Increased serum erythropoietin but not red cell production after 4 wk of intermittent hypobaric hypoxia (4,000-5,500 m)

1 Australian Institute of Sport, Canberra, Australia; 2 Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas and University of Texas Southwestern Medical Center at Dallas, Dallas, Texas; 3 Institut Nacional d'Educació Física de Catalunya, Universitat de Barcelona,...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physiology (1985) Vol. 101; no. 5; pp. 1386 - 1393
Main Authors Gore, Christopher J, Rodriguez, Ferran A, Truijens, Martin J, Townsend, Nathan E, Stray-Gundersen, James, Levine, Benjamin D
Format Journal Article
LanguageEnglish
Published Bethesda, MD Am Physiological Soc 01.11.2006
American Physiological Society
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 1 Australian Institute of Sport, Canberra, Australia; 2 Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas and University of Texas Southwestern Medical Center at Dallas, Dallas, Texas; 3 Institut Nacional d'Educació Física de Catalunya, Universitat de Barcelona, Barcelona, Spain; 4 Faculty of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; and 5 New South Wales Institute of Sport, Sydney, Australia Submitted 21 March 2006 ; accepted in final form 16 June 2006 This study tested the hypothesis that athletes exposed to 4 wk of intermittent hypobaric hypoxia exposure (3 h/day, 5 days/wk at 4,000–5,500 m) or double-blind placebo increase their red blood cell volume (RCV) and hemoglobin mass (Hb mass ) secondary to an increase in erythropoietin (EPO). Twenty-three collegiate level athletes were measured before (Pre) and after (Post) the intervention for RCV via Evans blue (EB) dye and in duplicate for Hb mass using CO rebreathing. Hematological indexes including EPO, soluble transferrin receptor, and reticulocyte parameters were measured on 8–10 occasions spanning the intervention. The subjects were randomly divided among hypobaric hypoxia (Hypo, n = 11) and normoxic (Norm, n = 12) groups. Apart from doubling EPO concentration 3 h after hypoxia there was no increase in any of the measures for either Hypo or Norm groups. The mean change in RCV from Pre to Post for the Hypo group was 2.3% (95% confidence limits = –4.8 to 9.5%) and for the Norm group was –0.2% (–5.7 to 5.3%). The corresponding changes in Hb mass were 1.0% (–1.3 to 3.3%) for Hypo and –0.3% (–2.6 to 3.1%) for Norm. There was good agreement between blood volume (BV) from EB and CO: EB BV = 1.03 x CO BV + 142, r 2 = 0.85, P < 0.0001. Overall, evidence from four independent techniques (RCV, Hb mass , reticulocyte parameters, and soluble transferrin receptor) suggests that INTERMITTENT HYPOBARIC HYPOXIA EXPOSURE did not accelerate erythropoiesis despite the increase in serum EPO. high altitude; erythropoiesis; red cell volume; hemoglobin mass Address for reprint requests and other correspondence: C. J. Gore, Physiology Dept., Australian Institute of Sport, Leverrier Crescent, Bruce, ACT 2617, Australia or Exercise Physiology Laboratory, School of Education, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia (e-mail: chris.gore{at}ausport.gov.au )
AbstractList This study tested the hypothesis that athletes exposed to 4 wk of intermittent hypobaric hypoxia exposure (3 h/day, 5 days/wk at 4,000-5,500 m) or double-blind placebo increase their red blood cell volume (RCV) and hemoglobin mass (Hbmass) secondary to an increase in erythropoietin (EPO). Twenty-three collegiate level athletes were measured before (Pre) and after (Post) the intervention for RCV via Evans blue (EB) dye and in duplicate for Hbmass using CO rebreathing. Hematological indexes including EPO, soluble transferrin receptor, and reticulocyte parameters were measured on 8-10 occasions spanning the intervention. The subjects were randomly divided among hypobaric hypoxia (Hypo, n = 11) and normoxic (Norm, n = 12) groups. Apart from doubling EPO concentration 3 h after hypoxia there was no increase in any of the measures for either Hypo or Norm groups. The mean change in RCV from Pre to Post for the Hypo group was 2.3% (95% confidence limits = -4.8 to 9.5%) and for the Norm group was -0.2% (-5.7 to 5.3%). The corresponding changes in Hbmass were 1.0% (-1.3 to 3.3%) for Hypo and -0.3% (-2.6 to 3.1%) for Norm. There was good agreement between blood volume (BV) from EB and CO: EB BV = 1.03 x CO BV + 142, r2 = 0.85, P &lt; 0.0001. Overall, evidence from four independent techniques (RCV, Hbmass, reticulocyte parameters, and soluble transferrin receptor) suggests that intermittent hypobaric hypoxia exposure did not accelerate erythropoiesis despite the increase in serum EPO.
This study tested the hypothesis that athletes exposed to 4 wk of intermittent hypobaric hypoxia exposure (3 h/day, 5 days/wk at 4,000–5,500 m) or double-blind placebo increase their red blood cell volume (RCV) and hemoglobin mass (Hb mass ) secondary to an increase in erythropoietin (EPO). Twenty-three collegiate level athletes were measured before (Pre) and after (Post) the intervention for RCV via Evans blue (EB) dye and in duplicate for Hb mass using CO rebreathing. Hematological indexes including EPO, soluble transferrin receptor, and reticulocyte parameters were measured on 8–10 occasions spanning the intervention. The subjects were randomly divided among hypobaric hypoxia (Hypo, n = 11) and normoxic (Norm, n = 12) groups. Apart from doubling EPO concentration 3 h after hypoxia there was no increase in any of the measures for either Hypo or Norm groups. The mean change in RCV from Pre to Post for the Hypo group was 2.3% (95% confidence limits = −4.8 to 9.5%) and for the Norm group was −0.2% (−5.7 to 5.3%). The corresponding changes in Hb mass were 1.0% (−1.3 to 3.3%) for Hypo and −0.3% (−2.6 to 3.1%) for Norm. There was good agreement between blood volume (BV) from EB and CO: EB BV = 1.03 × CO BV + 142, r 2 = 0.85, P < 0.0001. Overall, evidence from four independent techniques (RCV, Hb mass , reticulocyte parameters, and soluble transferrin receptor) suggests that INTERMITTENT HYPOBARIC HYPOXIA EXPOSURE did not accelerate erythropoiesis despite the increase in serum EPO.
This study tested the hypothesis that athletes exposed to 4 wk of intermittent hypobaric hypoxia exposure (3 h/day, 5 days/wk at 4,000-5,500 m) or double-blind placebo increase their red blood cell volume (RCV) and hemoglobin mass (Hbmass) secondary to an increase in erythropoietin (EPO). Twenty-three collegiate level athletes were measured before (Pre) and after (Post) the intervention for RCV via Evans blue (EB) dye and in duplicate for Hbmass using CO rebreathing. Hematological indexes including EPO, soluble transferrin receptor, and reticulocyte parameters were measured on 8-10 occasions spanning the intervention. The subjects were randomly divided among hypobaric hypoxia (Hypo, n = 11) and normoxic (Norm, n = 12) groups. Apart from doubling EPO concentration 3 h after hypoxia there was no increase in any of the measures for either Hypo or Norm groups. The mean change in RCV from Pre to Post for the Hypo group was 2.3% (95% confidence limits = -4.8 to 9.5%) and for the Norm group was -0.2% (-5.7 to 5.3%). The corresponding changes in Hbmass were 1.0% (-1.3 to 3.3%) for Hypo and -0.3% (-2.6 to 3.1%) for Norm. There was good agreement between blood volume (BV) from EB and CO: EB BV = 1.03 x CO BV + 142, r2 = 0.85, P < 0.0001. Overall, evidence from four independent techniques (RCV, Hbmass, reticulocyte parameters, and soluble transferrin receptor) suggests that intermittent hypobaric hypoxia exposure did not accelerate erythropoiesis despite the increase in serum EPO.
1 Australian Institute of Sport, Canberra, Australia; 2 Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas and University of Texas Southwestern Medical Center at Dallas, Dallas, Texas; 3 Institut Nacional d'Educació Física de Catalunya, Universitat de Barcelona, Barcelona, Spain; 4 Faculty of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; and 5 New South Wales Institute of Sport, Sydney, Australia Submitted 21 March 2006 ; accepted in final form 16 June 2006 This study tested the hypothesis that athletes exposed to 4 wk of intermittent hypobaric hypoxia exposure (3 h/day, 5 days/wk at 4,000–5,500 m) or double-blind placebo increase their red blood cell volume (RCV) and hemoglobin mass (Hb mass ) secondary to an increase in erythropoietin (EPO). Twenty-three collegiate level athletes were measured before (Pre) and after (Post) the intervention for RCV via Evans blue (EB) dye and in duplicate for Hb mass using CO rebreathing. Hematological indexes including EPO, soluble transferrin receptor, and reticulocyte parameters were measured on 8–10 occasions spanning the intervention. The subjects were randomly divided among hypobaric hypoxia (Hypo, n = 11) and normoxic (Norm, n = 12) groups. Apart from doubling EPO concentration 3 h after hypoxia there was no increase in any of the measures for either Hypo or Norm groups. The mean change in RCV from Pre to Post for the Hypo group was 2.3% (95% confidence limits = –4.8 to 9.5%) and for the Norm group was –0.2% (–5.7 to 5.3%). The corresponding changes in Hb mass were 1.0% (–1.3 to 3.3%) for Hypo and –0.3% (–2.6 to 3.1%) for Norm. There was good agreement between blood volume (BV) from EB and CO: EB BV = 1.03 x CO BV + 142, r 2 = 0.85, P < 0.0001. Overall, evidence from four independent techniques (RCV, Hb mass , reticulocyte parameters, and soluble transferrin receptor) suggests that INTERMITTENT HYPOBARIC HYPOXIA EXPOSURE did not accelerate erythropoiesis despite the increase in serum EPO. high altitude; erythropoiesis; red cell volume; hemoglobin mass Address for reprint requests and other correspondence: C. J. Gore, Physiology Dept., Australian Institute of Sport, Leverrier Crescent, Bruce, ACT 2617, Australia or Exercise Physiology Laboratory, School of Education, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia (e-mail: chris.gore{at}ausport.gov.au )
This study tested the hypothesis that athletes exposed to 4 wk of intermittent hypobaric hypoxia exposure (3 h/day, 5 days/wk at 4,000-5,500 m) or double-blind placebo increase their red blood cell volume (RCV) and hemoglobin mass (Hb^sub mass^) secondary to an increase in erythropoietin (EPO). Twenty-three collegiate level athletes were measured before (Pre) and after (Post) the intervention for RCV via Evans blue (EB) dye and in duplicate for Hb^sub mass^ using CO rebreathing. Hematological indexes including EPO, soluble transferrin receptor, and reticulocyte parameters were measured on 8-10 occasions spanning the intervention. The subjects were randomly divided among hypobaric hypoxia (Hypo, n = 11) and normoxic (Norm, n = 12) groups. Apart from doubling EPO concentration 3 h after hypoxia there was no increase in any of the measures for either Hypo or Norm groups. The mean change in RCV from Pre to Post for the Hypo group was 2.3% (95% confidence limits = -4.8 to 9.5%) and for the Norm group was -0.2% (-5.7 to 5.3%). The corresponding changes in Hb^sub mass^ were 1.0% (-1.3 to 3.3%) for Hypo and -0.3% (-2.6 to 3.1%) for Norm. There was good agreement between blood volume (BV) from EB and CO: EB BV = 1.03 x CO BY + 142, r^sup 2^ = 0.85, P < 0.0001. Overall, evidence from four independent techniques (RCV, Hb^sub mass^, reticulocyte parameters, and soluble transferrin receptor) suggests that INTERMITTENT HYPOBARIC HYPOXIA EXPOSURE did not accelerate erythropoiesis despite the increase in serum EPO. [PUBLICATION ABSTRACT]
Author Gore, Christopher J
Levine, Benjamin D
Stray-Gundersen, James
Truijens, Martin J
Rodriguez, Ferran A
Townsend, Nathan E
Author_xml – sequence: 1
  fullname: Gore, Christopher J
– sequence: 2
  fullname: Rodriguez, Ferran A
– sequence: 3
  fullname: Truijens, Martin J
– sequence: 4
  fullname: Townsend, Nathan E
– sequence: 5
  fullname: Stray-Gundersen, James
– sequence: 6
  fullname: Levine, Benjamin D
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18237260$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/16794028$$D View this record in MEDLINE/PubMed
BookMark eNp1kV1rFDEYhYNU7Lb6FzQIioXO-iaTTDKXUqwWCt7U65DNZLpZZ5IxybDdf2-2u7AieJWv55z3hHOBznzwFqF3BJaEcPp5o6dpmNa75MKwBKgZXVKA5gValFdakQbIGVpIwaESXIpzdJHSBoAwxskrdE4a0TKgcoG2d95Eq5PtcLJxHrGNu7yOYQrOZufxas7Yh4xjAYwdBjzF0M0mu-Cx7rONmOHtLxx67Hw5jS5n6zNe76aw0tGZ592T0_gTuwaAil9zADxevUYvez0k--a4XqKft18fbr5X9z--3d18ua8MYzJXTcsa1tVUA3Qt2FpI2nLD5YoZ0dWEt6SVfbk1PWjd1dJ0hNAWQEtmuelEfYk-HnxL7t-zTVmNLu0_or0Nc1KNbDkXghXw_T_gJszRl2yKUkratiZ7N3GATAwpRdurKbpRx50ioPbFqL-LUc_FqH0xRfn2aD-vRtuddMcmCvDhCOhk9NBH7Y1LJ07SWtAGCscP3No9rrcuWnWcFh536nYehgf7lPcxCBDFFallo6auL7qr_-sKrk58_QdKILww
CODEN JAPHEV
CitedBy_id crossref_primary_10_1152_japplphysiol_00096_2011
crossref_primary_10_1152_japplphysiol_00634_2013
crossref_primary_10_1152_japplphysiol_00909_2015
crossref_primary_10_1152_japplphysiol_01331_2012
crossref_primary_10_1123_ijspp_7_1_79
crossref_primary_10_1139_H10_044
crossref_primary_10_3389_fphys_2018_00814
crossref_primary_10_1080_00365513_2016_1271908
crossref_primary_10_1113_expphysiol_2012_067488
crossref_primary_10_1371_journal_pone_0147311
crossref_primary_10_2165_00007256_200939020_00002
crossref_primary_10_1080_02640414_2018_1434747
crossref_primary_10_1249_MSS_0000000000000321
crossref_primary_10_1007_s00395_011_0159_y
crossref_primary_10_1007_s11325_010_0445_1
crossref_primary_10_1265_ehpm_22_00040
crossref_primary_10_1016_j_resp_2022_103982
crossref_primary_10_1113_jphysiol_2012_233858
crossref_primary_10_1152_japplphysiol_00021_2016
crossref_primary_10_1113_JP278503
crossref_primary_10_1136_bjsports_2019_101961
crossref_primary_10_1161_HYPERTENSIONAHA_110_151787
crossref_primary_10_1152_ajpregu_00191_2014
crossref_primary_10_1089_ham_2010_1021
crossref_primary_10_1152_ajpregu_00622_2006
crossref_primary_10_1123_ijspp_2_3_223
crossref_primary_10_1260_1747_9541_7_1_15
crossref_primary_10_1260_1747_9541_7_1_1
crossref_primary_10_1016_j_crphys_2023_100113
crossref_primary_10_1002_nep3_15
crossref_primary_10_1249_mss_0b013e3180de49bd
crossref_primary_10_3390_healthcare10112296
crossref_primary_10_3390_ijerph17030861
crossref_primary_10_3390_ijerph18083944
crossref_primary_10_1152_japplphysiol_00342_2013
crossref_primary_10_1249_MSS_0000000000002330
crossref_primary_10_24985_kjss_2018_29_4_737
crossref_primary_10_33549_physiolres_934175
crossref_primary_10_1519_JSC_0b013e318237e779
crossref_primary_10_1152_japplphysiol_01324_2006
crossref_primary_10_1161_CIRCULATIONAHA_112_111302
crossref_primary_10_1016_j_jacc_2010_02_043
crossref_primary_10_1249_mss_0b013e3180de49d3
crossref_primary_10_3389_fphys_2024_1305171
crossref_primary_10_1161_HYPERTENSIONAHA_111_172262
crossref_primary_10_1152_japplphysiol_00029_2014
crossref_primary_10_1007_s00421_010_1516_5
crossref_primary_10_14814_phy2_14760
crossref_primary_10_1161_CIRCULATIONAHA_117_030617
crossref_primary_10_1519_JSC_0000000000000590
crossref_primary_10_1161_CIRCULATIONAHA_118_037615
crossref_primary_10_1186_s13102_023_00784_3
crossref_primary_10_1136_bjsports_2013_092741
crossref_primary_10_1179_1607845414Y_0000000170
crossref_primary_10_1007_s00421_009_1027_4
crossref_primary_10_3109_00365513_2010_534174
crossref_primary_10_1152_japplphysiol_00706_2023
crossref_primary_10_1249_mss_0b013e3180de49e6
crossref_primary_10_3181_0710_MR_267
crossref_primary_10_2165_00007256_200737040_00031
crossref_primary_10_33549_physiolres_934316
crossref_primary_10_1123_ijspp_5_4_521
crossref_primary_10_1016_j_exphem_2014_04_007
crossref_primary_10_1089_ham_2010_1086
crossref_primary_10_1016_j_jsams_2007_08_014
crossref_primary_10_1152_japplphysiol_00289_2019
crossref_primary_10_1097_ACI_0b013e32833903a6
crossref_primary_10_1016_j_resp_2007_03_005
crossref_primary_10_1111_j_1600_0838_2008_00836_x
crossref_primary_10_3389_fphys_2018_00548
crossref_primary_10_26442_00403660_2020_04_000473
crossref_primary_10_1007_s00421_009_1349_2
crossref_primary_10_1152_japplphysiol_01320_2006
crossref_primary_10_47183_mes_2020_019
crossref_primary_10_1016_j_jsams_2010_07_007
crossref_primary_10_1152_japplphysiol_00138_2010
crossref_primary_10_1088_1742_6596_1744_4_042156
crossref_primary_10_3390_molecules171011585
crossref_primary_10_1007_s11325_009_0289_8
crossref_primary_10_3390_ijerph17249361
crossref_primary_10_3389_fspor_2022_864532
crossref_primary_10_3389_fphys_2022_919008
crossref_primary_10_1152_ajpregu_00208_2014
crossref_primary_10_1152_japplphysiol_00176_2015
crossref_primary_10_1093_gerona_gls220
crossref_primary_10_1016_j_exphem_2010_10_006
crossref_primary_10_1089_ham_2020_0066
crossref_primary_10_7600_jspfsm_59_157
Cites_doi 10.1093/ajcp/108.2.133
10.1152/japplphysiol.00505.2005
10.1152/jappl.1997.83.1.102
10.1152/japplphysiol.00969.2003
10.1152/japplphysiol.00217.2003
10.7326/0003-4819-134-8-200104170-00010
10.1097/00005768-200405001-01618
10.1016/S0031-9406(10)61817-2
10.1172/JCI104802
10.1016/S1440-2440(98)80011-X
10.1152/ajpregu.1994.266.3.R756
10.1152/ajpregu.00226.2002
10.1097/00005768-200305001-00624
10.1007/s004210050621
10.1152/jappl.1972.32.1.54
10.1161/01.RES.9.1.60
10.1111/j.1600-0838.1991.tb00276.x
10.1152/japplphysiol.00820.2005
10.1249/00005768-200405001-01619
10.1097/00005768-199902000-00010
10.1152/jappl.1975.39.1.135
10.1136/bjsm.2003.011387
10.1249/01.MSS.0000113738.06267.E5
10.2165/00007256-200131070-00008
10.1172/JCI105854
10.1152/japplphysiol.00877.2005
10.1182/blood.V5.1.1.1
10.1055/s-2004-821052
10.1152/physrev.1992.72.2.449
10.1097/00005768-200212000-00012
10.1089/152702903769192250
10.1152/ajplegacy.1969.217.2.354
10.1249/00005768-199204000-00009
10.1271/bbb.64.1775
10.1152/japplphysiol.01284.2005
10.1172/JCI101533
10.1007/s004210050064
10.1152/japplphysiol.00770.2003
10.1152/japplphysiol.00808.2005
10.1007/978-1-4757-3401-0_7
10.1007/s004210050669
10.1152/jappl.1989.66.4.1785
10.1152/jappl.1985.59.2.360
10.3109/00365516209051291
10.1152/jappl.1995.79.2.623
10.1182/blood.V75.1.102.102
10.2169/internalmedicine.43.649
10.1007/s004210050360
10.1080/02640410400005933
10.1152/japplphysiol.00684.2001
10.1038/227386a0
10.1152/jappl.1992.73.3.837
10.1097/00005768-200405001-01615
10.1097/00062752-199603020-00009
10.1152/jappl.1996.81.2.846
10.1016/S0140-6736(96)09208-2
10.1249/00005768-199205001-00541
ContentType Journal Article
Copyright 2006 INIST-CNRS
Copyright American Physiological Society Nov 2006
Copyright_xml – notice: 2006 INIST-CNRS
– notice: Copyright American Physiological Society Nov 2006
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7QR
7TK
7TS
7U7
8FD
C1K
FR3
P64
7X8
DOI 10.1152/japplphysiol.00342.2006
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Technology Research Database
Toxicology Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE

Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1522-1601
EndPage 1393
ExternalDocumentID 1165586201
10_1152_japplphysiol_00342_2006
16794028
18237260
jap_101_5_1386
Genre Research Support, U.S. Gov't, Non-P.H.S
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID -
02
2WC
39C
3O-
4.4
53G
55
5VS
85S
AALRV
ABFLS
ABOCM
ABUFD
ACGFS
ACIWK
ACPRK
ADBBV
ADBIT
AEILP
AENEX
AEULQ
AFDAS
AFRAH
AGCDD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
C1A
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GJ
GX1
H13
H~9
KQ8
L7B
MYA
NEJ
O0-
OHT
OK1
P-O
P2P
PQEST
PQQKQ
RAP
RHF
RHI
RPL
SJN
UHB
UKR
UPT
WH7
WOQ
X
X7M
YCJ
---
-~X
.55
.GJ
08R
18M
1CY
29J
476
8M5
AAFWJ
AAUGY
ABCQX
ABDNZ
ABKWE
ACBEA
ACGFO
ACKIV
ACYGS
ADFNX
AETEA
AFMIJ
AFOSN
AGNAY
AI.
AIDAL
AJUXI
BKKCC
BTFSW
C2-
EMOBN
F3I
IQODW
ITBOX
J5H
MVM
P6G
RPRKH
TR2
VH1
W8F
XOL
XSW
YBH
YQJ
YQT
YWH
ZXP
~02
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7QR
7TK
7TS
7U7
8FD
C1K
FR3
P64
7X8
ID FETCH-LOGICAL-c448t-69464d32a00d90e378295c58b4c7d3159198f378cf0aad38cd112900a84e5cd73
ISSN 8750-7587
IngestDate Fri Aug 16 20:48:29 EDT 2024
Fri Sep 13 07:03:42 EDT 2024
Thu Sep 12 16:53:52 EDT 2024
Thu May 23 23:11:02 EDT 2024
Sun Oct 29 17:09:47 EDT 2023
Tue Jan 05 17:53:17 EST 2021
Mon May 06 11:50:13 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Erythropoiesis
High altitude
Oxygen
Erythropoietin
Red blood cell
Environmental factor
Blood cell
Vertebrata
Mammalia
hemoglobin mass
Polypeptide
Intermittent
Hemoglobin
Hypoxia
red cell volume
Cell volume
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c448t-69464d32a00d90e378295c58b4c7d3159198f378cf0aad38cd112900a84e5cd73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-News-2
ObjectType-Feature-3
content type line 23
PMID 16794028
PQID 222199317
PQPubID 40905
PageCount 8
ParticipantIDs crossref_primary_10_1152_japplphysiol_00342_2006
proquest_miscellaneous_68955774
pubmed_primary_16794028
pascalfrancis_primary_18237260
proquest_journals_222199317
highwire_physiology_jap_101_5_1386
PublicationCentury 2000
PublicationDate 2006-11-01
PublicationDateYYYYMMDD 2006-11-01
PublicationDate_xml – month: 11
  year: 2006
  text: 2006-11-01
  day: 01
PublicationDecade 2000
PublicationPlace Bethesda, MD
PublicationPlace_xml – name: Bethesda, MD
– name: United States
– name: Bethesda
PublicationTitle Journal of applied physiology (1985)
PublicationTitleAlternate J Appl Physiol (1985)
PublicationYear 2006
Publisher Am Physiological Soc
American Physiological Society
Publisher_xml – name: Am Physiological Soc
– name: American Physiological Society
References R56A
R61
R48A
R60
R62
R21
R20
R23
R22
R25
R24
R27
R26
R29
R28
R1
R2
R3
R4
R5
R6
R7
R8
R9
R30
R32
R31
R34
R33
R36
R35
R38
R37
R39
R58A
R58B
R41
R40
R43
R42
R45
R44
R47
R46
R49
R48
R50
R52
R51
R10
R54
R53
R12
R56
R11
R55
R14
R58
R13
R57
R16
R15
R59
R18
R17
R19
References_xml – ident: R8
  doi: 10.1093/ajcp/108.2.133
– ident: R20
  doi: 10.1152/japplphysiol.00505.2005
– ident: R59
– ident: R32
  doi: 10.1152/jappl.1997.83.1.102
– ident: R28
  doi: 10.1152/japplphysiol.00969.2003
– ident: R7
  doi: 10.1152/japplphysiol.00217.2003
– ident: R43
  doi: 10.7326/0003-4819-134-8-200104170-00010
– ident: R46
– ident: R42
– ident: R58B
  doi: 10.1097/00005768-200405001-01618
– ident: R31
  doi: 10.1016/S0031-9406(10)61817-2
– ident: R13
  doi: 10.1172/JCI104802
– ident: R18
  doi: 10.1016/S1440-2440(98)80011-X
– ident: R44
  doi: 10.1152/ajpregu.1994.266.3.R756
– ident: R56
– ident: R45
  doi: 10.1152/ajpregu.00226.2002
– ident: R48
  doi: 10.1097/00005768-200305001-00624
– ident: R52
– ident: R5
  doi: 10.1007/s004210050621
– ident: R1
  doi: 10.1152/jappl.1972.32.1.54
– ident: R41
  doi: 10.1161/01.RES.9.1.60
– ident: R15
  doi: 10.1111/j.1600-0838.1991.tb00276.x
– ident: R19
  doi: 10.1152/japplphysiol.00820.2005
– ident: R48A
  doi: 10.1249/00005768-200405001-01619
– ident: R47
  doi: 10.1097/00005768-199902000-00010
– ident: R12
  doi: 10.1152/jappl.1975.39.1.135
– ident: R16
  doi: 10.1136/bjsm.2003.011387
– ident: R56A
  doi: 10.1249/01.MSS.0000113738.06267.E5
– ident: R22
  doi: 10.2165/00007256-200131070-00008
– ident: R62
  doi: 10.1172/JCI105854
– ident: R34
  doi: 10.1152/japplphysiol.00877.2005
– ident: R37
  doi: 10.1182/blood.V5.1.1.1
– ident: R23
  doi: 10.1055/s-2004-821052
– ident: R26
  doi: 10.1152/physrev.1992.72.2.449
– ident: R54
  doi: 10.1097/00005768-200212000-00012
– ident: R2
– ident: R29
  doi: 10.1089/152702903769192250
– ident: R11
– ident: R36
  doi: 10.1152/ajplegacy.1969.217.2.354
– ident: R53
  doi: 10.1249/00005768-199204000-00009
– ident: R51
  doi: 10.1271/bbb.64.1775
– ident: R61
  doi: 10.1152/japplphysiol.01284.2005
– ident: R24
  doi: 10.1172/JCI101533
– ident: R4
  doi: 10.1007/s004210050064
– ident: R55
  doi: 10.1152/japplphysiol.00770.2003
– ident: R9
  doi: 10.1152/japplphysiol.00808.2005
– ident: R33
  doi: 10.1007/978-1-4757-3401-0_7
– ident: R49
  doi: 10.1007/s004210050669
– ident: R14
  doi: 10.1152/jappl.1989.66.4.1785
– ident: R58
– ident: R35
– ident: R38
  doi: 10.1152/jappl.1985.59.2.360
– ident: R39
  doi: 10.3109/00365516209051291
– ident: R10
  doi: 10.1152/jappl.1995.79.2.623
– ident: R25
  doi: 10.1182/blood.V75.1.102.102
– ident: R27
  doi: 10.2169/internalmedicine.43.649
– ident: R40
  doi: 10.1007/s004210050360
– ident: R50
  doi: 10.1080/02640410400005933
– ident: R17
  doi: 10.1152/japplphysiol.00684.2001
– ident: R6
  doi: 10.1038/227386a0
– ident: R30
  doi: 10.1152/jappl.1992.73.3.837
– ident: R58A
  doi: 10.1097/00005768-200405001-01615
– ident: R60
  doi: 10.1097/00062752-199603020-00009
– ident: R21
  doi: 10.1152/jappl.1996.81.2.846
– ident: R3
  doi: 10.1016/S0140-6736(96)09208-2
– ident: R57
  doi: 10.1249/00005768-199205001-00541
SSID ssj0014451
Score 2.2464073
Snippet 1 Australian Institute of Sport, Canberra, Australia; 2 Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas and University of...
This study tested the hypothesis that athletes exposed to 4 wk of intermittent hypobaric hypoxia exposure (3 h/day, 5 days/wk at 4,000-5,500 m) or double-blind...
This study tested the hypothesis that athletes exposed to 4 wk of intermittent hypobaric hypoxia exposure (3 h/day, 5 days/wk at 4,000–5,500 m) or double-blind...
SourceID proquest
crossref
pubmed
pascalfrancis
highwire
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1386
SubjectTerms Adaptation, Physiological - physiology
Altitude
Biological and medical sciences
Double-Blind Method
Erythrocyte Volume - physiology
Erythrocytes
Erythropoiesis - physiology
Erythropoietin - blood
Female
Fundamental and applied biological sciences. Psychology
Hematologic Tests
Hemoglobin
Hormones
Humans
Hypoxia
Hypoxia - blood
Male
Placebo effect
Running - physiology
Swimming - physiology
Title Increased serum erythropoietin but not red cell production after 4 wk of intermittent hypobaric hypoxia (4,000-5,500 m)
URI http://jap.physiology.org/cgi/content/abstract/101/5/1386
https://www.ncbi.nlm.nih.gov/pubmed/16794028
https://www.proquest.com/docview/222199317/abstract/
https://search.proquest.com/docview/68955774
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkBAvCDYuYTAshBCoS8nFdpPHCdZNaCsIdVLfLCdOYExtpy7RKP-If8k5zsWptonLS5qkcRLl-2yfc3wuhLwKU575w1y4OlShy1QcurHwlcvSoQIdV-tIYKDw8VgcnrCPUz7t9X51vJbKIhmkP6-NK_kfVOEc4IpRsv-AbHtTOAH7gC9sAWHY_hXG0LnRpxxkRnhcOetny1VV9uAUA5n7SVn054uijy7maKBHZyxddmuDs_7lWZM0AiP7C_QM-LY6h06OHva49-NUoRTKAAsMD-fwyz2vP2tMCFcFW1ULtsZoUqV4wmxQccQ7ZoeD2r-3k9zArlB9WehqBf_D17KycI-yJUyq1vA6WZan37PaVG4yIdjWXYP52CwN1OEW1rjht8aNxv_Tc0GlGa4N2PYKuyZuhl8_bPJq14dV9cWr0wQPTHkC-B71txiYXIhmKcrOjI03wPiTHJ0cHcnJ_nRyi9wOhjFHPf9g2noT-ZjnrTIlV-9buxLCg97d8Jh1QahJTo2-ueoCumde1VW5WfExAtDkPrlXA0z3Kho-IL1svkm29uaqWMxW9DX93MK9Se4c1y4bW-SyJSk1JKXrJKVAUgokpUBSiiSllqTUkJQyenlGFzntkpS2JKU1SekbtmsIugv0pLO3D8nJaH_y_tCtq324KWNR4YqYCabDQHmejr0sBNE15imPEhg2dAhSN_A0h7Np7imlwyjVqCp4nopYxlM9DB-Rjflinj0hVCgRBJrpKOOC-akf-wkPVRTmaZKnPk8c4jWfXp5XSV2kUYZ5ILtoSYMWVmoVDhk0EEnbfSTaiSbAFWwGtJRcIgXluc4d8vK6BnCdtBc6ZGcNbfs2mEMqEJ5Dthv4ZT3wXEgQ6dHt1h865EX7L8wKCJKaZ4vyQooo5hw0O4c8rjhj7yxgBgal4ukf226Tu7ZLPiMbxbLMnoMEXiQ7hvu_ASsv3Z0
link.rule.ids 315,786,790,27957,27958
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increased+serum+erythropoietin+but+not+red+cell+production+after+4+wk+of+intermittent+hypobaric+hypoxia+%284%2C000-5%2C500+m%29&rft.jtitle=Journal+of+applied+physiology+%281985%29&rft.au=Gore%2C+Christopher+J&rft.au=Rodr%C3%ADguez%2C+Ferran+A&rft.au=Truijens%2C+Martin+J&rft.au=Townsend%2C+Nathan+E&rft.date=2006-11-01&rft.issn=8750-7587&rft.volume=101&rft.issue=5&rft.spage=1386&rft.epage=1393&rft_id=info:doi/10.1152%2Fjapplphysiol.00342.2006&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8750-7587&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8750-7587&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8750-7587&client=summon