Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan
In this article, we used the inverse distance weighting (IDW) method to estimate the rainfall distribution in the middle of Taiwan. We evaluated the relationship between interpolation accuracy and two critical parameters of IDW: power (α value), and a radius of influence (search radius). A total of...
Saved in:
Published in | Paddy and water environment Vol. 10; no. 3; pp. 209 - 222 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Japan
Springer Japan
01.09.2012
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this article, we used the inverse distance weighting (IDW) method to estimate the rainfall distribution in the middle of Taiwan. We evaluated the relationship between interpolation accuracy and two critical parameters of IDW: power (α value), and a radius of influence (search radius). A total of 46 rainfall stations and rainfall data between 1981 and 2010 were used in this study, of which the 12 rainfall stations belonging to the Taichung Irrigation Association (TIA) were used for cross-validation. To obtain optimal interpolation data of rainfall, the value of the radius of influence, and the control parameter-α were determined by root mean squared error. The results show that the optimal parameters for IDW in interpolating rainfall data have a radius of influence up to 10–30 km in most cases. However, the optimal α values varied between zero and five. Rainfall data of interpolation using IDW can obtain more accurate results during the dry season than in the flood season. High correlation coefficient values of over 0.95 confirmed IDW as a suitable method of spatial interpolation to predict the probable rainfall data in the middle of Taiwan. |
---|---|
AbstractList | Issue Title: Special Issue on Capacity Building for Participatory Irrigation and Environmental Management In this article, we used the inverse distance weighting (IDW) method to estimate the rainfall distribution in the middle of Taiwan. We evaluated the relationship between interpolation accuracy and two critical parameters of IDW: power (α value), and a radius of influence (search radius). A total of 46 rainfall stations and rainfall data between 1981 and 2010 were used in this study, of which the 12 rainfall stations belonging to the Taichung Irrigation Association (TIA) were used for cross-validation. To obtain optimal interpolation data of rainfall, the value of the radius of influence, and the control parameter-α were determined by root mean squared error. The results show that the optimal parameters for IDW in interpolating rainfall data have a radius of influence up to 10-30 km in most cases. However, the optimal α values varied between zero and five. Rainfall data of interpolation using IDW can obtain more accurate results during the dry season than in the flood season. High correlation coefficient values of over 0.95 confirmed IDW as a suitable method of spatial interpolation to predict the probable rainfall data in the middle of Taiwan.[PUBLICATION ABSTRACT] In this article, we used the inverse distance weighting (IDW) method to estimate the rainfall distribution in the middle of Taiwan. We evaluated the relationship between interpolation accuracy and two critical parameters of IDW: power (α value), and a radius of influence (search radius). A total of 46 rainfall stations and rainfall data between 1981 and 2010 were used in this study, of which the 12 rainfall stations belonging to the Taichung Irrigation Association (TIA) were used for cross-validation. To obtain optimal interpolation data of rainfall, the value of the radius of influence, and the control parameter-α were determined by root mean squared error. The results show that the optimal parameters for IDW in interpolating rainfall data have a radius of influence up to 10–30 km in most cases. However, the optimal α values varied between zero and five. Rainfall data of interpolation using IDW can obtain more accurate results during the dry season than in the flood season. High correlation coefficient values of over 0.95 confirmed IDW as a suitable method of spatial interpolation to predict the probable rainfall data in the middle of Taiwan. In this article, we used the inverse distance weighting (IDW) method to estimate the rainfall distribution in the middle of Taiwan. We evaluated the relationship between interpolation accuracy and two critical parameters of IDW: power ( alpha value), and a radius of influence (search radius). A total of 46 rainfall stations and rainfall data between 1981 and 2010 were used in this study, of which the 12 rainfall stations belonging to the Taichung Irrigation Association (TIA) were used for cross-validation. To obtain optimal interpolation data of rainfall, the value of the radius of influence, and the control parameter- alpha were determined by root mean squared error. The results show that the optimal parameters for IDW in interpolating rainfall data have a radius of influence up to 10-30 km in most cases. However, the optimal alpha values varied between zero and five. Rainfall data of interpolation using IDW can obtain more accurate results during the dry season than in the flood season. High correlation coefficient values of over 0.95 confirmed IDW as a suitable method of spatial interpolation to predict the probable rainfall data in the middle of Taiwan. |
Author | Chen, Feng-Wen Liu, Chen-Wuing |
Author_xml | – sequence: 1 givenname: Feng-Wen surname: Chen fullname: Chen, Feng-Wen organization: Department of Bioenvironmental Systems Engineering, National Taiwan University, Agricultural Engineering Research Center – sequence: 2 givenname: Chen-Wuing surname: Liu fullname: Liu, Chen-Wuing email: cwliu@ntu.edu.tw organization: Department of Bioenvironmental Systems Engineering, National Taiwan University |
BookMark | eNp9kVFLwzAUhYNMcJv-AN8KvsyHam6TNuujzKmDgS8TH0vWJFtGl84kdfjvTVsFEfQpN9zvHC7njNDA1EYidAn4BjBmtw4wISTGkMSYQB7DCRpCBhAnKaaD75nm-AyNnNthnDBKYIjM3Hm9517XJqpV5Lcycofw5VVkuTaKV1UktPNWr5sOapw2m0ibd2md7FbclDI6Sr3Z-nY1Wdy_Xgeg89prISrZOq-4PnJzjk6DpZMXX-8YvTzMV7OnePn8uJjdLeOS0qmP02nJCQ9zmqgEFMeCradrIVLOCM6BM8oU4UJSKoCpMiOYUiUkyzOZc8UIGaNJ73uw9VsjnS_22pWyqriRdeMKwFkOeZZRHNCrX-iubqwJ1wWKsCTLk6w1ZD1V2to5K1VRat_F5kNOVUCLtoei76EIPRRtDwUEJfxSHmxI3H78q0l6jQus2Uj786a_RJ-cd5x4 |
CitedBy_id | crossref_primary_10_1016_j_tra_2021_12_001 crossref_primary_10_1007_s10669_014_9519_0 crossref_primary_10_1061__ASCE_HE_1943_5584_0002221 crossref_primary_10_1080_02626667_2021_1957105 crossref_primary_10_1016_j_gsf_2020_07_012 crossref_primary_10_1080_10106049_2019_1678675 crossref_primary_10_1109_TGRS_2023_3252023 crossref_primary_10_1016_j_scitotenv_2018_09_309 crossref_primary_10_1007_s12517_022_09883_w crossref_primary_10_3390_w15101958 crossref_primary_10_1080_19475705_2021_1879942 crossref_primary_10_1109_LGRS_2019_2910006 crossref_primary_10_1038_s41597_025_04633_5 crossref_primary_10_1007_s11600_022_00966_6 crossref_primary_10_1016_j_jweia_2022_105276 crossref_primary_10_1007_s12517_020_05465_w crossref_primary_10_1111_obes_12548 crossref_primary_10_1007_s40808_024_02189_8 crossref_primary_10_29048_makufebed_1151024 crossref_primary_10_1007_s12665_017_6814_3 crossref_primary_10_1002_joc_5238 crossref_primary_10_1016_j_engappai_2023_107345 crossref_primary_10_1007_s10661_022_09859_z crossref_primary_10_1002_joc_5357 crossref_primary_10_1007_s11069_023_06146_z crossref_primary_10_1007_s00704_024_04867_0 crossref_primary_10_3390_ijerph17082942 crossref_primary_10_1007_s00704_022_04184_4 crossref_primary_10_1007_s11356_022_20665_5 crossref_primary_10_3390_agronomy10010003 crossref_primary_10_3390_agronomy12020332 crossref_primary_10_31435_ijitss_4_44__2024_3067 crossref_primary_10_5194_hess_27_1033_2023 crossref_primary_10_1111_oik_05085 crossref_primary_10_1177_03611981241239973 crossref_primary_10_1016_j_jhydrol_2017_12_019 crossref_primary_10_32441_kjps_08_01_p9 crossref_primary_10_3390_su15129668 crossref_primary_10_1007_s10661_020_08810_4 crossref_primary_10_1109_TVCG_2022_3165345 crossref_primary_10_2208_jscejhe_76_2_I_25 crossref_primary_10_7717_peerj_17755 crossref_primary_10_1016_j_heliyon_2024_e31151 crossref_primary_10_2166_wcc_2021_259 crossref_primary_10_1007_s11069_023_05916_z crossref_primary_10_1016_j_envint_2020_105682 crossref_primary_10_1007_s10708_022_10774_6 crossref_primary_10_1007_s40710_018_0298_3 crossref_primary_10_1109_JSTARS_2024_3378330 crossref_primary_10_3390_w16010139 crossref_primary_10_1016_j_agsy_2024_104246 crossref_primary_10_1088_1755_1315_653_1_012032 crossref_primary_10_1016_j_heliyon_2021_e07791 crossref_primary_10_3390_land12020309 crossref_primary_10_1590_0102_77863630115 crossref_primary_10_1016_j_apgeog_2018_10_005 crossref_primary_10_1007_s11356_021_13300_2 crossref_primary_10_1080_10920277_2019_1566074 crossref_primary_10_1061__ASCE_HE_1943_5584_0001285 crossref_primary_10_1002_hyp_11503 crossref_primary_10_1155_2015_563629 crossref_primary_10_2166_wcc_2022_173 crossref_primary_10_1007_s13143_020_00179_1 crossref_primary_10_1007_s00704_022_04283_2 crossref_primary_10_1007_s40808_022_01657_3 crossref_primary_10_1134_S1064229323601658 crossref_primary_10_3390_rs13152859 crossref_primary_10_1007_s00704_018_2537_y crossref_primary_10_1093_gji_ggab025 crossref_primary_10_20965_jdr_2019_p0069 crossref_primary_10_1080_10920277_2020_1717345 crossref_primary_10_1007_s41324_019_00311_y crossref_primary_10_1016_j_jclepro_2019_117729 crossref_primary_10_1016_j_jhydrol_2014_07_044 crossref_primary_10_2166_nh_2015_117 crossref_primary_10_1016_j_ejrh_2022_101252 crossref_primary_10_3390_w15040790 crossref_primary_10_1007_s11069_020_04410_0 crossref_primary_10_1109_TGRS_2023_3336314 crossref_primary_10_1016_j_catena_2022_106486 crossref_primary_10_1007_s40333_021_0017_1 crossref_primary_10_1002_met_2146 crossref_primary_10_1007_s00704_024_05089_0 crossref_primary_10_1007_s41748_024_00518_6 crossref_primary_10_1016_j_apgeog_2022_102684 crossref_primary_10_2208_jscejhe_75_2_I_1051 crossref_primary_10_1016_j_asr_2015_06_015 crossref_primary_10_26833_ijeg_940997 crossref_primary_10_2166_wp_2014_237 crossref_primary_10_1016_j_heliyon_2021_e07487 crossref_primary_10_1016_j_ssci_2018_01_016 crossref_primary_10_1007_s11269_020_02728_9 crossref_primary_10_1007_s12524_023_01761_6 crossref_primary_10_2139_ssrn_3195389 crossref_primary_10_1590_0102_77863630001 crossref_primary_10_1080_23311843_2020_1745133 crossref_primary_10_1016_j_ecolind_2017_05_011 crossref_primary_10_1007_s11042_017_4768_9 crossref_primary_10_1016_j_amc_2020_125717 crossref_primary_10_1007_s40333_022_0106_9 crossref_primary_10_3390_su122310098 crossref_primary_10_3390_infrastructures10030052 crossref_primary_10_3389_fpubh_2021_682341 crossref_primary_10_4236_jgis_2018_102010 crossref_primary_10_2166_hydro_2023_092 crossref_primary_10_2139_ssrn_4191216 crossref_primary_10_1007_s12517_021_06883_0 crossref_primary_10_1016_j_heliyon_2023_e17604 crossref_primary_10_1016_j_asoc_2021_107296 crossref_primary_10_3390_atmos12121597 crossref_primary_10_1016_j_eti_2024_103801 crossref_primary_10_3390_w16182573 crossref_primary_10_1016_j_aiig_2022_12_003 crossref_primary_10_1093_europace_euv244 crossref_primary_10_2166_hydro_2023_081 crossref_primary_10_1155_2018_6302853 crossref_primary_10_3390_geosciences11020051 crossref_primary_10_1007_s12665_024_11633_y crossref_primary_10_1016_j_ejrh_2022_101214 crossref_primary_10_1016_j_measurement_2024_114189 crossref_primary_10_1080_24749508_2021_2022425 crossref_primary_10_2166_wcc_2021_316 crossref_primary_10_1016_j_hydres_2023_02_004 crossref_primary_10_1016_j_catena_2014_02_005 crossref_primary_10_1080_01431161_2015_1041618 crossref_primary_10_1080_02626667_2019_1649411 crossref_primary_10_1155_2021_9657460 crossref_primary_10_1007_s43545_022_00349_0 crossref_primary_10_1038_s41598_021_82227_y crossref_primary_10_1016_j_jclepro_2022_132893 crossref_primary_10_1016_j_scs_2021_103405 crossref_primary_10_1088_1361_6560_ab5035 crossref_primary_10_1007_s40899_016_0057_4 crossref_primary_10_3390_w13202872 crossref_primary_10_1007_s00704_021_03675_0 crossref_primary_10_1007_s40808_024_02234_6 crossref_primary_10_15531_KSCCR_2024_15_5_635 crossref_primary_10_3390_su12177187 crossref_primary_10_3390_s21061981 crossref_primary_10_1590_0001_3765202120190674 crossref_primary_10_3390_w12082304 crossref_primary_10_1016_j_ejrh_2023_101634 crossref_primary_10_1007_s00704_021_03553_9 crossref_primary_10_1016_j_ijhydene_2024_05_335 crossref_primary_10_3390_rs13051039 crossref_primary_10_3390_atmos13111876 crossref_primary_10_1016_j_jhydrol_2020_125198 crossref_primary_10_1080_23249676_2023_2230892 crossref_primary_10_1002_joc_7389 crossref_primary_10_1007_s10333_021_00867_2 crossref_primary_10_1016_j_ecohyd_2023_06_001 crossref_primary_10_1007_s10661_024_13240_7 crossref_primary_10_1007_s11269_015_0939_5 crossref_primary_10_1007_s11356_023_25283_3 crossref_primary_10_1108_AFR_10_2015_0042 crossref_primary_10_1007_s00704_020_03428_5 crossref_primary_10_1007_s11356_022_18773_3 crossref_primary_10_1016_j_atmosres_2017_08_002 crossref_primary_10_1007_s00704_020_03406_x crossref_primary_10_1080_23570008_2024_2357340 crossref_primary_10_1002_hyp_15013 crossref_primary_10_1007_s11869_021_01136_1 crossref_primary_10_1016_j_geoderma_2023_116683 crossref_primary_10_3390_app10176138 crossref_primary_10_1007_s00704_019_02846_4 crossref_primary_10_1007_s11356_021_18009_w crossref_primary_10_1007_s00477_023_02433_0 crossref_primary_10_1007_s00704_023_04769_7 crossref_primary_10_1051_bioconf_202515602010 crossref_primary_10_1016_j_jclepro_2018_10_250 crossref_primary_10_1007_s11356_024_35213_6 crossref_primary_10_5004_dwt_2017_20859 crossref_primary_10_3390_hydrology6020038 crossref_primary_10_55581_ejeas_936950 crossref_primary_10_3390_w10111665 crossref_primary_10_22399_ijcesen_1187 crossref_primary_10_2166_wcc_2023_120 crossref_primary_10_1002_joc_4172 crossref_primary_10_1016_j_asr_2022_02_033 crossref_primary_10_1016_j_landusepol_2020_105272 crossref_primary_10_3390_cli12020027 crossref_primary_10_1109_LGRS_2019_2935348 crossref_primary_10_21324_dacd_363694 crossref_primary_10_35193_bseufbd_877539 crossref_primary_10_1016_j_cageo_2023_105362 crossref_primary_10_2166_wcc_2024_696 crossref_primary_10_1007_s11600_020_00520_2 crossref_primary_10_3390_su15086507 crossref_primary_10_3390_w12030904 crossref_primary_10_1016_j_jasrep_2015_11_030 crossref_primary_10_1016_j_compag_2018_08_047 crossref_primary_10_3390_w15223895 crossref_primary_10_1007_s10668_019_00548_5 crossref_primary_10_2139_ssrn_3129776 crossref_primary_10_1016_j_pce_2022_103192 crossref_primary_10_1007_s10668_022_02512_2 crossref_primary_10_1109_JSTARS_2021_3085342 crossref_primary_10_3390_rs12101691 crossref_primary_10_1080_02626667_2020_1833014 crossref_primary_10_1145_3589321 crossref_primary_10_4236_jcc_2023_118002 crossref_primary_10_1002_rra_3681 crossref_primary_10_1029_2019JC015136 crossref_primary_10_1080_03081087_2017_1337057 crossref_primary_10_5194_bg_11_3739_2014 crossref_primary_10_2166_wcc_2019_272 crossref_primary_10_1080_02626667_2020_1833013 crossref_primary_10_1155_2022_3594641 crossref_primary_10_1186_s40663_018_0147_x crossref_primary_10_3390_earth3040072 crossref_primary_10_1016_j_jag_2022_102986 crossref_primary_10_3390_w15203606 crossref_primary_10_1007_s00704_022_03927_7 crossref_primary_10_1016_j_atmosres_2020_105289 crossref_primary_10_1080_20964129_2020_1780159 crossref_primary_10_1016_j_jhydrol_2014_05_064 crossref_primary_10_1007_s10661_022_09845_5 crossref_primary_10_1080_02626667_2018_1438613 crossref_primary_10_1002_jobm_201500226 crossref_primary_10_1088_1755_1315_479_1_012018 crossref_primary_10_1007_s12524_022_01575_y crossref_primary_10_1007_s10661_024_13277_8 crossref_primary_10_3390_w14091364 crossref_primary_10_3390_w17020195 crossref_primary_10_3390_cli11030048 crossref_primary_10_1109_TBDATA_2022_3227089 crossref_primary_10_1080_23249676_2024_2443743 crossref_primary_10_32604_cmes_2023_026874 crossref_primary_10_32604_rig_2024_047908 crossref_primary_10_1016_j_wse_2016_06_002 crossref_primary_10_1080_15481603_2024_2436997 crossref_primary_10_1007_s12517_021_06605_6 crossref_primary_10_1016_j_ejrh_2019_100623 crossref_primary_10_1016_j_measurement_2020_107494 crossref_primary_10_1038_sdata_2017_72 crossref_primary_10_1016_j_iswcr_2024_12_001 crossref_primary_10_1111_tgis_13303 crossref_primary_10_3390_s19132895 crossref_primary_10_1016_j_scs_2020_102436 crossref_primary_10_1016_j_ecolind_2025_113345 crossref_primary_10_1016_j_ecolind_2025_113228 crossref_primary_10_1016_j_gsf_2020_03_005 crossref_primary_10_1111_ddi_13370 crossref_primary_10_1002_jsfa_12735 crossref_primary_10_3390_w16030502 crossref_primary_10_1080_10106049_2023_2168069 crossref_primary_10_1109_TGRS_2022_3165309 crossref_primary_10_1007_s00477_020_01878_x crossref_primary_10_1016_j_compenvurbsys_2020_101544 crossref_primary_10_1016_j_agrformet_2023_109794 crossref_primary_10_1155_2016_8582041 crossref_primary_10_3390_w11071398 crossref_primary_10_3390_f12121789 crossref_primary_10_1002_hyp_11163 crossref_primary_10_1016_j_asej_2023_102453 crossref_primary_10_1080_1064119X_2019_1632996 crossref_primary_10_1007_s00382_023_06871_y crossref_primary_10_3390_s16081245 crossref_primary_10_1007_s00477_016_1348_x crossref_primary_10_1007_s12524_017_0734_2 crossref_primary_10_3390_ijerph16183404 crossref_primary_10_3390_land11122211 crossref_primary_10_1016_j_kjs_2023_02_031 crossref_primary_10_3390_ijgi10110730 crossref_primary_10_3390_f12121636 crossref_primary_10_1007_s00704_015_1624_6 crossref_primary_10_1016_j_cageo_2012_11_002 crossref_primary_10_1155_2023_1149108 crossref_primary_10_3390_geographies3030027 crossref_primary_10_1016_j_nhres_2025_01_005 crossref_primary_10_1007_s00704_018_2672_5 crossref_primary_10_1002_ecs2_70015 crossref_primary_10_1007_s12517_022_10025_5 crossref_primary_10_4236_gep_2018_64016 crossref_primary_10_17533_udea_redin_n75a18 crossref_primary_10_1080_24694452_2024_2373795 crossref_primary_10_1007_s13201_021_01410_8 crossref_primary_10_1016_j_compag_2018_12_040 crossref_primary_10_1007_s12665_019_8755_5 crossref_primary_10_1088_1755_1315_98_1_012053 crossref_primary_10_1007_s12517_025_12238_w crossref_primary_10_1007_s13143_020_00214_1 crossref_primary_10_1016_j_apenergy_2024_124768 crossref_primary_10_1007_s00704_021_03888_3 crossref_primary_10_1007_s10668_020_01171_5 crossref_primary_10_1145_3718094 crossref_primary_10_1016_j_jhydrol_2020_124806 crossref_primary_10_1109_TKDE_2021_3072642 crossref_primary_10_1007_s12040_024_02283_6 crossref_primary_10_3390_atmos14020284 crossref_primary_10_1080_19475705_2013_853325 crossref_primary_10_1029_2023GL103727 crossref_primary_10_1016_j_heliyon_2019_e01678 crossref_primary_10_1038_s41598_023_35105_8 crossref_primary_10_1007_s12517_015_1870_z crossref_primary_10_1007_s00704_023_04615_w crossref_primary_10_1007_s11270_021_05163_7 crossref_primary_10_5194_nhess_24_2647_2024 crossref_primary_10_1016_j_catena_2020_104576 crossref_primary_10_1007_s00704_023_04798_2 crossref_primary_10_1007_s11869_022_01165_4 crossref_primary_10_1007_s10518_022_01581_y crossref_primary_10_1016_j_autcon_2024_105922 crossref_primary_10_1016_j_ejrh_2024_102006 crossref_primary_10_2166_nh_2013_096 crossref_primary_10_1007_s00477_016_1349_9 crossref_primary_10_1007_s40808_023_01810_6 crossref_primary_10_1016_j_jhydrol_2019_124042 crossref_primary_10_1016_j_scitotenv_2020_137752 crossref_primary_10_1051_e3sconf_202560702004 crossref_primary_10_1007_s41685_023_00274_x crossref_primary_10_1016_j_marpolbul_2019_110651 crossref_primary_10_1007_s12145_019_00436_6 crossref_primary_10_1007_s10661_020_08687_3 crossref_primary_10_59465_ijfr_2023_10_1_1_19 crossref_primary_10_1002_ecs2_2614 crossref_primary_10_3390_w12010253 crossref_primary_10_1016_j_worlddev_2014_09_016 crossref_primary_10_3390_w12071969 crossref_primary_10_1016_j_ecolind_2020_106858 crossref_primary_10_1007_s10661_019_7604_z crossref_primary_10_1016_j_envpol_2019_112987 crossref_primary_10_1007_s10661_022_09841_9 crossref_primary_10_1080_23754931_2020_1847728 crossref_primary_10_1515_geo_2022_0667 crossref_primary_10_3390_hydrology11010009 crossref_primary_10_1186_s12889_021_11563_5 crossref_primary_10_1109_LCOMM_2020_2983361 crossref_primary_10_1016_j_ecolind_2023_110355 crossref_primary_10_1007_s11069_020_04406_w crossref_primary_10_1002_joc_3682 crossref_primary_10_1007_s00704_021_03746_2 crossref_primary_10_1016_j_ejrh_2024_101696 crossref_primary_10_1002_joc_5502 crossref_primary_10_1016_j_gsd_2024_101304 crossref_primary_10_1016_j_pce_2018_03_012 crossref_primary_10_1080_13658816_2024_2347316 crossref_primary_10_3390_rs15163991 crossref_primary_10_1016_j_ecoleng_2022_106577 crossref_primary_10_1109_TVCG_2022_3209413 crossref_primary_10_1016_j_ecolind_2020_106243 crossref_primary_10_3390_su13116318 crossref_primary_10_1016_j_envpol_2020_115029 crossref_primary_10_20290_estubtdb_726491 crossref_primary_10_1007_s00128_020_02924_8 crossref_primary_10_20965_jdr_2021_p0561 crossref_primary_10_1016_j_nhres_2023_10_002 crossref_primary_10_1007_s12518_020_00307_6 crossref_primary_10_1007_s10967_023_09165_z crossref_primary_10_1016_j_trd_2023_103801 crossref_primary_10_1007_s11356_023_27498_w crossref_primary_10_1038_s41598_019_49242_6 crossref_primary_10_1038_s41598_017_03297_5 crossref_primary_10_1007_s00704_014_1307_8 crossref_primary_10_1080_10106049_2022_2068673 crossref_primary_10_1016_j_enggeo_2021_106103 crossref_primary_10_1007_s00382_016_3500_1 crossref_primary_10_1080_00207233_2022_2072585 crossref_primary_10_1007_s00703_021_00826_w crossref_primary_10_1002_joc_4432 crossref_primary_10_1080_01431161_2015_1007248 crossref_primary_10_1007_s00704_022_04170_w crossref_primary_10_1016_j_scitotenv_2019_134988 crossref_primary_10_3390_w13101381 crossref_primary_10_1007_s00521_023_09397_w crossref_primary_10_5194_essd_11_1711_2019 crossref_primary_10_1016_j_ijdrr_2018_12_002 crossref_primary_10_1007_s11356_022_23022_8 crossref_primary_10_1007_s12517_023_11349_6 crossref_primary_10_3390_su15021472 crossref_primary_10_3390_w13172411 crossref_primary_10_1007_s00704_015_1375_4 crossref_primary_10_3390_w10040381 crossref_primary_10_1016_j_gsd_2023_101039 crossref_primary_10_3390_ijerph19095208 crossref_primary_10_1080_13658816_2019_1655755 crossref_primary_10_21778_2413_9599_2020_30_3_57_66 crossref_primary_10_1007_s11270_020_04939_7 crossref_primary_10_1109_LGRS_2024_3464629 crossref_primary_10_1007_s10661_025_13884_z crossref_primary_10_1007_s12517_021_06961_3 crossref_primary_10_17129_botsci_3204 crossref_primary_10_2166_nh_2020_146 crossref_primary_10_3390_app11209566 crossref_primary_10_1007_s00366_022_01695_6 crossref_primary_10_1016_j_atmosres_2025_107910 crossref_primary_10_1038_s41598_023_33509_0 crossref_primary_10_1016_j_envc_2021_100194 crossref_primary_10_1007_s00704_019_02963_0 crossref_primary_10_3390_sci7010030 crossref_primary_10_1016_j_scitotenv_2023_163977 crossref_primary_10_4236_jgis_2017_96044 crossref_primary_10_1016_j_measurement_2018_09_047 crossref_primary_10_3390_app14093600 crossref_primary_10_1080_10106049_2021_1923833 crossref_primary_10_3390_w13020230 crossref_primary_10_3846_gac_2023_17455 crossref_primary_10_1007_s12517_019_4869_z crossref_primary_10_1016_j_gsd_2021_100656 crossref_primary_10_1109_ACCESS_2020_2979683 crossref_primary_10_3390_app142311044 crossref_primary_10_3846_gac_2024_18751 crossref_primary_10_1007_s00477_022_02179_1 crossref_primary_10_1007_s11356_023_28649_9 crossref_primary_10_1080_13658816_2023_2239307 crossref_primary_10_3390_land10050477 crossref_primary_10_1080_02626667_2022_2030868 crossref_primary_10_1186_s40068_024_00345_8 crossref_primary_10_3390_cli3020416 crossref_primary_10_3390_environments11040082 crossref_primary_10_1016_j_atmosres_2022_106159 crossref_primary_10_1007_s11370_015_0174_1 crossref_primary_10_1007_s41748_023_00362_0 crossref_primary_10_1088_1755_1315_149_1_012047 crossref_primary_10_1007_s10661_023_12004_z crossref_primary_10_1080_02626667_2022_2145200 crossref_primary_10_1007_s00703_020_00727_4 crossref_primary_10_1186_s40677_020_00155_x crossref_primary_10_1038_s41598_024_53858_8 crossref_primary_10_1007_s00704_019_02840_w crossref_primary_10_1016_j_catena_2024_107848 crossref_primary_10_56130_tucbis_943613 crossref_primary_10_1016_j_atmosres_2019_104688 crossref_primary_10_1080_02626667_2018_1554286 crossref_primary_10_1007_s00704_023_04562_6 crossref_primary_10_1016_j_jhydrol_2019_124447 crossref_primary_10_1007_s00521_023_08578_x crossref_primary_10_1175_JAMC_D_14_0084_1 crossref_primary_10_3390_w14233914 crossref_primary_10_9798_KOSHAM_2015_15_3_329 crossref_primary_10_3390_app9214487 crossref_primary_10_1016_j_cscee_2023_100399 crossref_primary_10_1016_j_jsames_2024_104961 crossref_primary_10_1016_j_atmosres_2022_106052 crossref_primary_10_1016_j_ejrh_2023_101385 crossref_primary_10_1016_j_gsd_2025_101442 crossref_primary_10_2166_wcc_2022_089 crossref_primary_10_1007_s10661_023_11875_6 crossref_primary_10_5194_hess_23_4803_2019 crossref_primary_10_1007_s12040_024_02446_5 crossref_primary_10_1016_j_scitotenv_2019_134559 crossref_primary_10_1007_s10661_018_7079_3 crossref_primary_10_1007_s40808_021_01228_y crossref_primary_10_4236_jwarp_2014_62012 crossref_primary_10_1007_s00704_017_2343_y crossref_primary_10_1016_j_teadva_2023_200089 crossref_primary_10_1002_met_2206 crossref_primary_10_1007_s12517_021_09007_w crossref_primary_10_3390_rs14225827 crossref_primary_10_1109_JSTARS_2024_3358829 crossref_primary_10_17341_gazimmfd_416379 |
Cites_doi | 10.1016/S0168-1923(99)00169-0 10.1016/S0022-1694(00)00144-X 10.3354/cr025055 10.1623/hysj.52.5.917 10.1007/978-1-4899-4467-2 10.1029/2006WR005788 10.1007/s10333-009-0195-5 10.1016/S1364-8152(01)00008-1 10.2166/hydro.2004.0004 10.1016/j.cageo.2007.07.010 10.1007/s00704-003-0018-3 10.1016/j.jhydrol.2004.10.026 10.1061/(ASCE)0733-9429(1983)109:10(1386) 10.1002/hyp.7442 10.1007/s10333-010-0213-7 10.1559/152304083783914958 10.1016/S0022-1694(98)00155-3 10.1007/s10333-010-0247-x 10.1002/9781119115151 10.1002/047172842X |
ContentType | Journal Article |
Copyright | Springer-Verlag 2012 |
Copyright_xml | – notice: Springer-Verlag 2012 |
DBID | AAYXX CITATION 3V. 7QH 7ST 7UA 7X2 7XB 88I 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H95 HCIFZ L.G M0K M2P PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PYCSY Q9U SOI 7SU 8FD FR3 KR7 |
DOI | 10.1007/s10333-012-0319-1 |
DatabaseName | CrossRef ProQuest Central (Corporate) Aqualine Environment Abstracts Water Resources Abstracts Agricultural Science Collection ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional Agricultural Science Database Science Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic Environment Abstracts Environmental Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Agricultural Science Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest SciTech Collection Aqualine Environmental Science Collection ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) ProQuest One Academic (New) Civil Engineering Abstracts Engineering Research Database Technology Research Database Environmental Engineering Abstracts |
DatabaseTitleList | Agricultural Science Database Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1611-2504 |
EndPage | 222 |
ExternalDocumentID | 2748860751 10_1007_s10333_012_0319_1 |
Genre | Feature |
GroupedDBID | -56 -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 203 29O 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 5VS 67M 67Z 6NX 7X2 7XC 88I 8CJ 8FE 8FH 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG APEBS ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN AZQEC B-. BA0 BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1J D1K DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS ECGQY EDH EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV L8X LAS LLZTM M0K M2P M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM PATMY PCBAR PF0 PQQKQ PROAC PT4 PYCSY Q2X QOR QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SBL SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TSG TSK TSV TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ZOVNA ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7QH 7ST 7UA 7XB 8FK ABRTQ C1K F1W H95 L.G PKEHL PQEST PQUKI Q9U SOI 7SU 8FD FR3 KR7 |
ID | FETCH-LOGICAL-c448t-58ca3ac4452f21fa0d7b8bdd5a73091a747f3ade44d17fc63044fde796e9af733 |
IEDL.DBID | U2A |
ISSN | 1611-2490 |
IngestDate | Thu Jul 10 20:05:45 EDT 2025 Sat Jul 26 00:20:07 EDT 2025 Thu Apr 24 23:02:11 EDT 2025 Tue Jul 01 01:18:06 EDT 2025 Fri Feb 21 02:35:29 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Spatial interpolation Rainfall data Inverse distance weighting (IDW) Omission |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c448t-58ca3ac4452f21fa0d7b8bdd5a73091a747f3ade44d17fc63044fde796e9af733 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 1037269263 |
PQPubID | 54526 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_1069196640 proquest_journals_1037269263 crossref_citationtrail_10_1007_s10333_012_0319_1 crossref_primary_10_1007_s10333_012_0319_1 springer_journals_10_1007_s10333_012_0319_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-09-01 |
PublicationDateYYYYMMDD | 2012-09-01 |
PublicationDate_xml | – month: 09 year: 2012 text: 2012-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Dordrecht |
PublicationTitle | Paddy and water environment |
PublicationTitleAbbrev | Paddy Water Environ |
PublicationYear | 2012 |
Publisher | Springer Japan Springer Nature B.V |
Publisher_xml | – name: Springer Japan – name: Springer Nature B.V |
References | Fotheringham AS, Brunsdon C, Charlton M (2002) Geographically weighted regression: the analysis of spatially varying relationship. Wiley, New York BedientPBHuberWCHydrology and floodplain analysis19922ReadingAddison-Wesley SegondM-LNeokleousNMakropoulosCOnofCMaksimovicCSimulation and spatio-temporal disaggregation of multi-site rainfall data for urban drainage applicationsHydrol Sci J200752591793510.1623/hysj.52.5.917 TungYKPoint rainfall estimation for a mountainous regionJ Hydraul Eng1983109101386139310.1061/(ASCE)0733-9429(1983)109:10(1386) PriceDTMcKenneyDWNalderIAHutchisonMFKestevenJLA comparison of two statistical methods for interpolation of Canadian monthly mean climate dataAgric Meteorol2000101819410.1016/S0168-1923(99)00169-0 YehHCChenYCWeiCChenRHEntropy and kriging approach to rainfall network designPaddy Water Environ2011934335510.1007/s10333-010-0247-x DirksKNHayJEStowCDHigh resolution studies of rainfall on Norfolk Island Part II: interpolation of rainfall dataJ Hydrol199820818719310.1016/S0022-1694(98)00155-3 JeffreySJCarterJOMoodieKBBeswickARUsing spatial interpolation to construct a comprehensive archive of Australian climate dataEnviron Model Softw200116430933010.1016/S1364-8152(01)00008-1 LloydCDAssessing the effect of integrating elevation data into the estimation of monthly precipitation in Great BritainJ Hydrol200530812815010.1016/j.jhydrol.2004.10.026 KohaviRProvostFSpecial issue on applications of machine learning and the knowledge discovery processMach Learn1998302–3271274 ZhuangLWWangSLSpatial interpolation methods of daily weather data in Northeast ChinaQuart J Appl Meteorol2003145605616 GoovaertsPGeostatistical approaches for incorporating elevation into the spatial interpolation of rainfallJ Hydrol200022811312910.1016/S0022-1694(00)00144-X SeamanRSObjective analysis accuracies of statistical interpolation and successive correction schemesJ Aust Meteorol Mag198331225240 PhogatVYadavAKMalikRSKumarSCoxJSimulation of salt and water movement and estimation of water productivity of rice crop irrigated with saline waterPaddy Water Environ2010833334610.1007/s10333-010-0213-7 KongYFTongWWSpatial exploration and interpolation of the surface precipitation dataGeograph Res200827510971108 KurtzmanDNavonSMorinEImproving interpolation of daily precipitation for hydrologic modeling: spatial patterns of preferred interpolatorsHydrol Process2009233281329110.1002/hyp.7442 ZhuHYJiaSFUncertainty in the spatial interpolation of rainfall dataProg Geogr20042323442 BurroughPAMcDonnellRAPrinciples of geographical information systems1998OxfordOxford University Press LamNS-NSpatial interpolation methods: a reviewAm Cartogr19831012914010.1559/152304083783914958 NaoumSTsanisIKA multiple linear regression GIS module using spatial variables to model orographic rainfallJ Hydroinform200463956 TraoreSWangYMKanCEKerhTLeuJMA mixture neural methodology for computing rice consumptive water requirements in Fada N’Gourma Region, Eastern Burkina FasoPaddy Water Environ2010816517310.1007/s10333-009-0195-5 LiJLZhangJZhangCChenQGAnalyze and compare the spatial interpolation methods for climate factorPratacult Sci2006238611 LuGYWongDWAn adaptive inverse-distance weighting spatial interpolation techniqueComput Geosci20083491044105510.1016/j.cageo.2007.07.010 ZhongJJA comparative study of spatial interpolation precision of annual average precipitation based on GIS in XinjiangDesert Oasis Meteorol2010445154 DongXHBoHJDengXSuJWangXRainfall spatial interpolation methods and their applications to Qingjiang river basinJ China Three Gorges Univ (Nat Sci)2009316610 HsiehHHChengSJLiouJYChouSCSiaoBRCharacterization of spatially distributed summer daily rainfallJ Chin Agric Eng20065214755 ChuSLZhouZYYuanLChenQGStudy on spatial precipitation interpolation methodsPratacult Sci20082561923 WangYLiCKChenLZhengSNAnalysis on impact of weight to spatial interpolation methodsJ Hunan Univ Sci Technol (Nat Sci Ed)200823477801:CAS:528:DC%2BD1cXptV2qsr8%3D GeisserSPredictive inference1993New YorkChapman and Hall FengZMYangYZDingXQLinZHOptimization of the spatial interpolation methods for climate resourcesGeograph Res2004235357364 CressieNStatics for spatial data (revised edition)1993New YorkWiley LiJHeapADSpatial interpolation methods: a review for environmental scientists. Geoscience Australia, Record2008CanberraGeoscience Australia GemmerMBeckerSJiangTObserved monthly precipitation trends in China 1951–2002Theor Appl Climatol200477394510.1007/s00704-003-0018-3 LinXSYuQStudy on the spatial interpolation of agroclimatic resources in ChongqingJ Anhui Agric200836301343113463 GarciaMPeters-LidardCDGoodrichDCSpatial interpolation of precipitation in a dense gauge network for monsoon storm events in the southwestern United StatesWater Resour Res200844W05S1314 McLachlanGJAmbroiseK-ADoCAnalyzing microarray gene expression data2004New YorkWiley10.1002/047172842X WuLWuXJXiaoCCTianYOn temporal and spatial error distribution of five precipitation interpolation modelsGeogr Geo-Inf Sci20102631924 GyalistrasDDevelopment and validation of a high-resolution monthly gridded temperature and precipitation data set for Switzerland (1951–2000)Clim Res2003251558310.3354/cr025055 LiBHuangJFJinZFLiuZYMethods for calculation precipitation spatial distribution of Zhejiang Province based on GISJ Zhejiang Univ (Sci Ed)20102722392441:CAS:528:DC%2BC3cXns1Giurw%3D DevijverPAKittlerJPattern recognition: a statistical approach1982LondonPrentice-hall Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the fourteenth international joint conference on artificial intelligence, vol 2, no 12. Morgan Kaufmann, San Mateo, pp 1137–1143 SimantonJROsbornHBReciprocal-distance estimate of point rainfallJ Hydraul Eng1980106712421246 JR Simanton (319_CR35) 1980; 106 D Gyalistras (319_CR14) 2003; 25 J Li (319_CR22) 2008 GY Lu (319_CR27) 2008; 34 JJ Zhong (319_CR41) 2010; 4 R Kohavi (319_CR18) 1998; 30 GJ McLachlan (319_CR28) 2004 SJ Jeffrey (319_CR16) 2001; 16 NS-N Lam (319_CR21) 1983; 10 B Li (319_CR24) 2010; 27 S Naoum (319_CR29) 2004; 6 SL Chu (319_CR4) 2008; 25 L Wu (319_CR39) 2010; 26 LW Zhuang (319_CR43) 2003; 14 PB Bedient (319_CR1) 1992 DT Price (319_CR32) 2000; 101 Y Wang (319_CR38) 2008; 23 319_CR44 ZM Feng (319_CR9) 2004; 23 P Goovaerts (319_CR13) 2000; 228 D Kurtzman (319_CR20) 2009; 23 319_CR25 KN Dirks (319_CR7) 1998; 208 S Geisser (319_CR11) 1993 CD Lloyd (319_CR26) 2005; 308 M Gemmer (319_CR12) 2004; 77 YK Tung (319_CR37) 1983; 109 PA Devijver (319_CR6) 1982 JL Li (319_CR23) 2006; 23 PA Burrough (319_CR2) 1998 M-L Segond (319_CR34) 2007; 52 V Phogat (319_CR31) 2010; 8 HY Zhu (319_CR42) 2004; 23 YF Kong (319_CR19) 2008; 27 HC Yeh (319_CR40) 2011; 9 HH Hsieh (319_CR15) 2006; 52 319_CR17 RS Seaman (319_CR33) 1983; 31 S Traore (319_CR36) 2010; 8 319_CR10 N Cressie (319_CR5) 1993 XH Dong (319_CR8) 2009; 31 |
References_xml | – reference: YehHCChenYCWeiCChenRHEntropy and kriging approach to rainfall network designPaddy Water Environ2011934335510.1007/s10333-010-0247-x – reference: FengZMYangYZDingXQLinZHOptimization of the spatial interpolation methods for climate resourcesGeograph Res2004235357364 – reference: PriceDTMcKenneyDWNalderIAHutchisonMFKestevenJLA comparison of two statistical methods for interpolation of Canadian monthly mean climate dataAgric Meteorol2000101819410.1016/S0168-1923(99)00169-0 – reference: SegondM-LNeokleousNMakropoulosCOnofCMaksimovicCSimulation and spatio-temporal disaggregation of multi-site rainfall data for urban drainage applicationsHydrol Sci J200752591793510.1623/hysj.52.5.917 – reference: BedientPBHuberWCHydrology and floodplain analysis19922ReadingAddison-Wesley – reference: DirksKNHayJEStowCDHigh resolution studies of rainfall on Norfolk Island Part II: interpolation of rainfall dataJ Hydrol199820818719310.1016/S0022-1694(98)00155-3 – reference: LloydCDAssessing the effect of integrating elevation data into the estimation of monthly precipitation in Great BritainJ Hydrol200530812815010.1016/j.jhydrol.2004.10.026 – reference: ZhuangLWWangSLSpatial interpolation methods of daily weather data in Northeast ChinaQuart J Appl Meteorol2003145605616 – reference: SimantonJROsbornHBReciprocal-distance estimate of point rainfallJ Hydraul Eng1980106712421246 – reference: NaoumSTsanisIKA multiple linear regression GIS module using spatial variables to model orographic rainfallJ Hydroinform200463956 – reference: McLachlanGJAmbroiseK-ADoCAnalyzing microarray gene expression data2004New YorkWiley10.1002/047172842X – reference: DevijverPAKittlerJPattern recognition: a statistical approach1982LondonPrentice-hall – reference: JeffreySJCarterJOMoodieKBBeswickARUsing spatial interpolation to construct a comprehensive archive of Australian climate dataEnviron Model Softw200116430933010.1016/S1364-8152(01)00008-1 – reference: LiJHeapADSpatial interpolation methods: a review for environmental scientists. Geoscience Australia, Record2008CanberraGeoscience Australia – reference: HsiehHHChengSJLiouJYChouSCSiaoBRCharacterization of spatially distributed summer daily rainfallJ Chin Agric Eng20065214755 – reference: ChuSLZhouZYYuanLChenQGStudy on spatial precipitation interpolation methodsPratacult Sci20082561923 – reference: LuGYWongDWAn adaptive inverse-distance weighting spatial interpolation techniqueComput Geosci20083491044105510.1016/j.cageo.2007.07.010 – reference: BurroughPAMcDonnellRAPrinciples of geographical information systems1998OxfordOxford University Press – reference: GeisserSPredictive inference1993New YorkChapman and Hall – reference: KohaviRProvostFSpecial issue on applications of machine learning and the knowledge discovery processMach Learn1998302–3271274 – reference: LamNS-NSpatial interpolation methods: a reviewAm Cartogr19831012914010.1559/152304083783914958 – reference: TungYKPoint rainfall estimation for a mountainous regionJ Hydraul Eng1983109101386139310.1061/(ASCE)0733-9429(1983)109:10(1386) – reference: DongXHBoHJDengXSuJWangXRainfall spatial interpolation methods and their applications to Qingjiang river basinJ China Three Gorges Univ (Nat Sci)2009316610 – reference: GoovaertsPGeostatistical approaches for incorporating elevation into the spatial interpolation of rainfallJ Hydrol200022811312910.1016/S0022-1694(00)00144-X – reference: ZhongJJA comparative study of spatial interpolation precision of annual average precipitation based on GIS in XinjiangDesert Oasis Meteorol2010445154 – reference: LiBHuangJFJinZFLiuZYMethods for calculation precipitation spatial distribution of Zhejiang Province based on GISJ Zhejiang Univ (Sci Ed)20102722392441:CAS:528:DC%2BC3cXns1Giurw%3D – reference: GarciaMPeters-LidardCDGoodrichDCSpatial interpolation of precipitation in a dense gauge network for monsoon storm events in the southwestern United StatesWater Resour Res200844W05S1314 – reference: GemmerMBeckerSJiangTObserved monthly precipitation trends in China 1951–2002Theor Appl Climatol200477394510.1007/s00704-003-0018-3 – reference: TraoreSWangYMKanCEKerhTLeuJMA mixture neural methodology for computing rice consumptive water requirements in Fada N’Gourma Region, Eastern Burkina FasoPaddy Water Environ2010816517310.1007/s10333-009-0195-5 – reference: KurtzmanDNavonSMorinEImproving interpolation of daily precipitation for hydrologic modeling: spatial patterns of preferred interpolatorsHydrol Process2009233281329110.1002/hyp.7442 – reference: CressieNStatics for spatial data (revised edition)1993New YorkWiley – reference: Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the fourteenth international joint conference on artificial intelligence, vol 2, no 12. Morgan Kaufmann, San Mateo, pp 1137–1143 – reference: PhogatVYadavAKMalikRSKumarSCoxJSimulation of salt and water movement and estimation of water productivity of rice crop irrigated with saline waterPaddy Water Environ2010833334610.1007/s10333-010-0213-7 – reference: WuLWuXJXiaoCCTianYOn temporal and spatial error distribution of five precipitation interpolation modelsGeogr Geo-Inf Sci20102631924 – reference: LinXSYuQStudy on the spatial interpolation of agroclimatic resources in ChongqingJ Anhui Agric200836301343113463 – reference: WangYLiCKChenLZhengSNAnalysis on impact of weight to spatial interpolation methodsJ Hunan Univ Sci Technol (Nat Sci Ed)200823477801:CAS:528:DC%2BD1cXptV2qsr8%3D – reference: LiJLZhangJZhangCChenQGAnalyze and compare the spatial interpolation methods for climate factorPratacult Sci2006238611 – reference: GyalistrasDDevelopment and validation of a high-resolution monthly gridded temperature and precipitation data set for Switzerland (1951–2000)Clim Res2003251558310.3354/cr025055 – reference: ZhuHYJiaSFUncertainty in the spatial interpolation of rainfall dataProg Geogr20042323442 – reference: KongYFTongWWSpatial exploration and interpolation of the surface precipitation dataGeograph Res200827510971108 – reference: Fotheringham AS, Brunsdon C, Charlton M (2002) Geographically weighted regression: the analysis of spatially varying relationship. Wiley, New York – reference: SeamanRSObjective analysis accuracies of statistical interpolation and successive correction schemesJ Aust Meteorol Mag198331225240 – volume-title: Hydrology and floodplain analysis year: 1992 ident: 319_CR1 – volume: 101 start-page: 81 year: 2000 ident: 319_CR32 publication-title: Agric Meteorol doi: 10.1016/S0168-1923(99)00169-0 – volume: 228 start-page: 113 year: 2000 ident: 319_CR13 publication-title: J Hydrol doi: 10.1016/S0022-1694(00)00144-X – volume: 25 start-page: 55 issue: 1 year: 2003 ident: 319_CR14 publication-title: Clim Res doi: 10.3354/cr025055 – volume: 30 start-page: 271 issue: 2–3 year: 1998 ident: 319_CR18 publication-title: Mach Learn – volume: 52 start-page: 917 issue: 5 year: 2007 ident: 319_CR34 publication-title: Hydrol Sci J doi: 10.1623/hysj.52.5.917 – volume: 106 start-page: 1242 issue: 7 year: 1980 ident: 319_CR35 publication-title: J Hydraul Eng – volume-title: Predictive inference year: 1993 ident: 319_CR11 doi: 10.1007/978-1-4899-4467-2 – ident: 319_CR10 doi: 10.1029/2006WR005788 – volume: 8 start-page: 165 year: 2010 ident: 319_CR36 publication-title: Paddy Water Environ doi: 10.1007/s10333-009-0195-5 – volume: 16 start-page: 309 issue: 4 year: 2001 ident: 319_CR16 publication-title: Environ Model Softw doi: 10.1016/S1364-8152(01)00008-1 – volume: 6 start-page: 39 year: 2004 ident: 319_CR29 publication-title: J Hydroinform doi: 10.2166/hydro.2004.0004 – volume: 23 start-page: 34 issue: 2 year: 2004 ident: 319_CR42 publication-title: Prog Geogr – volume-title: Principles of geographical information systems year: 1998 ident: 319_CR2 – volume: 34 start-page: 1044 issue: 9 year: 2008 ident: 319_CR27 publication-title: Comput Geosci doi: 10.1016/j.cageo.2007.07.010 – volume: 77 start-page: 39 year: 2004 ident: 319_CR12 publication-title: Theor Appl Climatol doi: 10.1007/s00704-003-0018-3 – volume: 27 start-page: 1097 issue: 5 year: 2008 ident: 319_CR19 publication-title: Geograph Res – volume: 52 start-page: 47 issue: 1 year: 2006 ident: 319_CR15 publication-title: J Chin Agric Eng – volume: 31 start-page: 6 issue: 6 year: 2009 ident: 319_CR8 publication-title: J China Three Gorges Univ (Nat Sci) – volume: 308 start-page: 128 year: 2005 ident: 319_CR26 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2004.10.026 – volume: 109 start-page: 1386 issue: 10 year: 1983 ident: 319_CR37 publication-title: J Hydraul Eng doi: 10.1061/(ASCE)0733-9429(1983)109:10(1386) – volume: 14 start-page: 605 issue: 5 year: 2003 ident: 319_CR43 publication-title: Quart J Appl Meteorol – volume: 23 start-page: 6 issue: 8 year: 2006 ident: 319_CR23 publication-title: Pratacult Sci – volume: 23 start-page: 3281 year: 2009 ident: 319_CR20 publication-title: Hydrol Process doi: 10.1002/hyp.7442 – volume: 31 start-page: 225 year: 1983 ident: 319_CR33 publication-title: J Aust Meteorol Mag – ident: 319_CR44 – volume: 25 start-page: 19 issue: 6 year: 2008 ident: 319_CR4 publication-title: Pratacult Sci – volume-title: Pattern recognition: a statistical approach year: 1982 ident: 319_CR6 – ident: 319_CR17 – volume: 8 start-page: 333 year: 2010 ident: 319_CR31 publication-title: Paddy Water Environ doi: 10.1007/s10333-010-0213-7 – volume: 10 start-page: 129 year: 1983 ident: 319_CR21 publication-title: Am Cartogr doi: 10.1559/152304083783914958 – volume: 208 start-page: 187 year: 1998 ident: 319_CR7 publication-title: J Hydrol doi: 10.1016/S0022-1694(98)00155-3 – ident: 319_CR25 – volume: 9 start-page: 343 year: 2011 ident: 319_CR40 publication-title: Paddy Water Environ doi: 10.1007/s10333-010-0247-x – volume: 23 start-page: 357 issue: 5 year: 2004 ident: 319_CR9 publication-title: Geograph Res – volume-title: Statics for spatial data (revised edition) year: 1993 ident: 319_CR5 doi: 10.1002/9781119115151 – volume-title: Spatial interpolation methods: a review for environmental scientists. Geoscience Australia, Record year: 2008 ident: 319_CR22 – volume-title: Analyzing microarray gene expression data year: 2004 ident: 319_CR28 doi: 10.1002/047172842X – volume: 26 start-page: 19 issue: 3 year: 2010 ident: 319_CR39 publication-title: Geogr Geo-Inf Sci – volume: 27 start-page: 239 issue: 2 year: 2010 ident: 319_CR24 publication-title: J Zhejiang Univ (Sci Ed) – volume: 4 start-page: 51 issue: 4 year: 2010 ident: 319_CR41 publication-title: Desert Oasis Meteorol – volume: 23 start-page: 77 issue: 4 year: 2008 ident: 319_CR38 publication-title: J Hunan Univ Sci Technol (Nat Sci Ed) |
SSID | ssj0027431 |
Score | 2.4574754 |
Snippet | In this article, we used the inverse distance weighting (IDW) method to estimate the rainfall distribution in the middle of Taiwan. We evaluated the... Issue Title: Special Issue on Capacity Building for Participatory Irrigation and Environmental Management In this article, we used the inverse distance... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 209 |
SubjectTerms | Agriculture Biomedical and Life Sciences Capacity development Correlation coefficient Dry season Ecotoxicology Environmental management Floods Geoecology/Natural Processes Geographic information systems Hydrogeology Hydrologic data Hydrology Hydrology/Water Resources Interpolation Inverse Irrigation Life Sciences Meteorology Optimization Rain Rainfall Rainfall distribution Soil Science & Conservation Stations Weighting |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LSgMxMGh70YP4xGqVCB58ENxNspvuSXxUqqCIKHpbspukCHWrtuLvO5OmrQp6W0gmCzOZybyHkN1IZUVZCMOA0RyTzqUscyphHJtxK-GEirB2-Pom7TzIq6fkKTjcBiGtciwTvaA2_RJ95EdYz8bTjKfi-PWN4dQojK6GERqzpA4iuAXGV_20fXN7983k8hMJQa2JGRgak7jmqHhOCMwl4sxX8sQ_X6apuvkrQuofnotFshA0RnoyIvESmbHVMpk_6b6Hrhl2hVRtYNRRDSLtOwo6HR1gpjSA4QQIp3s9arBDbhhuRTHbvUufK8zJsH4JiU8_vZ8Ul_Yuzx_3YYM_68U7MfDke_38qatV8nDRvj_rsDBIgZVgfQ1Z0iq10PCdcMdjpyOjilZhTKKBv7NYg0nhhDZWShMrV6YiktIZq7LUZtopIdZIrepXdp1QsH8KFZexU0ZLbQHWcNPiJagpTgKWGyQaIzEvQ5dxHHbRy6f9kRHvOeA9R7znAHIwAXkdtdj4b3NzTJk8cNsgn96NBtmZLAOfYPBDV7b_gXvSDKRNKqMGORxT9PsRf_xw4_8fbpI57q8QZp01SW34_mG3QE0ZFtvhLn4BoE_jgg priority: 102 providerName: ProQuest |
Title | Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan |
URI | https://link.springer.com/article/10.1007/s10333-012-0319-1 https://www.proquest.com/docview/1037269263 https://www.proquest.com/docview/1069196640 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1dS8MwMMh80QfxE-cXEXzwg0CbpM36OHV-oog4nE8lbZIxmJ24iX_fu6ydU1TwqYXcXeEul97lvgjZC1SS5ZkwDBTNMelczBKnIsaxGbcSTqgAa4dvbuOLtrzqRJ2yjntYZbtXIUl_Uk8VuwmBuT-c-cobcHlmI3TdYRO3eXPKy_JDCMGSCRn4FpNQ5k8kvv6MPi3Mb0FR_685WyQLpZFIm2OpLpEZWyyT-Wb3tWyUYVdI0QLdHJcd0oGjYMbRISZHAxoOfXC636cGm-KW86woJrh3aa_ANAzrl1De9N1fjeLS_uXp4wEAeFrP_t4CKT_o3rsuVkn7rPVwcsHK2QksB4drxKJGroWG94g7HjodGJU1MmMiDSqdhBq8CCe0sVKaULk8FoGUzliVxDbRTgmxRmrFoLDrhILLk6kwD50yWmoLuIabBs_BMnESuFwnQcXENC8bi-N8i3762RIZ-Z4C31PkewoohxOUl3FXjb-AtyrJpKWCDVMsb-RxwmNRJ7uTZVANjHfowg7eECZO4ICJZVAnR5VEp0n88sGNf0FvkjnudxTmnW2R2uj1zW6DoTLKdshs8_zpugXP49bt3f2O36gfxb7htQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw8DR1D8AD4lMUBhgJJD5kkdhO3DxMaB-dWrZVCHVib5kT29Okko61U8Wf4jfuzknagcTe9hbJPkc6353v-wDeRjorykJajozmufI-5ZnXCRfUjFtLL3VEtcOHo3RwpL4eJ8dr8KethaG0ylYmBkFtpyX5yD9TPZtIM5HKL-e_OE2NouhqO0KjJot993uBJttsc7iL9_tOiL3-eGfAm6kCvERTZM6TXmmkwe9EeBF7E1ld9AprE4PEnsUG9WsvjXVK2Vj7MkV7X3nrdJa6zHhNDlAU-etKoinTgfXt_ujb92smXpiAiGpUzNGwWcZR62I9KSl3SfBQORT__RKu1Nt_IrLhodt7APcbDZVt1ST1ENZc9QjubZ1eNF063GOo-igY6ppHNvUMdUg2o8xsBKOJE95MJsxSR95mmBaj7PpTdlZRDogLS0RsbBH8srT0frj74wNuCGf9DE4TOnlszhamegJHt4Lip9CpppV7BgztrULHZey1Nco4hLXC9kSJapFXiOUuRC0S87Lpak7DNSb5qh8z4T1HvOeE9xxBPi5BzuuWHjdt3mhvJm-4e5avaLELb5bLyJcUbDGVm17SnjRD6ZaqqAuf2hu9fsR_fvj85h--hjuD8eFBfjAc7b-AuyKQE2W8bUBnfnHpXqKKNC9eNXTJ4OS2WeEKVGAhYg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1dS8MwMIiC6IP4ifMzgg9-EGyTtFkfhzqcX_jg0LeSNokIsxO3sb_vXdZuU1TwrZC7K9zlkrvcFyGHgUqyPBOGgaI5Jp2LWeJUxDg241bCCRVg7fDdfXzVltfP0XM557RXZbtXIclRTQN2aSr6Z-_GnU0VvgmBeUCc-SoccH_m4DQOcVu3eWPK4_IDCcGqCRn4GeOw5k8kvl5ME2vzW4DU3zvNZbJUGoy0MZLwCpmxxSpZbLx8lE0z7BopLkFPRyWItOsomHS0h4nSgIYDIJzudKjBBrnlbCuKye4v9LXAlAzrl1D2dOifSXHpqHXxdAwAntabf8NAyo_6daiLddJuXj6eX7FyjgLLwfnqs6iea6HhO-KOh04HRmX1zJhIg3onoQaPwgltrJQmVC6PRSClM1YlsU20U0JskNmiW9hNQsH9yVSYh04ZLbUFXMNNnedgpTgJXK6RoGJimpdNxnHWRSedtEdGvqfA9xT5ngLKyRjlfdRh4y_gnUoyaalsvRRLHXmc8FjUyMF4GdQEYx-6sN0BwsQJHDaxDGrktJLoNIlffrj1L-h9Mv9w0UxvW_c322SB-82F6Wg7ZLb_MbC7YL_0sz2_Rz8Bgi7ltg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+the+spatial+rainfall+distribution+using+inverse+distance+weighting+%28IDW%29+in+the+middle+of+Taiwan&rft.jtitle=Paddy+and+water+environment&rft.au=Chen%2C+Feng-Wen&rft.au=Liu%2C+Chen-Wuing&rft.date=2012-09-01&rft.issn=1611-2490&rft.eissn=1611-2504&rft.volume=10&rft.issue=3&rft.spage=209&rft.epage=222&rft_id=info:doi/10.1007%2Fs10333-012-0319-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10333_012_0319_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1611-2490&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1611-2490&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1611-2490&client=summon |