A Nonfeasible Gradient Projection Recurrent Neural Network for Equality-Constrained Optimization Problems
In this paper, a recurrent neural network for both convex and nonconvex equality-constrained optimization problems is proposed, which makes use of a cost gradient projection onto the tangent space of the constraints. The proposed neural network constructs a generically nonfeasible trajectory, satisf...
Saved in:
Published in | IEEE transactions on neural networks Vol. 19; no. 10; pp. 1665 - 1677 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.10.2008
Institute of Electrical and Electronics Engineers |
Subjects | |
Online Access | Get full text |
ISSN | 1045-9227 1941-0093 1941-0093 |
DOI | 10.1109/TNN.2008.2000993 |
Cover
Abstract | In this paper, a recurrent neural network for both convex and nonconvex equality-constrained optimization problems is proposed, which makes use of a cost gradient projection onto the tangent space of the constraints. The proposed neural network constructs a generically nonfeasible trajectory, satisfying the constraints only as t rarr infin. Local convergence results are given that do not assume convexity of the optimization problem to be solved. Global convergence results are established for convex optimization problems. An exponential convergence rate is shown to hold both for the convex case and the nonconvex case. Numerical results indicate that the proposed method is efficient and accurate. |
---|---|
AbstractList | In this paper, a recurrent neural network for both convex and nonconvex equality-constrained optimization problems is proposed, which makes use of a cost gradient projection onto the tangent space of the constraints. The proposed neural network constructs a generically nonfeasible trajectory, satisfying the constraints only as t --> infinity. Local convergence results are given that do not assume convexity of the optimization problem to be solved. Global convergence results are established for convex optimization problems. An exponential convergence rate is shown to hold both for the convex case and the nonconvex case. Numerical results indicate that the proposed method is efficient and accurate. In this paper, a recurrent neural network for both convex and nonconvex equality-constrained optimization problems is proposed, which makes use of a cost gradient projection onto the tangent space of the constraints. The proposed neural network constructs a generically nonfeasible trajectory, satisfying the constraints only as t --> infinity. Local convergence results are given that do not assume convexity of the optimization problem to be solved. Global convergence results are established for convex optimization problems. An exponential convergence rate is shown to hold both for the convex case and the nonconvex case. Numerical results indicate that the proposed method is efficient and accurate.In this paper, a recurrent neural network for both convex and nonconvex equality-constrained optimization problems is proposed, which makes use of a cost gradient projection onto the tangent space of the constraints. The proposed neural network constructs a generically nonfeasible trajectory, satisfying the constraints only as t --> infinity. Local convergence results are given that do not assume convexity of the optimization problem to be solved. Global convergence results are established for convex optimization problems. An exponential convergence rate is shown to hold both for the convex case and the nonconvex case. Numerical results indicate that the proposed method is efficient and accurate. In this paper, a recurrent neural network for both convex and nonconvex equality-constrained optimization problems is proposed, which makes use of a cost gradient projection onto the tangent space of the constraints. The proposed neural network constructs a generically nonfeasible trajectory, satisfying the constraints only as t rarr infin. Local convergence results are given that do not assume convexity of the optimization problem to be solved. Global convergence results are established for convex optimization problems. An exponential convergence rate is shown to hold both for the convex case and the nonconvex case. Numerical results indicate that the proposed method is efficient and accurate. |
Author | Maratos, N.G. Barbarosou, M.P. |
Author_xml | – sequence: 1 givenname: M.P. surname: Barbarosou fullname: Barbarosou, M.P. organization: Sch. of Electr. & Comput. Engneering, Nat. Tech. Univ. of Athens, Athens – sequence: 2 givenname: N.G. surname: Maratos fullname: Maratos, N.G. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20765236$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18842472$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtr3DAUhUVJyavZFwrFm6Yrp3pZj2UYkrQQJiGkayFL16DUtiaSTUl_feXMdBaFdqMrie8ciXNO0MEYR0DoPcEXhGD95XG9vqAYq2XBWrM36JhoTupyYAdlj3lTa0rlETrJ-QljwhssDtERUYpTLukxCpfVOo4d2BzaHqqbZH2AcaruU3wCN4U4Vg_g5pSWyzXMyfZlTD9j-lF1MVVXz7Ptw_RSr-KYp2TDCL6620xhCL_sq7w4Fechv0NvO9tnONvNU_T9-upx9bW-vbv5trq8rR3naqoFbgl3jQbmvGKdaH3TAtOWECY9V8pKSb1SzjPqiHMUmGCiabFvGLTaKXaKPm99Nyk-z5AnM4TsoO_tCHHORskGM6mFKOT5f0mhBW845gX8uAPndgBvNikMNr2YPzEW4NMOsNnZvkt2dCHvOYqlaChbXhRbzqWYc4LOuDC9xrRE1xuCzdKrKb2apVez67UI8V_C_R_-LfmwlQQA2ONcMC2oZL8B9aittg |
CODEN | ITNNEP |
CitedBy_id | crossref_primary_10_1007_s11075_015_0088_1 crossref_primary_10_1109_TNN_2010_2048123 crossref_primary_10_1109_TNN_2011_2169682 crossref_primary_10_1109_TETCI_2024_3369667 crossref_primary_10_1016_j_neunet_2011_09_001 crossref_primary_10_1016_j_cam_2018_08_017 crossref_primary_10_1109_TNNLS_2018_2805810 crossref_primary_10_7498_aps_61_070701 crossref_primary_10_1109_TNNLS_2018_2861404 crossref_primary_10_1016_j_neucom_2017_09_036 crossref_primary_10_1109_TNNLS_2015_2476348 crossref_primary_10_1109_TNNLS_2015_2435014 crossref_primary_10_1109_TII_2024_3431046 |
Cites_doi | 10.1109/81.995659 10.1109/ISCAS.2006.1692693 10.1109/5.481630 10.1109/TNN.2005.852974 10.1109/TNN.2004.841779 10.1109/72.883412 10.1109/72.286888 10.1016/S0375-9601(01)00542-4 10.1109/TNN.2006.879774 10.1109/72.728383 10.1109/TCS.1987.1086095 10.1109/72.207617 10.1109/TNN.2005.857946 10.1007/BF01588311 10.1023/B:JOGO.0000015310.27011.02 10.1109/9.802909 10.1109/TNN.2004.824252 10.1109/TNN.2004.824405 10.1109/TCSI.2003.812613 10.1109/IJCNN.2004.1380972 10.1007/978-1-4684-9362-7 10.1109/TNN.2002.1031938 10.1147/rd.165.0504 10.1109/TNN.2007.899753 10.1016/S0375-9601(02)00424-3 10.1007/978-1-4471-3467-1 10.1109/82.160169 10.1007/BF01582118 10.1109/TCS.1986.1085953 10.1109/TCS.1984.1085482 10.1109/31.52732 10.1109/TNN.2006.881046 10.1109/72.165605 10.1109/72.548188 10.1007/BF00934495 10.1016/j.neunet.2004.05.006 10.1109/TCSI.2004.834493 10.1109/TNN.2006.879775 10.1109/72.363446 10.1109/TNN.2003.809409 10.1016/S0893-6080(00)00019-8 10.1109/TNN.2004.824425 10.1016/0893-6080(91)90014-V 10.1109/72.950137 10.1002/cta.4490210408 10.1109/TNN.2003.820852 |
ContentType | Journal Article |
Copyright | 2009 INIST-CNRS |
Copyright_xml | – notice: 2009 INIST-CNRS |
DBID | 97E RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 |
DOI | 10.1109/TNN.2008.2000993 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE MEDLINE - Academic Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Anatomy & Physiology Computer Science Applied Sciences |
EISSN | 1941-0093 |
EndPage | 1677 |
ExternalDocumentID | 18842472 20765236 10_1109_TNN_2008_2000993 4639627 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AETIX AGQYO AGSQL AHBIQ AI. AIBXA ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS S10 TAE TN5 VH1 AAYOK AAYXX CITATION RIG IQODW CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 |
ID | FETCH-LOGICAL-c448t-60b14c59e3cd83f6bd5be39a1137d488a772d88cd32c1cc2e36365b0d53eb9c83 |
IEDL.DBID | RIE |
ISSN | 1045-9227 1941-0093 |
IngestDate | Fri Sep 05 12:58:04 EDT 2025 Thu Sep 04 16:45:29 EDT 2025 Mon Jul 21 06:02:34 EDT 2025 Mon Jul 21 09:17:21 EDT 2025 Tue Jul 01 02:44:36 EDT 2025 Thu Apr 24 23:07:33 EDT 2025 Tue Aug 26 16:47:31 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 10 |
Keywords | Exponential convergence Recurrent neural nets Non convex programming convergence convex and nonconvex problems Constraint satisfaction Network management Neural network Convex programming Constrained optimization recurrent neural networks Convergence rate Convexity Numerical convergence Non convex analysis Mathematical programming |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c448t-60b14c59e3cd83f6bd5be39a1137d488a772d88cd32c1cc2e36365b0d53eb9c83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://doi.org/10.1109/TNN.2008.2000993 |
PMID | 18842472 |
PQID | 69645404 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_875037966 crossref_citationtrail_10_1109_TNN_2008_2000993 pubmed_primary_18842472 pascalfrancis_primary_20765236 ieee_primary_4639627 proquest_miscellaneous_69645404 crossref_primary_10_1109_TNN_2008_2000993 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-10-01 |
PublicationDateYYYYMMDD | 2008-10-01 |
PublicationDate_xml | – month: 10 year: 2008 text: 2008-10-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: United States |
PublicationTitle | IEEE transactions on neural networks |
PublicationTitleAbbrev | TNN |
PublicationTitleAlternate | IEEE Trans Neural Netw |
PublicationYear | 2008 |
Publisher | IEEE Institute of Electrical and Electronics Engineers |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 ref51 ref46 ref45 ref47 ref41 ref44 ref43 ref8 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref32 ref2 ref1 ref39 hu (ref33) 2007; 18 ref38 luenberger (ref42) 1984 ref24 ref23 ref26 ref25 ref20 ref22 ref21 bertsekas (ref49) 1995 polak (ref48) 1997 ref28 ref27 ref29 khalil (ref50) 2002 cichocki (ref7) 1993 |
References_xml | – ident: ref25 doi: 10.1109/81.995659 – ident: ref12 doi: 10.1109/ISCAS.2006.1692693 – ident: ref45 doi: 10.1109/5.481630 – ident: ref31 doi: 10.1109/TNN.2005.852974 – ident: ref28 doi: 10.1109/TNN.2004.841779 – ident: ref24 doi: 10.1109/72.883412 – ident: ref4 doi: 10.1109/72.286888 – ident: ref26 doi: 10.1016/S0375-9601(01)00542-4 – ident: ref32 doi: 10.1109/TNN.2006.879774 – ident: ref23 doi: 10.1109/72.728383 – year: 2002 ident: ref50 publication-title: Nonlinear Systems – ident: ref3 doi: 10.1109/TCS.1987.1086095 – ident: ref16 doi: 10.1109/72.207617 – ident: ref47 doi: 10.1109/TNN.2005.857946 – year: 1993 ident: ref7 publication-title: Neural Networks for Optimization and Signal Processing – ident: ref38 doi: 10.1007/BF01588311 – ident: ref40 doi: 10.1023/B:JOGO.0000015310.27011.02 – ident: ref9 doi: 10.1109/9.802909 – ident: ref30 doi: 10.1109/TNN.2004.824252 – ident: ref22 doi: 10.1109/TNN.2004.824405 – year: 1984 ident: ref42 publication-title: Linear and Nonlinear Programming – ident: ref15 doi: 10.1109/TCSI.2003.812613 – ident: ref41 doi: 10.1109/IJCNN.2004.1380972 – ident: ref51 doi: 10.1007/978-1-4684-9362-7 – ident: ref46 doi: 10.1109/TNN.2002.1031938 – ident: ref44 doi: 10.1147/rd.165.0504 – volume: 18 start-page: 1697 year: 2007 ident: ref33 article-title: Solving generally constrained generalized linear variational inequalities using the general projection neural networks publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2007.899753 – ident: ref20 doi: 10.1016/S0375-9601(02)00424-3 – ident: ref39 doi: 10.1007/978-1-4471-3467-1 – ident: ref13 doi: 10.1109/82.160169 – ident: ref43 doi: 10.1007/BF01582118 – ident: ref1 doi: 10.1109/TCS.1986.1085953 – ident: ref2 doi: 10.1109/TCS.1984.1085482 – ident: ref5 doi: 10.1109/31.52732 – ident: ref35 doi: 10.1109/TNN.2006.881046 – ident: ref14 doi: 10.1109/72.165605 – ident: ref18 doi: 10.1109/72.548188 – year: 1995 ident: ref49 publication-title: Nonlinear Programming – year: 1997 ident: ref48 publication-title: Optimization Algorithms and Consistent Approximations – ident: ref37 doi: 10.1007/BF00934495 – ident: ref21 doi: 10.1016/j.neunet.2004.05.006 – ident: ref10 doi: 10.1109/TCSI.2004.834493 – ident: ref11 doi: 10.1109/TNN.2006.879775 – ident: ref8 doi: 10.1109/72.363446 – ident: ref29 doi: 10.1109/TNN.2003.809409 – ident: ref19 doi: 10.1016/S0893-6080(00)00019-8 – ident: ref27 doi: 10.1109/TNN.2004.824425 – ident: ref17 doi: 10.1016/0893-6080(91)90014-V – ident: ref34 doi: 10.1109/72.950137 – ident: ref6 doi: 10.1002/cta.4490210408 – ident: ref36 doi: 10.1109/TNN.2003.820852 |
SSID | ssj0014506 |
Score | 2.0154219 |
Snippet | In this paper, a recurrent neural network for both convex and nonconvex equality-constrained optimization problems is proposed, which makes use of a cost... |
SourceID | proquest pubmed pascalfrancis crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1665 |
SubjectTerms | Algorithms Applied sciences Artificial intelligence Circuits Computer science; control theory; systems Computer Simulation Connectionism. Neural networks Constrained optimization Constraint optimization Convergence convex and nonconvex problems Design optimization Exact sciences and technology Feedback Lagrangian functions Models, Theoretical Neural networks Neural Networks (Computer) Nonlinear equations Numerical Analysis, Computer-Assisted Piecewise linear techniques Programming profession Recurrent neural networks |
Title | A Nonfeasible Gradient Projection Recurrent Neural Network for Equality-Constrained Optimization Problems |
URI | https://ieeexplore.ieee.org/document/4639627 https://www.ncbi.nlm.nih.gov/pubmed/18842472 https://www.proquest.com/docview/69645404 https://www.proquest.com/docview/875037966 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGBwi6P8Cg-ICQksus4tuMcV6ilQmpAqJV6i-JHpIo2i7rZQ_n1jO0kUEQRt0ixEycz9rznA3jTKlEw0TYpbXmZcsWyFOWOSm3hnLRSFtT4auSTSh6f8U_n4nwH3k-1MM65kHzmFv4yxPLt2my9q2zJUZxKVuzCLrJZrNWaIgZcBBxNtC5EWjJWjCFJWi5PqyomTbKgEAXoHKU44wW7JY0CvIpPjmw2-H_aCGxxt-YZJNDRPpyMa4-JJ98W214vzI8_2jr-78c9hAeDKkpWkXcewY7rZjBfdWiGX92QtyQkhwav-wz2R_QHMhwGM7j_WyvDOVysSOWLBxvcYpeOfLwOqWQ9-RI9PUh98tW79n0zKOI7guCbq5iCTlBvJoexuvMm9QiiAbfCWfIZz7OroVDUP8lD32wew9nR4emH43SAcUgN2n59KqnOuBGly41VeSu1FdrlZZNleWHx_GhQwbdKGZszkxnDXC5zKTS1Ine6NCp_AnvdunPPgLRoHeqMurblHB9pSm04o402WYvTqEhgOZKzNkOPc7_kyzrYOrSskRci8ubACwm8m2Z8j_09_jF27sk2jRsolsDBLY6Z7jNaSLTzZQKvRxaqcfP6iEzTufV2U8vSN1SjPAFyxwjl48wF2qQJPI3M92uZAw8___uyXsA9NvbuzV7CXn-9da9Qger1Qdg5PwELqRZc |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH8a4wAcGLQMwsfmA0JCIq3j2E5yrNBGgTUg1Em7RfFHJMSWorU9jL-eZzsJDDHELVLsxMl79vt-P4CXTS4yJpo6pg0vYp6zJEa5k8cms1YaKTOqXTXyopTzU_7hTJztwJuhFsZa65PP7MRd-li-Wemtc5VNOYpTybJbcBvlPhehWmuIGXDhkTTRvhBxwVjWByVpMV2WZUibZF4l8uA5ec4Zz9g1eeQBVlx6ZL3GP9QEaIubdU8vg473YNGvPqSefJtsN2qif_zR2PF_P-8B3O-UUTIL3PMQdmw7gvGsRUP84oq8Ij491PvdR7DX4z-Q7jgYwb3fmhmO4euMlK58sMZNdm7Ju0ufTLYhn4OvB-lPvjjnvmsHRVxPEHxzGZLQCWrO5CjUd17FDkPUI1dYQz7hiXbRlYq6Jznwm_UjOD0-Wr6dxx2QQ6zR-tvEkqqEa1HYVJs8baQyQtm0qJMkzQyeIDWq-CbPtUmZTrRmNpWpFIoakVpV6Dzdh9121donQBq0D1VCbdNwjo_UhdKc0VrppMFpVEQw7clZ6a7LuVvyeeWtHVpUyAsBe7PjhQheDzO-hw4f_xg7dmQbxnUUi-DgGscM9xnNJFr6MoLDnoUq3L4uJlO3drVdV7JwLdUoj4DcMCJ3keYMrdIIHgfm-7XMjoef_n1Zh3BnvlycVCfvy4_P4C7rO_kmz2F3c7m1L1Cd2qgDv4t-ArjAGak |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Nonfeasible+Gradient+Projection+Recurrent+Neural+Network+for+Equality-Constrained+Optimization+Problems&rft.jtitle=IEEE+transactions+on+neural+networks&rft.au=Barbarosou%2C+M.P.&rft.au=Maratos%2C+N.G.&rft.date=2008-10-01&rft.issn=1045-9227&rft.volume=19&rft.issue=10&rft.spage=1665&rft.epage=1677&rft_id=info:doi/10.1109%2FTNN.2008.2000993&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNN_2008_2000993 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9227&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9227&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9227&client=summon |