A Nonfeasible Gradient Projection Recurrent Neural Network for Equality-Constrained Optimization Problems

In this paper, a recurrent neural network for both convex and nonconvex equality-constrained optimization problems is proposed, which makes use of a cost gradient projection onto the tangent space of the constraints. The proposed neural network constructs a generically nonfeasible trajectory, satisf...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural networks Vol. 19; no. 10; pp. 1665 - 1677
Main Authors Barbarosou, M.P., Maratos, N.G.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.10.2008
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text
ISSN1045-9227
1941-0093
1941-0093
DOI10.1109/TNN.2008.2000993

Cover

Abstract In this paper, a recurrent neural network for both convex and nonconvex equality-constrained optimization problems is proposed, which makes use of a cost gradient projection onto the tangent space of the constraints. The proposed neural network constructs a generically nonfeasible trajectory, satisfying the constraints only as t rarr infin. Local convergence results are given that do not assume convexity of the optimization problem to be solved. Global convergence results are established for convex optimization problems. An exponential convergence rate is shown to hold both for the convex case and the nonconvex case. Numerical results indicate that the proposed method is efficient and accurate.
AbstractList In this paper, a recurrent neural network for both convex and nonconvex equality-constrained optimization problems is proposed, which makes use of a cost gradient projection onto the tangent space of the constraints. The proposed neural network constructs a generically nonfeasible trajectory, satisfying the constraints only as t --> infinity. Local convergence results are given that do not assume convexity of the optimization problem to be solved. Global convergence results are established for convex optimization problems. An exponential convergence rate is shown to hold both for the convex case and the nonconvex case. Numerical results indicate that the proposed method is efficient and accurate.
In this paper, a recurrent neural network for both convex and nonconvex equality-constrained optimization problems is proposed, which makes use of a cost gradient projection onto the tangent space of the constraints. The proposed neural network constructs a generically nonfeasible trajectory, satisfying the constraints only as t --> infinity. Local convergence results are given that do not assume convexity of the optimization problem to be solved. Global convergence results are established for convex optimization problems. An exponential convergence rate is shown to hold both for the convex case and the nonconvex case. Numerical results indicate that the proposed method is efficient and accurate.In this paper, a recurrent neural network for both convex and nonconvex equality-constrained optimization problems is proposed, which makes use of a cost gradient projection onto the tangent space of the constraints. The proposed neural network constructs a generically nonfeasible trajectory, satisfying the constraints only as t --> infinity. Local convergence results are given that do not assume convexity of the optimization problem to be solved. Global convergence results are established for convex optimization problems. An exponential convergence rate is shown to hold both for the convex case and the nonconvex case. Numerical results indicate that the proposed method is efficient and accurate.
In this paper, a recurrent neural network for both convex and nonconvex equality-constrained optimization problems is proposed, which makes use of a cost gradient projection onto the tangent space of the constraints. The proposed neural network constructs a generically nonfeasible trajectory, satisfying the constraints only as t rarr infin. Local convergence results are given that do not assume convexity of the optimization problem to be solved. Global convergence results are established for convex optimization problems. An exponential convergence rate is shown to hold both for the convex case and the nonconvex case. Numerical results indicate that the proposed method is efficient and accurate.
Author Maratos, N.G.
Barbarosou, M.P.
Author_xml – sequence: 1
  givenname: M.P.
  surname: Barbarosou
  fullname: Barbarosou, M.P.
  organization: Sch. of Electr. & Comput. Engneering, Nat. Tech. Univ. of Athens, Athens
– sequence: 2
  givenname: N.G.
  surname: Maratos
  fullname: Maratos, N.G.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20765236$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18842472$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtr3DAUhUVJyavZFwrFm6Yrp3pZj2UYkrQQJiGkayFL16DUtiaSTUl_feXMdBaFdqMrie8ciXNO0MEYR0DoPcEXhGD95XG9vqAYq2XBWrM36JhoTupyYAdlj3lTa0rlETrJ-QljwhssDtERUYpTLukxCpfVOo4d2BzaHqqbZH2AcaruU3wCN4U4Vg_g5pSWyzXMyfZlTD9j-lF1MVVXz7Ptw_RSr-KYp2TDCL6620xhCL_sq7w4Fechv0NvO9tnONvNU_T9-upx9bW-vbv5trq8rR3naqoFbgl3jQbmvGKdaH3TAtOWECY9V8pKSb1SzjPqiHMUmGCiabFvGLTaKXaKPm99Nyk-z5AnM4TsoO_tCHHORskGM6mFKOT5f0mhBW845gX8uAPndgBvNikMNr2YPzEW4NMOsNnZvkt2dCHvOYqlaChbXhRbzqWYc4LOuDC9xrRE1xuCzdKrKb2apVez67UI8V_C_R_-LfmwlQQA2ONcMC2oZL8B9aittg
CODEN ITNNEP
CitedBy_id crossref_primary_10_1007_s11075_015_0088_1
crossref_primary_10_1109_TNN_2010_2048123
crossref_primary_10_1109_TNN_2011_2169682
crossref_primary_10_1109_TETCI_2024_3369667
crossref_primary_10_1016_j_neunet_2011_09_001
crossref_primary_10_1016_j_cam_2018_08_017
crossref_primary_10_1109_TNNLS_2018_2805810
crossref_primary_10_7498_aps_61_070701
crossref_primary_10_1109_TNNLS_2018_2861404
crossref_primary_10_1016_j_neucom_2017_09_036
crossref_primary_10_1109_TNNLS_2015_2476348
crossref_primary_10_1109_TNNLS_2015_2435014
crossref_primary_10_1109_TII_2024_3431046
Cites_doi 10.1109/81.995659
10.1109/ISCAS.2006.1692693
10.1109/5.481630
10.1109/TNN.2005.852974
10.1109/TNN.2004.841779
10.1109/72.883412
10.1109/72.286888
10.1016/S0375-9601(01)00542-4
10.1109/TNN.2006.879774
10.1109/72.728383
10.1109/TCS.1987.1086095
10.1109/72.207617
10.1109/TNN.2005.857946
10.1007/BF01588311
10.1023/B:JOGO.0000015310.27011.02
10.1109/9.802909
10.1109/TNN.2004.824252
10.1109/TNN.2004.824405
10.1109/TCSI.2003.812613
10.1109/IJCNN.2004.1380972
10.1007/978-1-4684-9362-7
10.1109/TNN.2002.1031938
10.1147/rd.165.0504
10.1109/TNN.2007.899753
10.1016/S0375-9601(02)00424-3
10.1007/978-1-4471-3467-1
10.1109/82.160169
10.1007/BF01582118
10.1109/TCS.1986.1085953
10.1109/TCS.1984.1085482
10.1109/31.52732
10.1109/TNN.2006.881046
10.1109/72.165605
10.1109/72.548188
10.1007/BF00934495
10.1016/j.neunet.2004.05.006
10.1109/TCSI.2004.834493
10.1109/TNN.2006.879775
10.1109/72.363446
10.1109/TNN.2003.809409
10.1016/S0893-6080(00)00019-8
10.1109/TNN.2004.824425
10.1016/0893-6080(91)90014-V
10.1109/72.950137
10.1002/cta.4490210408
10.1109/TNN.2003.820852
ContentType Journal Article
Copyright 2009 INIST-CNRS
Copyright_xml – notice: 2009 INIST-CNRS
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
DOI 10.1109/TNN.2008.2000993
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE
MEDLINE - Academic

Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Computer Science
Applied Sciences
EISSN 1941-0093
EndPage 1677
ExternalDocumentID 18842472
20765236
10_1109_TNN_2008_2000993
4639627
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
S10
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
ID FETCH-LOGICAL-c448t-60b14c59e3cd83f6bd5be39a1137d488a772d88cd32c1cc2e36365b0d53eb9c83
IEDL.DBID RIE
ISSN 1045-9227
1941-0093
IngestDate Fri Sep 05 12:58:04 EDT 2025
Thu Sep 04 16:45:29 EDT 2025
Mon Jul 21 06:02:34 EDT 2025
Mon Jul 21 09:17:21 EDT 2025
Tue Jul 01 02:44:36 EDT 2025
Thu Apr 24 23:07:33 EDT 2025
Tue Aug 26 16:47:31 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 10
Keywords Exponential convergence
Recurrent neural nets
Non convex programming
convergence
convex and nonconvex problems
Constraint satisfaction
Network management
Neural network
Convex programming
Constrained optimization
recurrent neural networks
Convergence rate
Convexity
Numerical convergence
Non convex analysis
Mathematical programming
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c448t-60b14c59e3cd83f6bd5be39a1137d488a772d88cd32c1cc2e36365b0d53eb9c83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1109/TNN.2008.2000993
PMID 18842472
PQID 69645404
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_875037966
crossref_citationtrail_10_1109_TNN_2008_2000993
pubmed_primary_18842472
pascalfrancis_primary_20765236
ieee_primary_4639627
proquest_miscellaneous_69645404
crossref_primary_10_1109_TNN_2008_2000993
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-10-01
PublicationDateYYYYMMDD 2008-10-01
PublicationDate_xml – month: 10
  year: 2008
  text: 2008-10-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
PublicationTitle IEEE transactions on neural networks
PublicationTitleAbbrev TNN
PublicationTitleAlternate IEEE Trans Neural Netw
PublicationYear 2008
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref51
ref46
ref45
ref47
ref41
ref44
ref43
ref8
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref32
ref2
ref1
ref39
hu (ref33) 2007; 18
ref38
luenberger (ref42) 1984
ref24
ref23
ref26
ref25
ref20
ref22
ref21
bertsekas (ref49) 1995
polak (ref48) 1997
ref28
ref27
ref29
khalil (ref50) 2002
cichocki (ref7) 1993
References_xml – ident: ref25
  doi: 10.1109/81.995659
– ident: ref12
  doi: 10.1109/ISCAS.2006.1692693
– ident: ref45
  doi: 10.1109/5.481630
– ident: ref31
  doi: 10.1109/TNN.2005.852974
– ident: ref28
  doi: 10.1109/TNN.2004.841779
– ident: ref24
  doi: 10.1109/72.883412
– ident: ref4
  doi: 10.1109/72.286888
– ident: ref26
  doi: 10.1016/S0375-9601(01)00542-4
– ident: ref32
  doi: 10.1109/TNN.2006.879774
– ident: ref23
  doi: 10.1109/72.728383
– year: 2002
  ident: ref50
  publication-title: Nonlinear Systems
– ident: ref3
  doi: 10.1109/TCS.1987.1086095
– ident: ref16
  doi: 10.1109/72.207617
– ident: ref47
  doi: 10.1109/TNN.2005.857946
– year: 1993
  ident: ref7
  publication-title: Neural Networks for Optimization and Signal Processing
– ident: ref38
  doi: 10.1007/BF01588311
– ident: ref40
  doi: 10.1023/B:JOGO.0000015310.27011.02
– ident: ref9
  doi: 10.1109/9.802909
– ident: ref30
  doi: 10.1109/TNN.2004.824252
– ident: ref22
  doi: 10.1109/TNN.2004.824405
– year: 1984
  ident: ref42
  publication-title: Linear and Nonlinear Programming
– ident: ref15
  doi: 10.1109/TCSI.2003.812613
– ident: ref41
  doi: 10.1109/IJCNN.2004.1380972
– ident: ref51
  doi: 10.1007/978-1-4684-9362-7
– ident: ref46
  doi: 10.1109/TNN.2002.1031938
– ident: ref44
  doi: 10.1147/rd.165.0504
– volume: 18
  start-page: 1697
  year: 2007
  ident: ref33
  article-title: Solving generally constrained generalized linear variational inequalities using the general projection neural networks
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2007.899753
– ident: ref20
  doi: 10.1016/S0375-9601(02)00424-3
– ident: ref39
  doi: 10.1007/978-1-4471-3467-1
– ident: ref13
  doi: 10.1109/82.160169
– ident: ref43
  doi: 10.1007/BF01582118
– ident: ref1
  doi: 10.1109/TCS.1986.1085953
– ident: ref2
  doi: 10.1109/TCS.1984.1085482
– ident: ref5
  doi: 10.1109/31.52732
– ident: ref35
  doi: 10.1109/TNN.2006.881046
– ident: ref14
  doi: 10.1109/72.165605
– ident: ref18
  doi: 10.1109/72.548188
– year: 1995
  ident: ref49
  publication-title: Nonlinear Programming
– year: 1997
  ident: ref48
  publication-title: Optimization Algorithms and Consistent Approximations
– ident: ref37
  doi: 10.1007/BF00934495
– ident: ref21
  doi: 10.1016/j.neunet.2004.05.006
– ident: ref10
  doi: 10.1109/TCSI.2004.834493
– ident: ref11
  doi: 10.1109/TNN.2006.879775
– ident: ref8
  doi: 10.1109/72.363446
– ident: ref29
  doi: 10.1109/TNN.2003.809409
– ident: ref19
  doi: 10.1016/S0893-6080(00)00019-8
– ident: ref27
  doi: 10.1109/TNN.2004.824425
– ident: ref17
  doi: 10.1016/0893-6080(91)90014-V
– ident: ref34
  doi: 10.1109/72.950137
– ident: ref6
  doi: 10.1002/cta.4490210408
– ident: ref36
  doi: 10.1109/TNN.2003.820852
SSID ssj0014506
Score 2.0154219
Snippet In this paper, a recurrent neural network for both convex and nonconvex equality-constrained optimization problems is proposed, which makes use of a cost...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1665
SubjectTerms Algorithms
Applied sciences
Artificial intelligence
Circuits
Computer science; control theory; systems
Computer Simulation
Connectionism. Neural networks
Constrained optimization
Constraint optimization
Convergence
convex and nonconvex problems
Design optimization
Exact sciences and technology
Feedback
Lagrangian functions
Models, Theoretical
Neural networks
Neural Networks (Computer)
Nonlinear equations
Numerical Analysis, Computer-Assisted
Piecewise linear techniques
Programming profession
Recurrent neural networks
Title A Nonfeasible Gradient Projection Recurrent Neural Network for Equality-Constrained Optimization Problems
URI https://ieeexplore.ieee.org/document/4639627
https://www.ncbi.nlm.nih.gov/pubmed/18842472
https://www.proquest.com/docview/69645404
https://www.proquest.com/docview/875037966
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGBwi6P8Cg-ICQksus4tuMcV6ilQmpAqJV6i-JHpIo2i7rZQ_n1jO0kUEQRt0ixEycz9rznA3jTKlEw0TYpbXmZcsWyFOWOSm3hnLRSFtT4auSTSh6f8U_n4nwH3k-1MM65kHzmFv4yxPLt2my9q2zJUZxKVuzCLrJZrNWaIgZcBBxNtC5EWjJWjCFJWi5PqyomTbKgEAXoHKU44wW7JY0CvIpPjmw2-H_aCGxxt-YZJNDRPpyMa4-JJ98W214vzI8_2jr-78c9hAeDKkpWkXcewY7rZjBfdWiGX92QtyQkhwav-wz2R_QHMhwGM7j_WyvDOVysSOWLBxvcYpeOfLwOqWQ9-RI9PUh98tW79n0zKOI7guCbq5iCTlBvJoexuvMm9QiiAbfCWfIZz7OroVDUP8lD32wew9nR4emH43SAcUgN2n59KqnOuBGly41VeSu1FdrlZZNleWHx_GhQwbdKGZszkxnDXC5zKTS1Ine6NCp_AnvdunPPgLRoHeqMurblHB9pSm04o402WYvTqEhgOZKzNkOPc7_kyzrYOrSskRci8ubACwm8m2Z8j_09_jF27sk2jRsolsDBLY6Z7jNaSLTzZQKvRxaqcfP6iEzTufV2U8vSN1SjPAFyxwjl48wF2qQJPI3M92uZAw8___uyXsA9NvbuzV7CXn-9da9Qger1Qdg5PwELqRZc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH8a4wAcGLQMwsfmA0JCIq3j2E5yrNBGgTUg1Em7RfFHJMSWorU9jL-eZzsJDDHELVLsxMl79vt-P4CXTS4yJpo6pg0vYp6zJEa5k8cms1YaKTOqXTXyopTzU_7hTJztwJuhFsZa65PP7MRd-li-Wemtc5VNOYpTybJbcBvlPhehWmuIGXDhkTTRvhBxwVjWByVpMV2WZUibZF4l8uA5ec4Zz9g1eeQBVlx6ZL3GP9QEaIubdU8vg473YNGvPqSefJtsN2qif_zR2PF_P-8B3O-UUTIL3PMQdmw7gvGsRUP84oq8Ij491PvdR7DX4z-Q7jgYwb3fmhmO4euMlK58sMZNdm7Ju0ufTLYhn4OvB-lPvjjnvmsHRVxPEHxzGZLQCWrO5CjUd17FDkPUI1dYQz7hiXbRlYq6Jznwm_UjOD0-Wr6dxx2QQ6zR-tvEkqqEa1HYVJs8baQyQtm0qJMkzQyeIDWq-CbPtUmZTrRmNpWpFIoakVpV6Dzdh9121donQBq0D1VCbdNwjo_UhdKc0VrppMFpVEQw7clZ6a7LuVvyeeWtHVpUyAsBe7PjhQheDzO-hw4f_xg7dmQbxnUUi-DgGscM9xnNJFr6MoLDnoUq3L4uJlO3drVdV7JwLdUoj4DcMCJ3keYMrdIIHgfm-7XMjoef_n1Zh3BnvlycVCfvy4_P4C7rO_kmz2F3c7m1L1Cd2qgDv4t-ArjAGak
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Nonfeasible+Gradient+Projection+Recurrent+Neural+Network+for+Equality-Constrained+Optimization+Problems&rft.jtitle=IEEE+transactions+on+neural+networks&rft.au=Barbarosou%2C+M.P.&rft.au=Maratos%2C+N.G.&rft.date=2008-10-01&rft.issn=1045-9227&rft.volume=19&rft.issue=10&rft.spage=1665&rft.epage=1677&rft_id=info:doi/10.1109%2FTNN.2008.2000993&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNN_2008_2000993
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9227&client=summon