A driving cycle detection approach using map service API
•The driving cycle detection leverages map service API and does need GIS data.•A trajectory segmentation algorithm finding the best-matched car mode API route.•A logistic regression built by selected features provides an accurate prediction. Following advancements in smartphone and portable global p...
Saved in:
Published in | Transportation research. Part C, Emerging technologies Vol. 92; no. C; pp. 349 - 363 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.07.2018
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0968-090X 1879-2359 |
DOI | 10.1016/j.trc.2018.05.010 |
Cover
Loading…
Abstract | •The driving cycle detection leverages map service API and does need GIS data.•A trajectory segmentation algorithm finding the best-matched car mode API route.•A logistic regression built by selected features provides an accurate prediction.
Following advancements in smartphone and portable global positioning system (GPS) data collection, wearable GPS data have realized extensive use in transportation surveys and studies. The task of detecting driving cycles (driving or car-mode trajectory segments) from wearable GPS data has been the subject of much research. Specifically, distinguishing driving cycles from other motorized trips (such as taking a bus) is the main research problem in this paper. Many mode detection methods only focus on raw GPS speed data while some studies apply additional information, such as geographic information system (GIS) data, to obtain better detection performance. Procuring and maintaining dedicated road GIS data are costly and not trivial, whereas the technical maturity and broad use of map service application program interface (API) queries offers opportunities for mode detection tasks. The proposed driving cycle detection method takes advantage of map service APIs to obtain high-quality car-mode API route information and uses a trajectory segmentation algorithm to find the best-matched API route. The car-mode API route data combined with the actual route information, including the actual mode information, are used to train a logistic regression machine learning model, which estimates car modes and non-car modes with probability rates. The experimental results show promise for the proposed method’s ability to detect vehicle mode accurately. |
---|---|
AbstractList | Following advancements in smartphone and portable global positioning system (GPS) data collection, wearable GPS data have realized extensive use in transportation surveys and studies. The task of detecting driving cycles (driving or car-mode trajectory segments) from wearable GPS data has been the subject of much research. Specifically, distinguishing driving cycles from other motorized trips (such as taking a bus) is the main research problem in this paper. Many mode detection methods only focus on raw GPS speed data while some studies apply additional information, such as geographic information system (GIS) data, to obtain better detection performance. Procuring and maintaining dedicated road GIS data are costly and not trivial, whereas the technical maturity and broad use of map service application program interface (API) queries offers opportunities for mode detection tasks. The proposed driving cycle detection method takes advantage of map service APIs to obtain high-quality car-mode API route information and uses a trajectory segmentation algorithm to find the best-matched API route. The car-mode API route data combined with the actual route information, including the actual mode information, are used to train a logistic regression machine learning model, which estimates car modes and non-car modes with probability rates. The experimental results show promise for the proposed method's ability to detect vehicle mode accurately. •The driving cycle detection leverages map service API and does need GIS data.•A trajectory segmentation algorithm finding the best-matched car mode API route.•A logistic regression built by selected features provides an accurate prediction. Following advancements in smartphone and portable global positioning system (GPS) data collection, wearable GPS data have realized extensive use in transportation surveys and studies. The task of detecting driving cycles (driving or car-mode trajectory segments) from wearable GPS data has been the subject of much research. Specifically, distinguishing driving cycles from other motorized trips (such as taking a bus) is the main research problem in this paper. Many mode detection methods only focus on raw GPS speed data while some studies apply additional information, such as geographic information system (GIS) data, to obtain better detection performance. Procuring and maintaining dedicated road GIS data are costly and not trivial, whereas the technical maturity and broad use of map service application program interface (API) queries offers opportunities for mode detection tasks. The proposed driving cycle detection method takes advantage of map service APIs to obtain high-quality car-mode API route information and uses a trajectory segmentation algorithm to find the best-matched API route. The car-mode API route data combined with the actual route information, including the actual mode information, are used to train a logistic regression machine learning model, which estimates car modes and non-car modes with probability rates. The experimental results show promise for the proposed method’s ability to detect vehicle mode accurately. |
Author | Zhu, Lei Gonder, Jeffrey D. |
Author_xml | – sequence: 1 givenname: Lei orcidid: 0000-0001-7307-958X surname: Zhu fullname: Zhu, Lei email: Lei.Zhu@nrel.gov – sequence: 2 givenname: Jeffrey D. surname: Gonder fullname: Gonder, Jeffrey D. email: Jeff.Gonder@nrel.gov |
BackLink | https://www.osti.gov/biblio/1452690$$D View this record in Osti.gov |
BookMark | eNp9kE9Lw0AQxRepYK1-AG_Be-Jskt3s4qkU_xQKelDwtmwnE7ulTcJuLPTbu6GePPQ0A_N-w3vvmk3ariXG7jhkHLh82GaDxywHrjIQGXC4YFOuKp3mhdATNgUtVQoavq7YdQhbAOBaVFOm5knt3cG13wkecUdJTQPh4Lo2sX3vO4ub5CeM573tk0D-4JCS-fvyhl02dhfo9m_O2Ofz08fiNV29vSwX81WKZamGVHFZ52RRKFJlI9fruqK8KGsRN9WIdQGIFpUWqtACmgZkFDcFWQ4gLcpixu5Pf7swOBPQRXsb7No2ujS8FLnUEEX8JELfheCpMb13e-uPhoMZ-zFbE_sxYz8GhIn9RKb6x8Tfdkw-eOt2Z8nHE0kx98GRH21Ri1Q7P7qqO3eG_gXTC4Hv |
CitedBy_id | crossref_primary_10_1088_1757_899X_662_2_022016 crossref_primary_10_1002_gdj3_156 crossref_primary_10_1016_j_jhe_2024_102005 crossref_primary_10_1088_1742_6596_1524_1_012016 crossref_primary_10_1109_TIA_2022_3149848 crossref_primary_10_1109_TCSS_2022_3170934 crossref_primary_10_1016_j_engappai_2023_107665 crossref_primary_10_1371_journal_pone_0234003 crossref_primary_10_1049_iet_its_2020_0486 crossref_primary_10_1109_ACCESS_2019_2936443 crossref_primary_10_1109_MITS_2019_2919537 crossref_primary_10_1007_s42421_019_00004_w |
Cites_doi | 10.3141/2645-08 10.1260/2046-0430.4.3.295 10.1145/2093973.2093982 10.1109/GeoInformatics.2011.5981087 10.1109/ISWC.2008.4911579 10.1016/S0968-090X(99)00017-0 10.1007/978-1-4302-2803-5 10.1016/j.jretconser.2010.03.011 10.3390/info6020212 10.1007/11426646_9 10.1186/1476-072X-4-22 10.1145/1367497.1367532 10.1207/S15328031US0101_04 10.1177/0361198106197200105 10.1016/j.compenvurbsys.2011.05.003 10.1109/VPPC.2010.5729234 10.3141/2105-04 10.3141/1768-15 10.1016/j.trc.2015.07.010 10.1152/japplphysiol.00767.2005 10.1145/1823854.1823887 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd |
Copyright_xml | – notice: 2018 Elsevier Ltd |
CorporateAuthor | National Renewable Energy Lab. (NREL), Golden, CO (United States) |
CorporateAuthor_xml | – name: National Renewable Energy Lab. (NREL), Golden, CO (United States) |
DBID | AAYXX CITATION OTOTI |
DOI | 10.1016/j.trc.2018.05.010 |
DatabaseName | CrossRef OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering |
EISSN | 1879-2359 |
EndPage | 363 |
ExternalDocumentID | 1452690 10_1016_j_trc_2018_05_010 S0968090X18306387 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABBOA ABLJU ABMAC ABMMH ABUCO ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD APLSM ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HMY HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY1 LY7 M3Y M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SDS SES SET SEW SPC SPCBC SSB SSD SSO SSS SST SSV SSZ T5K TN5 WUQ XPP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH AALMO AAPBV ABPIF ABPTK OTOTI |
ID | FETCH-LOGICAL-c448t-816d2eac58e84f6bbd7e234d5bbd8f5b30ccac89583950ff06eacf3ea1006ac63 |
IEDL.DBID | .~1 |
ISSN | 0968-090X |
IngestDate | Thu May 18 18:39:55 EDT 2023 Tue Jul 01 01:45:09 EDT 2025 Thu Apr 24 23:01:22 EDT 2025 Fri Feb 23 02:16:17 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Keywords | Travel mode detection Driving cycle detection Map service API Wearable GPS data |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c448t-816d2eac58e84f6bbd7e234d5bbd8f5b30ccac89583950ff06eacf3ea1006ac63 |
Notes | USDOE Office of Energy Efficiency and Renewable Energy (EERE), NREL Laboratory Directed Research and Development (LDRD) AC36-08GO28308 NREL/JA-5400-68508 USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V) |
ORCID | 0000-0001-7307-958X 000000017307958X |
OpenAccessLink | https://www.osti.gov/biblio/1545164 |
PageCount | 15 |
ParticipantIDs | osti_scitechconnect_1452690 crossref_primary_10_1016_j_trc_2018_05_010 crossref_citationtrail_10_1016_j_trc_2018_05_010 elsevier_sciencedirect_doi_10_1016_j_trc_2018_05_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-07-01 |
PublicationDateYYYYMMDD | 2018-07-01 |
PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Transportation research. Part C, Emerging technologies |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Boulos (b0010) 2005; 4 Hu (b0065) 2015; 4 Srinivasan, S., Bricka, S., Bhat, C., 2009. Methodology for Converting GPS Navigational Streams to the Travel-Diary Data Format. Wolf, Guensler, Bachman (b0170) 2001; 1768 Murakami, Wagner (b0095) 1999; 7 Stopher, P.R., Jiang, Q., FitzGerald, C., 2005. Processing GPS data from travel surveys. In: 2nd International Colloqium on the Behavioural Foundations of Integrated Land-Use and Transportation Models: Frameworks, Models and Applications. Toronto. Peter, 2016. Releasing the Map Matching API Svennerberg, G., 2010. Beginning Google Maps API 3. Apress. Gonder, Burton, Murakami (b0045) 2015; 11 MapQuest, 2016. Mapquest Directions API Service Bohte, W., Maat, K., 2008. Deriving and validating trip destinations and modes for multiday GPS-based travel surveys: application in the Netherlands. In: Transportation Research Board 87th Annual Meeting. Chen (b0025) 2010; 44 Gisgraphy, 2017. Free, Open Source, and Ready to Use Geocoder and Geolocalisation Webservices Tsui, Shalaby (b0165) 2006; 1972 Zhang, L., et al., 2011. Multi-stage approach to travel-mode segmentation and classification of GPS traces. In: Proceedings of the ISPRS Guilin 2011 Workshop on International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Guilin, China. Stefanakis, E., 2015. Elevation Web Services: Limitations and Prospects Zheng, Y., et al., 2008. Learning transportation mode from raw GPS data for geographic applications on the web. In: Proceedings of the 17th International Conference on World Wide Web. ACM. McGahey, D., 2013. Web Service as a Look-Up Table To Refine GPS Data Stenneth, L., et al., 2011. Transportation mode detection using mobile phones and GIS information. In: Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. ACM. Zong (b0190) 2015; 6 Kim, Mahmassani (b0070) 2015; 59 Browning (b0015) 2006; 100 Reddy, S., et al., 2008. Determining transportation mode on mobile phones. In: 12th IEEE International Symposium on Wearable Computers, 2008, ISWC 2008. IEEE. Byon, Y.-J., Abdulhai, B., Shalaby, A.S., 2007. Impact of sampling rate of GPS-enabled cell phones on mode detection and GIS map matching performance. In: Transportation Research Board 86th Annual Meeting. Schuessler, Axhausen (b0125) 2009; 2105 Zhu, Holden, Gonder (b0185) 2017; 2645 Mapbox, 2016. Mapbox API Documentation Peng, So (b0100) 2002; 1 Qu, X., et al., 2011. A spatial web service client based on Microsoft Bing Maps. In: 2011 19th International Conference on Geoinformatics. Gonzalez, P., et al., 2008. Automating mode detection using neural networks and assisted GPS data collected using GPS-enabled mobile phones. In: 15th World Congress on Intelligent Transportation Systems. Moiseeva, Timmermans (b0090) 2010; 17 Contributors, W., 2017. Longest Common Subsequence Problem Transportation Secure Data Center, 2005. In: National Renewable Energy Laboratory. . Schrader-Patton, C., Ager, A., Bunzel, K., 2010. Geobrowser deployment in the USDA forest service: a case study. In: Proceedings of the 1st International Conference and Exhibition on Computing for Geospatial Research & Application. ACM. (cited 2017 2 May 2017 16:23 UTC). Earleywine, M., et al., 2010. Simulated fuel economy and performance of advanced hybrid electric and plug-in hybrid electric vehicles using in-use travel profiles. In: 2010 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE. Hariharan, R., Krumm, J., Horvitz, E., 2005. Web-Enhanced GPS. In: International Symposium on Location-and Context-Awareness. Springer. Gong (b0050) 2012; 36 Schüssler, N., 2010. Accounting for similarities between alternatives in discrete choice models based on high-resolution observations of transport behaviour. 2010, Diss., Eidgenössische Technische Hochschule ETH Zürich, Nr. 19093. (cited 2017 04/23/2017). Gong (10.1016/j.trc.2018.05.010_b0050) 2012; 36 Peng (10.1016/j.trc.2018.05.010_b0100) 2002; 1 Zhu (10.1016/j.trc.2018.05.010_b0185) 2017; 2645 Browning (10.1016/j.trc.2018.05.010_b0015) 2006; 100 Boulos (10.1016/j.trc.2018.05.010_b0010) 2005; 4 Chen (10.1016/j.trc.2018.05.010_b0025) 2010; 44 Schuessler (10.1016/j.trc.2018.05.010_b0125) 2009; 2105 Tsui (10.1016/j.trc.2018.05.010_b0165) 2006; 1972 10.1016/j.trc.2018.05.010_b0115 10.1016/j.trc.2018.05.010_b0135 10.1016/j.trc.2018.05.010_b0035 10.1016/j.trc.2018.05.010_b0155 10.1016/j.trc.2018.05.010_b0110 10.1016/j.trc.2018.05.010_b0055 10.1016/j.trc.2018.05.010_b0175 10.1016/j.trc.2018.05.010_b0030 10.1016/j.trc.2018.05.010_b0130 10.1016/j.trc.2018.05.010_b0075 10.1016/j.trc.2018.05.010_b0150 Gonder (10.1016/j.trc.2018.05.010_b0045) 2015; 11 Moiseeva (10.1016/j.trc.2018.05.010_b0090) 2010; 17 Hu (10.1016/j.trc.2018.05.010_b0065) 2015; 4 10.1016/j.trc.2018.05.010_b0005 Kim (10.1016/j.trc.2018.05.010_b0070) 2015; 59 10.1016/j.trc.2018.05.010_b0105 10.1016/j.trc.2018.05.010_b0145 10.1016/j.trc.2018.05.010_b0120 10.1016/j.trc.2018.05.010_b0085 10.1016/j.trc.2018.05.010_b0020 10.1016/j.trc.2018.05.010_b0140 10.1016/j.trc.2018.05.010_b0040 10.1016/j.trc.2018.05.010_b0160 10.1016/j.trc.2018.05.010_b0060 Wolf (10.1016/j.trc.2018.05.010_b0170) 2001; 1768 10.1016/j.trc.2018.05.010_b0180 Zong (10.1016/j.trc.2018.05.010_b0190) 2015; 6 Murakami (10.1016/j.trc.2018.05.010_b0095) 1999; 7 10.1016/j.trc.2018.05.010_b0080 |
References_xml | – reference: Zheng, Y., et al., 2008. Learning transportation mode from raw GPS data for geographic applications on the web. In: Proceedings of the 17th International Conference on World Wide Web. ACM. – reference: Gisgraphy, 2017. Free, Open Source, and Ready to Use Geocoder and Geolocalisation Webservices < – reference: McGahey, D., 2013. Web Service as a Look-Up Table To Refine GPS Data < – reference: Earleywine, M., et al., 2010. Simulated fuel economy and performance of advanced hybrid electric and plug-in hybrid electric vehicles using in-use travel profiles. In: 2010 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE. – reference: Gonzalez, P., et al., 2008. Automating mode detection using neural networks and assisted GPS data collected using GPS-enabled mobile phones. In: 15th World Congress on Intelligent Transportation Systems. – reference: Schrader-Patton, C., Ager, A., Bunzel, K., 2010. Geobrowser deployment in the USDA forest service: a case study. In: Proceedings of the 1st International Conference and Exhibition on Computing for Geospatial Research & Application. ACM. – reference: Hariharan, R., Krumm, J., Horvitz, E., 2005. Web-Enhanced GPS. In: International Symposium on Location-and Context-Awareness. Springer. – volume: 4 start-page: 295 year: 2015 end-page: 312 ident: b0065 article-title: Studying driving risk factors using multi-source mobile computing data publication-title: Int. J. Transp. Sci. Technol. – volume: 1768 start-page: 125 year: 2001 end-page: 134 ident: b0170 article-title: Elimination of the travel diary: experiment to derive trip purpose from global positioning system travel data publication-title: Transport. Res. Rec.: J. Transport. Res. Board – reference: Stenneth, L., et al., 2011. Transportation mode detection using mobile phones and GIS information. In: Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. ACM. – reference: MapQuest, 2016. Mapquest Directions API Service < – volume: 100 start-page: 390 year: 2006 end-page: 398 ident: b0015 article-title: Effects of obesity and sex on the energetic cost and preferred speed of walking publication-title: J. Appl. Physiol. – volume: 44 start-page: 830 year: 2010 end-page: 840 ident: b0025 article-title: Evaluating the feasibility of a passive travel survey collection in a complex urban environment: lessons learned from the New York City case study publication-title: Transport. Res. Part A: Policy Pract. – reference: > (cited 2017 2 May 2017 16:23 UTC). – volume: 7 start-page: 149 year: 1999 end-page: 165 ident: b0095 article-title: Can using global positioning system (GPS) improve trip reporting? publication-title: Transport. Res. Part C: Emerg. Technol. – reference: Stopher, P.R., Jiang, Q., FitzGerald, C., 2005. Processing GPS data from travel surveys. In: 2nd International Colloqium on the Behavioural Foundations of Integrated Land-Use and Transportation Models: Frameworks, Models and Applications. Toronto. – volume: 4 start-page: 1 year: 2005 ident: b0010 article-title: Web GIS in practice III: creating a simple interactive map of England's strategic health authorities using Google maps API, Google Earth KML, and MSN virtual earth map control publication-title: Int. J. Health Geogr. – reference: Reddy, S., et al., 2008. Determining transportation mode on mobile phones. In: 12th IEEE International Symposium on Wearable Computers, 2008, ISWC 2008. IEEE. – volume: 2105 start-page: 28 year: 2009 end-page: 36 ident: b0125 article-title: Processing raw data from global positioning systems without additional information publication-title: Transport. Res. Rec.: J. Transport. Res. Board – reference: Schüssler, N., 2010. Accounting for similarities between alternatives in discrete choice models based on high-resolution observations of transport behaviour. 2010, Diss., Eidgenössische Technische Hochschule ETH Zürich, Nr. 19093. – reference: Stefanakis, E., 2015. Elevation Web Services: Limitations and Prospects < – reference: Srinivasan, S., Bricka, S., Bhat, C., 2009. Methodology for Converting GPS Navigational Streams to the Travel-Diary Data Format. – volume: 17 start-page: 189 year: 2010 end-page: 199 ident: b0090 article-title: Imputing relevant information from multi-day GPS tracers for retail planning and management using data fusion and context-sensitive learning publication-title: J. Retail. Cons. Serv. – reference: Qu, X., et al., 2011. A spatial web service client based on Microsoft Bing Maps. In: 2011 19th International Conference on Geoinformatics. – reference: Contributors, W., 2017. Longest Common Subsequence Problem < – reference: Bohte, W., Maat, K., 2008. Deriving and validating trip destinations and modes for multiday GPS-based travel surveys: application in the Netherlands. In: Transportation Research Board 87th Annual Meeting. – reference: Mapbox, 2016. Mapbox API Documentation < – volume: 11 start-page: 85 year: 2015 end-page: 97 ident: b0045 article-title: Archiving data from new survey technologies: enabling research with high-precision data while preserving participant privacy publication-title: Transp. Res. Proc. – volume: 59 start-page: 375 year: 2015 end-page: 390 ident: b0070 article-title: Spatial and temporal characterization of travel patterns in a traffic network using vehicle trajectories publication-title: Transport. Res. Part C: Emerg. Technol. – reference: >. – reference: Byon, Y.-J., Abdulhai, B., Shalaby, A.S., 2007. Impact of sampling rate of GPS-enabled cell phones on mode detection and GIS map matching performance. In: Transportation Research Board 86th Annual Meeting. – reference: Transportation Secure Data Center, 2005. In: National Renewable Energy Laboratory. – volume: 36 start-page: 131 year: 2012 end-page: 139 ident: b0050 article-title: A GPS/GIS method for travel mode detection in New York City publication-title: Comput. Environ. Urban Syst. – reference: Svennerberg, G., 2010. Beginning Google Maps API 3. Apress. – reference: Zhang, L., et al., 2011. Multi-stage approach to travel-mode segmentation and classification of GPS traces. In: Proceedings of the ISPRS Guilin 2011 Workshop on International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Guilin, China. – volume: 6 start-page: 212 year: 2015 end-page: 227 ident: b0190 article-title: Identifying travel mode with GPS data using support vector machines and genetic algorithm publication-title: Information – volume: 2645 start-page: 67 year: 2017 end-page: 75 ident: b0185 article-title: Trajectory segmentation map-matching approach for large-scale, high-resolution GPS data publication-title: Transport. Res. Rec.: J. Transport. Res. Board – reference: > (cited 2017 04/23/2017). – volume: 1972 start-page: 38 year: 2006 end-page: 45 ident: b0165 article-title: Enhanced system for link and mode identification for personal travel surveys based on global positioning systems publication-title: Transport. Res. Rec.: J. Transport. Res. Board – volume: 1 start-page: 31 year: 2002 end-page: 70 ident: b0100 article-title: Logistic regression analysis and reporting: a primer publication-title: Understand. Statist. – reference: Peter, 2016. Releasing the Map Matching API < – volume: 2645 start-page: 67 year: 2017 ident: 10.1016/j.trc.2018.05.010_b0185 article-title: Trajectory segmentation map-matching approach for large-scale, high-resolution GPS data publication-title: Transport. Res. Rec.: J. Transport. Res. Board doi: 10.3141/2645-08 – ident: 10.1016/j.trc.2018.05.010_b0055 – ident: 10.1016/j.trc.2018.05.010_b0080 – ident: 10.1016/j.trc.2018.05.010_b0005 – ident: 10.1016/j.trc.2018.05.010_b0030 – volume: 4 start-page: 295 issue: 3 year: 2015 ident: 10.1016/j.trc.2018.05.010_b0065 article-title: Studying driving risk factors using multi-source mobile computing data publication-title: Int. J. Transp. Sci. Technol. doi: 10.1260/2046-0430.4.3.295 – ident: 10.1016/j.trc.2018.05.010_b0145 doi: 10.1145/2093973.2093982 – ident: 10.1016/j.trc.2018.05.010_b0040 – ident: 10.1016/j.trc.2018.05.010_b0135 – ident: 10.1016/j.trc.2018.05.010_b0105 – ident: 10.1016/j.trc.2018.05.010_b0130 – ident: 10.1016/j.trc.2018.05.010_b0110 doi: 10.1109/GeoInformatics.2011.5981087 – volume: 44 start-page: 830 issue: 10 year: 2010 ident: 10.1016/j.trc.2018.05.010_b0025 article-title: Evaluating the feasibility of a passive travel survey collection in a complex urban environment: lessons learned from the New York City case study publication-title: Transport. Res. Part A: Policy Pract. – ident: 10.1016/j.trc.2018.05.010_b0160 – ident: 10.1016/j.trc.2018.05.010_b0115 doi: 10.1109/ISWC.2008.4911579 – volume: 7 start-page: 149 issue: 2 year: 1999 ident: 10.1016/j.trc.2018.05.010_b0095 article-title: Can using global positioning system (GPS) improve trip reporting? publication-title: Transport. Res. Part C: Emerg. Technol. doi: 10.1016/S0968-090X(99)00017-0 – ident: 10.1016/j.trc.2018.05.010_b0155 doi: 10.1007/978-1-4302-2803-5 – volume: 17 start-page: 189 issue: 3 year: 2010 ident: 10.1016/j.trc.2018.05.010_b0090 article-title: Imputing relevant information from multi-day GPS tracers for retail planning and management using data fusion and context-sensitive learning publication-title: J. Retail. Cons. Serv. doi: 10.1016/j.jretconser.2010.03.011 – volume: 6 start-page: 212 issue: 2 year: 2015 ident: 10.1016/j.trc.2018.05.010_b0190 article-title: Identifying travel mode with GPS data using support vector machines and genetic algorithm publication-title: Information doi: 10.3390/info6020212 – ident: 10.1016/j.trc.2018.05.010_b0060 doi: 10.1007/11426646_9 – ident: 10.1016/j.trc.2018.05.010_b0140 – volume: 4 start-page: 1 issue: 1 year: 2005 ident: 10.1016/j.trc.2018.05.010_b0010 article-title: Web GIS in practice III: creating a simple interactive map of England's strategic health authorities using Google maps API, Google Earth KML, and MSN virtual earth map control publication-title: Int. J. Health Geogr. doi: 10.1186/1476-072X-4-22 – ident: 10.1016/j.trc.2018.05.010_b0180 doi: 10.1145/1367497.1367532 – volume: 1 start-page: 31 issue: 1 year: 2002 ident: 10.1016/j.trc.2018.05.010_b0100 article-title: Logistic regression analysis and reporting: a primer publication-title: Understand. Statist. doi: 10.1207/S15328031US0101_04 – volume: 1972 start-page: 38 year: 2006 ident: 10.1016/j.trc.2018.05.010_b0165 article-title: Enhanced system for link and mode identification for personal travel surveys based on global positioning systems publication-title: Transport. Res. Rec.: J. Transport. Res. Board doi: 10.1177/0361198106197200105 – ident: 10.1016/j.trc.2018.05.010_b0075 – ident: 10.1016/j.trc.2018.05.010_b0150 – volume: 11 start-page: 85 year: 2015 ident: 10.1016/j.trc.2018.05.010_b0045 article-title: Archiving data from new survey technologies: enabling research with high-precision data while preserving participant privacy publication-title: Transp. Res. Proc. – volume: 36 start-page: 131 issue: 2 year: 2012 ident: 10.1016/j.trc.2018.05.010_b0050 article-title: A GPS/GIS method for travel mode detection in New York City publication-title: Comput. Environ. Urban Syst. doi: 10.1016/j.compenvurbsys.2011.05.003 – ident: 10.1016/j.trc.2018.05.010_b0035 doi: 10.1109/VPPC.2010.5729234 – volume: 2105 start-page: 28 year: 2009 ident: 10.1016/j.trc.2018.05.010_b0125 article-title: Processing raw data from global positioning systems without additional information publication-title: Transport. Res. Rec.: J. Transport. Res. Board doi: 10.3141/2105-04 – volume: 1768 start-page: 125 year: 2001 ident: 10.1016/j.trc.2018.05.010_b0170 article-title: Elimination of the travel diary: experiment to derive trip purpose from global positioning system travel data publication-title: Transport. Res. Rec.: J. Transport. Res. Board doi: 10.3141/1768-15 – volume: 59 start-page: 375 year: 2015 ident: 10.1016/j.trc.2018.05.010_b0070 article-title: Spatial and temporal characterization of travel patterns in a traffic network using vehicle trajectories publication-title: Transport. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2015.07.010 – ident: 10.1016/j.trc.2018.05.010_b0175 – ident: 10.1016/j.trc.2018.05.010_b0020 – volume: 100 start-page: 390 issue: 2 year: 2006 ident: 10.1016/j.trc.2018.05.010_b0015 article-title: Effects of obesity and sex on the energetic cost and preferred speed of walking publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00767.2005 – ident: 10.1016/j.trc.2018.05.010_b0085 – ident: 10.1016/j.trc.2018.05.010_b0120 doi: 10.1145/1823854.1823887 |
SSID | ssj0001957 |
Score | 2.2930923 |
Snippet | •The driving cycle detection leverages map service API and does need GIS data.•A trajectory segmentation algorithm finding the best-matched car mode API... Following advancements in smartphone and portable global positioning system (GPS) data collection, wearable GPS data have realized extensive use in... |
SourceID | osti crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 349 |
SubjectTerms | ADVANCED PROPULSION SYSTEMS Driving cycle detection Map service API Travel mode detection Wearable GPS data |
Title | A driving cycle detection approach using map service API |
URI | https://dx.doi.org/10.1016/j.trc.2018.05.010 https://www.osti.gov/biblio/1452690 |
Volume | 92 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4IHtSDUdSIKOnBk8mkY2vpjguRoEZioiS7NWu3GowOAvPgxb_d9_ZD8SAHb9vSt5Cv7fce3devhFy4aPARw0TCjOz41nIndoEMIV1oI5in3WIp-34ixlP_NuJRgwzrvTAoq6y4v-T0gq2rJ70Kzd5iNus9QvEtWcAiGJSYd3FHObrXwZi--vyRebhB6fYJjXFNIqq_bBYar3yJLoauLM072V-5qTmH6baWdkb7ZK-qF2lY_qQD0kizFtmutxOvWmR3zVHwkMiQJssZLhJQ8wEBNEnzQmyV0do9nKLU_Zm-xQu6KomChg83R2Q6un4ajp3qcATHwD-q3JGuSPrAmlym0rdC62SQ9j0_4XAlLdceg74xMuBQAXFmLRPQ2HppDOCL2AjvmDSzeZaeEMpdm_aTIIj7LPGlkVKwgfZ0EBgNEzQetAmrYVGmcg7HAyxeVS0Re1GApEIkFeMKkGyTy--QRWmbsamxX2OtfvW9AlrfFNbBfsEQ9Ls1KAyCGLc4NJ2d_u-lHbKDd6Ug94w08-V7eg5lR667xbjqkq3w5m48-QJns9Si |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFL0q7VAYEBQQpTw8MCFFdR5OnTGqqFr6EBKtlM2KnQQVQVq1YeDvuc6jKgMMbFHiG0XH8bk3zvExwL2pDT5CHEg6IxtOkjAjNJEMMV1I5VJbmvlU9nTmDhfOU8CCGvSrtTBaVllyf8HpOVuXZ7olmt31ctl9weKbU48G-FLqvNs7gIZ2p3Lq0PBH4-FsR8imVxh-Yns9LRFUPzdzmVe20UaGJi_8O-lv6am-whG3l3kGJ3BclozEL57qFGpx2oJmtaJ424KjPVPBM-A-iTZLPU9A1BcGkCjOcr1VSioDcaLV7q_kI1yTbcEVxH8encNi8DjvD41yfwRD4UdVZnDTjSwkTsZj7iSulFEvtmwnYnjEEyZtit2juMewCGI0SaiLjRM7DhF_N1SufQH1dJXGl0CYmcRW5HmhRSOHK85d2pO29DwlcYyGvTbQChahSvNwvYfFu6hUYm8CkRQaSUGZQCTb8LALWRfOGX81diqsxY_uF8jsf4V1dL_oEG15q7Q2CGPMfN90evW_m95BczifTsRkNBt34FBfKfS511DPNp_xDVYhmbwt37Jvw1bXUw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+driving+cycle+detection+approach+using+map+service+API&rft.jtitle=Transportation+research.+Part+C%2C+Emerging+technologies&rft.au=Zhu%2C+Lei&rft.au=Gonder%2C+Jeffrey+D.&rft.date=2018-07-01&rft.pub=Elsevier+Ltd&rft.issn=0968-090X&rft.eissn=1879-2359&rft.volume=92&rft.spage=349&rft.epage=363&rft_id=info:doi/10.1016%2Fj.trc.2018.05.010&rft.externalDocID=S0968090X18306387 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-090X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-090X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-090X&client=summon |