A driving cycle detection approach using map service API

•The driving cycle detection leverages map service API and does need GIS data.•A trajectory segmentation algorithm finding the best-matched car mode API route.•A logistic regression built by selected features provides an accurate prediction. Following advancements in smartphone and portable global p...

Full description

Saved in:
Bibliographic Details
Published inTransportation research. Part C, Emerging technologies Vol. 92; no. C; pp. 349 - 363
Main Authors Zhu, Lei, Gonder, Jeffrey D.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.07.2018
Elsevier
Subjects
Online AccessGet full text
ISSN0968-090X
1879-2359
DOI10.1016/j.trc.2018.05.010

Cover

Loading…
Abstract •The driving cycle detection leverages map service API and does need GIS data.•A trajectory segmentation algorithm finding the best-matched car mode API route.•A logistic regression built by selected features provides an accurate prediction. Following advancements in smartphone and portable global positioning system (GPS) data collection, wearable GPS data have realized extensive use in transportation surveys and studies. The task of detecting driving cycles (driving or car-mode trajectory segments) from wearable GPS data has been the subject of much research. Specifically, distinguishing driving cycles from other motorized trips (such as taking a bus) is the main research problem in this paper. Many mode detection methods only focus on raw GPS speed data while some studies apply additional information, such as geographic information system (GIS) data, to obtain better detection performance. Procuring and maintaining dedicated road GIS data are costly and not trivial, whereas the technical maturity and broad use of map service application program interface (API) queries offers opportunities for mode detection tasks. The proposed driving cycle detection method takes advantage of map service APIs to obtain high-quality car-mode API route information and uses a trajectory segmentation algorithm to find the best-matched API route. The car-mode API route data combined with the actual route information, including the actual mode information, are used to train a logistic regression machine learning model, which estimates car modes and non-car modes with probability rates. The experimental results show promise for the proposed method’s ability to detect vehicle mode accurately.
AbstractList Following advancements in smartphone and portable global positioning system (GPS) data collection, wearable GPS data have realized extensive use in transportation surveys and studies. The task of detecting driving cycles (driving or car-mode trajectory segments) from wearable GPS data has been the subject of much research. Specifically, distinguishing driving cycles from other motorized trips (such as taking a bus) is the main research problem in this paper. Many mode detection methods only focus on raw GPS speed data while some studies apply additional information, such as geographic information system (GIS) data, to obtain better detection performance. Procuring and maintaining dedicated road GIS data are costly and not trivial, whereas the technical maturity and broad use of map service application program interface (API) queries offers opportunities for mode detection tasks. The proposed driving cycle detection method takes advantage of map service APIs to obtain high-quality car-mode API route information and uses a trajectory segmentation algorithm to find the best-matched API route. The car-mode API route data combined with the actual route information, including the actual mode information, are used to train a logistic regression machine learning model, which estimates car modes and non-car modes with probability rates. The experimental results show promise for the proposed method's ability to detect vehicle mode accurately.
•The driving cycle detection leverages map service API and does need GIS data.•A trajectory segmentation algorithm finding the best-matched car mode API route.•A logistic regression built by selected features provides an accurate prediction. Following advancements in smartphone and portable global positioning system (GPS) data collection, wearable GPS data have realized extensive use in transportation surveys and studies. The task of detecting driving cycles (driving or car-mode trajectory segments) from wearable GPS data has been the subject of much research. Specifically, distinguishing driving cycles from other motorized trips (such as taking a bus) is the main research problem in this paper. Many mode detection methods only focus on raw GPS speed data while some studies apply additional information, such as geographic information system (GIS) data, to obtain better detection performance. Procuring and maintaining dedicated road GIS data are costly and not trivial, whereas the technical maturity and broad use of map service application program interface (API) queries offers opportunities for mode detection tasks. The proposed driving cycle detection method takes advantage of map service APIs to obtain high-quality car-mode API route information and uses a trajectory segmentation algorithm to find the best-matched API route. The car-mode API route data combined with the actual route information, including the actual mode information, are used to train a logistic regression machine learning model, which estimates car modes and non-car modes with probability rates. The experimental results show promise for the proposed method’s ability to detect vehicle mode accurately.
Author Zhu, Lei
Gonder, Jeffrey D.
Author_xml – sequence: 1
  givenname: Lei
  orcidid: 0000-0001-7307-958X
  surname: Zhu
  fullname: Zhu, Lei
  email: Lei.Zhu@nrel.gov
– sequence: 2
  givenname: Jeffrey D.
  surname: Gonder
  fullname: Gonder, Jeffrey D.
  email: Jeff.Gonder@nrel.gov
BackLink https://www.osti.gov/biblio/1452690$$D View this record in Osti.gov
BookMark eNp9kE9Lw0AQxRepYK1-AG_Be-Jskt3s4qkU_xQKelDwtmwnE7ulTcJuLPTbu6GePPQ0A_N-w3vvmk3ariXG7jhkHLh82GaDxywHrjIQGXC4YFOuKp3mhdATNgUtVQoavq7YdQhbAOBaVFOm5knt3cG13wkecUdJTQPh4Lo2sX3vO4ub5CeM573tk0D-4JCS-fvyhl02dhfo9m_O2Ofz08fiNV29vSwX81WKZamGVHFZ52RRKFJlI9fruqK8KGsRN9WIdQGIFpUWqtACmgZkFDcFWQ4gLcpixu5Pf7swOBPQRXsb7No2ujS8FLnUEEX8JELfheCpMb13e-uPhoMZ-zFbE_sxYz8GhIn9RKb6x8Tfdkw-eOt2Z8nHE0kx98GRH21Ri1Q7P7qqO3eG_gXTC4Hv
CitedBy_id crossref_primary_10_1088_1757_899X_662_2_022016
crossref_primary_10_1002_gdj3_156
crossref_primary_10_1016_j_jhe_2024_102005
crossref_primary_10_1088_1742_6596_1524_1_012016
crossref_primary_10_1109_TIA_2022_3149848
crossref_primary_10_1109_TCSS_2022_3170934
crossref_primary_10_1016_j_engappai_2023_107665
crossref_primary_10_1371_journal_pone_0234003
crossref_primary_10_1049_iet_its_2020_0486
crossref_primary_10_1109_ACCESS_2019_2936443
crossref_primary_10_1109_MITS_2019_2919537
crossref_primary_10_1007_s42421_019_00004_w
Cites_doi 10.3141/2645-08
10.1260/2046-0430.4.3.295
10.1145/2093973.2093982
10.1109/GeoInformatics.2011.5981087
10.1109/ISWC.2008.4911579
10.1016/S0968-090X(99)00017-0
10.1007/978-1-4302-2803-5
10.1016/j.jretconser.2010.03.011
10.3390/info6020212
10.1007/11426646_9
10.1186/1476-072X-4-22
10.1145/1367497.1367532
10.1207/S15328031US0101_04
10.1177/0361198106197200105
10.1016/j.compenvurbsys.2011.05.003
10.1109/VPPC.2010.5729234
10.3141/2105-04
10.3141/1768-15
10.1016/j.trc.2015.07.010
10.1152/japplphysiol.00767.2005
10.1145/1823854.1823887
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
CorporateAuthor National Renewable Energy Lab. (NREL), Golden, CO (United States)
CorporateAuthor_xml – name: National Renewable Energy Lab. (NREL), Golden, CO (United States)
DBID AAYXX
CITATION
OTOTI
DOI 10.1016/j.trc.2018.05.010
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1879-2359
EndPage 363
ExternalDocumentID 1452690
10_1016_j_trc_2018_05_010
S0968090X18306387
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABLJU
ABMAC
ABMMH
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
APLSM
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HMY
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY1
LY7
M3Y
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSO
SSS
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
AALMO
AAPBV
ABPIF
ABPTK
OTOTI
ID FETCH-LOGICAL-c448t-816d2eac58e84f6bbd7e234d5bbd8f5b30ccac89583950ff06eacf3ea1006ac63
IEDL.DBID .~1
ISSN 0968-090X
IngestDate Thu May 18 18:39:55 EDT 2023
Tue Jul 01 01:45:09 EDT 2025
Thu Apr 24 23:01:22 EDT 2025
Fri Feb 23 02:16:17 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Travel mode detection
Driving cycle detection
Map service API
Wearable GPS data
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c448t-816d2eac58e84f6bbd7e234d5bbd8f5b30ccac89583950ff06eacf3ea1006ac63
Notes USDOE Office of Energy Efficiency and Renewable Energy (EERE), NREL Laboratory Directed Research and Development (LDRD)
AC36-08GO28308
NREL/JA-5400-68508
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
ORCID 0000-0001-7307-958X
000000017307958X
OpenAccessLink https://www.osti.gov/biblio/1545164
PageCount 15
ParticipantIDs osti_scitechconnect_1452690
crossref_primary_10_1016_j_trc_2018_05_010
crossref_citationtrail_10_1016_j_trc_2018_05_010
elsevier_sciencedirect_doi_10_1016_j_trc_2018_05_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-07-01
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Transportation research. Part C, Emerging technologies
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Boulos (b0010) 2005; 4
Hu (b0065) 2015; 4
Srinivasan, S., Bricka, S., Bhat, C., 2009. Methodology for Converting GPS Navigational Streams to the Travel-Diary Data Format.
Wolf, Guensler, Bachman (b0170) 2001; 1768
Murakami, Wagner (b0095) 1999; 7
Stopher, P.R., Jiang, Q., FitzGerald, C., 2005. Processing GPS data from travel surveys. In: 2nd International Colloqium on the Behavioural Foundations of Integrated Land-Use and Transportation Models: Frameworks, Models and Applications. Toronto.
Peter, 2016. Releasing the Map Matching API
Svennerberg, G., 2010. Beginning Google Maps API 3. Apress.
Gonder, Burton, Murakami (b0045) 2015; 11
MapQuest, 2016. Mapquest Directions API Service
Bohte, W., Maat, K., 2008. Deriving and validating trip destinations and modes for multiday GPS-based travel surveys: application in the Netherlands. In: Transportation Research Board 87th Annual Meeting.
Chen (b0025) 2010; 44
Gisgraphy, 2017. Free, Open Source, and Ready to Use Geocoder and Geolocalisation Webservices
Tsui, Shalaby (b0165) 2006; 1972
Zhang, L., et al., 2011. Multi-stage approach to travel-mode segmentation and classification of GPS traces. In: Proceedings of the ISPRS Guilin 2011 Workshop on International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Guilin, China.
Stefanakis, E., 2015. Elevation Web Services: Limitations and Prospects
Zheng, Y., et al., 2008. Learning transportation mode from raw GPS data for geographic applications on the web. In: Proceedings of the 17th International Conference on World Wide Web. ACM.
McGahey, D., 2013. Web Service as a Look-Up Table To Refine GPS Data
Stenneth, L., et al., 2011. Transportation mode detection using mobile phones and GIS information. In: Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. ACM.
Zong (b0190) 2015; 6
Kim, Mahmassani (b0070) 2015; 59
Browning (b0015) 2006; 100
Reddy, S., et al., 2008. Determining transportation mode on mobile phones. In: 12th IEEE International Symposium on Wearable Computers, 2008, ISWC 2008. IEEE.
Byon, Y.-J., Abdulhai, B., Shalaby, A.S., 2007. Impact of sampling rate of GPS-enabled cell phones on mode detection and GIS map matching performance. In: Transportation Research Board 86th Annual Meeting.
Schuessler, Axhausen (b0125) 2009; 2105
Zhu, Holden, Gonder (b0185) 2017; 2645
Mapbox, 2016. Mapbox API Documentation
Peng, So (b0100) 2002; 1
Qu, X., et al., 2011. A spatial web service client based on Microsoft Bing Maps. In: 2011 19th International Conference on Geoinformatics.
Gonzalez, P., et al., 2008. Automating mode detection using neural networks and assisted GPS data collected using GPS-enabled mobile phones. In: 15th World Congress on Intelligent Transportation Systems.
Moiseeva, Timmermans (b0090) 2010; 17
Contributors, W., 2017. Longest Common Subsequence Problem
Transportation Secure Data Center, 2005. In: National Renewable Energy Laboratory.
.
Schrader-Patton, C., Ager, A., Bunzel, K., 2010. Geobrowser deployment in the USDA forest service: a case study. In: Proceedings of the 1st International Conference and Exhibition on Computing for Geospatial Research & Application. ACM.
(cited 2017 2 May 2017 16:23 UTC).
Earleywine, M., et al., 2010. Simulated fuel economy and performance of advanced hybrid electric and plug-in hybrid electric vehicles using in-use travel profiles. In: 2010 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE.
Hariharan, R., Krumm, J., Horvitz, E., 2005. Web-Enhanced GPS. In: International Symposium on Location-and Context-Awareness. Springer.
Gong (b0050) 2012; 36
Schüssler, N., 2010. Accounting for similarities between alternatives in discrete choice models based on high-resolution observations of transport behaviour. 2010, Diss., Eidgenössische Technische Hochschule ETH Zürich, Nr. 19093.
(cited 2017 04/23/2017).
Gong (10.1016/j.trc.2018.05.010_b0050) 2012; 36
Peng (10.1016/j.trc.2018.05.010_b0100) 2002; 1
Zhu (10.1016/j.trc.2018.05.010_b0185) 2017; 2645
Browning (10.1016/j.trc.2018.05.010_b0015) 2006; 100
Boulos (10.1016/j.trc.2018.05.010_b0010) 2005; 4
Chen (10.1016/j.trc.2018.05.010_b0025) 2010; 44
Schuessler (10.1016/j.trc.2018.05.010_b0125) 2009; 2105
Tsui (10.1016/j.trc.2018.05.010_b0165) 2006; 1972
10.1016/j.trc.2018.05.010_b0115
10.1016/j.trc.2018.05.010_b0135
10.1016/j.trc.2018.05.010_b0035
10.1016/j.trc.2018.05.010_b0155
10.1016/j.trc.2018.05.010_b0110
10.1016/j.trc.2018.05.010_b0055
10.1016/j.trc.2018.05.010_b0175
10.1016/j.trc.2018.05.010_b0030
10.1016/j.trc.2018.05.010_b0130
10.1016/j.trc.2018.05.010_b0075
10.1016/j.trc.2018.05.010_b0150
Gonder (10.1016/j.trc.2018.05.010_b0045) 2015; 11
Moiseeva (10.1016/j.trc.2018.05.010_b0090) 2010; 17
Hu (10.1016/j.trc.2018.05.010_b0065) 2015; 4
10.1016/j.trc.2018.05.010_b0005
Kim (10.1016/j.trc.2018.05.010_b0070) 2015; 59
10.1016/j.trc.2018.05.010_b0105
10.1016/j.trc.2018.05.010_b0145
10.1016/j.trc.2018.05.010_b0120
10.1016/j.trc.2018.05.010_b0085
10.1016/j.trc.2018.05.010_b0020
10.1016/j.trc.2018.05.010_b0140
10.1016/j.trc.2018.05.010_b0040
10.1016/j.trc.2018.05.010_b0160
10.1016/j.trc.2018.05.010_b0060
Wolf (10.1016/j.trc.2018.05.010_b0170) 2001; 1768
10.1016/j.trc.2018.05.010_b0180
Zong (10.1016/j.trc.2018.05.010_b0190) 2015; 6
Murakami (10.1016/j.trc.2018.05.010_b0095) 1999; 7
10.1016/j.trc.2018.05.010_b0080
References_xml – reference: Zheng, Y., et al., 2008. Learning transportation mode from raw GPS data for geographic applications on the web. In: Proceedings of the 17th International Conference on World Wide Web. ACM.
– reference: Gisgraphy, 2017. Free, Open Source, and Ready to Use Geocoder and Geolocalisation Webservices <
– reference: McGahey, D., 2013. Web Service as a Look-Up Table To Refine GPS Data <
– reference: Earleywine, M., et al., 2010. Simulated fuel economy and performance of advanced hybrid electric and plug-in hybrid electric vehicles using in-use travel profiles. In: 2010 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE.
– reference: Gonzalez, P., et al., 2008. Automating mode detection using neural networks and assisted GPS data collected using GPS-enabled mobile phones. In: 15th World Congress on Intelligent Transportation Systems.
– reference: Schrader-Patton, C., Ager, A., Bunzel, K., 2010. Geobrowser deployment in the USDA forest service: a case study. In: Proceedings of the 1st International Conference and Exhibition on Computing for Geospatial Research & Application. ACM.
– reference: Hariharan, R., Krumm, J., Horvitz, E., 2005. Web-Enhanced GPS. In: International Symposium on Location-and Context-Awareness. Springer.
– volume: 4
  start-page: 295
  year: 2015
  end-page: 312
  ident: b0065
  article-title: Studying driving risk factors using multi-source mobile computing data
  publication-title: Int. J. Transp. Sci. Technol.
– volume: 1768
  start-page: 125
  year: 2001
  end-page: 134
  ident: b0170
  article-title: Elimination of the travel diary: experiment to derive trip purpose from global positioning system travel data
  publication-title: Transport. Res. Rec.: J. Transport. Res. Board
– reference: Stenneth, L., et al., 2011. Transportation mode detection using mobile phones and GIS information. In: Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. ACM.
– reference: MapQuest, 2016. Mapquest Directions API Service <
– volume: 100
  start-page: 390
  year: 2006
  end-page: 398
  ident: b0015
  article-title: Effects of obesity and sex on the energetic cost and preferred speed of walking
  publication-title: J. Appl. Physiol.
– volume: 44
  start-page: 830
  year: 2010
  end-page: 840
  ident: b0025
  article-title: Evaluating the feasibility of a passive travel survey collection in a complex urban environment: lessons learned from the New York City case study
  publication-title: Transport. Res. Part A: Policy Pract.
– reference: > (cited 2017 2 May 2017 16:23 UTC).
– volume: 7
  start-page: 149
  year: 1999
  end-page: 165
  ident: b0095
  article-title: Can using global positioning system (GPS) improve trip reporting?
  publication-title: Transport. Res. Part C: Emerg. Technol.
– reference: Stopher, P.R., Jiang, Q., FitzGerald, C., 2005. Processing GPS data from travel surveys. In: 2nd International Colloqium on the Behavioural Foundations of Integrated Land-Use and Transportation Models: Frameworks, Models and Applications. Toronto.
– volume: 4
  start-page: 1
  year: 2005
  ident: b0010
  article-title: Web GIS in practice III: creating a simple interactive map of England's strategic health authorities using Google maps API, Google Earth KML, and MSN virtual earth map control
  publication-title: Int. J. Health Geogr.
– reference: Reddy, S., et al., 2008. Determining transportation mode on mobile phones. In: 12th IEEE International Symposium on Wearable Computers, 2008, ISWC 2008. IEEE.
– volume: 2105
  start-page: 28
  year: 2009
  end-page: 36
  ident: b0125
  article-title: Processing raw data from global positioning systems without additional information
  publication-title: Transport. Res. Rec.: J. Transport. Res. Board
– reference: Schüssler, N., 2010. Accounting for similarities between alternatives in discrete choice models based on high-resolution observations of transport behaviour. 2010, Diss., Eidgenössische Technische Hochschule ETH Zürich, Nr. 19093.
– reference: Stefanakis, E., 2015. Elevation Web Services: Limitations and Prospects <
– reference: Srinivasan, S., Bricka, S., Bhat, C., 2009. Methodology for Converting GPS Navigational Streams to the Travel-Diary Data Format.
– volume: 17
  start-page: 189
  year: 2010
  end-page: 199
  ident: b0090
  article-title: Imputing relevant information from multi-day GPS tracers for retail planning and management using data fusion and context-sensitive learning
  publication-title: J. Retail. Cons. Serv.
– reference: Qu, X., et al., 2011. A spatial web service client based on Microsoft Bing Maps. In: 2011 19th International Conference on Geoinformatics.
– reference: Contributors, W., 2017. Longest Common Subsequence Problem <
– reference: Bohte, W., Maat, K., 2008. Deriving and validating trip destinations and modes for multiday GPS-based travel surveys: application in the Netherlands. In: Transportation Research Board 87th Annual Meeting.
– reference: Mapbox, 2016. Mapbox API Documentation <
– volume: 11
  start-page: 85
  year: 2015
  end-page: 97
  ident: b0045
  article-title: Archiving data from new survey technologies: enabling research with high-precision data while preserving participant privacy
  publication-title: Transp. Res. Proc.
– volume: 59
  start-page: 375
  year: 2015
  end-page: 390
  ident: b0070
  article-title: Spatial and temporal characterization of travel patterns in a traffic network using vehicle trajectories
  publication-title: Transport. Res. Part C: Emerg. Technol.
– reference: >.
– reference: Byon, Y.-J., Abdulhai, B., Shalaby, A.S., 2007. Impact of sampling rate of GPS-enabled cell phones on mode detection and GIS map matching performance. In: Transportation Research Board 86th Annual Meeting.
– reference: Transportation Secure Data Center, 2005. In: National Renewable Energy Laboratory.
– volume: 36
  start-page: 131
  year: 2012
  end-page: 139
  ident: b0050
  article-title: A GPS/GIS method for travel mode detection in New York City
  publication-title: Comput. Environ. Urban Syst.
– reference: Svennerberg, G., 2010. Beginning Google Maps API 3. Apress.
– reference: Zhang, L., et al., 2011. Multi-stage approach to travel-mode segmentation and classification of GPS traces. In: Proceedings of the ISPRS Guilin 2011 Workshop on International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Guilin, China.
– volume: 6
  start-page: 212
  year: 2015
  end-page: 227
  ident: b0190
  article-title: Identifying travel mode with GPS data using support vector machines and genetic algorithm
  publication-title: Information
– volume: 2645
  start-page: 67
  year: 2017
  end-page: 75
  ident: b0185
  article-title: Trajectory segmentation map-matching approach for large-scale, high-resolution GPS data
  publication-title: Transport. Res. Rec.: J. Transport. Res. Board
– reference: > (cited 2017 04/23/2017).
– volume: 1972
  start-page: 38
  year: 2006
  end-page: 45
  ident: b0165
  article-title: Enhanced system for link and mode identification for personal travel surveys based on global positioning systems
  publication-title: Transport. Res. Rec.: J. Transport. Res. Board
– volume: 1
  start-page: 31
  year: 2002
  end-page: 70
  ident: b0100
  article-title: Logistic regression analysis and reporting: a primer
  publication-title: Understand. Statist.
– reference: Peter, 2016. Releasing the Map Matching API <
– volume: 2645
  start-page: 67
  year: 2017
  ident: 10.1016/j.trc.2018.05.010_b0185
  article-title: Trajectory segmentation map-matching approach for large-scale, high-resolution GPS data
  publication-title: Transport. Res. Rec.: J. Transport. Res. Board
  doi: 10.3141/2645-08
– ident: 10.1016/j.trc.2018.05.010_b0055
– ident: 10.1016/j.trc.2018.05.010_b0080
– ident: 10.1016/j.trc.2018.05.010_b0005
– ident: 10.1016/j.trc.2018.05.010_b0030
– volume: 4
  start-page: 295
  issue: 3
  year: 2015
  ident: 10.1016/j.trc.2018.05.010_b0065
  article-title: Studying driving risk factors using multi-source mobile computing data
  publication-title: Int. J. Transp. Sci. Technol.
  doi: 10.1260/2046-0430.4.3.295
– ident: 10.1016/j.trc.2018.05.010_b0145
  doi: 10.1145/2093973.2093982
– ident: 10.1016/j.trc.2018.05.010_b0040
– ident: 10.1016/j.trc.2018.05.010_b0135
– ident: 10.1016/j.trc.2018.05.010_b0105
– ident: 10.1016/j.trc.2018.05.010_b0130
– ident: 10.1016/j.trc.2018.05.010_b0110
  doi: 10.1109/GeoInformatics.2011.5981087
– volume: 44
  start-page: 830
  issue: 10
  year: 2010
  ident: 10.1016/j.trc.2018.05.010_b0025
  article-title: Evaluating the feasibility of a passive travel survey collection in a complex urban environment: lessons learned from the New York City case study
  publication-title: Transport. Res. Part A: Policy Pract.
– ident: 10.1016/j.trc.2018.05.010_b0160
– ident: 10.1016/j.trc.2018.05.010_b0115
  doi: 10.1109/ISWC.2008.4911579
– volume: 7
  start-page: 149
  issue: 2
  year: 1999
  ident: 10.1016/j.trc.2018.05.010_b0095
  article-title: Can using global positioning system (GPS) improve trip reporting?
  publication-title: Transport. Res. Part C: Emerg. Technol.
  doi: 10.1016/S0968-090X(99)00017-0
– ident: 10.1016/j.trc.2018.05.010_b0155
  doi: 10.1007/978-1-4302-2803-5
– volume: 17
  start-page: 189
  issue: 3
  year: 2010
  ident: 10.1016/j.trc.2018.05.010_b0090
  article-title: Imputing relevant information from multi-day GPS tracers for retail planning and management using data fusion and context-sensitive learning
  publication-title: J. Retail. Cons. Serv.
  doi: 10.1016/j.jretconser.2010.03.011
– volume: 6
  start-page: 212
  issue: 2
  year: 2015
  ident: 10.1016/j.trc.2018.05.010_b0190
  article-title: Identifying travel mode with GPS data using support vector machines and genetic algorithm
  publication-title: Information
  doi: 10.3390/info6020212
– ident: 10.1016/j.trc.2018.05.010_b0060
  doi: 10.1007/11426646_9
– ident: 10.1016/j.trc.2018.05.010_b0140
– volume: 4
  start-page: 1
  issue: 1
  year: 2005
  ident: 10.1016/j.trc.2018.05.010_b0010
  article-title: Web GIS in practice III: creating a simple interactive map of England's strategic health authorities using Google maps API, Google Earth KML, and MSN virtual earth map control
  publication-title: Int. J. Health Geogr.
  doi: 10.1186/1476-072X-4-22
– ident: 10.1016/j.trc.2018.05.010_b0180
  doi: 10.1145/1367497.1367532
– volume: 1
  start-page: 31
  issue: 1
  year: 2002
  ident: 10.1016/j.trc.2018.05.010_b0100
  article-title: Logistic regression analysis and reporting: a primer
  publication-title: Understand. Statist.
  doi: 10.1207/S15328031US0101_04
– volume: 1972
  start-page: 38
  year: 2006
  ident: 10.1016/j.trc.2018.05.010_b0165
  article-title: Enhanced system for link and mode identification for personal travel surveys based on global positioning systems
  publication-title: Transport. Res. Rec.: J. Transport. Res. Board
  doi: 10.1177/0361198106197200105
– ident: 10.1016/j.trc.2018.05.010_b0075
– ident: 10.1016/j.trc.2018.05.010_b0150
– volume: 11
  start-page: 85
  year: 2015
  ident: 10.1016/j.trc.2018.05.010_b0045
  article-title: Archiving data from new survey technologies: enabling research with high-precision data while preserving participant privacy
  publication-title: Transp. Res. Proc.
– volume: 36
  start-page: 131
  issue: 2
  year: 2012
  ident: 10.1016/j.trc.2018.05.010_b0050
  article-title: A GPS/GIS method for travel mode detection in New York City
  publication-title: Comput. Environ. Urban Syst.
  doi: 10.1016/j.compenvurbsys.2011.05.003
– ident: 10.1016/j.trc.2018.05.010_b0035
  doi: 10.1109/VPPC.2010.5729234
– volume: 2105
  start-page: 28
  year: 2009
  ident: 10.1016/j.trc.2018.05.010_b0125
  article-title: Processing raw data from global positioning systems without additional information
  publication-title: Transport. Res. Rec.: J. Transport. Res. Board
  doi: 10.3141/2105-04
– volume: 1768
  start-page: 125
  year: 2001
  ident: 10.1016/j.trc.2018.05.010_b0170
  article-title: Elimination of the travel diary: experiment to derive trip purpose from global positioning system travel data
  publication-title: Transport. Res. Rec.: J. Transport. Res. Board
  doi: 10.3141/1768-15
– volume: 59
  start-page: 375
  year: 2015
  ident: 10.1016/j.trc.2018.05.010_b0070
  article-title: Spatial and temporal characterization of travel patterns in a traffic network using vehicle trajectories
  publication-title: Transport. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2015.07.010
– ident: 10.1016/j.trc.2018.05.010_b0175
– ident: 10.1016/j.trc.2018.05.010_b0020
– volume: 100
  start-page: 390
  issue: 2
  year: 2006
  ident: 10.1016/j.trc.2018.05.010_b0015
  article-title: Effects of obesity and sex on the energetic cost and preferred speed of walking
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00767.2005
– ident: 10.1016/j.trc.2018.05.010_b0085
– ident: 10.1016/j.trc.2018.05.010_b0120
  doi: 10.1145/1823854.1823887
SSID ssj0001957
Score 2.2930923
Snippet •The driving cycle detection leverages map service API and does need GIS data.•A trajectory segmentation algorithm finding the best-matched car mode API...
Following advancements in smartphone and portable global positioning system (GPS) data collection, wearable GPS data have realized extensive use in...
SourceID osti
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 349
SubjectTerms ADVANCED PROPULSION SYSTEMS
Driving cycle detection
Map service API
Travel mode detection
Wearable GPS data
Title A driving cycle detection approach using map service API
URI https://dx.doi.org/10.1016/j.trc.2018.05.010
https://www.osti.gov/biblio/1452690
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4IHtSDUdSIKOnBk8mkY2vpjguRoEZioiS7NWu3GowOAvPgxb_d9_ZD8SAHb9vSt5Cv7fce3devhFy4aPARw0TCjOz41nIndoEMIV1oI5in3WIp-34ixlP_NuJRgwzrvTAoq6y4v-T0gq2rJ70Kzd5iNus9QvEtWcAiGJSYd3FHObrXwZi--vyRebhB6fYJjXFNIqq_bBYar3yJLoauLM072V-5qTmH6baWdkb7ZK-qF2lY_qQD0kizFtmutxOvWmR3zVHwkMiQJssZLhJQ8wEBNEnzQmyV0do9nKLU_Zm-xQu6KomChg83R2Q6un4ajp3qcATHwD-q3JGuSPrAmlym0rdC62SQ9j0_4XAlLdceg74xMuBQAXFmLRPQ2HppDOCL2AjvmDSzeZaeEMpdm_aTIIj7LPGlkVKwgfZ0EBgNEzQetAmrYVGmcg7HAyxeVS0Re1GApEIkFeMKkGyTy--QRWmbsamxX2OtfvW9AlrfFNbBfsEQ9Ls1KAyCGLc4NJ2d_u-lHbKDd6Ug94w08-V7eg5lR667xbjqkq3w5m48-QJns9Si
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFL0q7VAYEBQQpTw8MCFFdR5OnTGqqFr6EBKtlM2KnQQVQVq1YeDvuc6jKgMMbFHiG0XH8bk3zvExwL2pDT5CHEg6IxtOkjAjNJEMMV1I5VJbmvlU9nTmDhfOU8CCGvSrtTBaVllyf8HpOVuXZ7olmt31ctl9weKbU48G-FLqvNs7gIZ2p3Lq0PBH4-FsR8imVxh-Yns9LRFUPzdzmVe20UaGJi_8O-lv6am-whG3l3kGJ3BclozEL57qFGpx2oJmtaJ424KjPVPBM-A-iTZLPU9A1BcGkCjOcr1VSioDcaLV7q_kI1yTbcEVxH8encNi8DjvD41yfwRD4UdVZnDTjSwkTsZj7iSulFEvtmwnYnjEEyZtit2juMewCGI0SaiLjRM7DhF_N1SufQH1dJXGl0CYmcRW5HmhRSOHK85d2pO29DwlcYyGvTbQChahSvNwvYfFu6hUYm8CkRQaSUGZQCTb8LALWRfOGX81diqsxY_uF8jsf4V1dL_oEG15q7Q2CGPMfN90evW_m95BczifTsRkNBt34FBfKfS511DPNp_xDVYhmbwt37Jvw1bXUw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+driving+cycle+detection+approach+using+map+service+API&rft.jtitle=Transportation+research.+Part+C%2C+Emerging+technologies&rft.au=Zhu%2C+Lei&rft.au=Gonder%2C+Jeffrey+D.&rft.date=2018-07-01&rft.pub=Elsevier+Ltd&rft.issn=0968-090X&rft.eissn=1879-2359&rft.volume=92&rft.spage=349&rft.epage=363&rft_id=info:doi/10.1016%2Fj.trc.2018.05.010&rft.externalDocID=S0968090X18306387
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-090X&client=summon