Reinforcement Learning for Electric Power System Decision and Control: Past Considerations and Perspectives

In this paper, we review past (including very recent) research considerations in using reinforcement learning (RL) to solve electric power system decision and control problems. The RL considerations are reviewed in terms of specific electric power system problems, type of control and RL method used....

Full description

Saved in:
Bibliographic Details
Published inIFAC-PapersOnLine Vol. 50; no. 1; pp. 6918 - 6927
Main Authors Glavic, Mevludin, Fonteneau, Raphaël, Ernst, Damien
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2017
Subjects
Online AccessGet full text
ISSN2405-8963
2405-8963
DOI10.1016/j.ifacol.2017.08.1217

Cover

Loading…
Abstract In this paper, we review past (including very recent) research considerations in using reinforcement learning (RL) to solve electric power system decision and control problems. The RL considerations are reviewed in terms of specific electric power system problems, type of control and RL method used. We also provide observations about past considerations based on a comprehensive review of available publications. The review reveals the RL is considered as viable solutions to many decision and control problems across different time scales and electric power system states. Furthermore, we analyse the perspectives of RL approaches in light of the emergence of new-generation, communications, and instrumentation technologies currently in use, or available for future use, in power systems. The perspectives are also analysed in terms of recent breakthroughs in RL algorithms (Safe RL, Deep RL and path integral control for RL) and other, not previously considered, problems for RL considerations (most notably restorative, emergency controls together with so-called system integrity protection schemes, fusion with existing robust controls, and combining preventive and emergency control).
AbstractList In this paper, we review past (including very recent) research considerations in using reinforcement learning (RL) to solve electric power system decision and control problems. The RL considerations are reviewed in terms of specific electric power system problems, type of control and RL method used. We also provide observations about past considerations based on a comprehensive review of available publications. The review reveals the RL is considered as viable solutions to many decision and control problems across different time scales and electric power system states. Furthermore, we analyse the perspectives of RL approaches in light of the emergence of new-generation, communications, and instrumentation technologies currently in use, or available for future use, in power systems. The perspectives are also analysed in terms of recent breakthroughs in RL algorithms (Safe RL, Deep RL and path integral control for RL) and other, not previously considered, problems for RL considerations (most notably restorative, emergency controls together with so-called system integrity protection schemes, fusion with existing robust controls, and combining preventive and emergency control).
Author Ernst, Damien
Glavic, Mevludin
Fonteneau, Raphaël
Author_xml – sequence: 1
  givenname: Mevludin
  surname: Glavic
  fullname: Glavic, Mevludin
  organization: Dept. of Electrical Engineering and Computer Science, University of Liège, Allée de la découverte 10, 4000 Liège, Belgium
– sequence: 2
  givenname: Raphaël
  surname: Fonteneau
  fullname: Fonteneau, Raphaël
  email: raphael.fonteneau@ulg.ac.be
  organization: Dept. of Electrical Engineering and Computer Science, University of Liège, Allée de la découverte 10, 4000 Liège, Belgium
– sequence: 3
  givenname: Damien
  surname: Ernst
  fullname: Ernst, Damien
  organization: Dept. of Electrical Engineering and Computer Science, University of Liège, Allée de la découverte 10, 4000 Liège, Belgium
BookMark eNqFkFtLwzAYhoNMcM79BCF_YDVp06bVC5E5DzBweLgO2devktklIwmT_XvbzQvxZlff8X3hfc7JwDqLhFxylnDGi6tVYhoNrk1SxmXCyoSnXJ6QYSpYPimrIhv86c_IOIQVYyytCiGrcki-XtHYxnnANdpI56i9NfaTdis6axGiN0AX7hs9fduFiGt6j2CCcZZqW9Ops9G79poudIj9FEyNXsfuHvYPC_Rh09mYLYYLctroNuD4t47Ix8Psffo0mb88Pk_v5hMQooyTHECwqtCASy5xCTk0hSzKPNeai6oShcxY0wBrqiXIupCs5nldV6XWQmAm02xE8oMveBeCx0ZtvFlrv1OcqR6aWqkDNNVDU6xUPbROd_NPBybus0SvTXtUfXtQYxdta9CrAAYtYG18B0DVzhxx-AHyMI9q
CitedBy_id crossref_primary_10_1016_j_epsr_2022_108487
crossref_primary_10_1016_j_engappai_2022_105557
crossref_primary_10_1016_j_artmed_2021_102193
crossref_primary_10_1109_ACCESS_2022_3160710
crossref_primary_10_1109_ACCESS_2024_3396449
crossref_primary_10_23919_IEN_2024_0027
crossref_primary_10_1016_j_ifacol_2019_08_260
crossref_primary_10_1049_tje2_12065
crossref_primary_10_1109_ACCESS_2024_3350207
crossref_primary_10_1016_j_rser_2021_111459
crossref_primary_10_1016_j_epsr_2020_106615
crossref_primary_10_1016_j_rser_2020_110647
crossref_primary_10_3390_en17092167
crossref_primary_10_1038_s41598_025_91940_x
crossref_primary_10_1016_j_physa_2021_126488
crossref_primary_10_1109_TSG_2019_2933191
crossref_primary_10_3390_app11031209
crossref_primary_10_1016_j_engappai_2019_08_014
crossref_primary_10_21105_joss_05616
crossref_primary_10_1016_j_ijepes_2023_109117
crossref_primary_10_1088_1757_899X_327_2_022060
crossref_primary_10_1109_TIA_2024_3402198
crossref_primary_10_3390_electronics12143024
crossref_primary_10_1007_s10115_024_02291_4
crossref_primary_10_1109_JIOT_2020_2968631
crossref_primary_10_1016_j_ijhydene_2021_11_257
crossref_primary_10_3390_en15196920
crossref_primary_10_1109_ACCESS_2020_3003568
crossref_primary_10_1134_S1064230720050111
crossref_primary_10_1016_j_egyai_2022_100179
crossref_primary_10_1109_TIA_2024_3462891
crossref_primary_10_1016_j_apenergy_2022_119530
crossref_primary_10_1109_JPROC_2020_2988715
crossref_primary_10_1109_TPWRS_2020_2990179
crossref_primary_10_1146_annurev_environ_020220_061831
crossref_primary_10_1109_TNNLS_2020_3029573
crossref_primary_10_1109_TSG_2021_3050419
crossref_primary_10_1088_1742_6596_2176_1_012076
crossref_primary_10_1109_TPEL_2020_3024914
crossref_primary_10_1145_3485128
crossref_primary_10_1016_j_jclepro_2023_139947
crossref_primary_10_1109_TPWRS_2019_2948132
crossref_primary_10_1002_cta_3370
crossref_primary_10_1016_j_apenergy_2021_117634
crossref_primary_10_1109_JPROC_2022_3175070
crossref_primary_10_1088_1742_6596_2176_1_012082
crossref_primary_10_1016_j_apenergy_2024_123680
crossref_primary_10_1177_0020294020944952
crossref_primary_10_1016_j_conengprac_2020_104598
crossref_primary_10_3233_JHS_200641
crossref_primary_10_1049_stg2_12003
crossref_primary_10_1002_2050_7038_12531
crossref_primary_10_1016_j_knosys_2024_112637
crossref_primary_10_1016_j_rser_2025_115573
crossref_primary_10_1088_1742_6596_2176_1_012095
crossref_primary_10_3390_app14146214
crossref_primary_10_3389_fenrg_2023_879041
crossref_primary_10_1007_s12667_021_00448_6
crossref_primary_10_1016_j_aei_2020_101229
crossref_primary_10_3390_en13153928
crossref_primary_10_1016_j_apenergy_2019_03_027
crossref_primary_10_1016_j_apenergy_2024_123435
crossref_primary_10_1016_j_engappai_2023_106693
crossref_primary_10_1051_matecconf_201822604018
crossref_primary_10_3390_en13051226
crossref_primary_10_1016_j_amc_2022_127182
crossref_primary_10_1007_s40866_019_0074_0
crossref_primary_10_3390_f14122456
crossref_primary_10_1109_ACCESS_2023_3263547
crossref_primary_10_1109_ACCESS_2022_3172697
crossref_primary_10_3390_en13112830
crossref_primary_10_1109_LCSYS_2022_3181122
crossref_primary_10_1155_2021_9372803
crossref_primary_10_1109_TSG_2021_3052998
crossref_primary_10_1186_s43067_022_00048_z
crossref_primary_10_3390_math11224667
crossref_primary_10_1109_TPAMI_2023_3292075
crossref_primary_10_1016_j_apenergy_2022_120212
crossref_primary_10_3390_en11102528
crossref_primary_10_1080_00207160_2024_2339243
crossref_primary_10_1088_1742_6596_2176_1_012028
crossref_primary_10_1007_s10489_022_04105_y
crossref_primary_10_1109_ACCESS_2021_3125102
crossref_primary_10_1038_s41586_020_2939_8
crossref_primary_10_1016_j_segan_2022_100919
crossref_primary_10_1016_j_engappai_2022_105721
crossref_primary_10_1016_j_cec_2023_100040
crossref_primary_10_1016_j_prime_2024_100856
crossref_primary_10_3390_en12152891
crossref_primary_10_1016_j_apenergy_2022_120500
crossref_primary_10_1016_j_solener_2023_01_027
crossref_primary_10_33889_IJMEMS_2020_5_4_057
crossref_primary_10_1016_j_energy_2020_117708
crossref_primary_10_1007_s40095_019_0302_3
crossref_primary_10_1109_TPWRS_2024_3404472
crossref_primary_10_1016_j_egyai_2021_100092
crossref_primary_10_1016_j_apenergy_2024_124978
crossref_primary_10_1109_ACCESS_2023_3297274
crossref_primary_10_1109_TSG_2019_2903756
crossref_primary_10_1016_j_arcontrol_2019_09_008
crossref_primary_10_1109_TPWRS_2021_3095179
Cites_doi 10.1201/b19664-17
10.1109/TPWRS.2011.2166091
10.1109/TIA.2015.2466622
10.1016/j.ijepes.2010.12.008
10.1016/j.epsr.2011.11.024
10.1016/j.automatica.2012.05.043
10.1561/2200000049
10.1109/TSG.2012.2235864
10.1109/37.856179
10.1371/journal.pone.0157088
10.1016/S0378-7796(02)00088-3
10.1109/TSG.2015.2410171
10.1109/TSTE.2015.2467190
10.1109/TPWRS.2004.831259
10.1016/j.ijepes.2015.11.057
10.1561/2200000006
10.1049/iet-gtd.2009.0168
10.1109/TSMCB.2008.2007630
10.1016/j.epsr.2009.05.005
10.1038/nature14539
10.1109/NAPS.2006.359598
10.1016/j.isatra.2012.06.010
10.1109/TPWRD.2010.2046917
10.1109/TSG.2015.2393059
10.1109/PROC.1974.9541
10.1016/j.epsr.2016.06.041
10.5220/0006250803220327
10.1016/j.automatica.2016.05.008
10.1109/TSG.2014.2346740
10.1109/TSMCC.2010.2044174
10.1109/TCST.2005.847339
10.1137/120867263
10.1038/nature16961
10.1109/TPWRS.2014.2314359
10.1038/nature14236
10.1109/TIFS.2016.2607701
10.1109/TSG.2016.2517211
10.1109/TIE.2015.2420792
10.1162/154247603322493212
10.1016/j.ijepes.2006.03.002
10.1109/TSMCC.2012.2218596
10.1109/TNNLS.2016.2514358
10.1109/TPWRS.2010.2102372
10.1109/TPWRS.2003.821457
10.1109/TPWRS.2006.882467
10.1109/TPWRS.2011.2157180
10.1049/ip-gtd:19990426
10.1109/TPWRS.2004.841146
10.1109/TPWRS.2006.888977
10.1007/BF00992698
10.1109/TSG.2015.2495145
10.1109/TPWRS.2007.907589
10.1109/JPETS.2016.2558471
10.1109/JESTPE.2014.2331188
10.1016/j.neunet.2014.09.003
10.1007/s10479-012-1248-5
ContentType Journal Article
Copyright 2017
Copyright_xml – notice: 2017
DBID AAYXX
CITATION
DOI 10.1016/j.ifacol.2017.08.1217
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2405-8963
EndPage 6927
ExternalDocumentID 10_1016_j_ifacol_2017_08_1217
S2405896317317238
GroupedDBID 0R~
0SF
457
AAJQP
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADVLN
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ATDSJ
EBS
EJD
FDB
HX~
KQ8
O9-
ROL
AAYWO
AAYXX
CITATION
ID FETCH-LOGICAL-c448t-5cc4096aceb17ebc5cf676855aa149946730ffc0f9bc7d670d15dd98aa44e3723
ISSN 2405-8963
IngestDate Thu Apr 24 23:07:58 EDT 2025
Tue Jul 01 02:06:02 EDT 2025
Sat Feb 22 15:41:37 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly false
Issue 1
Keywords Electric power system
control
decision
reinforcement learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c448t-5cc4096aceb17ebc5cf676855aa149946730ffc0f9bc7d670d15dd98aa44e3723
OpenAccessLink https://doi.org/10.1016/j.ifacol.2017.08.1217
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_ifacol_2017_08_1217
crossref_citationtrail_10_1016_j_ifacol_2017_08_1217
elsevier_sciencedirect_doi_10_1016_j_ifacol_2017_08_1217
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-07-01
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-01
  day: 01
PublicationDecade 2010
PublicationTitle IFAC-PapersOnLine
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Francois-Lavet, V., Gemine, Q., Ernst, D., and Fonteneau, R. (2016a). Towards the minimization of the levelized energy costs of microgrids using both long-term and short-term storage devices. Smart Grid: Networking, Data Management, and Business Models, 295–319.
Ghavamzadeh, Mannor, Pineau, Tamar (bib0023) 2015; 8
Li, Wu (bib0040) 1999; 6
Ruelens, F., Claessens, B.J., Vandael, S., Schutter, B.D., Babuska, R., and Belmans, R. (2016). Residential demand response of thermostatically controlled loads using batch reinforcement learning. IEEE Trans. Smart Grid, In Press, 1–11.
Francois-Lavet, V., Taralla, D., Ernst, D., and Fonteneau, R. (2016b). Deep reinforcement learning solutions for energy microgrids management. In European Workshop on Reinforcement Learning.
Vandael, Claessens, Ernst, Holvoet, Deconinck (bib0063) 2015; 6
Vlachogiannis, Hatziargyriou, Hatziargyriou (bib0065) 2004; 19
Busoniu, Babuska, Schutter, Ernst (bib0005) 2010
Yu, Wang, Zhou, Chen, Tang (bib0075) 2012; 27
Hasselt, Guez, Silver (bib0031) 2015
Wang, Glavic, Wehenkel (bib0066) 2014; 29
Theodorou, Buchli, Schaal (bib0060) 2010; 11
Xu, Zhang, Liu, Ferrese (bib0071) 2012; 42
Gao, Jiang, Jiang, Chai (bib0020) 2016; 72
Glavic (bib0024) 2005; 13
(bib0049) 2008
Yan, J., He, H., Zhong, X., and Tang, Y. (2016). Q-learning based vulnerability analysis of smart grid against sequential topology attacks. IEEE Trans. Inf Forens. Secur., In Press, 1–11.
Zarabbian, Belkacemi, Babalola (bib0079) 2016; 141
Yu, Zhou, Chan, Chen, Yang (bib0077) 2011; 26
Otomega, Glavic, Van Cutsem (bib0048) 2007; 22
Nanduri, Das (bib0046) 2007; 22
Dubois, A., Wehenkel, A., Fonteneau, R., Olivier, F., and Ernst, D. (2017). An app-based algorithmic approach for harvesting local and renewable energy using electric vehicles. In Proceedings of the 9th International Conference on Agents and Artificial Intelligence (ICAART 2017), 1-6. ICAART.
Hadidi, Jeyasurya (bib0029) 2013; 4
Yu, Zhou, Chan, Yuan, Yang, Wu (bib0078) 2012; 48
Ekanayake, Liyanage, Wu, Jenkins (bib0012) 2012
Tang, He, Wen, Liu (bib0059) 2015; 6
Fonteneau, Ernst (bib0015) 2017
Aittahar, François-Lavet, Lodeweyckx, Ernst, Fonteneau (bib0003) 2015
Krause, Beck, Cherkaoui, Germond, Andersson, Ernst (bib0037) 2006; 28
Ye, Zhang, Sutanto (bib0073) 2011; 26
LeCun, Bengio, Hinton (bib0039) 2015; 521
Ademoye, Feliachi (bib0001) 2012; 86
Hasselt, H.V. (2010). Double Q-learning. In Advances in Neural Information Processing Systems, 2613-2621.
Dalal, G., Gilboa, E., and Mannor, S. (2016). Hierarchical decision making in electricity grid management. In Proceedings of The 33rd International Conference on Machine Learning, 2197-2206.
Mohagheghi, Venayagamoorthy, Harley (bib0045) 2006; 21
Yu, Zhang, Zhou, Chan (bib0076) 2016; 78
Venayagamorthy, Sharma, Gautam, Ahmadi (bib0064) 2016; 27
Schmidhuber (bib0055) 2015; 61
Sutton, Barto (bib0057) 1998
Watkins, Dayan (bib0068) 1992; 8
Gemine, Q., Ernst, D., and Cornelusse, B. (2014). Active network management for electrical distribution systems: problem formulation, benchmark, and approximate solution. arXiv preprint arXiv:1405.2806.
Li, Wu, He, Chen (bib0041) 2012; 51
Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, Fidje-land, Ostrovski (bib0044) 2015; 518
Ahamed, Rao, Sastry (bib0002) 2002; 63
Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2015). Prioritized experience replay. arXiv preprint arXiv:1511.05952.
Olivier, Aristidou, Ernst, Van Cutsem (bib0047) 2016; 7
Madani, Novosel, Horowitz, Adamiak, Amantegui, Karlsson, Imai, Apostolov (bib0043) 2010; 25
Garcia, Fernandez (bib0021) 2015; 16
Rochet, Tirole (bib0051) 2003; 1
Szabo (bib0058) 1997
Ruiz-Vega, Glavic, Ernst (bib0053) 2003
Harp, Brignone, Wollenberg, Samad (bib0030) 2000; 20
Fonteneau, Ernst, Boigelot, Louveaux (bib0016) 2013; 51
Kim, Zhang, van der Schaar, Lee (bib0036) 2016; 7
Wei, Zhang, Qiao, Qu (bib0070) 2015; 62
Daneshfar, Bevrani (bib0009) 2010; 4
Thomas, P.S. (2015). Safe Reinforcement Learning. PhD Dissertation, The University of Massachusetts Amherst, Amherst.
Karimi, Eftekharnejad, Feliachi (bib0034) 2009; 79
Khorramabady, Bakhshai, Bakhshai (bib0035) 2015; 3
Glavic, Ernst, Wehenkel (bib0027) 2005; 13
Yousefian, Kamalsadan, Kamalsadan (bib0074) 2016; 52
Kydd, Anstrom, Heitmann, Komara, Crouse (bib0038) 2016; 3
Glavic, Alvarado (bib0025) 2016
Glavic, M., Ernst, D., and Wehenkel, L. (2006). Damping control by fusion of reinforcement learning and control Lyapunov functions. In Proc. of f the 38th North American Power Symposium (NAPS 2006), 1-7. NAPS.
Ernst, Glavic, Capitanescu, Wehenkel (bib0013) 2009; 39
Glavic, Ernst, Wehenkel (bib0026) 2005; 20
Wang, Lin, Pedram (bib0067) 2016; 7
Castronovo, Ernst, Couetoux, Fonteneau (bib0006) 2016; 11
Dalal, Mannor (bib0008) 2015
Jasmin, Ahamed, Raj (bib0033) 2011; 33
Silver, Huang, Maddison, Guez, Sifre, Driessche, Schrittwieser, Antonoglou, Panneershelvam, Lanctot (bib0056) 2016; 529
Rahimiyan, Mashhadi, Mashhadi (bib0050) 2010; 40
Wehenkel, Glavic, Geurts, Ernst (bib0069) 2006
Ernst, Glavic, Wehenkel (bib0014) 2004; 19
Bengio (bib0004) 2009; 2
DyLiacco (bib0011) 1974; 62
Fonteneau, Murphy, Wehenkel, Ernst (bib0017) 2013; 208
Lincoln, Galloway, Stephen, Burt (bib0042) 2012; 27
US-DoE (2004). Final report on the august 14, 2003 blackout in the united states and canada: Causes and recommendations. Technical report, US Department of Energy, US-Canada Power System Outage Task Force.
Rochet (10.1016/j.ifacol.2017.08.1217_bib0051) 2003; 1
10.1016/j.ifacol.2017.08.1217_bib0010
10.1016/j.ifacol.2017.08.1217_bib0054
Bengio (10.1016/j.ifacol.2017.08.1217_bib0004) 2009; 2
Szabo (10.1016/j.ifacol.2017.08.1217_bib0058) 1997
Tang (10.1016/j.ifacol.2017.08.1217_bib0059) 2015; 6
Vandael (10.1016/j.ifacol.2017.08.1217_bib0063) 2015; 6
Wei (10.1016/j.ifacol.2017.08.1217_bib0070) 2015; 62
Yu (10.1016/j.ifacol.2017.08.1217_bib0077) 2011; 26
Glavic (10.1016/j.ifacol.2017.08.1217_bib0026) 2005; 20
Yu (10.1016/j.ifacol.2017.08.1217_bib0076) 2016; 78
Aittahar (10.1016/j.ifacol.2017.08.1217_bib0003) 2015
10.1016/j.ifacol.2017.08.1217_bib0019
10.1016/j.ifacol.2017.08.1217_bib0018
Castronovo (10.1016/j.ifacol.2017.08.1217_bib0006) 2016; 11
Daneshfar (10.1016/j.ifacol.2017.08.1217_bib0009) 2010; 4
Glavic (10.1016/j.ifacol.2017.08.1217_bib0025) 2016
Ademoye (10.1016/j.ifacol.2017.08.1217_bib0001) 2012; 86
Khorramabady (10.1016/j.ifacol.2017.08.1217_bib0035) 2015; 3
(10.1016/j.ifacol.2017.08.1217_bib0049) 2008
Ruiz-Vega (10.1016/j.ifacol.2017.08.1217_bib0053) 2003
Fonteneau (10.1016/j.ifacol.2017.08.1217_bib0017) 2013; 208
Li (10.1016/j.ifacol.2017.08.1217_bib0041) 2012; 51
10.1016/j.ifacol.2017.08.1217_bib0052
Rahimiyan (10.1016/j.ifacol.2017.08.1217_bib0050) 2010; 40
Wang (10.1016/j.ifacol.2017.08.1217_bib0067) 2016; 7
Silver (10.1016/j.ifacol.2017.08.1217_bib0056) 2016; 529
Theodorou (10.1016/j.ifacol.2017.08.1217_bib0060) 2010; 11
DyLiacco (10.1016/j.ifacol.2017.08.1217_bib0011) 1974; 62
Kydd (10.1016/j.ifacol.2017.08.1217_bib0038) 2016; 3
Karimi (10.1016/j.ifacol.2017.08.1217_bib0034) 2009; 79
Kim (10.1016/j.ifacol.2017.08.1217_bib0036) 2016; 7
Mnih (10.1016/j.ifacol.2017.08.1217_bib0044) 2015; 518
Ernst (10.1016/j.ifacol.2017.08.1217_bib0013) 2009; 39
10.1016/j.ifacol.2017.08.1217_bib0007
Mohagheghi (10.1016/j.ifacol.2017.08.1217_bib0045) 2006; 21
Glavic (10.1016/j.ifacol.2017.08.1217_bib0024) 2005; 13
Li (10.1016/j.ifacol.2017.08.1217_bib0040) 1999; 6
Madani (10.1016/j.ifacol.2017.08.1217_bib0043) 2010; 25
Otomega (10.1016/j.ifacol.2017.08.1217_bib0048) 2007; 22
Yousefian (10.1016/j.ifacol.2017.08.1217_bib0074) 2016; 52
Sutton (10.1016/j.ifacol.2017.08.1217_bib0057) 1998
Olivier (10.1016/j.ifacol.2017.08.1217_bib0047) 2016; 7
Vlachogiannis (10.1016/j.ifacol.2017.08.1217_bib0065) 2004; 19
Yu (10.1016/j.ifacol.2017.08.1217_bib0078) 2012; 48
Fonteneau (10.1016/j.ifacol.2017.08.1217_bib0015) 2017
Glavic (10.1016/j.ifacol.2017.08.1217_bib0027) 2005; 13
Ye (10.1016/j.ifacol.2017.08.1217_bib0073) 2011; 26
Krause (10.1016/j.ifacol.2017.08.1217_bib0037) 2006; 28
Busoniu (10.1016/j.ifacol.2017.08.1217_bib0005) 2010
10.1016/j.ifacol.2017.08.1217_bib0032
Yu (10.1016/j.ifacol.2017.08.1217_bib0075) 2012; 27
Dalal (10.1016/j.ifacol.2017.08.1217_bib0008) 2015
Ernst (10.1016/j.ifacol.2017.08.1217_bib0014) 2004; 19
Fonteneau (10.1016/j.ifacol.2017.08.1217_bib0016) 2013; 51
Ghavamzadeh (10.1016/j.ifacol.2017.08.1217_bib0023) 2015; 8
Ekanayake (10.1016/j.ifacol.2017.08.1217_bib0012) 2012
Wang (10.1016/j.ifacol.2017.08.1217_bib0066) 2014; 29
Xu (10.1016/j.ifacol.2017.08.1217_bib0071) 2012; 42
Jasmin (10.1016/j.ifacol.2017.08.1217_bib0033) 2011; 33
LeCun (10.1016/j.ifacol.2017.08.1217_bib0039) 2015; 521
Watkins (10.1016/j.ifacol.2017.08.1217_bib0068) 1992; 8
Hadidi (10.1016/j.ifacol.2017.08.1217_bib0029) 2013; 4
10.1016/j.ifacol.2017.08.1217_bib0072
Nanduri (10.1016/j.ifacol.2017.08.1217_bib0046) 2007; 22
10.1016/j.ifacol.2017.08.1217_bib0022
Venayagamorthy (10.1016/j.ifacol.2017.08.1217_bib0064) 2016; 27
10.1016/j.ifacol.2017.08.1217_bib0028
Ahamed (10.1016/j.ifacol.2017.08.1217_bib0002) 2002; 63
Garcia (10.1016/j.ifacol.2017.08.1217_bib0021) 2015; 16
Schmidhuber (10.1016/j.ifacol.2017.08.1217_bib0055) 2015; 61
Gao (10.1016/j.ifacol.2017.08.1217_bib0020) 2016; 72
Lincoln (10.1016/j.ifacol.2017.08.1217_bib0042) 2012; 27
Zarabbian (10.1016/j.ifacol.2017.08.1217_bib0079) 2016; 141
Harp (10.1016/j.ifacol.2017.08.1217_bib0030) 2000; 20
Hasselt (10.1016/j.ifacol.2017.08.1217_bib0031) 2015
10.1016/j.ifacol.2017.08.1217_bib0062
Wehenkel (10.1016/j.ifacol.2017.08.1217_bib0069) 2006
10.1016/j.ifacol.2017.08.1217_bib0061
References_xml – volume: 13
  start-page: 743
  year: 2005
  end-page: 751
  ident: bib0024
  article-title: Design of a resistive brake controller for power system stability enhancement using reinforcement learning
  publication-title: IEEE Trans. Contr. Syst. Tech.
– volume: 11
  start-page: 3137
  year: 2010
  end-page: 3181
  ident: bib0060
  article-title: A generalized path integral control approach to reinforcement learning
  publication-title: Journal of Machine Learning Research
– volume: 86
  start-page: 34
  year: 2012
  end-page: 40
  ident: bib0001
  article-title: Reinforcement learning tuned decentralized synergetic control of power systems
  publication-title: Elec. Power Syst. Research
– volume: 51
  start-page: 3355
  year: 2013
  end-page: 3385
  ident: bib0016
  article-title: Min max generalization for deterministic batch mode reinforcement learning: relaxation schemes
  publication-title: SIAM Journal on Control and Optimization
– volume: 13
  start-page: 81
  year: 2005
  end-page: 88
  ident: bib0027
  article-title: A reinforcement learning based discrete supplementary control for power system transient stability enhancement
  publication-title: Engineering Intelligent Systems for Electrical Engineering and Communications
– start-page: 1
  year: 2015
  end-page: 15
  ident: bib0003
  article-title: Imitative learning for online planning in microgrids
  publication-title: International Workshop on Data Analytics for Renewable Energy Integration
– volume: 26
  start-page: 2434
  year: 2011
  end-page: 2441
  ident: bib0073
  article-title: A hybrid multiagent framework with Q-learning for power grid systems restoration
  publication-title: IEEE Trans. Power Syst.
– volume: 8
  start-page: 279
  year: 1992
  end-page: 292
  ident: bib0068
  article-title: Q-learning
  publication-title: Machine learning
– volume: 79
  start-page: 1511
  year: 2009
  end-page: 1520
  ident: bib0034
  article-title: Reinforcement learning based backstepping control of power system oscillations
  publication-title: Elec. Power Syst. Research
– volume: 4
  start-page: 489
  year: 2013
  end-page: 497
  ident: bib0029
  article-title: Reinforcement learning based real-time wide-area stabilizing control agents to enhance power system stability
  publication-title: IEEE Trans. Smart Grid
– year: 2008
  ident: bib0049
  publication-title: Power System Dynamics, Stability and Control
– reference: Glavic, M., Ernst, D., and Wehenkel, L. (2006). Damping control by fusion of reinforcement learning and control Lyapunov functions. In Proc. of f the 38th North American Power Symposium (NAPS 2006), 1-7. NAPS.
– volume: 19
  start-page: 427
  year: 2004
  end-page: 435
  ident: bib0014
  article-title: Power systems stability control: Reinforcement learning framework
  publication-title: IEEE Trans. Power Syst.
– volume: 72
  start-page: 37
  year: 2016
  end-page: 45
  ident: bib0020
  article-title: Output-feedback adaptive optimal control of interconnected systems based on robust adaptive dynamic programming
  publication-title: Automatica
– volume: 51
  start-page: 743
  year: 2012
  end-page: 751
  ident: bib0041
  article-title: Optimal control in microgrid using multi-agent reinforcement learning
  publication-title: ISA Transactions
– volume: 141
  start-page: 179
  year: 2016
  end-page: 190
  ident: bib0079
  article-title: Reinforcement learning approach for congestion management and cascading failure prevention with experimental application
  publication-title: Elec. Power Syst. Research
– volume: 7
  start-page: 77
  year: 2016
  end-page: 86
  ident: bib0067
  article-title: A near-optimal model-based control algorithm for households equipped with residential photovoltaic power generation and energy storage systems
  publication-title: IEEE Trans. Sust. Ener.
– volume: 6
  start-page: 166
  year: 2015
  end-page: 177
  ident: bib0059
  article-title: Power system stability control for a wind farm based on adaptive dynamic programming
  publication-title: IEEE Trans. Smart Grid
– reference: Francois-Lavet, V., Taralla, D., Ernst, D., and Fonteneau, R. (2016b). Deep reinforcement learning solutions for energy microgrids management. In European Workshop on Reinforcement Learning.
– volume: 8
  start-page: 359
  year: 2015
  end-page: 483
  ident: bib0023
  article-title: Bayesian reinforcement learning: A survey
  publication-title: Foundations and Trends@ in Machine Learning
– year: 2015
  ident: bib0031
  publication-title: Deep reinforcement learning with double Q-learning
– volume: 27
  start-page: 373
  year: 2012
  end-page: 380
  ident: bib0075
  article-title: Multi-agent correlated equilibrium Q(\) learning for coordinated smart generation control of interconnected power grids
  publication-title: IEEE Trans. Power Syst
– volume: 28
  start-page: 599
  year: 2006
  end-page: 607
  ident: bib0037
  article-title: A comparison of nash equilibria analysis and agent-based modelling for power markets
  publication-title: Int. Journal Elec. Power and Ener. Syst.
– volume: 62
  start-page: 884
  year: 1974
  end-page: 891
  ident: bib0011
  article-title: Real-time computer control of power systems
  publication-title: Proc. IEEE
– volume: 62
  start-page: 6360
  year: 2015
  end-page: 6370
  ident: bib0070
  article-title: Reinforcement-learning-based intelligent maximum power point tracking control for wind energy conversion systems
  publication-title: IEEE Trans. Ind. Ecetr.
– volume: 25
  start-page: 2143
  year: 2010
  end-page: 2155
  ident: bib0043
  article-title: IEEE PSRC report on global industry experiences with system integrity protection schemes (SIPS)
  publication-title: IEEE Trans. Power Syst.
– volume: 3
  start-page: 493
  year: 2015
  end-page: 504
  ident: bib0035
  article-title: Intelligent control of grid-connected microgrids: An adaptive critic-based approach
  publication-title: IEEE Trans. Emer. Selec. Topics Power Electr.
– volume: 63
  start-page: 9
  year: 2002
  end-page: 26
  ident: bib0002
  article-title: A reinforcement learning approach to automatic generation control
  publication-title: Elec. Power Syst. Research
– volume: 42
  start-page: 1742
  year: 2012
  end-page: 1751
  ident: bib0071
  article-title: Multiagent-based reinforcement learning for optimal reactive power dispatch
  publication-title: IEEE Trans. Syst., Man, Cyber.: Part C
– reference: US-DoE (2004). Final report on the august 14, 2003 blackout in the united states and canada: Causes and recommendations. Technical report, US Department of Energy, US-Canada Power System Outage Task Force.
– reference: Dalal, G., Gilboa, E., and Mannor, S. (2016). Hierarchical decision making in electricity grid management. In Proceedings of The 33rd International Conference on Machine Learning, 2197-2206.
– reference: Gemine, Q., Ernst, D., and Cornelusse, B. (2014). Active network management for electrical distribution systems: problem formulation, benchmark, and approximate solution. arXiv preprint arXiv:1405.2806.
– volume: 4
  start-page: 13
  year: 2010
  end-page: 26
  ident: bib0009
  article-title: Loadfrequency control: a GA-based multi-agent reinforcement learning
  publication-title: IET Gen., Transm., Dist.
– volume: 3
  start-page: 81
  year: 2016
  end-page: 88
  ident: bib0038
  article-title: Vehicle-solar-grid integration: Concept and construction
  publication-title: IEEE Power Ener. Tech. Syst. Journal
– volume: 22
  start-page: 85
  year: 2007
  end-page: 95
  ident: bib0046
  article-title: A reinforcement learning model to assess market power under auction-based energy pricing
  publication-title: IEEE Trans. Power Syst.
– start-page: 2053
  year: 2003
  end-page: 2059
  ident: bib0053
  article-title: Transient stability emergency control combining open-loop and closed-loop techniques
  publication-title: IEEE PES General meeting
– year: 2010
  ident: bib0005
  publication-title: Reinforcement learning and dynamic programming using function approximators
– start-page: 1
  year: 2016
  end-page: 10
  ident: bib0025
  article-title: Potential, opportunities and benefits of electric vehicles as frequency regulation resources
  publication-title: Open Repository and Bibliography
– volume: 40
  start-page: 547
  year: 2010
  end-page: 556
  ident: bib0050
  article-title: An adaptive Q-learning algorithm developed for agent-based computational modeling of electricity market
  publication-title: IEEE Trans. Syst., Man, Cyber.: Part C
– reference: Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2015). Prioritized experience replay. arXiv preprint arXiv:1511.05952.
– volume: 7
  start-page: 926
  year: 2016
  end-page: 936
  ident: bib0047
  article-title: Active management of low-voltage networks for mitigating overvoltages due to photovoltaic units
  publication-title: IEEE Transactions on Smart Grid
– volume: 29
  start-page: 2835
  year: 2014
  end-page: 2845
  ident: bib0066
  article-title: Trajectory-based supplementary damping control for power system electromechanical oscillations
  publication-title: IEEE Trans. Power Syst.
– volume: 27
  start-page: 373
  year: 2012
  end-page: 380
  ident: bib0042
  article-title: Comparing policy gradient and value function based reinforcement learning methods in simulated electrical power trade
  publication-title: IEEE Trans. Power Syst.
– volume: 2
  start-page: 1
  year: 2009
  end-page: 127
  ident: bib0004
  article-title: Learning deep architectures for AI
  publication-title: Foundations and trends@ in Machine Learning
– volume: 20
  start-page: 525
  year: 2005
  end-page: 526
  ident: bib0026
  article-title: Combining a stability and a performance-oriented control in power systems
  publication-title: IEEE Trans. Power Syst.
– reference: Thomas, P.S. (2015). Safe Reinforcement Learning. PhD Dissertation, The University of Massachusetts Amherst, Amherst.
– start-page: 1
  year: 2015
  end-page: 6
  ident: bib0008
  article-title: Reinforcement learning for the unit commitment problem
  publication-title: PowerTech
– volume: 208
  start-page: 383
  year: 2013
  end-page: 416
  ident: bib0017
  article-title: Batch mode reinforcement learning based on the synthesis of artificial trajectories
  publication-title: Annals of Operations Research
– volume: 6
  start-page: 577
  year: 1999
  end-page: 585
  ident: bib0040
  article-title: Learning coordinated fuzzy logic control of dynamic quadrature boosters in multimachine power systems
  publication-title: IEE Proc. Gen., Transm., Dist.
– volume: 16
  start-page: 1437
  year: 2015
  end-page: 1480
  ident: bib0021
  article-title: A comprehensive survey on safe reinforcement learning
  publication-title: Journal of Machine Learning Research
– volume: 7
  start-page: 2187
  year: 2016
  end-page: 2198
  ident: bib0036
  article-title: Dynamic pricing and energy consumption scheduling with reinforcement learning
  publication-title: IEEE Trans. Smart Grid
– volume: 22
  start-page: 2283
  year: 2007
  end-page: 2284
  ident: bib0048
  article-title: Distributed undervoltage load shedding
  publication-title: IEEE Trans. Power Syst.
– start-page: 23
  year: 2017
  end-page: 60
  ident: bib0015
  article-title: On the dynamics of the deployment of renewable energy production capacities
  publication-title: Mathematical Advances Towards Sustainable Environmental Systems
– volume: 26
  start-page: 1272
  year: 2011
  end-page: 1282
  ident: bib0077
  article-title: Stochastic optimal relaxed automatic generation control in non-markov environment based on multi-step Q(λ) learning
  publication-title: IEEE Trans. Power Syst.
– volume: 48
  start-page: 2130
  year: 2012
  end-page: 2136
  ident: bib0078
  article-title: R(λ) imitation learning for automatic generation control of interconnected power grids
  publication-title: Automatica
– volume: 518
  start-page: 529
  year: 2015
  end-page: 533
  ident: bib0044
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
– volume: 6
  start-page: 1795
  year: 2015
  end-page: 1805
  ident: bib0063
  article-title: Reinforcement learning of heuristic EV fleet charging in a day-ahead electricity market
  publication-title: IEEE Trans. Smart Grid
– reference: Ruelens, F., Claessens, B.J., Vandael, S., Schutter, B.D., Babuska, R., and Belmans, R. (2016). Residential demand response of thermostatically controlled loads using batch reinforcement learning. IEEE Trans. Smart Grid, In Press, 1–11.
– year: 1998
  ident: bib0057
  publication-title: Reinforcement Learning: An Introduction
– volume: 11
  start-page: e0157088
  year: 2016
  ident: bib0006
  article-title: Benchmarking for bayesian reinforcement learning
  publication-title: PloS one
– volume: 1
  start-page: 990
  year: 2003
  end-page: 1029
  ident: bib0051
  article-title: Platform competition in two-sided markets
  publication-title: Journal of the European Economic Association
– volume: 529
  start-page: 484
  year: 2016
  end-page: 489
  ident: bib0056
  article-title: Mastering the game of Go with deep neural networks and tree search
  publication-title: Nature
– volume: 33
  start-page: 836
  year: 2011
  end-page: 845
  ident: bib0033
  article-title: Reinforcement learning approaches to economic dispatch problem
  publication-title: Int. Journal Elec. Power and Ener. Syst.
– reference: Francois-Lavet, V., Gemine, Q., Ernst, D., and Fonteneau, R. (2016a). Towards the minimization of the levelized energy costs of microgrids using both long-term and short-term storage devices. Smart Grid: Networking, Data Management, and Business Models, 295–319.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib0039
  article-title: Deep learning
  publication-title: Nature
– reference: Dubois, A., Wehenkel, A., Fonteneau, R., Olivier, F., and Ernst, D. (2017). An app-based algorithmic approach for harvesting local and renewable energy using electric vehicles. In Proceedings of the 9th International Conference on Agents and Artificial Intelligence (ICAART 2017), 1-6. ICAART.
– volume: 20
  start-page: 53
  year: 2000
  end-page: 69
  ident: bib0030
  article-title: SEPIA: A simulator for electric power industry agents
  publication-title: IEEE Contr. Syst. Mag.
– volume: 78
  start-page: 1
  year: 2016
  end-page: 12
  ident: bib0076
  article-title: Hierarchical correlated Q-learning for multi-layer optimal generation command dispatch
  publication-title: Int. Journal Elec. Power and Ener. Syst
– year: 2012
  ident: bib0012
  publication-title: Smart Grid: Technology and Applications
– volume: 19
  start-page: 1317
  year: 2004
  end-page: 1325
  ident: bib0065
  article-title: Reinforcement learning for reactive power control
  publication-title: IEEE Trans. Power Syst.
– reference: Hasselt, H.V. (2010). Double Q-learning. In Advances in Neural Information Processing Systems, 2613-2621.
– volume: 52
  start-page: 395
  year: 2016
  end-page: 406
  ident: bib0074
  article-title: Design and real-time implementation of optimal power system wide-area system-centric controller based on temporal difference learning
  publication-title: IEEE Trans. Ind. App.
– start-page: 2
  year: 1997
  ident: bib0058
  article-title: Formalizing and securing relationships on public networks
  publication-title: Peer-Reviewed Journal on Internet
– reference: Yan, J., He, H., Zhong, X., and Tang, Y. (2016). Q-learning based vulnerability analysis of smart grid against sequential topology attacks. IEEE Trans. Inf Forens. Secur., In Press, 1–11.
– volume: 39
  start-page: 517
  year: 2009
  end-page: 529
  ident: bib0013
  article-title: Reinforcement learning versus model predictive control: A comparison on a power system problem
  publication-title: IEEE Trans. Syst., Man, Cyber.: Part B
– volume: 21
  start-page: 1744
  year: 2006
  end-page: 1754
  ident: bib0045
  article-title: Adaptive critic design based neuro-fuzzy controller for a static compensator in a multimachine power system
  publication-title: IEEE Trans. Power Syst.
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: bib0055
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Networks
– volume: 27
  start-page: 1643
  year: 2016
  end-page: 1656
  ident: bib0064
  article-title: Dynamic energy management system for a smart microgrid
  publication-title: IEEE Trans. Neural Networks and Learning Systems
– start-page: 1
  year: 2006
  end-page: 6
  ident: bib0069
  article-title: Automatic learning of sequential decision strategies for dynamic security assessment and control
  publication-title: IEEE PES General meeting
– ident: 10.1016/j.ifacol.2017.08.1217_bib0018
  doi: 10.1201/b19664-17
– volume: 27
  start-page: 373
  year: 2012
  ident: 10.1016/j.ifacol.2017.08.1217_bib0042
  article-title: Comparing policy gradient and value function based reinforcement learning methods in simulated electrical power trade
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2011.2166091
– volume: 52
  start-page: 395
  year: 2016
  ident: 10.1016/j.ifacol.2017.08.1217_bib0074
  article-title: Design and real-time implementation of optimal power system wide-area system-centric controller based on temporal difference learning
  publication-title: IEEE Trans. Ind. App.
  doi: 10.1109/TIA.2015.2466622
– volume: 33
  start-page: 836
  year: 2011
  ident: 10.1016/j.ifacol.2017.08.1217_bib0033
  article-title: Reinforcement learning approaches to economic dispatch problem
  publication-title: Int. Journal Elec. Power and Ener. Syst.
  doi: 10.1016/j.ijepes.2010.12.008
– volume: 13
  start-page: 81
  year: 2005
  ident: 10.1016/j.ifacol.2017.08.1217_bib0027
  article-title: A reinforcement learning based discrete supplementary control for power system transient stability enhancement
  publication-title: Engineering Intelligent Systems for Electrical Engineering and Communications
– volume: 86
  start-page: 34
  year: 2012
  ident: 10.1016/j.ifacol.2017.08.1217_bib0001
  article-title: Reinforcement learning tuned decentralized synergetic control of power systems
  publication-title: Elec. Power Syst. Research
  doi: 10.1016/j.epsr.2011.11.024
– start-page: 2053
  year: 2003
  ident: 10.1016/j.ifacol.2017.08.1217_bib0053
  article-title: Transient stability emergency control combining open-loop and closed-loop techniques
– ident: 10.1016/j.ifacol.2017.08.1217_bib0007
– ident: 10.1016/j.ifacol.2017.08.1217_bib0062
– volume: 48
  start-page: 2130
  year: 2012
  ident: 10.1016/j.ifacol.2017.08.1217_bib0078
  article-title: R(λ) imitation learning for automatic generation control of interconnected power grids
  publication-title: Automatica
  doi: 10.1016/j.automatica.2012.05.043
– volume: 8
  start-page: 359
  issue: 5-6
  year: 2015
  ident: 10.1016/j.ifacol.2017.08.1217_bib0023
  article-title: Bayesian reinforcement learning: A survey
  publication-title: Foundations and Trends@ in Machine Learning
  doi: 10.1561/2200000049
– volume: 4
  start-page: 489
  year: 2013
  ident: 10.1016/j.ifacol.2017.08.1217_bib0029
  article-title: Reinforcement learning based real-time wide-area stabilizing control agents to enhance power system stability
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2012.2235864
– volume: 20
  start-page: 53
  year: 2000
  ident: 10.1016/j.ifacol.2017.08.1217_bib0030
  article-title: SEPIA: A simulator for electric power industry agents
  publication-title: IEEE Contr. Syst. Mag.
  doi: 10.1109/37.856179
– volume: 11
  start-page: e0157088
  issue: 6
  year: 2016
  ident: 10.1016/j.ifacol.2017.08.1217_bib0006
  article-title: Benchmarking for bayesian reinforcement learning
  publication-title: PloS one
  doi: 10.1371/journal.pone.0157088
– volume: 63
  start-page: 9
  year: 2002
  ident: 10.1016/j.ifacol.2017.08.1217_bib0002
  article-title: A reinforcement learning approach to automatic generation control
  publication-title: Elec. Power Syst. Research
  doi: 10.1016/S0378-7796(02)00088-3
– volume: 16
  start-page: 1437
  year: 2015
  ident: 10.1016/j.ifacol.2017.08.1217_bib0021
  article-title: A comprehensive survey on safe reinforcement learning
  publication-title: Journal of Machine Learning Research
– volume: 7
  start-page: 926
  issue: 2
  year: 2016
  ident: 10.1016/j.ifacol.2017.08.1217_bib0047
  article-title: Active management of low-voltage networks for mitigating overvoltages due to photovoltaic units
  publication-title: IEEE Transactions on Smart Grid
  doi: 10.1109/TSG.2015.2410171
– volume: 27
  start-page: 373
  year: 2012
  ident: 10.1016/j.ifacol.2017.08.1217_bib0075
  article-title: Multi-agent correlated equilibrium Q(\) learning for coordinated smart generation control of interconnected power grids
  publication-title: IEEE Trans. Power Syst
– volume: 7
  start-page: 77
  year: 2016
  ident: 10.1016/j.ifacol.2017.08.1217_bib0067
  article-title: A near-optimal model-based control algorithm for households equipped with residential photovoltaic power generation and energy storage systems
  publication-title: IEEE Trans. Sust. Ener.
  doi: 10.1109/TSTE.2015.2467190
– year: 2015
  ident: 10.1016/j.ifacol.2017.08.1217_bib0031
– volume: 19
  start-page: 1317
  year: 2004
  ident: 10.1016/j.ifacol.2017.08.1217_bib0065
  article-title: Reinforcement learning for reactive power control
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2004.831259
– volume: 78
  start-page: 1
  year: 2016
  ident: 10.1016/j.ifacol.2017.08.1217_bib0076
  article-title: Hierarchical correlated Q-learning for multi-layer optimal generation command dispatch
  publication-title: Int. Journal Elec. Power and Ener. Syst
  doi: 10.1016/j.ijepes.2015.11.057
– volume: 2
  start-page: 1
  year: 2009
  ident: 10.1016/j.ifacol.2017.08.1217_bib0004
  article-title: Learning deep architectures for AI
  publication-title: Foundations and trends@ in Machine Learning
  doi: 10.1561/2200000006
– year: 2010
  ident: 10.1016/j.ifacol.2017.08.1217_bib0005
– volume: 4
  start-page: 13
  year: 2010
  ident: 10.1016/j.ifacol.2017.08.1217_bib0009
  article-title: Loadfrequency control: a GA-based multi-agent reinforcement learning
  publication-title: IET Gen., Transm., Dist.
  doi: 10.1049/iet-gtd.2009.0168
– volume: 39
  start-page: 517
  year: 2009
  ident: 10.1016/j.ifacol.2017.08.1217_bib0013
  article-title: Reinforcement learning versus model predictive control: A comparison on a power system problem
  publication-title: IEEE Trans. Syst., Man, Cyber.: Part B
  doi: 10.1109/TSMCB.2008.2007630
– volume: 79
  start-page: 1511
  year: 2009
  ident: 10.1016/j.ifacol.2017.08.1217_bib0034
  article-title: Reinforcement learning based backstepping control of power system oscillations
  publication-title: Elec. Power Syst. Research
  doi: 10.1016/j.epsr.2009.05.005
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.ifacol.2017.08.1217_bib0039
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 10.1016/j.ifacol.2017.08.1217_bib0028
  doi: 10.1109/NAPS.2006.359598
– ident: 10.1016/j.ifacol.2017.08.1217_bib0061
– volume: 51
  start-page: 743
  year: 2012
  ident: 10.1016/j.ifacol.2017.08.1217_bib0041
  article-title: Optimal control in microgrid using multi-agent reinforcement learning
  publication-title: ISA Transactions
  doi: 10.1016/j.isatra.2012.06.010
– volume: 25
  start-page: 2143
  year: 2010
  ident: 10.1016/j.ifacol.2017.08.1217_bib0043
  article-title: IEEE PSRC report on global industry experiences with system integrity protection schemes (SIPS)
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRD.2010.2046917
– volume: 6
  start-page: 1795
  year: 2015
  ident: 10.1016/j.ifacol.2017.08.1217_bib0063
  article-title: Reinforcement learning of heuristic EV fleet charging in a day-ahead electricity market
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2015.2393059
– start-page: 1
  year: 2015
  ident: 10.1016/j.ifacol.2017.08.1217_bib0008
  article-title: Reinforcement learning for the unit commitment problem
– volume: 62
  start-page: 884
  year: 1974
  ident: 10.1016/j.ifacol.2017.08.1217_bib0011
  article-title: Real-time computer control of power systems
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1974.9541
– year: 1998
  ident: 10.1016/j.ifacol.2017.08.1217_bib0057
– volume: 141
  start-page: 179
  year: 2016
  ident: 10.1016/j.ifacol.2017.08.1217_bib0079
  article-title: Reinforcement learning approach for congestion management and cascading failure prevention with experimental application
  publication-title: Elec. Power Syst. Research
  doi: 10.1016/j.epsr.2016.06.041
– ident: 10.1016/j.ifacol.2017.08.1217_bib0010
  doi: 10.5220/0006250803220327
– start-page: 23
  year: 2017
  ident: 10.1016/j.ifacol.2017.08.1217_bib0015
  article-title: On the dynamics of the deployment of renewable energy production capacities
– volume: 72
  start-page: 37
  year: 2016
  ident: 10.1016/j.ifacol.2017.08.1217_bib0020
  article-title: Output-feedback adaptive optimal control of interconnected systems based on robust adaptive dynamic programming
  publication-title: Automatica
  doi: 10.1016/j.automatica.2016.05.008
– volume: 6
  start-page: 166
  year: 2015
  ident: 10.1016/j.ifacol.2017.08.1217_bib0059
  article-title: Power system stability control for a wind farm based on adaptive dynamic programming
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2014.2346740
– volume: 40
  start-page: 547
  year: 2010
  ident: 10.1016/j.ifacol.2017.08.1217_bib0050
  article-title: An adaptive Q-learning algorithm developed for agent-based computational modeling of electricity market
  publication-title: IEEE Trans. Syst., Man, Cyber.: Part C
  doi: 10.1109/TSMCC.2010.2044174
– volume: 13
  start-page: 743
  year: 2005
  ident: 10.1016/j.ifacol.2017.08.1217_bib0024
  article-title: Design of a resistive brake controller for power system stability enhancement using reinforcement learning
  publication-title: IEEE Trans. Contr. Syst. Tech.
  doi: 10.1109/TCST.2005.847339
– start-page: 1
  year: 2016
  ident: 10.1016/j.ifacol.2017.08.1217_bib0025
  article-title: Potential, opportunities and benefits of electric vehicles as frequency regulation resources
– ident: 10.1016/j.ifacol.2017.08.1217_bib0054
– ident: 10.1016/j.ifacol.2017.08.1217_bib0019
– start-page: 1
  year: 2006
  ident: 10.1016/j.ifacol.2017.08.1217_bib0069
  article-title: Automatic learning of sequential decision strategies for dynamic security assessment and control
– volume: 51
  start-page: 3355
  issue: 5
  year: 2013
  ident: 10.1016/j.ifacol.2017.08.1217_bib0016
  article-title: Min max generalization for deterministic batch mode reinforcement learning: relaxation schemes
  publication-title: SIAM Journal on Control and Optimization
  doi: 10.1137/120867263
– volume: 529
  start-page: 484
  year: 2016
  ident: 10.1016/j.ifacol.2017.08.1217_bib0056
  article-title: Mastering the game of Go with deep neural networks and tree search
  publication-title: Nature
  doi: 10.1038/nature16961
– volume: 29
  start-page: 2835
  year: 2014
  ident: 10.1016/j.ifacol.2017.08.1217_bib0066
  article-title: Trajectory-based supplementary damping control for power system electromechanical oscillations
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2014.2314359
– ident: 10.1016/j.ifacol.2017.08.1217_bib0022
– volume: 518
  start-page: 529
  year: 2015
  ident: 10.1016/j.ifacol.2017.08.1217_bib0044
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– ident: 10.1016/j.ifacol.2017.08.1217_bib0072
  doi: 10.1109/TIFS.2016.2607701
– year: 2012
  ident: 10.1016/j.ifacol.2017.08.1217_bib0012
– ident: 10.1016/j.ifacol.2017.08.1217_bib0052
  doi: 10.1109/TSG.2016.2517211
– volume: 62
  start-page: 6360
  year: 2015
  ident: 10.1016/j.ifacol.2017.08.1217_bib0070
  article-title: Reinforcement-learning-based intelligent maximum power point tracking control for wind energy conversion systems
  publication-title: IEEE Trans. Ind. Ecetr.
  doi: 10.1109/TIE.2015.2420792
– volume: 11
  start-page: 3137
  year: 2010
  ident: 10.1016/j.ifacol.2017.08.1217_bib0060
  article-title: A generalized path integral control approach to reinforcement learning
  publication-title: Journal of Machine Learning Research
– volume: 1
  start-page: 990
  year: 2003
  ident: 10.1016/j.ifacol.2017.08.1217_bib0051
  article-title: Platform competition in two-sided markets
  publication-title: Journal of the European Economic Association
  doi: 10.1162/154247603322493212
– volume: 28
  start-page: 599
  year: 2006
  ident: 10.1016/j.ifacol.2017.08.1217_bib0037
  article-title: A comparison of nash equilibria analysis and agent-based modelling for power markets
  publication-title: Int. Journal Elec. Power and Ener. Syst.
  doi: 10.1016/j.ijepes.2006.03.002
– volume: 42
  start-page: 1742
  year: 2012
  ident: 10.1016/j.ifacol.2017.08.1217_bib0071
  article-title: Multiagent-based reinforcement learning for optimal reactive power dispatch
  publication-title: IEEE Trans. Syst., Man, Cyber.: Part C
  doi: 10.1109/TSMCC.2012.2218596
– volume: 27
  start-page: 1643
  year: 2016
  ident: 10.1016/j.ifacol.2017.08.1217_bib0064
  article-title: Dynamic energy management system for a smart microgrid
  publication-title: IEEE Trans. Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2016.2514358
– volume: 26
  start-page: 1272
  year: 2011
  ident: 10.1016/j.ifacol.2017.08.1217_bib0077
  article-title: Stochastic optimal relaxed automatic generation control in non-markov environment based on multi-step Q(λ) learning
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2010.2102372
– ident: 10.1016/j.ifacol.2017.08.1217_bib0032
– volume: 19
  start-page: 427
  year: 2004
  ident: 10.1016/j.ifacol.2017.08.1217_bib0014
  article-title: Power systems stability control: Reinforcement learning framework
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2003.821457
– volume: 21
  start-page: 1744
  year: 2006
  ident: 10.1016/j.ifacol.2017.08.1217_bib0045
  article-title: Adaptive critic design based neuro-fuzzy controller for a static compensator in a multimachine power system
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2006.882467
– volume: 26
  start-page: 2434
  year: 2011
  ident: 10.1016/j.ifacol.2017.08.1217_bib0073
  article-title: A hybrid multiagent framework with Q-learning for power grid systems restoration
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2011.2157180
– start-page: 2
  year: 1997
  ident: 10.1016/j.ifacol.2017.08.1217_bib0058
  article-title: Formalizing and securing relationships on public networks
  publication-title: Peer-Reviewed Journal on Internet
– volume: 6
  start-page: 577
  year: 1999
  ident: 10.1016/j.ifacol.2017.08.1217_bib0040
  article-title: Learning coordinated fuzzy logic control of dynamic quadrature boosters in multimachine power systems
  publication-title: IEE Proc. Gen., Transm., Dist.
  doi: 10.1049/ip-gtd:19990426
– volume: 20
  start-page: 525
  year: 2005
  ident: 10.1016/j.ifacol.2017.08.1217_bib0026
  article-title: Combining a stability and a performance-oriented control in power systems
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2004.841146
– volume: 22
  start-page: 85
  year: 2007
  ident: 10.1016/j.ifacol.2017.08.1217_bib0046
  article-title: A reinforcement learning model to assess market power under auction-based energy pricing
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2006.888977
– volume: 8
  start-page: 279
  year: 1992
  ident: 10.1016/j.ifacol.2017.08.1217_bib0068
  article-title: Q-learning
  publication-title: Machine learning
  doi: 10.1007/BF00992698
– volume: 7
  start-page: 2187
  year: 2016
  ident: 10.1016/j.ifacol.2017.08.1217_bib0036
  article-title: Dynamic pricing and energy consumption scheduling with reinforcement learning
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2015.2495145
– volume: 22
  start-page: 2283
  year: 2007
  ident: 10.1016/j.ifacol.2017.08.1217_bib0048
  article-title: Distributed undervoltage load shedding
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2007.907589
– volume: 3
  start-page: 81
  year: 2016
  ident: 10.1016/j.ifacol.2017.08.1217_bib0038
  article-title: Vehicle-solar-grid integration: Concept and construction
  publication-title: IEEE Power Ener. Tech. Syst. Journal
  doi: 10.1109/JPETS.2016.2558471
– year: 2008
  ident: 10.1016/j.ifacol.2017.08.1217_bib0049
– start-page: 1
  year: 2015
  ident: 10.1016/j.ifacol.2017.08.1217_bib0003
  article-title: Imitative learning for online planning in microgrids
– volume: 3
  start-page: 493
  year: 2015
  ident: 10.1016/j.ifacol.2017.08.1217_bib0035
  article-title: Intelligent control of grid-connected microgrids: An adaptive critic-based approach
  publication-title: IEEE Trans. Emer. Selec. Topics Power Electr.
  doi: 10.1109/JESTPE.2014.2331188
– volume: 61
  start-page: 85
  year: 2015
  ident: 10.1016/j.ifacol.2017.08.1217_bib0055
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2014.09.003
– volume: 208
  start-page: 383
  issue: 1
  year: 2013
  ident: 10.1016/j.ifacol.2017.08.1217_bib0017
  article-title: Batch mode reinforcement learning based on the synthesis of artificial trajectories
  publication-title: Annals of Operations Research
  doi: 10.1007/s10479-012-1248-5
SSID ssj0002964798
Score 2.2223146
Snippet In this paper, we review past (including very recent) research considerations in using reinforcement learning (RL) to solve electric power system decision and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 6918
SubjectTerms control
decision
Electric power system
reinforcement learning
Title Reinforcement Learning for Electric Power System Decision and Control: Past Considerations and Perspectives
URI https://dx.doi.org/10.1016/j.ifacol.2017.08.1217
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NU9swENUEeuHClGk7BVpGB64Ojm3Fdm80BCj9gHZghptHktdDIHUz4PTA_-D_sivJjkMzFLh4EiWSk-zLane1-5axbRAK9zlJbirkXqSE9hIIQq8IyL5NqA6WQgPff_QPz6Kjc3He6dy1spamlerq24V1JS-RKo6hXKlK9hmSbRbFAXyM8sUrShivT5LxLzC8p9qE-GqqVJsYOTTtbSjvndqgOWJy1C62o445MhjYLHWKCZzIm6rp3emS40wZwawU86Ztxn7Z3x14J3KCLx-X31pH8wdjiarHRFnh73iaj8rZNkfJ8iCnRqhyciHNGf3nJsNjeF3a-pM9-XvkCtRcOKIXN6mrTmuhhSC8JHVaCxaMObVr-Wbn4GV1aD91GhncU0se8I-ut2GHy-6oIIJvytKLiY21F9hi0Hlu7Qd7XpOJWCe5XWZ2mYyWyfwko2WW2KsAvQ_S919_Jk3ojk6qY9Nluflis9qwnYUfaLHV07JkTl-zVeeC8F2LpzXWgfINu5rDEq-xxHGI11jiBkvcYonXWOIIFO6w9IkTkvg8kswb2kh6y872h6eDQ8814vA0eu-VJ7SO0NWVGjf2GJQWuuijmyqElOhgp7jXhn5RaL9IlY7zfuznPZHnaSJlFEEYB-E7tlz-KeE941CkUR4AOv1EbOfr1FcgBURKBb7uhXKdRfUPlWnHUk_NUsbZo5JaZ91m2sTStPxvQlJLIXO2prUhM4TX41M3nnuvTbYy-6d8YMvV9RQ-oilbqS0DrHusJp9c
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reinforcement+Learning+for+Electric+Power+System+Decision+and+Control%3A+Past+Considerations+and+Perspectives&rft.jtitle=IFAC-PapersOnLine&rft.au=Glavic%2C+Mevludin&rft.au=Fonteneau%2C+Rapha%C3%ABl&rft.au=Ernst%2C+Damien&rft.date=2017-07-01&rft.issn=2405-8963&rft.eissn=2405-8963&rft.volume=50&rft.issue=1&rft.spage=6918&rft.epage=6927&rft_id=info:doi/10.1016%2Fj.ifacol.2017.08.1217&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ifacol_2017_08_1217
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-8963&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-8963&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-8963&client=summon