'an 710043, China
3 School of Highway, Chang'an University, Xi'an 710064, China
AuthorAffiliation_xml – name: 1 School of Information and Engineering, Chang'an University, Xi'an 710064, China
– name: 3 School of Highway, Chang'an University, Xi'an 710064, China
– name: 2 China Railway First Survey and Design Institute Group Co., Ltd., Xi'an 710043, China
Author_xml – sequence: 1
  givenname: Xianglong
  orcidid: 0000-0002-1116-1438
  surname: Luo
  fullname: Luo, Xianglong
  organization: School of Information and EngineeringChang’an UniversityXi’an 710064Chinachd.edu.cn
– sequence: 2
  givenname: Wenjuan
  orcidid: 0000-0002-9360-2777
  surname: Gan
  fullname: Gan, Wenjuan
  organization: School of Information and EngineeringChang’an UniversityXi’an 710064Chinachd.edu.cn
– sequence: 3
  givenname: Lixin
  orcidid: 0000-0003-0797-3596
  surname: Wang
  fullname: Wang, Lixin
  organization: China Railway First Survey and Design Institute Group Co., Ltd.Xi’an 710043Chinafsdi.com.cn
– sequence: 4
  givenname: Yonghong
  orcidid: 0000-0003-0214-5169
  surname: Chen
  fullname: Chen, Yonghong
  organization: School of Information and EngineeringChang’an UniversityXi’an 710064Chinachd.edu.cn
– sequence: 5
  givenname: Enlin
  orcidid: 0000-0002-0222-9701
  surname: Ma
  fullname: Ma, Enlin
  organization: School of HighwayChang’an UniversityXi’an 710064Chinachd.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33986794$$D View this record in MEDLINE/PubMed
BookMark eNp9kdtvFCEUxolpYy_65rOZxBcT3RaYYYAXk7raS7JeEuszYeHQUmdghZk2_vcyu9tGm-gTB87vfHzwHaCdEAMg9ILgI0IYO6aYkmMhqGxr-QTtk1bwGaO83nmoW7aHDnK-wZhxhulTtFfXUrRcNvvInlQfAFbVAnQKPlxVXxNYbwYfQ_UpWugqF1P1bUijGcaku0KXg16vgfc6g61KcQn9Kk7deQy3sRunbtl9huEuph_5Gdp1usvwfLseou-nHy_n57PFl7OL-cliZppGDDPBQWohCVDnmG2aJbVWE8t1bTDWsqmJtNYJTVutTbNkmHPunGkogCN1jetD9G6juxqXPVgDYSim1Cr5XqdfKmqv_u4Ef62u4q0SmEtKSRF4vRVI8ecIeVC9zwa6TgeIY1aUUUG4kHS669Uj9CaOqbx6TeGWM85poV7-6ejByn0ABaAbwKSYcwKnjB_Wv1sM-k4RrKaU1ZSy2qZcht4-GrrX_Qf-ZoNf-2D1nf8__Rs3OLXa
CitedBy_id crossref_primary_10_3390_app14166889
crossref_primary_10_1108_EC_08_2022_0578
crossref_primary_10_1016_j_eij_2023_05_007
crossref_primary_10_3390_math10040610
crossref_primary_10_1016_j_autcon_2023_105222
crossref_primary_10_1016_j_multra_2025_100191
crossref_primary_10_1093_jigpal_jzae034
crossref_primary_10_1016_j_apenergy_2024_124169
crossref_primary_10_1063_5_0207462
crossref_primary_10_3390_app13074559
crossref_primary_10_1061_JMCEE7_MTENG_16578
crossref_primary_10_1063_5_0212652
crossref_primary_10_1142_S021812662450316X
crossref_primary_10_1155_2024_1041791
crossref_primary_10_1007_s13369_024_09351_5
crossref_primary_10_1016_j_engstruct_2022_114285
crossref_primary_10_3390_e24030335
crossref_primary_10_1016_j_oceaneng_2023_113911
crossref_primary_10_26442_20751753_2023_1_202095
Cites_doi 10.1016/j.measurement.2020.108289
10.1016/j.enggeo.2017.11.014
10.1016/j.enggeo.2011.03.003
10.1002/stc.2170
10.1016/s0266-352x(01)00011-8
10.3390/s18010298
10.1109/tip.2018.2877483
10.4028/www.scientific.net/amm.29-32.1717
10.1007/s10346-012-0350-8
10.1016/j.jbusres.2015.03.031
10.1155/2016/6708183
10.1016/j.advengsoft.2013.06.019
10.4028/www.scientific.net/amm.864.341
10.1155/2018/3054295
10.1155/2019/9283584
10.4028/www.scientific.net/amm.204-208.520
10.4028/www.scientific.net/amm.80-81.516
10.1109/TGRS.2020.2963848
10.1155/2020/8831965
10.1007/s12303-014-0012-z
10.1002/stc.492
10.4028/www.scientific.net/amm.423-426.1144
10.1109/TIM.2020.3026804
10.1016/j.engstruct.2010.12.011
10.3390/s18124436
10.1007/s11071-019-05252-7
10.1088/1755-1315/108/3/032034
10.1109/TCC.2014.2350475
10.1007/s10346-018-01127-x
10.1016/s1003-6326(13)62717-x
10.1155/2018/1712653
10.1007/s11071-019-05149-5
10.1016/j.tust.2013.12.009
10.1002/for.2655
10.1109/LGRS.2019.2936652
10.1016/j.scs.2020.102320
ContentType Journal Article
Copyright Copyright © 2021 Xianglong Luo et al.
Copyright © 2021 Xianglong Luo et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright © 2021 Xianglong Luo et al. 2021
Copyright_xml – notice: Copyright © 2021 Xianglong Luo et al.
– notice: Copyright © 2021 Xianglong Luo et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
– notice: Copyright © 2021 Xianglong Luo et al. 2021
DBID RHU
RHW
RHX
AAYXX
CITATION
NPM
3V.
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7X7
7XB
8AL
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
CWDGH
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K7-
K9.
KR7
L6V
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
7X8
5PM
DOI 10.1155/2021/8829639
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
Middle East & Africa Database
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni)
PML(ProQuest Medical Library)
Biological Science Database
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering collection
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Middle East & Africa Database
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic
PubMed

CrossRef
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1687-5273
Editor Yuan, Qiangqiang
Editor_xml – sequence: 1
  givenname: Qiangqiang
  surname: Yuan
  fullname: Yuan, Qiangqiang
ExternalDocumentID PMC8079221
33986794
10_1155_2021_8829639
Genre Journal Article
GrantInformation_xml – fundername: National Key R&D Program of China
  grantid: 2018YFC0808706
GroupedDBID ---
188
29F
2WC
3V.
4.4
53G
5GY
5VS
6J9
7X7
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAFWJ
AAJEY
AAKPC
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIWK
ACM
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
AHMBA
AINHJ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
CS3
CWDGH
DIK
DWQXO
E3Z
EBD
EBS
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
I-F
IAO
ICD
INH
INR
IPY
ITC
K6V
K7-
KQ8
L6V
LK8
M0N
M1P
M48
M7P
M7S
MK~
O5R
O5S
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
Q2X
RHU
RHW
RHX
RNS
RPM
SV3
TR2
TUS
UKHRP
XH6
~8M
0R~
24P
2UF
AAYXX
ACCMX
ACUHS
C1A
CITATION
EJD
H13
IHR
IL9
OVT
PGMZT
PHGZM
PHGZT
UZ4
CNMHZ
CVCKV
NPM
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7XB
8AL
8BQ
8FD
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c448t-87e9a891e2ff5d44b2dda1d7a3c00a94319ddf8a26aac4b50777ffc42eef13303
IEDL.DBID M48
ISSN 1687-5265
1687-5273
IngestDate Thu Aug 21 17:24:16 EDT 2025
Fri Sep 05 13:29:23 EDT 2025
Fri Jul 25 09:32:17 EDT 2025
Thu Apr 03 07:05:42 EDT 2025
Tue Jul 01 01:38:53 EDT 2025
Thu Apr 24 23:03:23 EDT 2025
Sun Jun 02 18:51:56 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © 2021 Xianglong Luo et al.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c448t-87e9a891e2ff5d44b2dda1d7a3c00a94319ddf8a26aac4b50777ffc42eef13303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Academic Editor: Qiangqiang Yuan
ORCID 0000-0002-1116-1438
0000-0003-0214-5169
0000-0003-0797-3596
0000-0002-9360-2777
0000-0002-0222-9701
OpenAccessLink https://www.proquest.com/docview/2520675772?pq-origsite=%requestingapplication%
PMID 33986794
PQID 2520675772
PQPubID 237303
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8079221
proquest_miscellaneous_2528178920
proquest_journals_2520675772
pubmed_primary_33986794
crossref_citationtrail_10_1155_2021_8829639
crossref_primary_10_1155_2021_8829639
hindawi_primary_10_1155_2021_8829639
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Computational intelligence and neuroscience
PublicationTitleAlternate Comput Intell Neurosci
PublicationYear 2021
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References Xu B. (e_1_2_9_16_2) 2016; 41
e_1_2_9_30_2
e_1_2_9_33_2
e_1_2_9_34_2
e_1_2_9_12_2
e_1_2_9_31_2
e_1_2_9_32_2
e_1_2_9_37_2
e_1_2_9_38_2
e_1_2_9_35_2
e_1_2_9_15_2
e_1_2_9_36_2
e_1_2_9_18_2
e_1_2_9_17_2
e_1_2_9_39_2
e_1_2_9_19_2
e_1_2_9_40_2
e_1_2_9_41_2
e_1_2_9_21_2
e_1_2_9_20_2
Deng J. (e_1_2_9_10_2) 1989; 1
e_1_2_9_23_2
e_1_2_9_42_2
e_1_2_9_22_2
e_1_2_9_43_2
e_1_2_9_7_2
e_1_2_9_6_2
e_1_2_9_5_2
Chen Y. (e_1_2_9_13_2) 2008; 42
e_1_2_9_4_2
e_1_2_9_3_2
e_1_2_9_2_2
e_1_2_9_1_2
Chen G. L. (e_1_2_9_14_2) 2016; 44
e_1_2_9_9_2
e_1_2_9_8_2
e_1_2_9_25_2
e_1_2_9_24_2
Zhu H. C. (e_1_2_9_11_2) 2013; 35
e_1_2_9_27_2
e_1_2_9_26_2
e_1_2_9_29_2
e_1_2_9_28_2
References_xml – volume: 42
  start-page: 157
  year: 2008
  ident: e_1_2_9_13_2
  article-title: Application of model prediction technology to bridge health monitoring
  publication-title: Zhejiang University Engineering Science
– ident: e_1_2_9_38_2
  doi: 10.1016/j.measurement.2020.108289
– ident: e_1_2_9_9_2
  doi: 10.1016/j.enggeo.2017.11.014
– ident: e_1_2_9_35_2
– ident: e_1_2_9_7_2
  doi: 10.1016/j.enggeo.2011.03.003
– ident: e_1_2_9_8_2
  doi: 10.1002/stc.2170
– ident: e_1_2_9_19_2
  doi: 10.1016/s0266-352x(01)00011-8
– ident: e_1_2_9_28_2
  doi: 10.3390/s18010298
– ident: e_1_2_9_37_2
  doi: 10.1109/tip.2018.2877483
– ident: e_1_2_9_20_2
  doi: 10.4028/www.scientific.net/amm.29-32.1717
– ident: e_1_2_9_5_2
  doi: 10.1007/s10346-012-0350-8
– volume: 44
  start-page: 962
  year: 2016
  ident: e_1_2_9_14_2
  article-title: Study on separation and forecast of long term deflection based on time series analysis
  publication-title: Journal of Tongji University (Natural Science)
– ident: e_1_2_9_1_2
  doi: 10.1016/j.jbusres.2015.03.031
– ident: e_1_2_9_18_2
  doi: 10.1155/2016/6708183
– ident: e_1_2_9_2_2
  doi: 10.1016/j.advengsoft.2013.06.019
– ident: e_1_2_9_12_2
  doi: 10.4028/www.scientific.net/amm.864.341
– ident: e_1_2_9_25_2
  doi: 10.1155/2018/3054295
– ident: e_1_2_9_33_2
  doi: 10.1155/2019/9283584
– ident: e_1_2_9_21_2
  doi: 10.4028/www.scientific.net/amm.204-208.520
– ident: e_1_2_9_4_2
  doi: 10.4028/www.scientific.net/amm.80-81.516
– ident: e_1_2_9_30_2
  doi: 10.1109/TGRS.2020.2963848
– ident: e_1_2_9_29_2
  doi: 10.1155/2020/8831965
– ident: e_1_2_9_6_2
  doi: 10.1007/s12303-014-0012-z
– ident: e_1_2_9_23_2
  doi: 10.1002/stc.492
– ident: e_1_2_9_26_2
  doi: 10.4028/www.scientific.net/amm.423-426.1144
– ident: e_1_2_9_43_2
  doi: 10.1109/TIM.2020.3026804
– ident: e_1_2_9_22_2
  doi: 10.1016/j.engstruct.2010.12.011
– ident: e_1_2_9_34_2
  doi: 10.3390/s18124436
– ident: e_1_2_9_42_2
  doi: 10.1007/s11071-019-05252-7
– ident: e_1_2_9_17_2
  doi: 10.1088/1755-1315/108/3/032034
– ident: e_1_2_9_15_2
  doi: 10.1109/TCC.2014.2350475
– ident: e_1_2_9_32_2
  doi: 10.1007/s10346-018-01127-x
– ident: e_1_2_9_3_2
  doi: 10.1016/s1003-6326(13)62717-x
– ident: e_1_2_9_27_2
  doi: 10.1155/2018/1712653
– ident: e_1_2_9_39_2
  doi: 10.1007/s11071-019-05149-5
– volume: 41
  start-page: 61
  year: 2016
  ident: e_1_2_9_16_2
  article-title: Application of time series analysis method in deformation data processing
  publication-title: Journal of Geomatics
– ident: e_1_2_9_36_2
– ident: e_1_2_9_24_2
  doi: 10.1016/j.tust.2013.12.009
– ident: e_1_2_9_41_2
  doi: 10.1002/for.2655
– volume: 35
  start-page: 53
  year: 2013
  ident: e_1_2_9_11_2
  article-title: Landslide deformation prediction based on grey and fuzzy-Markov chain model
  publication-title: Journal of China Three Gorges University (Natural Sciences)
– ident: e_1_2_9_31_2
  doi: 10.1109/LGRS.2019.2936652
– volume: 1
  start-page: 1
  year: 1989
  ident: e_1_2_9_10_2
  article-title: Introduction to grey system theory
  publication-title: Journal of Grey System
– ident: e_1_2_9_40_2
  doi: 10.1016/j.scs.2020.102320
SSID ssj0057502
Score 2.3716688
Snippet The structural engineering is subject to various subjective and objective factors, the deformation is usually inevitable, the deformation monitoring data...
SourceID pubmedcentral
proquest
pubmed
crossref
hindawi
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8829639
SubjectTerms Accuracy
Algorithms
Construction
Convolution
Deep learning
Deformation
Deformation effects
Fuzzy logic
Long term memory
Markov analysis
Mathematical models
Methods
Monitoring
Monitoring systems
Neural networks
Optimization
Parameters
Prediction models
Principal components analysis
Receptive field
Regression analysis
Statistical analysis
Structural engineering
System theory
Time series
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BElIviAIt4UuuBL1UURPHjuPjlg-tekBIgLS3yIntgrRkVyxQ9d8zk3gjlraCWyxPFMsztt-zJ88Ah6mW0tdKxNLLJBa-yGKtqjzGRltutCZNO8q2OM-H1-LnSI6CSNLs7yN8XO2InqffEQhiqOhlWMYAI1I-HM0nXAQcXWphjuOF1N7n-e2v3l1YeVZviPL-vv0XsHydH_liwTlbh7WAFNmgc-1HWHLNBmwOGmTJd3_YV9bmbrab4ptgB-zEuSkLaqm_2MU9HcBQpzO67WzMEJuyy1YrlnQ20Lr_a5H9wIXMMny46mSqxux40jyFkMTSeZcpPtuC67PTq-NhHO5PiGskXQ840TltCp067r20QlTcWpNaZbI6SYxG6KCt9YXhuTG1qBAZKuV9LbhzHqlrkn2ClWbSuG1gurK1dSKz6FaRV6Tq5UhHxssilSpREXyb921ZB3FxuuNiXLYkQ8qSPFEGT0Rw1FtPO1GN_9gdBje9YbY392EZRuCs5JKE6SWShwi-9NU4duhAxDRu8tjaFKkqNE8i-Ny5vP9QlmnSIhQRqIVg6A1Il3uxprm9afW5i0RpztOd97V-Fz5QsdvW2YMVDAW3j0DnoTpow_wZR332PA
  priority: 102
  providerName: Hindawi Publishing
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fT9wwDLbYoUl7mRjsRwdDmcT2MlW0adI0T-hgIMTDCW0g8ValTQJIt95txzbtv8du07KbBry1iqWmteN8dtzPADupltLXSsTSyyQWvshirao8xklbbrQmTjuqtpjkx-fi5EJehITbIpRV9j6xddR2VlOOfJdLIhqXCAb35t9j6hpFp6uhhcYTWEUXXMgRrO4fTk6_9L4YsUhXdZjjUiIi-L70XUqK-tNdxJdogXppU3p6RdHw7-v_Yc5_Syf_2ouO1uB5AJFs3Gn9Bay4Zh02xg0G0N_-sI-sLets8-UbYMfss3NzFohUL9npDzqbIX0waoQ2ZQhb2deWRpYoOFB6-KGR7eMeZxlenHUMVlN2MGt-BWvFu0lXRL54CedHh2cHx3ForRDXGI_doA902hQ6ddx7aYWouLUmtcpkdZIYjahCW-sLw3NjalEhaFTK-1pw5zxGtUn2CkbNrHFvgOnK1taJzKLGRV4R4Zcjihkvi1SqREXwqf-2ZR14x6n9xbRs4w8pS9JEGTQRwYdBet7xbdwjtxPU9IjYVq_DMizORXlnShG8H4ZxWdFZiWnc7GcrU6Sq0DyJ4HWn8uFBWaaJplBEoJaMYRAgyu7lkeb6qqXuLhKlOU_fPjytTXhGL9FlerZghCbg3iH2uam2g4HfArN8Ads
  priority: 102
  providerName: ProQuest
Title A Deep Learning Prediction Model for Structural Deformation Based on Temporal Convolutional Networks
URI https://dx.doi.org/10.1155/2021/8829639
https://www.ncbi.nlm.nih.gov/pubmed/33986794
https://www.proquest.com/docview/2520675772
https://www.proquest.com/docview/2528178920
https://pubmed.ncbi.nlm.nih.gov/PMC8079221
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLf2ISReEDBgHeMUpMELKrRp0jQPCN1tO05InKaxk-6tSpuETbr1xjY-9t9j90vcNAQvaau4ShvbtZ24PwPsxVpKXyoRSi-jUPgsCbUq0hAf2nKjNWHaUbbFNJ3MxKe5nK9BV220ncCrO0M7qic1u1y8_fXt5gMq_Pta4aWk-D1-h54iypJeh020SSnJ92fR7yegT9JkH6aoUgQ51qXA37p7xTjdO6Wo-OfZXb7n7RTKP2zS-CE8aJ1JNmy4_wjWXPUYtoYVBtLnN-w1q9M763XzLbBDduDcBWsBVb-yo0vaoyG-MCqItmDovrIvNZwsQXEgdf9jIxuhrbMMT04aJKsF219WP1qpxatpk0x-9QRm48OT_UnYllgIS4zLrvFb6LTJdOy499IKUXBrTWyVScooMhq9C22tzwxPjSlFgc6jUt6XgjvnMbqNkqewUS0rtw1MF7a0TiQWOS_SgoC_HEHNeJnFUkUqgDfd3OZliz9OZTAWeR2HSJkTJ_KWEwG86qkvGtyNv9DttWz6B9lux8O8k7GcS8KulxhfBPCy70b1oj0TU7nl95omi1WmeRTAs4bl_UBJogmuUASgVoShJyDo7tWe6uy0hvDOIqU5j3f-Y9zncJ_epFn22YUNlAP3Ah2h62IA62qusM3GHwewORwdjMZ4HB1Oj44HtfxjezyZ_wahMwo_
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXBJRHoICRWi4oauLYcXxAaGlZtrSskNhKvQUntttK2-zCFqr-KX4jM3nBIh6n3hJ5lIfnG3vGHn8DsBFrKX2pRCi9jELhsyTUqkhD_GjLjdbEaUfZFuN0dCDeHcrDFfjenYWhtMpuTKwHajsraY18i0siGpfoDL6afw6pahTtrnYlNBpY7LmLcwzZFi93d1C_m5wP30y2R2FbVSAsMRQ5Q_N32mQ6dtx7aYUouLUmtsokZRQZjROqttZnhqfGlKJAf0kp70vBnfMY0EUJPvcKXBVJoomrPxu-7UZ-9HyaHMcUDZdo57tEeylpjSHeQm8W8a6XpsBrxxR7n5_8ycP9PVHzl5lveAtuti4rGzQYuw0rrroDa4MKw_XTC_ac1Umk9er8GtgB23Fuzlra1iP24QvtBJH2GZVdmzJ0ktnHmrSWCD9Quj8-yV7jjGoZXkwavqwp255V31rbwLtxk7K-uAsHl9Ll92C1mlXuATBd2NI6kVjEl0gLohdzRGjjZRZLFakAXnR9m5ctyzkV25jmdbQjZU6ayFtNBLDZS88bdo-_yG20avqP2Hqnw7wdChb5T-AG8KxvRiOmnRlTudnXWiaLVaZ5FMD9RuX9ixBnRIooAlBLYOgFiCB8uaU6Oa6JwrNIac7jh__-rKdwfTR5v5_v7473HsEN-qFmjWkdVhEO7jF6XWfFkxrqDD5dtm39AKQjPp0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEFAegQJGarmgaBPHjuMDQttuVy1FqxW0Um8hiW1aackubKHqX-PXMZM4C4t4nHpLlFEenm88M_bkG4CtWEvpKiVC6WQUCpcloVZlGuJLG15oTZx2VG0xTvePxZsTebIG37t_YaisspsTm4nazCpaI-9zSUTjEoPBvvNlEZPh6PX8c0gdpGintWun0ULk0F5eYPq2eHUwRF1vcz7aO9rdD32HgbDCtOQcpwKri0zHljsnjRAlN6aIjSqSKooKjc5VG-OygqdFUYkSYyelnKsEt9ZhchcleN9rsK7QK2Y9WN_ZG0_edX4A46C24jFFMyYS-q7sXkpacYj7GNsi-vWKQ7x-Spn4xdmf4t3fyzZ_8YOj23DLB7Bs0CLuDqzZ-i5sDGpM3j9dshesKSlt1uo3wAzY0No58ySuH9nkC-0LERYYNWGbMgyZ2fuGwpboP1B6-TMl20H_ahgeHLXsWVO2O6u_eUvBs3FbwL64B8dXMuj3oVfPavsQmC5NZaxIDKJNpCWRjVmit3Eyi6WKVAAvu7HNK895Tq03pnmT-0iZkyZyr4kAtpfS85br4y9yW15N_xHb7HSY-4lhkf-EcQDPl5fRpGmfpqjt7Gsjk8Uq0zwK4EGr8uWDkkQTRaIIQK2AYSlAdOGrV-qz04Y2PIuU5jx-9O_XegY30K7ytwfjw8dwk76nXXDahB6iwT7BEOy8fOqxzuDDVZvXD-IkRDg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning+Prediction+Model+for+Structural+Deformation+Based+on+Temporal+Convolutional+Networks&rft.jtitle=Computational+intelligence+and+neuroscience&rft.au=Luo%2C+Xianglong&rft.au=Gan%2C+Wenjuan&rft.au=Wang%2C+Lixin&rft.au=Chen%2C+Yonghong&rft.date=2021&rft.issn=1687-5273&rft.eissn=1687-5273&rft.volume=2021&rft.spage=8829639&rft_id=info:doi/10.1155%2F2021%2F8829639&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5265&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5265&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5265&client=summon