Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan

In this article, we used the inverse distance weighting (IDW) method to estimate the rainfall distribution in the middle of Taiwan. We evaluated the relationship between interpolation accuracy and two critical parameters of IDW: power (α value), and a radius of influence (search radius). A total of...

Full description

Saved in:
Bibliographic Details
Published inPaddy and water environment Vol. 10; no. 3; pp. 209 - 222
Main Authors Chen, Feng-Wen, Liu, Chen-Wuing
Format Journal Article
LanguageEnglish
Published Japan Springer Japan 01.09.2012
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this article, we used the inverse distance weighting (IDW) method to estimate the rainfall distribution in the middle of Taiwan. We evaluated the relationship between interpolation accuracy and two critical parameters of IDW: power (α value), and a radius of influence (search radius). A total of 46 rainfall stations and rainfall data between 1981 and 2010 were used in this study, of which the 12 rainfall stations belonging to the Taichung Irrigation Association (TIA) were used for cross-validation. To obtain optimal interpolation data of rainfall, the value of the radius of influence, and the control parameter-α were determined by root mean squared error. The results show that the optimal parameters for IDW in interpolating rainfall data have a radius of influence up to 10–30 km in most cases. However, the optimal α values varied between zero and five. Rainfall data of interpolation using IDW can obtain more accurate results during the dry season than in the flood season. High correlation coefficient values of over 0.95 confirmed IDW as a suitable method of spatial interpolation to predict the probable rainfall data in the middle of Taiwan.
AbstractList Issue Title: Special Issue on Capacity Building for Participatory Irrigation and Environmental Management In this article, we used the inverse distance weighting (IDW) method to estimate the rainfall distribution in the middle of Taiwan. We evaluated the relationship between interpolation accuracy and two critical parameters of IDW: power (α value), and a radius of influence (search radius). A total of 46 rainfall stations and rainfall data between 1981 and 2010 were used in this study, of which the 12 rainfall stations belonging to the Taichung Irrigation Association (TIA) were used for cross-validation. To obtain optimal interpolation data of rainfall, the value of the radius of influence, and the control parameter-α were determined by root mean squared error. The results show that the optimal parameters for IDW in interpolating rainfall data have a radius of influence up to 10-30 km in most cases. However, the optimal α values varied between zero and five. Rainfall data of interpolation using IDW can obtain more accurate results during the dry season than in the flood season. High correlation coefficient values of over 0.95 confirmed IDW as a suitable method of spatial interpolation to predict the probable rainfall data in the middle of Taiwan.[PUBLICATION ABSTRACT]
In this article, we used the inverse distance weighting (IDW) method to estimate the rainfall distribution in the middle of Taiwan. We evaluated the relationship between interpolation accuracy and two critical parameters of IDW: power (α value), and a radius of influence (search radius). A total of 46 rainfall stations and rainfall data between 1981 and 2010 were used in this study, of which the 12 rainfall stations belonging to the Taichung Irrigation Association (TIA) were used for cross-validation. To obtain optimal interpolation data of rainfall, the value of the radius of influence, and the control parameter-α were determined by root mean squared error. The results show that the optimal parameters for IDW in interpolating rainfall data have a radius of influence up to 10–30 km in most cases. However, the optimal α values varied between zero and five. Rainfall data of interpolation using IDW can obtain more accurate results during the dry season than in the flood season. High correlation coefficient values of over 0.95 confirmed IDW as a suitable method of spatial interpolation to predict the probable rainfall data in the middle of Taiwan.
In this article, we used the inverse distance weighting (IDW) method to estimate the rainfall distribution in the middle of Taiwan. We evaluated the relationship between interpolation accuracy and two critical parameters of IDW: power ( alpha value), and a radius of influence (search radius). A total of 46 rainfall stations and rainfall data between 1981 and 2010 were used in this study, of which the 12 rainfall stations belonging to the Taichung Irrigation Association (TIA) were used for cross-validation. To obtain optimal interpolation data of rainfall, the value of the radius of influence, and the control parameter- alpha were determined by root mean squared error. The results show that the optimal parameters for IDW in interpolating rainfall data have a radius of influence up to 10-30 km in most cases. However, the optimal alpha values varied between zero and five. Rainfall data of interpolation using IDW can obtain more accurate results during the dry season than in the flood season. High correlation coefficient values of over 0.95 confirmed IDW as a suitable method of spatial interpolation to predict the probable rainfall data in the middle of Taiwan.
Author Chen, Feng-Wen
Liu, Chen-Wuing
Author_xml – sequence: 1
  givenname: Feng-Wen
  surname: Chen
  fullname: Chen, Feng-Wen
  organization: Department of Bioenvironmental Systems Engineering, National Taiwan University, Agricultural Engineering Research Center
– sequence: 2
  givenname: Chen-Wuing
  surname: Liu
  fullname: Liu, Chen-Wuing
  email: cwliu@ntu.edu.tw
  organization: Department of Bioenvironmental Systems Engineering, National Taiwan University
BookMark eNp9kVFLwzAUhYNMcJv-AN8KvsyHam6TNuujzKmDgS8TH0vWJFtGl84kdfjvTVsFEfQpN9zvHC7njNDA1EYidAn4BjBmtw4wISTGkMSYQB7DCRpCBhAnKaaD75nm-AyNnNthnDBKYIjM3Hm9517XJqpV5Lcycofw5VVkuTaKV1UktPNWr5sOapw2m0ibd2md7FbclDI6Sr3Z-nY1Wdy_Xgeg89prISrZOq-4PnJzjk6DpZMXX-8YvTzMV7OnePn8uJjdLeOS0qmP02nJCQ9zmqgEFMeCradrIVLOCM6BM8oU4UJSKoCpMiOYUiUkyzOZc8UIGaNJ73uw9VsjnS_22pWyqriRdeMKwFkOeZZRHNCrX-iubqwJ1wWKsCTLk6w1ZD1V2to5K1VRat_F5kNOVUCLtoei76EIPRRtDwUEJfxSHmxI3H78q0l6jQus2Uj786a_RJ-cd5x4
CitedBy_id crossref_primary_10_1016_j_tra_2021_12_001
crossref_primary_10_1007_s10669_014_9519_0
crossref_primary_10_1061__ASCE_HE_1943_5584_0002221
crossref_primary_10_1080_02626667_2021_1957105
crossref_primary_10_1016_j_gsf_2020_07_012
crossref_primary_10_1080_10106049_2019_1678675
crossref_primary_10_1109_TGRS_2023_3252023
crossref_primary_10_1016_j_scitotenv_2018_09_309
crossref_primary_10_1007_s12517_022_09883_w
crossref_primary_10_3390_w15101958
crossref_primary_10_1080_19475705_2021_1879942
crossref_primary_10_1109_LGRS_2019_2910006
crossref_primary_10_1038_s41597_025_04633_5
crossref_primary_10_1007_s11600_022_00966_6
crossref_primary_10_1016_j_jweia_2022_105276
crossref_primary_10_1007_s12517_020_05465_w
crossref_primary_10_1111_obes_12548
crossref_primary_10_1007_s40808_024_02189_8
crossref_primary_10_29048_makufebed_1151024
crossref_primary_10_1007_s12665_017_6814_3
crossref_primary_10_1002_joc_5238
crossref_primary_10_1016_j_engappai_2023_107345
crossref_primary_10_1007_s10661_022_09859_z
crossref_primary_10_1002_joc_5357
crossref_primary_10_1007_s11069_023_06146_z
crossref_primary_10_1007_s00704_024_04867_0
crossref_primary_10_3390_ijerph17082942
crossref_primary_10_1007_s00704_022_04184_4
crossref_primary_10_1007_s11356_022_20665_5
crossref_primary_10_3390_agronomy10010003
crossref_primary_10_3390_agronomy12020332
crossref_primary_10_31435_ijitss_4_44__2024_3067
crossref_primary_10_5194_hess_27_1033_2023
crossref_primary_10_1111_oik_05085
crossref_primary_10_1177_03611981241239973
crossref_primary_10_1016_j_jhydrol_2017_12_019
crossref_primary_10_32441_kjps_08_01_p9
crossref_primary_10_3390_su15129668
crossref_primary_10_1007_s10661_020_08810_4
crossref_primary_10_1109_TVCG_2022_3165345
crossref_primary_10_2208_jscejhe_76_2_I_25
crossref_primary_10_7717_peerj_17755
crossref_primary_10_1016_j_heliyon_2024_e31151
crossref_primary_10_2166_wcc_2021_259
crossref_primary_10_1007_s11069_023_05916_z
crossref_primary_10_1016_j_envint_2020_105682
crossref_primary_10_1007_s10708_022_10774_6
crossref_primary_10_1007_s40710_018_0298_3
crossref_primary_10_1109_JSTARS_2024_3378330
crossref_primary_10_3390_w16010139
crossref_primary_10_1016_j_agsy_2024_104246
crossref_primary_10_1088_1755_1315_653_1_012032
crossref_primary_10_1016_j_heliyon_2021_e07791
crossref_primary_10_3390_land12020309
crossref_primary_10_1590_0102_77863630115
crossref_primary_10_1016_j_apgeog_2018_10_005
crossref_primary_10_1007_s11356_021_13300_2
crossref_primary_10_1080_10920277_2019_1566074
crossref_primary_10_1061__ASCE_HE_1943_5584_0001285
crossref_primary_10_1002_hyp_11503
crossref_primary_10_1155_2015_563629
crossref_primary_10_2166_wcc_2022_173
crossref_primary_10_1007_s13143_020_00179_1
crossref_primary_10_1007_s00704_022_04283_2
crossref_primary_10_1007_s40808_022_01657_3
crossref_primary_10_1134_S1064229323601658
crossref_primary_10_3390_rs13152859
crossref_primary_10_1007_s00704_018_2537_y
crossref_primary_10_1093_gji_ggab025
crossref_primary_10_20965_jdr_2019_p0069
crossref_primary_10_1080_10920277_2020_1717345
crossref_primary_10_1007_s41324_019_00311_y
crossref_primary_10_1016_j_jclepro_2019_117729
crossref_primary_10_1016_j_jhydrol_2014_07_044
crossref_primary_10_2166_nh_2015_117
crossref_primary_10_1016_j_ejrh_2022_101252
crossref_primary_10_3390_w15040790
crossref_primary_10_1007_s11069_020_04410_0
crossref_primary_10_1109_TGRS_2023_3336314
crossref_primary_10_1016_j_catena_2022_106486
crossref_primary_10_1007_s40333_021_0017_1
crossref_primary_10_1002_met_2146
crossref_primary_10_1007_s00704_024_05089_0
crossref_primary_10_1007_s41748_024_00518_6
crossref_primary_10_1016_j_apgeog_2022_102684
crossref_primary_10_2208_jscejhe_75_2_I_1051
crossref_primary_10_1016_j_asr_2015_06_015
crossref_primary_10_26833_ijeg_940997
crossref_primary_10_2166_wp_2014_237
crossref_primary_10_1016_j_heliyon_2021_e07487
crossref_primary_10_1016_j_ssci_2018_01_016
crossref_primary_10_1007_s11269_020_02728_9
crossref_primary_10_1007_s12524_023_01761_6
crossref_primary_10_2139_ssrn_3195389
crossref_primary_10_1590_0102_77863630001
crossref_primary_10_1080_23311843_2020_1745133
crossref_primary_10_1016_j_ecolind_2017_05_011
crossref_primary_10_1007_s11042_017_4768_9
crossref_primary_10_1016_j_amc_2020_125717
crossref_primary_10_1007_s40333_022_0106_9
crossref_primary_10_3390_su122310098
crossref_primary_10_3390_infrastructures10030052
crossref_primary_10_3389_fpubh_2021_682341
crossref_primary_10_4236_jgis_2018_102010
crossref_primary_10_2166_hydro_2023_092
crossref_primary_10_2139_ssrn_4191216
crossref_primary_10_1007_s12517_021_06883_0
crossref_primary_10_1016_j_heliyon_2023_e17604
crossref_primary_10_1016_j_asoc_2021_107296
crossref_primary_10_3390_atmos12121597
crossref_primary_10_1016_j_eti_2024_103801
crossref_primary_10_3390_w16182573
crossref_primary_10_1016_j_aiig_2022_12_003
crossref_primary_10_1093_europace_euv244
crossref_primary_10_2166_hydro_2023_081
crossref_primary_10_1155_2018_6302853
crossref_primary_10_3390_geosciences11020051
crossref_primary_10_1007_s12665_024_11633_y
crossref_primary_10_1016_j_ejrh_2022_101214
crossref_primary_10_1016_j_measurement_2024_114189
crossref_primary_10_1080_24749508_2021_2022425
crossref_primary_10_2166_wcc_2021_316
crossref_primary_10_1016_j_hydres_2023_02_004
crossref_primary_10_1016_j_catena_2014_02_005
crossref_primary_10_1080_01431161_2015_1041618
crossref_primary_10_1080_02626667_2019_1649411
crossref_primary_10_1155_2021_9657460
crossref_primary_10_1007_s43545_022_00349_0
crossref_primary_10_1038_s41598_021_82227_y
crossref_primary_10_1016_j_jclepro_2022_132893
crossref_primary_10_1016_j_scs_2021_103405
crossref_primary_10_1088_1361_6560_ab5035
crossref_primary_10_1007_s40899_016_0057_4
crossref_primary_10_3390_w13202872
crossref_primary_10_1007_s00704_021_03675_0
crossref_primary_10_1007_s40808_024_02234_6
crossref_primary_10_15531_KSCCR_2024_15_5_635
crossref_primary_10_3390_su12177187
crossref_primary_10_3390_s21061981
crossref_primary_10_1590_0001_3765202120190674
crossref_primary_10_3390_w12082304
crossref_primary_10_1016_j_ejrh_2023_101634
crossref_primary_10_1007_s00704_021_03553_9
crossref_primary_10_1016_j_ijhydene_2024_05_335
crossref_primary_10_3390_rs13051039
crossref_primary_10_3390_atmos13111876
crossref_primary_10_1016_j_jhydrol_2020_125198
crossref_primary_10_1080_23249676_2023_2230892
crossref_primary_10_1002_joc_7389
crossref_primary_10_1007_s10333_021_00867_2
crossref_primary_10_1016_j_ecohyd_2023_06_001
crossref_primary_10_1007_s10661_024_13240_7
crossref_primary_10_1007_s11269_015_0939_5
crossref_primary_10_1007_s11356_023_25283_3
crossref_primary_10_1108_AFR_10_2015_0042
crossref_primary_10_1007_s00704_020_03428_5
crossref_primary_10_1007_s11356_022_18773_3
crossref_primary_10_1016_j_atmosres_2017_08_002
crossref_primary_10_1007_s00704_020_03406_x
crossref_primary_10_1080_23570008_2024_2357340
crossref_primary_10_1002_hyp_15013
crossref_primary_10_1007_s11869_021_01136_1
crossref_primary_10_1016_j_geoderma_2023_116683
crossref_primary_10_3390_app10176138
crossref_primary_10_1007_s00704_019_02846_4
crossref_primary_10_1007_s11356_021_18009_w
crossref_primary_10_1007_s00477_023_02433_0
crossref_primary_10_1007_s00704_023_04769_7
crossref_primary_10_1051_bioconf_202515602010
crossref_primary_10_1016_j_jclepro_2018_10_250
crossref_primary_10_1007_s11356_024_35213_6
crossref_primary_10_5004_dwt_2017_20859
crossref_primary_10_3390_hydrology6020038
crossref_primary_10_55581_ejeas_936950
crossref_primary_10_3390_w10111665
crossref_primary_10_22399_ijcesen_1187
crossref_primary_10_2166_wcc_2023_120
crossref_primary_10_1002_joc_4172
crossref_primary_10_1016_j_asr_2022_02_033
crossref_primary_10_1016_j_landusepol_2020_105272
crossref_primary_10_3390_cli12020027
crossref_primary_10_1109_LGRS_2019_2935348
crossref_primary_10_21324_dacd_363694
crossref_primary_10_35193_bseufbd_877539
crossref_primary_10_1016_j_cageo_2023_105362
crossref_primary_10_2166_wcc_2024_696
crossref_primary_10_1007_s11600_020_00520_2
crossref_primary_10_3390_su15086507
crossref_primary_10_3390_w12030904
crossref_primary_10_1016_j_jasrep_2015_11_030
crossref_primary_10_1016_j_compag_2018_08_047
crossref_primary_10_3390_w15223895
crossref_primary_10_1007_s10668_019_00548_5
crossref_primary_10_2139_ssrn_3129776
crossref_primary_10_1016_j_pce_2022_103192
crossref_primary_10_1007_s10668_022_02512_2
crossref_primary_10_1109_JSTARS_2021_3085342
crossref_primary_10_3390_rs12101691
crossref_primary_10_1080_02626667_2020_1833014
crossref_primary_10_1145_3589321
crossref_primary_10_4236_jcc_2023_118002
crossref_primary_10_1002_rra_3681
crossref_primary_10_1029_2019JC015136
crossref_primary_10_1080_03081087_2017_1337057
crossref_primary_10_5194_bg_11_3739_2014
crossref_primary_10_2166_wcc_2019_272
crossref_primary_10_1080_02626667_2020_1833013
crossref_primary_10_1155_2022_3594641
crossref_primary_10_1186_s40663_018_0147_x
crossref_primary_10_3390_earth3040072
crossref_primary_10_1016_j_jag_2022_102986
crossref_primary_10_3390_w15203606
crossref_primary_10_1007_s00704_022_03927_7
crossref_primary_10_1016_j_atmosres_2020_105289
crossref_primary_10_1080_20964129_2020_1780159
crossref_primary_10_1016_j_jhydrol_2014_05_064
crossref_primary_10_1007_s10661_022_09845_5
crossref_primary_10_1080_02626667_2018_1438613
crossref_primary_10_1002_jobm_201500226
crossref_primary_10_1088_1755_1315_479_1_012018
crossref_primary_10_1007_s12524_022_01575_y
crossref_primary_10_1007_s10661_024_13277_8
crossref_primary_10_3390_w14091364
crossref_primary_10_3390_w17020195
crossref_primary_10_3390_cli11030048
crossref_primary_10_1109_TBDATA_2022_3227089
crossref_primary_10_1080_23249676_2024_2443743
crossref_primary_10_32604_cmes_2023_026874
crossref_primary_10_32604_rig_2024_047908
crossref_primary_10_1016_j_wse_2016_06_002
crossref_primary_10_1080_15481603_2024_2436997
crossref_primary_10_1007_s12517_021_06605_6
crossref_primary_10_1016_j_ejrh_2019_100623
crossref_primary_10_1016_j_measurement_2020_107494
crossref_primary_10_1038_sdata_2017_72
crossref_primary_10_1016_j_iswcr_2024_12_001
crossref_primary_10_1111_tgis_13303
crossref_primary_10_3390_s19132895
crossref_primary_10_1016_j_scs_2020_102436
crossref_primary_10_1016_j_ecolind_2025_113345
crossref_primary_10_1016_j_ecolind_2025_113228
crossref_primary_10_1016_j_gsf_2020_03_005
crossref_primary_10_1111_ddi_13370
crossref_primary_10_1002_jsfa_12735
crossref_primary_10_3390_w16030502
crossref_primary_10_1080_10106049_2023_2168069
crossref_primary_10_1109_TGRS_2022_3165309
crossref_primary_10_1007_s00477_020_01878_x
crossref_primary_10_1016_j_compenvurbsys_2020_101544
crossref_primary_10_1016_j_agrformet_2023_109794
crossref_primary_10_1155_2016_8582041
crossref_primary_10_3390_w11071398
crossref_primary_10_3390_f12121789
crossref_primary_10_1002_hyp_11163
crossref_primary_10_1016_j_asej_2023_102453
crossref_primary_10_1080_1064119X_2019_1632996
crossref_primary_10_1007_s00382_023_06871_y
crossref_primary_10_3390_s16081245
crossref_primary_10_1007_s00477_016_1348_x
crossref_primary_10_1007_s12524_017_0734_2
crossref_primary_10_3390_ijerph16183404
crossref_primary_10_3390_land11122211
crossref_primary_10_1016_j_kjs_2023_02_031
crossref_primary_10_3390_ijgi10110730
crossref_primary_10_3390_f12121636
crossref_primary_10_1007_s00704_015_1624_6
crossref_primary_10_1016_j_cageo_2012_11_002
crossref_primary_10_1155_2023_1149108
crossref_primary_10_3390_geographies3030027
crossref_primary_10_1016_j_nhres_2025_01_005
crossref_primary_10_1007_s00704_018_2672_5
crossref_primary_10_1002_ecs2_70015
crossref_primary_10_1007_s12517_022_10025_5
crossref_primary_10_4236_gep_2018_64016
crossref_primary_10_17533_udea_redin_n75a18
crossref_primary_10_1080_24694452_2024_2373795
crossref_primary_10_1007_s13201_021_01410_8
crossref_primary_10_1016_j_compag_2018_12_040
crossref_primary_10_1007_s12665_019_8755_5
crossref_primary_10_1088_1755_1315_98_1_012053
crossref_primary_10_1007_s12517_025_12238_w
crossref_primary_10_1007_s13143_020_00214_1
crossref_primary_10_1016_j_apenergy_2024_124768
crossref_primary_10_1007_s00704_021_03888_3
crossref_primary_10_1007_s10668_020_01171_5
crossref_primary_10_1145_3718094
crossref_primary_10_1016_j_jhydrol_2020_124806
crossref_primary_10_1109_TKDE_2021_3072642
crossref_primary_10_1007_s12040_024_02283_6
crossref_primary_10_3390_atmos14020284
crossref_primary_10_1080_19475705_2013_853325
crossref_primary_10_1029_2023GL103727
crossref_primary_10_1016_j_heliyon_2019_e01678
crossref_primary_10_1038_s41598_023_35105_8
crossref_primary_10_1007_s12517_015_1870_z
crossref_primary_10_1007_s00704_023_04615_w
crossref_primary_10_1007_s11270_021_05163_7
crossref_primary_10_5194_nhess_24_2647_2024
crossref_primary_10_1016_j_catena_2020_104576
crossref_primary_10_1007_s00704_023_04798_2
crossref_primary_10_1007_s11869_022_01165_4
crossref_primary_10_1007_s10518_022_01581_y
crossref_primary_10_1016_j_autcon_2024_105922
crossref_primary_10_1016_j_ejrh_2024_102006
crossref_primary_10_2166_nh_2013_096
crossref_primary_10_1007_s00477_016_1349_9
crossref_primary_10_1007_s40808_023_01810_6
crossref_primary_10_1016_j_jhydrol_2019_124042
crossref_primary_10_1016_j_scitotenv_2020_137752
crossref_primary_10_1051_e3sconf_202560702004
crossref_primary_10_1007_s41685_023_00274_x
crossref_primary_10_1016_j_marpolbul_2019_110651
crossref_primary_10_1007_s12145_019_00436_6
crossref_primary_10_1007_s10661_020_08687_3
crossref_primary_10_59465_ijfr_2023_10_1_1_19
crossref_primary_10_1002_ecs2_2614
crossref_primary_10_3390_w12010253
crossref_primary_10_1016_j_worlddev_2014_09_016
crossref_primary_10_3390_w12071969
crossref_primary_10_1016_j_ecolind_2020_106858
crossref_primary_10_1007_s10661_019_7604_z
crossref_primary_10_1016_j_envpol_2019_112987
crossref_primary_10_1007_s10661_022_09841_9
crossref_primary_10_1080_23754931_2020_1847728
crossref_primary_10_1515_geo_2022_0667
crossref_primary_10_3390_hydrology11010009
crossref_primary_10_1186_s12889_021_11563_5
crossref_primary_10_1109_LCOMM_2020_2983361
crossref_primary_10_1016_j_ecolind_2023_110355
crossref_primary_10_1007_s11069_020_04406_w
crossref_primary_10_1002_joc_3682
crossref_primary_10_1007_s00704_021_03746_2
crossref_primary_10_1016_j_ejrh_2024_101696
crossref_primary_10_1002_joc_5502
crossref_primary_10_1016_j_gsd_2024_101304
crossref_primary_10_1016_j_pce_2018_03_012
crossref_primary_10_1080_13658816_2024_2347316
crossref_primary_10_3390_rs15163991
crossref_primary_10_1016_j_ecoleng_2022_106577
crossref_primary_10_1109_TVCG_2022_3209413
crossref_primary_10_1016_j_ecolind_2020_106243
crossref_primary_10_3390_su13116318
crossref_primary_10_1016_j_envpol_2020_115029
crossref_primary_10_20290_estubtdb_726491
crossref_primary_10_1007_s00128_020_02924_8
crossref_primary_10_20965_jdr_2021_p0561
crossref_primary_10_1016_j_nhres_2023_10_002
crossref_primary_10_1007_s12518_020_00307_6
crossref_primary_10_1007_s10967_023_09165_z
crossref_primary_10_1016_j_trd_2023_103801
crossref_primary_10_1007_s11356_023_27498_w
crossref_primary_10_1038_s41598_019_49242_6
crossref_primary_10_1038_s41598_017_03297_5
crossref_primary_10_1007_s00704_014_1307_8
crossref_primary_10_1080_10106049_2022_2068673
crossref_primary_10_1016_j_enggeo_2021_106103
crossref_primary_10_1007_s00382_016_3500_1
crossref_primary_10_1080_00207233_2022_2072585
crossref_primary_10_1007_s00703_021_00826_w
crossref_primary_10_1002_joc_4432
crossref_primary_10_1080_01431161_2015_1007248
crossref_primary_10_1007_s00704_022_04170_w
crossref_primary_10_1016_j_scitotenv_2019_134988
crossref_primary_10_3390_w13101381
crossref_primary_10_1007_s00521_023_09397_w
crossref_primary_10_5194_essd_11_1711_2019
crossref_primary_10_1016_j_ijdrr_2018_12_002
crossref_primary_10_1007_s11356_022_23022_8
crossref_primary_10_1007_s12517_023_11349_6
crossref_primary_10_3390_su15021472
crossref_primary_10_3390_w13172411
crossref_primary_10_1007_s00704_015_1375_4
crossref_primary_10_3390_w10040381
crossref_primary_10_1016_j_gsd_2023_101039
crossref_primary_10_3390_ijerph19095208
crossref_primary_10_1080_13658816_2019_1655755
crossref_primary_10_21778_2413_9599_2020_30_3_57_66
crossref_primary_10_1007_s11270_020_04939_7
crossref_primary_10_1109_LGRS_2024_3464629
crossref_primary_10_1007_s10661_025_13884_z
crossref_primary_10_1007_s12517_021_06961_3
crossref_primary_10_17129_botsci_3204
crossref_primary_10_2166_nh_2020_146
crossref_primary_10_3390_app11209566
crossref_primary_10_1007_s00366_022_01695_6
crossref_primary_10_1016_j_atmosres_2025_107910
crossref_primary_10_1038_s41598_023_33509_0
crossref_primary_10_1016_j_envc_2021_100194
crossref_primary_10_1007_s00704_019_02963_0
crossref_primary_10_3390_sci7010030
crossref_primary_10_1016_j_scitotenv_2023_163977
crossref_primary_10_4236_jgis_2017_96044
crossref_primary_10_1016_j_measurement_2018_09_047
crossref_primary_10_3390_app14093600
crossref_primary_10_1080_10106049_2021_1923833
crossref_primary_10_3390_w13020230
crossref_primary_10_3846_gac_2023_17455
crossref_primary_10_1007_s12517_019_4869_z
crossref_primary_10_1016_j_gsd_2021_100656
crossref_primary_10_1109_ACCESS_2020_2979683
crossref_primary_10_3390_app142311044
crossref_primary_10_3846_gac_2024_18751
crossref_primary_10_1007_s00477_022_02179_1
crossref_primary_10_1007_s11356_023_28649_9
crossref_primary_10_1080_13658816_2023_2239307
crossref_primary_10_3390_land10050477
crossref_primary_10_1080_02626667_2022_2030868
crossref_primary_10_1186_s40068_024_00345_8
crossref_primary_10_3390_cli3020416
crossref_primary_10_3390_environments11040082
crossref_primary_10_1016_j_atmosres_2022_106159
crossref_primary_10_1007_s11370_015_0174_1
crossref_primary_10_1007_s41748_023_00362_0
crossref_primary_10_1088_1755_1315_149_1_012047
crossref_primary_10_1007_s10661_023_12004_z
crossref_primary_10_1080_02626667_2022_2145200
crossref_primary_10_1007_s00703_020_00727_4
crossref_primary_10_1186_s40677_020_00155_x
crossref_primary_10_1038_s41598_024_53858_8
crossref_primary_10_1007_s00704_019_02840_w
crossref_primary_10_1016_j_catena_2024_107848
crossref_primary_10_56130_tucbis_943613
crossref_primary_10_1016_j_atmosres_2019_104688
crossref_primary_10_1080_02626667_2018_1554286
crossref_primary_10_1007_s00704_023_04562_6
crossref_primary_10_1016_j_jhydrol_2019_124447
crossref_primary_10_1007_s00521_023_08578_x
crossref_primary_10_1175_JAMC_D_14_0084_1
crossref_primary_10_3390_w14233914
crossref_primary_10_9798_KOSHAM_2015_15_3_329
crossref_primary_10_3390_app9214487
crossref_primary_10_1016_j_cscee_2023_100399
crossref_primary_10_1016_j_jsames_2024_104961
crossref_primary_10_1016_j_atmosres_2022_106052
crossref_primary_10_1016_j_ejrh_2023_101385
crossref_primary_10_1016_j_gsd_2025_101442
crossref_primary_10_2166_wcc_2022_089
crossref_primary_10_1007_s10661_023_11875_6
crossref_primary_10_5194_hess_23_4803_2019
crossref_primary_10_1007_s12040_024_02446_5
crossref_primary_10_1016_j_scitotenv_2019_134559
crossref_primary_10_1007_s10661_018_7079_3
crossref_primary_10_1007_s40808_021_01228_y
crossref_primary_10_4236_jwarp_2014_62012
crossref_primary_10_1007_s00704_017_2343_y
crossref_primary_10_1016_j_teadva_2023_200089
crossref_primary_10_1002_met_2206
crossref_primary_10_1007_s12517_021_09007_w
crossref_primary_10_3390_rs14225827
crossref_primary_10_1109_JSTARS_2024_3358829
crossref_primary_10_17341_gazimmfd_416379
Cites_doi 10.1016/S0168-1923(99)00169-0
10.1016/S0022-1694(00)00144-X
10.3354/cr025055
10.1623/hysj.52.5.917
10.1007/978-1-4899-4467-2
10.1029/2006WR005788
10.1007/s10333-009-0195-5
10.1016/S1364-8152(01)00008-1
10.2166/hydro.2004.0004
10.1016/j.cageo.2007.07.010
10.1007/s00704-003-0018-3
10.1016/j.jhydrol.2004.10.026
10.1061/(ASCE)0733-9429(1983)109:10(1386)
10.1002/hyp.7442
10.1007/s10333-010-0213-7
10.1559/152304083783914958
10.1016/S0022-1694(98)00155-3
10.1007/s10333-010-0247-x
10.1002/9781119115151
10.1002/047172842X
ContentType Journal Article
Copyright Springer-Verlag 2012
Copyright_xml – notice: Springer-Verlag 2012
DBID AAYXX
CITATION
3V.
7QH
7ST
7UA
7X2
7XB
88I
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H95
HCIFZ
L.G
M0K
M2P
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
SOI
7SU
8FD
FR3
KR7
DOI 10.1007/s10333-012-0319-1
DatabaseName CrossRef
ProQuest Central (Corporate)
Aqualine
Environment Abstracts
Water Resources Abstracts
Agricultural Science Collection
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Agricultural Science Database
Science Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
Environmental Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Agricultural Science Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
ProQuest One Academic (New)
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environmental Engineering Abstracts
DatabaseTitleList Agricultural Science Database

Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1611-2504
EndPage 222
ExternalDocumentID 2748860751
10_1007_s10333_012_0319_1
Genre Feature
GroupedDBID -56
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
203
29O
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
5VS
67M
67Z
6NX
7X2
7XC
88I
8CJ
8FE
8FH
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1J
D1K
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
KDC
KOV
L8X
LAS
LLZTM
M0K
M2P
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PYCSY
Q2X
QOR
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SBL
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZOVNA
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7QH
7ST
7UA
7XB
8FK
ABRTQ
C1K
F1W
H95
L.G
PKEHL
PQEST
PQUKI
Q9U
SOI
7SU
8FD
FR3
KR7
ID FETCH-LOGICAL-c448t-58ca3ac4452f21fa0d7b8bdd5a73091a747f3ade44d17fc63044fde796e9af733
IEDL.DBID U2A
ISSN 1611-2490
IngestDate Thu Jul 10 20:05:45 EDT 2025
Sat Jul 26 00:20:07 EDT 2025
Thu Apr 24 23:02:11 EDT 2025
Tue Jul 01 01:18:06 EDT 2025
Fri Feb 21 02:35:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Spatial interpolation
Rainfall data
Inverse distance weighting (IDW)
Omission
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c448t-58ca3ac4452f21fa0d7b8bdd5a73091a747f3ade44d17fc63044fde796e9af733
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1037269263
PQPubID 54526
PageCount 14
ParticipantIDs proquest_miscellaneous_1069196640
proquest_journals_1037269263
crossref_citationtrail_10_1007_s10333_012_0319_1
crossref_primary_10_1007_s10333_012_0319_1
springer_journals_10_1007_s10333_012_0319_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-09-01
PublicationDateYYYYMMDD 2012-09-01
PublicationDate_xml – month: 09
  year: 2012
  text: 2012-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Dordrecht
PublicationTitle Paddy and water environment
PublicationTitleAbbrev Paddy Water Environ
PublicationYear 2012
Publisher Springer Japan
Springer Nature B.V
Publisher_xml – name: Springer Japan
– name: Springer Nature B.V
References Fotheringham AS, Brunsdon C, Charlton M (2002) Geographically weighted regression: the analysis of spatially varying relationship. Wiley, New York
BedientPBHuberWCHydrology and floodplain analysis19922ReadingAddison-Wesley
SegondM-LNeokleousNMakropoulosCOnofCMaksimovicCSimulation and spatio-temporal disaggregation of multi-site rainfall data for urban drainage applicationsHydrol Sci J200752591793510.1623/hysj.52.5.917
TungYKPoint rainfall estimation for a mountainous regionJ Hydraul Eng1983109101386139310.1061/(ASCE)0733-9429(1983)109:10(1386)
PriceDTMcKenneyDWNalderIAHutchisonMFKestevenJLA comparison of two statistical methods for interpolation of Canadian monthly mean climate dataAgric Meteorol2000101819410.1016/S0168-1923(99)00169-0
YehHCChenYCWeiCChenRHEntropy and kriging approach to rainfall network designPaddy Water Environ2011934335510.1007/s10333-010-0247-x
DirksKNHayJEStowCDHigh resolution studies of rainfall on Norfolk Island Part II: interpolation of rainfall dataJ Hydrol199820818719310.1016/S0022-1694(98)00155-3
JeffreySJCarterJOMoodieKBBeswickARUsing spatial interpolation to construct a comprehensive archive of Australian climate dataEnviron Model Softw200116430933010.1016/S1364-8152(01)00008-1
LloydCDAssessing the effect of integrating elevation data into the estimation of monthly precipitation in Great BritainJ Hydrol200530812815010.1016/j.jhydrol.2004.10.026
KohaviRProvostFSpecial issue on applications of machine learning and the knowledge discovery processMach Learn1998302–3271274
ZhuangLWWangSLSpatial interpolation methods of daily weather data in Northeast ChinaQuart J Appl Meteorol2003145605616
GoovaertsPGeostatistical approaches for incorporating elevation into the spatial interpolation of rainfallJ Hydrol200022811312910.1016/S0022-1694(00)00144-X
SeamanRSObjective analysis accuracies of statistical interpolation and successive correction schemesJ Aust Meteorol Mag198331225240
PhogatVYadavAKMalikRSKumarSCoxJSimulation of salt and water movement and estimation of water productivity of rice crop irrigated with saline waterPaddy Water Environ2010833334610.1007/s10333-010-0213-7
KongYFTongWWSpatial exploration and interpolation of the surface precipitation dataGeograph Res200827510971108
KurtzmanDNavonSMorinEImproving interpolation of daily precipitation for hydrologic modeling: spatial patterns of preferred interpolatorsHydrol Process2009233281329110.1002/hyp.7442
ZhuHYJiaSFUncertainty in the spatial interpolation of rainfall dataProg Geogr20042323442
BurroughPAMcDonnellRAPrinciples of geographical information systems1998OxfordOxford University Press
LamNS-NSpatial interpolation methods: a reviewAm Cartogr19831012914010.1559/152304083783914958
NaoumSTsanisIKA multiple linear regression GIS module using spatial variables to model orographic rainfallJ Hydroinform200463956
TraoreSWangYMKanCEKerhTLeuJMA mixture neural methodology for computing rice consumptive water requirements in Fada N’Gourma Region, Eastern Burkina FasoPaddy Water Environ2010816517310.1007/s10333-009-0195-5
LiJLZhangJZhangCChenQGAnalyze and compare the spatial interpolation methods for climate factorPratacult Sci2006238611
LuGYWongDWAn adaptive inverse-distance weighting spatial interpolation techniqueComput Geosci20083491044105510.1016/j.cageo.2007.07.010
ZhongJJA comparative study of spatial interpolation precision of annual average precipitation based on GIS in XinjiangDesert Oasis Meteorol2010445154
DongXHBoHJDengXSuJWangXRainfall spatial interpolation methods and their applications to Qingjiang river basinJ China Three Gorges Univ (Nat Sci)2009316610
HsiehHHChengSJLiouJYChouSCSiaoBRCharacterization of spatially distributed summer daily rainfallJ Chin Agric Eng20065214755
ChuSLZhouZYYuanLChenQGStudy on spatial precipitation interpolation methodsPratacult Sci20082561923
WangYLiCKChenLZhengSNAnalysis on impact of weight to spatial interpolation methodsJ Hunan Univ Sci Technol (Nat Sci Ed)200823477801:CAS:528:DC%2BD1cXptV2qsr8%3D
GeisserSPredictive inference1993New YorkChapman and Hall
FengZMYangYZDingXQLinZHOptimization of the spatial interpolation methods for climate resourcesGeograph Res2004235357364
CressieNStatics for spatial data (revised edition)1993New YorkWiley
LiJHeapADSpatial interpolation methods: a review for environmental scientists. Geoscience Australia, Record2008CanberraGeoscience Australia
GemmerMBeckerSJiangTObserved monthly precipitation trends in China 1951–2002Theor Appl Climatol200477394510.1007/s00704-003-0018-3
LinXSYuQStudy on the spatial interpolation of agroclimatic resources in ChongqingJ Anhui Agric200836301343113463
GarciaMPeters-LidardCDGoodrichDCSpatial interpolation of precipitation in a dense gauge network for monsoon storm events in the southwestern United StatesWater Resour Res200844W05S1314
McLachlanGJAmbroiseK-ADoCAnalyzing microarray gene expression data2004New YorkWiley10.1002/047172842X
WuLWuXJXiaoCCTianYOn temporal and spatial error distribution of five precipitation interpolation modelsGeogr Geo-Inf Sci20102631924
GyalistrasDDevelopment and validation of a high-resolution monthly gridded temperature and precipitation data set for Switzerland (1951–2000)Clim Res2003251558310.3354/cr025055
LiBHuangJFJinZFLiuZYMethods for calculation precipitation spatial distribution of Zhejiang Province based on GISJ Zhejiang Univ (Sci Ed)20102722392441:CAS:528:DC%2BC3cXns1Giurw%3D
DevijverPAKittlerJPattern recognition: a statistical approach1982LondonPrentice-hall
Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the fourteenth international joint conference on artificial intelligence, vol 2, no 12. Morgan Kaufmann, San Mateo, pp 1137–1143
SimantonJROsbornHBReciprocal-distance estimate of point rainfallJ Hydraul Eng1980106712421246
JR Simanton (319_CR35) 1980; 106
D Gyalistras (319_CR14) 2003; 25
J Li (319_CR22) 2008
GY Lu (319_CR27) 2008; 34
JJ Zhong (319_CR41) 2010; 4
R Kohavi (319_CR18) 1998; 30
GJ McLachlan (319_CR28) 2004
SJ Jeffrey (319_CR16) 2001; 16
NS-N Lam (319_CR21) 1983; 10
B Li (319_CR24) 2010; 27
S Naoum (319_CR29) 2004; 6
SL Chu (319_CR4) 2008; 25
L Wu (319_CR39) 2010; 26
LW Zhuang (319_CR43) 2003; 14
PB Bedient (319_CR1) 1992
DT Price (319_CR32) 2000; 101
Y Wang (319_CR38) 2008; 23
319_CR44
ZM Feng (319_CR9) 2004; 23
P Goovaerts (319_CR13) 2000; 228
D Kurtzman (319_CR20) 2009; 23
319_CR25
KN Dirks (319_CR7) 1998; 208
S Geisser (319_CR11) 1993
CD Lloyd (319_CR26) 2005; 308
M Gemmer (319_CR12) 2004; 77
YK Tung (319_CR37) 1983; 109
PA Devijver (319_CR6) 1982
JL Li (319_CR23) 2006; 23
PA Burrough (319_CR2) 1998
M-L Segond (319_CR34) 2007; 52
V Phogat (319_CR31) 2010; 8
HY Zhu (319_CR42) 2004; 23
YF Kong (319_CR19) 2008; 27
HC Yeh (319_CR40) 2011; 9
HH Hsieh (319_CR15) 2006; 52
319_CR17
RS Seaman (319_CR33) 1983; 31
S Traore (319_CR36) 2010; 8
319_CR10
N Cressie (319_CR5) 1993
XH Dong (319_CR8) 2009; 31
References_xml – reference: YehHCChenYCWeiCChenRHEntropy and kriging approach to rainfall network designPaddy Water Environ2011934335510.1007/s10333-010-0247-x
– reference: FengZMYangYZDingXQLinZHOptimization of the spatial interpolation methods for climate resourcesGeograph Res2004235357364
– reference: PriceDTMcKenneyDWNalderIAHutchisonMFKestevenJLA comparison of two statistical methods for interpolation of Canadian monthly mean climate dataAgric Meteorol2000101819410.1016/S0168-1923(99)00169-0
– reference: SegondM-LNeokleousNMakropoulosCOnofCMaksimovicCSimulation and spatio-temporal disaggregation of multi-site rainfall data for urban drainage applicationsHydrol Sci J200752591793510.1623/hysj.52.5.917
– reference: BedientPBHuberWCHydrology and floodplain analysis19922ReadingAddison-Wesley
– reference: DirksKNHayJEStowCDHigh resolution studies of rainfall on Norfolk Island Part II: interpolation of rainfall dataJ Hydrol199820818719310.1016/S0022-1694(98)00155-3
– reference: LloydCDAssessing the effect of integrating elevation data into the estimation of monthly precipitation in Great BritainJ Hydrol200530812815010.1016/j.jhydrol.2004.10.026
– reference: ZhuangLWWangSLSpatial interpolation methods of daily weather data in Northeast ChinaQuart J Appl Meteorol2003145605616
– reference: SimantonJROsbornHBReciprocal-distance estimate of point rainfallJ Hydraul Eng1980106712421246
– reference: NaoumSTsanisIKA multiple linear regression GIS module using spatial variables to model orographic rainfallJ Hydroinform200463956
– reference: McLachlanGJAmbroiseK-ADoCAnalyzing microarray gene expression data2004New YorkWiley10.1002/047172842X
– reference: DevijverPAKittlerJPattern recognition: a statistical approach1982LondonPrentice-hall
– reference: JeffreySJCarterJOMoodieKBBeswickARUsing spatial interpolation to construct a comprehensive archive of Australian climate dataEnviron Model Softw200116430933010.1016/S1364-8152(01)00008-1
– reference: LiJHeapADSpatial interpolation methods: a review for environmental scientists. Geoscience Australia, Record2008CanberraGeoscience Australia
– reference: HsiehHHChengSJLiouJYChouSCSiaoBRCharacterization of spatially distributed summer daily rainfallJ Chin Agric Eng20065214755
– reference: ChuSLZhouZYYuanLChenQGStudy on spatial precipitation interpolation methodsPratacult Sci20082561923
– reference: LuGYWongDWAn adaptive inverse-distance weighting spatial interpolation techniqueComput Geosci20083491044105510.1016/j.cageo.2007.07.010
– reference: BurroughPAMcDonnellRAPrinciples of geographical information systems1998OxfordOxford University Press
– reference: GeisserSPredictive inference1993New YorkChapman and Hall
– reference: KohaviRProvostFSpecial issue on applications of machine learning and the knowledge discovery processMach Learn1998302–3271274
– reference: LamNS-NSpatial interpolation methods: a reviewAm Cartogr19831012914010.1559/152304083783914958
– reference: TungYKPoint rainfall estimation for a mountainous regionJ Hydraul Eng1983109101386139310.1061/(ASCE)0733-9429(1983)109:10(1386)
– reference: DongXHBoHJDengXSuJWangXRainfall spatial interpolation methods and their applications to Qingjiang river basinJ China Three Gorges Univ (Nat Sci)2009316610
– reference: GoovaertsPGeostatistical approaches for incorporating elevation into the spatial interpolation of rainfallJ Hydrol200022811312910.1016/S0022-1694(00)00144-X
– reference: ZhongJJA comparative study of spatial interpolation precision of annual average precipitation based on GIS in XinjiangDesert Oasis Meteorol2010445154
– reference: LiBHuangJFJinZFLiuZYMethods for calculation precipitation spatial distribution of Zhejiang Province based on GISJ Zhejiang Univ (Sci Ed)20102722392441:CAS:528:DC%2BC3cXns1Giurw%3D
– reference: GarciaMPeters-LidardCDGoodrichDCSpatial interpolation of precipitation in a dense gauge network for monsoon storm events in the southwestern United StatesWater Resour Res200844W05S1314
– reference: GemmerMBeckerSJiangTObserved monthly precipitation trends in China 1951–2002Theor Appl Climatol200477394510.1007/s00704-003-0018-3
– reference: TraoreSWangYMKanCEKerhTLeuJMA mixture neural methodology for computing rice consumptive water requirements in Fada N’Gourma Region, Eastern Burkina FasoPaddy Water Environ2010816517310.1007/s10333-009-0195-5
– reference: KurtzmanDNavonSMorinEImproving interpolation of daily precipitation for hydrologic modeling: spatial patterns of preferred interpolatorsHydrol Process2009233281329110.1002/hyp.7442
– reference: CressieNStatics for spatial data (revised edition)1993New YorkWiley
– reference: Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the fourteenth international joint conference on artificial intelligence, vol 2, no 12. Morgan Kaufmann, San Mateo, pp 1137–1143
– reference: PhogatVYadavAKMalikRSKumarSCoxJSimulation of salt and water movement and estimation of water productivity of rice crop irrigated with saline waterPaddy Water Environ2010833334610.1007/s10333-010-0213-7
– reference: WuLWuXJXiaoCCTianYOn temporal and spatial error distribution of five precipitation interpolation modelsGeogr Geo-Inf Sci20102631924
– reference: LinXSYuQStudy on the spatial interpolation of agroclimatic resources in ChongqingJ Anhui Agric200836301343113463
– reference: WangYLiCKChenLZhengSNAnalysis on impact of weight to spatial interpolation methodsJ Hunan Univ Sci Technol (Nat Sci Ed)200823477801:CAS:528:DC%2BD1cXptV2qsr8%3D
– reference: LiJLZhangJZhangCChenQGAnalyze and compare the spatial interpolation methods for climate factorPratacult Sci2006238611
– reference: GyalistrasDDevelopment and validation of a high-resolution monthly gridded temperature and precipitation data set for Switzerland (1951–2000)Clim Res2003251558310.3354/cr025055
– reference: ZhuHYJiaSFUncertainty in the spatial interpolation of rainfall dataProg Geogr20042323442
– reference: KongYFTongWWSpatial exploration and interpolation of the surface precipitation dataGeograph Res200827510971108
– reference: Fotheringham AS, Brunsdon C, Charlton M (2002) Geographically weighted regression: the analysis of spatially varying relationship. Wiley, New York
– reference: SeamanRSObjective analysis accuracies of statistical interpolation and successive correction schemesJ Aust Meteorol Mag198331225240
– volume-title: Hydrology and floodplain analysis
  year: 1992
  ident: 319_CR1
– volume: 101
  start-page: 81
  year: 2000
  ident: 319_CR32
  publication-title: Agric Meteorol
  doi: 10.1016/S0168-1923(99)00169-0
– volume: 228
  start-page: 113
  year: 2000
  ident: 319_CR13
  publication-title: J Hydrol
  doi: 10.1016/S0022-1694(00)00144-X
– volume: 25
  start-page: 55
  issue: 1
  year: 2003
  ident: 319_CR14
  publication-title: Clim Res
  doi: 10.3354/cr025055
– volume: 30
  start-page: 271
  issue: 2–3
  year: 1998
  ident: 319_CR18
  publication-title: Mach Learn
– volume: 52
  start-page: 917
  issue: 5
  year: 2007
  ident: 319_CR34
  publication-title: Hydrol Sci J
  doi: 10.1623/hysj.52.5.917
– volume: 106
  start-page: 1242
  issue: 7
  year: 1980
  ident: 319_CR35
  publication-title: J Hydraul Eng
– volume-title: Predictive inference
  year: 1993
  ident: 319_CR11
  doi: 10.1007/978-1-4899-4467-2
– ident: 319_CR10
  doi: 10.1029/2006WR005788
– volume: 8
  start-page: 165
  year: 2010
  ident: 319_CR36
  publication-title: Paddy Water Environ
  doi: 10.1007/s10333-009-0195-5
– volume: 16
  start-page: 309
  issue: 4
  year: 2001
  ident: 319_CR16
  publication-title: Environ Model Softw
  doi: 10.1016/S1364-8152(01)00008-1
– volume: 6
  start-page: 39
  year: 2004
  ident: 319_CR29
  publication-title: J Hydroinform
  doi: 10.2166/hydro.2004.0004
– volume: 23
  start-page: 34
  issue: 2
  year: 2004
  ident: 319_CR42
  publication-title: Prog Geogr
– volume-title: Principles of geographical information systems
  year: 1998
  ident: 319_CR2
– volume: 34
  start-page: 1044
  issue: 9
  year: 2008
  ident: 319_CR27
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2007.07.010
– volume: 77
  start-page: 39
  year: 2004
  ident: 319_CR12
  publication-title: Theor Appl Climatol
  doi: 10.1007/s00704-003-0018-3
– volume: 27
  start-page: 1097
  issue: 5
  year: 2008
  ident: 319_CR19
  publication-title: Geograph Res
– volume: 52
  start-page: 47
  issue: 1
  year: 2006
  ident: 319_CR15
  publication-title: J Chin Agric Eng
– volume: 31
  start-page: 6
  issue: 6
  year: 2009
  ident: 319_CR8
  publication-title: J China Three Gorges Univ (Nat Sci)
– volume: 308
  start-page: 128
  year: 2005
  ident: 319_CR26
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2004.10.026
– volume: 109
  start-page: 1386
  issue: 10
  year: 1983
  ident: 319_CR37
  publication-title: J Hydraul Eng
  doi: 10.1061/(ASCE)0733-9429(1983)109:10(1386)
– volume: 14
  start-page: 605
  issue: 5
  year: 2003
  ident: 319_CR43
  publication-title: Quart J Appl Meteorol
– volume: 23
  start-page: 6
  issue: 8
  year: 2006
  ident: 319_CR23
  publication-title: Pratacult Sci
– volume: 23
  start-page: 3281
  year: 2009
  ident: 319_CR20
  publication-title: Hydrol Process
  doi: 10.1002/hyp.7442
– volume: 31
  start-page: 225
  year: 1983
  ident: 319_CR33
  publication-title: J Aust Meteorol Mag
– ident: 319_CR44
– volume: 25
  start-page: 19
  issue: 6
  year: 2008
  ident: 319_CR4
  publication-title: Pratacult Sci
– volume-title: Pattern recognition: a statistical approach
  year: 1982
  ident: 319_CR6
– ident: 319_CR17
– volume: 8
  start-page: 333
  year: 2010
  ident: 319_CR31
  publication-title: Paddy Water Environ
  doi: 10.1007/s10333-010-0213-7
– volume: 10
  start-page: 129
  year: 1983
  ident: 319_CR21
  publication-title: Am Cartogr
  doi: 10.1559/152304083783914958
– volume: 208
  start-page: 187
  year: 1998
  ident: 319_CR7
  publication-title: J Hydrol
  doi: 10.1016/S0022-1694(98)00155-3
– ident: 319_CR25
– volume: 9
  start-page: 343
  year: 2011
  ident: 319_CR40
  publication-title: Paddy Water Environ
  doi: 10.1007/s10333-010-0247-x
– volume: 23
  start-page: 357
  issue: 5
  year: 2004
  ident: 319_CR9
  publication-title: Geograph Res
– volume-title: Statics for spatial data (revised edition)
  year: 1993
  ident: 319_CR5
  doi: 10.1002/9781119115151
– volume-title: Spatial interpolation methods: a review for environmental scientists. Geoscience Australia, Record
  year: 2008
  ident: 319_CR22
– volume-title: Analyzing microarray gene expression data
  year: 2004
  ident: 319_CR28
  doi: 10.1002/047172842X
– volume: 26
  start-page: 19
  issue: 3
  year: 2010
  ident: 319_CR39
  publication-title: Geogr Geo-Inf Sci
– volume: 27
  start-page: 239
  issue: 2
  year: 2010
  ident: 319_CR24
  publication-title: J Zhejiang Univ (Sci Ed)
– volume: 4
  start-page: 51
  issue: 4
  year: 2010
  ident: 319_CR41
  publication-title: Desert Oasis Meteorol
– volume: 23
  start-page: 77
  issue: 4
  year: 2008
  ident: 319_CR38
  publication-title: J Hunan Univ Sci Technol (Nat Sci Ed)
SSID ssj0027431
Score 2.4574754
Snippet In this article, we used the inverse distance weighting (IDW) method to estimate the rainfall distribution in the middle of Taiwan. We evaluated the...
Issue Title: Special Issue on Capacity Building for Participatory Irrigation and Environmental Management In this article, we used the inverse distance...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 209
SubjectTerms Agriculture
Biomedical and Life Sciences
Capacity development
Correlation coefficient
Dry season
Ecotoxicology
Environmental management
Floods
Geoecology/Natural Processes
Geographic information systems
Hydrogeology
Hydrologic data
Hydrology
Hydrology/Water Resources
Interpolation
Inverse
Irrigation
Life Sciences
Meteorology
Optimization
Rain
Rainfall
Rainfall distribution
Soil Science & Conservation
Stations
Weighting
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LSgMxMGh70YP4xGqVCB58ENxNspvuSXxUqqCIKHpbspukCHWrtuLvO5OmrQp6W0gmCzOZybyHkN1IZUVZCMOA0RyTzqUscyphHJtxK-GEirB2-Pom7TzIq6fkKTjcBiGtciwTvaA2_RJ95EdYz8bTjKfi-PWN4dQojK6GERqzpA4iuAXGV_20fXN7983k8hMJQa2JGRgak7jmqHhOCMwl4sxX8sQ_X6apuvkrQuofnotFshA0RnoyIvESmbHVMpk_6b6Hrhl2hVRtYNRRDSLtOwo6HR1gpjSA4QQIp3s9arBDbhhuRTHbvUufK8zJsH4JiU8_vZ8Ul_Yuzx_3YYM_68U7MfDke_38qatV8nDRvj_rsDBIgZVgfQ1Z0iq10PCdcMdjpyOjilZhTKKBv7NYg0nhhDZWShMrV6YiktIZq7LUZtopIdZIrepXdp1QsH8KFZexU0ZLbQHWcNPiJagpTgKWGyQaIzEvQ5dxHHbRy6f9kRHvOeA9R7znAHIwAXkdtdj4b3NzTJk8cNsgn96NBtmZLAOfYPBDV7b_gXvSDKRNKqMGORxT9PsRf_xw4_8fbpI57q8QZp01SW34_mG3QE0ZFtvhLn4BoE_jgg
  priority: 102
  providerName: ProQuest
Title Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan
URI https://link.springer.com/article/10.1007/s10333-012-0319-1
https://www.proquest.com/docview/1037269263
https://www.proquest.com/docview/1069196640
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1dS8MwMMh80QfxE-cXEXzwg0CbpM36OHV-oog4nE8lbZIxmJ24iX_fu6ydU1TwqYXcXeEul97lvgjZC1SS5ZkwDBTNMelczBKnIsaxGbcSTqgAa4dvbuOLtrzqRJ2yjntYZbtXIUl_Uk8VuwmBuT-c-cobcHlmI3TdYRO3eXPKy_JDCMGSCRn4FpNQ5k8kvv6MPi3Mb0FR_685WyQLpZFIm2OpLpEZWyyT-Wb3tWyUYVdI0QLdHJcd0oGjYMbRISZHAxoOfXC636cGm-KW86woJrh3aa_ANAzrl1De9N1fjeLS_uXp4wEAeFrP_t4CKT_o3rsuVkn7rPVwcsHK2QksB4drxKJGroWG94g7HjodGJU1MmMiDSqdhBq8CCe0sVKaULk8FoGUzliVxDbRTgmxRmrFoLDrhILLk6kwD50yWmoLuIabBs_BMnESuFwnQcXENC8bi-N8i3762RIZ-Z4C31PkewoohxOUl3FXjb-AtyrJpKWCDVMsb-RxwmNRJ7uTZVANjHfowg7eECZO4ICJZVAnR5VEp0n88sGNf0FvkjnudxTmnW2R2uj1zW6DoTLKdshs8_zpugXP49bt3f2O36gfxb7htQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw8DR1D8AD4lMUBhgJJD5kkdhO3DxMaB-dWrZVCHVib5kT29Okko61U8Wf4jfuzknagcTe9hbJPkc6353v-wDeRjorykJajozmufI-5ZnXCRfUjFtLL3VEtcOHo3RwpL4eJ8dr8KethaG0ylYmBkFtpyX5yD9TPZtIM5HKL-e_OE2NouhqO0KjJot993uBJttsc7iL9_tOiL3-eGfAm6kCvERTZM6TXmmkwe9EeBF7E1ld9AprE4PEnsUG9WsvjXVK2Vj7MkV7X3nrdJa6zHhNDlAU-etKoinTgfXt_ujb92smXpiAiGpUzNGwWcZR62I9KSl3SfBQORT__RKu1Nt_IrLhodt7APcbDZVt1ST1ENZc9QjubZ1eNF063GOo-igY6ppHNvUMdUg2o8xsBKOJE95MJsxSR95mmBaj7PpTdlZRDogLS0RsbBH8srT0frj74wNuCGf9DE4TOnlszhamegJHt4Lip9CpppV7BgztrULHZey1Nco4hLXC9kSJapFXiOUuRC0S87Lpak7DNSb5qh8z4T1HvOeE9xxBPi5BzuuWHjdt3mhvJm-4e5avaLELb5bLyJcUbDGVm17SnjRD6ZaqqAuf2hu9fsR_fvj85h--hjuD8eFBfjAc7b-AuyKQE2W8bUBnfnHpXqKKNC9eNXTJ4OS2WeEKVGAhYg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1dS8MwMIiC6IP4ifMzgg9-EGyTtFkfhzqcX_jg0LeSNokIsxO3sb_vXdZuU1TwrZC7K9zlkrvcFyGHgUqyPBOGgaI5Jp2LWeJUxDg241bCCRVg7fDdfXzVltfP0XM557RXZbtXIclRTQN2aSr6Z-_GnU0VvgmBeUCc-SoccH_m4DQOcVu3eWPK4_IDCcGqCRn4GeOw5k8kvl5ME2vzW4DU3zvNZbJUGoy0MZLwCpmxxSpZbLx8lE0z7BopLkFPRyWItOsomHS0h4nSgIYDIJzudKjBBrnlbCuKye4v9LXAlAzrl1D2dOifSXHpqHXxdAwAntabf8NAyo_6daiLddJuXj6eX7FyjgLLwfnqs6iea6HhO-KOh04HRmX1zJhIg3onoQaPwgltrJQmVC6PRSClM1YlsU20U0JskNmiW9hNQsH9yVSYh04ZLbUFXMNNnedgpTgJXK6RoGJimpdNxnHWRSedtEdGvqfA9xT5ngLKyRjlfdRh4y_gnUoyaalsvRRLHXmc8FjUyMF4GdQEYx-6sN0BwsQJHDaxDGrktJLoNIlffrj1L-h9Mv9w0UxvW_c322SB-82F6Wg7ZLb_MbC7YL_0sz2_Rz8Bgi7ltg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+the+spatial+rainfall+distribution+using+inverse+distance+weighting+%28IDW%29+in+the+middle+of+Taiwan&rft.jtitle=Paddy+and+water+environment&rft.au=Chen%2C+Feng-Wen&rft.au=Liu%2C+Chen-Wuing&rft.date=2012-09-01&rft.issn=1611-2490&rft.eissn=1611-2504&rft.volume=10&rft.issue=3&rft.spage=209&rft.epage=222&rft_id=info:doi/10.1007%2Fs10333-012-0319-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10333_012_0319_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1611-2490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1611-2490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1611-2490&client=summon