Expression of disease resistance in genetically modified grapevines correlates with the contents of viral sequences in the T-DNA and global genome methylation
Increased tolerance to pathogens is an important goal in conventional and biotechnology-assisted grapevine breeding programs worldwide. Fungal and viral pathogens cause direct losses in berry production, but also affect the quality of the final products. Precision breeding strategies allow the intro...
Saved in:
Published in | Transgenic research Vol. 27; no. 4; pp. 379 - 396 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.08.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Increased tolerance to pathogens is an important goal in conventional and biotechnology-assisted grapevine breeding programs worldwide. Fungal and viral pathogens cause direct losses in berry production, but also affect the quality of the final products. Precision breeding strategies allow the introduction of resistance characters in elite cultivars, although the factors determining the plant’s overall performance are not fully characterized. Grapevine plants expressing defense proteins, from fungal or plant origins, or of the coat protein gene of grapevine leafroll-associated virus 3 (GLRaV-3) were generated by
Agrobacterium
-mediated transformation of somatic embryos and shoot apical meristems. The responses of the transformed lines to pathogen challenges were investigated by biochemical, phytopathological and molecular methods. The expression of a
Metarhizium anisopliae
chitinase gene delayed pathogenesis and disease progression against the necrotrophic pathogen
Botrytis cinerea
. Modified lines expressing a
Solanum nigrum
osmotin-like protein also exhibited slower disease progression, but to a smaller extent. Grapevine lines carrying two hairpin-inducing constructs had lower GLRaV-3 titers when challenged by grafting, although disease symptoms and viral multiplication were detected. The levels of global genome methylation were determined for the genetically engineered lines, and correlation analyses demonstrated the association between higher levels of methylated DNA and larger portions of virus-derived sequences. Resistance expression was also negatively correlated with the contents of introduced viral sequences and genome methylation, indicating that the effectiveness of resistance strategies employing sequences of viral origin is subject to epigenetic regulation in grapevine. |
---|---|
AbstractList | Increased tolerance to pathogens is an important goal in conventional and biotechnology-assisted grapevine breeding programs worldwide. Fungal and viral pathogens cause direct losses in berry production, but also affect the quality of the final products. Precision breeding strategies allow the introduction of resistance characters in elite cultivars, although the factors determining the plant's overall performance are not fully characterized. Grapevine plants expressing defense proteins, from fungal or plant origins, or of the coat protein gene of grapevine leafroll-associated virus 3 (GLRaV-3) were generated by Agrobacterium-mediated transformation of somatic embryos and shoot apical meristems. The responses of the transformed lines to pathogen challenges were investigated by biochemical, phytopathological and molecular methods. The expression of a Metarhizium anisopliae chitinase gene delayed pathogenesis and disease progression against the necrotrophic pathogen Botrytis cinerea. Modified lines expressing a Solanum nigrum osmotin-like protein also exhibited slower disease progression, but to a smaller extent. Grapevine lines carrying two hairpin-inducing constructs had lower GLRaV-3 titers when challenged by grafting, although disease symptoms and viral multiplication were detected. The levels of global genome methylation were determined for the genetically engineered lines, and correlation analyses demonstrated the association between higher levels of methylated DNA and larger portions of virus-derived sequences. Resistance expression was also negatively correlated with the contents of introduced viral sequences and genome methylation, indicating that the effectiveness of resistance strategies employing sequences of viral origin is subject to epigenetic regulation in grapevine. Increased tolerance to pathogens is an important goal in conventional and biotechnology-assisted grapevine breeding programs worldwide. Fungal and viral pathogens cause direct losses in berry production, but also affect the quality of the final products. Precision breeding strategies allow the introduction of resistance characters in elite cultivars, although the factors determining the plant's overall performance are not fully characterized. Grapevine plants expressing defense proteins, from fungal or plant origins, or of the coat protein gene of grapevine leafroll-associated virus 3 (GLRaV-3) were generated by Agrobacterium-mediated transformation of somatic embryos and shoot apical meristems. The responses of the transformed lines to pathogen challenges were investigated by biochemical, phytopathological and molecular methods. The expression of a Metarhizium anisopliae chitinase gene delayed pathogenesis and disease progression against the necrotrophic pathogen Botrytis cinerea. Modified lines expressing a Solanum nigrum osmotin-like protein also exhibited slower disease progression, but to a smaller extent. Grapevine lines carrying two hairpin-inducing constructs had lower GLRaV-3 titers when challenged by grafting, although disease symptoms and viral multiplication were detected. The levels of global genome methylation were determined for the genetically engineered lines, and correlation analyses demonstrated the association between higher levels of methylated DNA and larger portions of virus-derived sequences. Resistance expression was also negatively correlated with the contents of introduced viral sequences and genome methylation, indicating that the effectiveness of resistance strategies employing sequences of viral origin is subject to epigenetic regulation in grapevine.Increased tolerance to pathogens is an important goal in conventional and biotechnology-assisted grapevine breeding programs worldwide. Fungal and viral pathogens cause direct losses in berry production, but also affect the quality of the final products. Precision breeding strategies allow the introduction of resistance characters in elite cultivars, although the factors determining the plant's overall performance are not fully characterized. Grapevine plants expressing defense proteins, from fungal or plant origins, or of the coat protein gene of grapevine leafroll-associated virus 3 (GLRaV-3) were generated by Agrobacterium-mediated transformation of somatic embryos and shoot apical meristems. The responses of the transformed lines to pathogen challenges were investigated by biochemical, phytopathological and molecular methods. The expression of a Metarhizium anisopliae chitinase gene delayed pathogenesis and disease progression against the necrotrophic pathogen Botrytis cinerea. Modified lines expressing a Solanum nigrum osmotin-like protein also exhibited slower disease progression, but to a smaller extent. Grapevine lines carrying two hairpin-inducing constructs had lower GLRaV-3 titers when challenged by grafting, although disease symptoms and viral multiplication were detected. The levels of global genome methylation were determined for the genetically engineered lines, and correlation analyses demonstrated the association between higher levels of methylated DNA and larger portions of virus-derived sequences. Resistance expression was also negatively correlated with the contents of introduced viral sequences and genome methylation, indicating that the effectiveness of resistance strategies employing sequences of viral origin is subject to epigenetic regulation in grapevine. Increased tolerance to pathogens is an important goal in conventional and biotechnology-assisted grapevine breeding programs worldwide. Fungal and viral pathogens cause direct losses in berry production, but also affect the quality of the final products. Precision breeding strategies allow the introduction of resistance characters in elite cultivars, although the factors determining the plant’s overall performance are not fully characterized. Grapevine plants expressing defense proteins, from fungal or plant origins, or of the coat protein gene of grapevine leafroll-associated virus 3 (GLRaV-3) were generated by Agrobacterium -mediated transformation of somatic embryos and shoot apical meristems. The responses of the transformed lines to pathogen challenges were investigated by biochemical, phytopathological and molecular methods. The expression of a Metarhizium anisopliae chitinase gene delayed pathogenesis and disease progression against the necrotrophic pathogen Botrytis cinerea . Modified lines expressing a Solanum nigrum osmotin-like protein also exhibited slower disease progression, but to a smaller extent. Grapevine lines carrying two hairpin-inducing constructs had lower GLRaV-3 titers when challenged by grafting, although disease symptoms and viral multiplication were detected. The levels of global genome methylation were determined for the genetically engineered lines, and correlation analyses demonstrated the association between higher levels of methylated DNA and larger portions of virus-derived sequences. Resistance expression was also negatively correlated with the contents of introduced viral sequences and genome methylation, indicating that the effectiveness of resistance strategies employing sequences of viral origin is subject to epigenetic regulation in grapevine. |
Author | Ritschel, Patrícia S. Dal Bosco, Daniela Camargo, Umberto A. Fajardo, Thor V. M. Sinski, Iraci Harakava, Ricardo Quecini, Vera |
Author_xml | – sequence: 1 givenname: Daniela surname: Dal Bosco fullname: Dal Bosco, Daniela organization: Embrapa Uva e Vinho – sequence: 2 givenname: Iraci surname: Sinski fullname: Sinski, Iraci organization: Embrapa Uva e Vinho – sequence: 3 givenname: Patrícia S. surname: Ritschel fullname: Ritschel, Patrícia S. organization: Embrapa Uva e Vinho – sequence: 4 givenname: Umberto A. surname: Camargo fullname: Camargo, Umberto A. organization: Embrapa Uva e Vinho – sequence: 5 givenname: Thor V. M. surname: Fajardo fullname: Fajardo, Thor V. M. organization: Embrapa Uva e Vinho – sequence: 6 givenname: Ricardo surname: Harakava fullname: Harakava, Ricardo organization: Instituto Biológico, Secretaria da Agricultura e Abastecimento, Agência Paulista de Tecnologia dos Agronegocios (APTA) – sequence: 7 givenname: Vera orcidid: 0000-0001-7806-3309 surname: Quecini fullname: Quecini, Vera email: vera.quecini@embrapa.br organization: Embrapa Uva e Vinho, CNPUV (National Center for Grapevine and Wine Research), Embrapa (Brazilian Agricultural Corporation) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29876789$$D View this record in MEDLINE/PubMed |
BookMark | eNqFksFu1DAQhi1URLeFB-CCLHHhErCdxLGPVSkFqYJLOVuOM9l1ldiL7W3Zl-FZmXRbIVUCDpat0ff_Ho__E3IUYgBCXnP2njPWfcici0ZVjONiSlT8GVnxtqsrXUt1RFZMS1EpxfUxOcn5hjFUqfoFORZadbJTekV-XfzcJsjZx0DjSAefwWagWPK52OCA-kDXEKB4Z6dpT-c4-NHDQNfJbuHWB8jUxZRgsgWPd75saNkA1kKBUPLieuuTnWiGHztAx7xYLsh19fHrGbUBvabYI4H3xBnoDGWzRzvs6SV5Ptopw6uH_ZR8_3Rxff65uvp2-eX87KpyTaNK1TA5jL1UMPSybnBZq13bS9vXzHVc6A5qPiohNAgrrWROjXJkvXKs543U9Sl5d_Ddpohd5mJmnx1Mkw0Qd9kI3tZS4Py6_6Os5bLF8baIvn2C3sRdCviQhWJdq2smkXrzQO36GQazTX62aW8ePwmB7gC4FHNOMBrny_14SrJ-MpyZJQ7mEAeDcTBLHAxHJX-ifDT_l0YcNBnZsIb0p-m_i34DVFfIeg |
CitedBy_id | crossref_primary_10_3390_plants13040515 crossref_primary_10_1007_s11240_019_01619_1 crossref_primary_10_3390_v15040826 crossref_primary_10_3390_plants13223131 crossref_primary_10_1007_s11103_021_01122_2 |
Cites_doi | 10.1016/j.jbiotec.2009.08.011 10.1007/s002999900174 10.1023/A:1024220023057 10.1007/s00299-015-1778-9 10.1007/BF02668658 10.1007/s00299-007-0424-6 10.1007/s11627-011-9358-3 10.1007/s00299-017-2188-y 10.1016/j.pbi.2017.01.005 10.1016/j.plantsci.2005.11.005 10.3389/fpls.2017.00410 10.1023/A:1008989610340 10.1073/pnas.1515072113 10.1016/j.coviro.2017.07.010 10.1007/s11248-014-9811-2 10.1186/1475-2859-7-7 10.1094/PHYTO-97-10-1356 10.1007/s11248-010-9405-6 10.1023/A:1013036732691 10.3389/fpls.2015.00854 10.1016/j.plaphy.2007.09.010 10.1007/s11248-015-9876-6 10.1038/35030305 10.1111/j.1399-3054.1962.tb08052.x 10.1104/pp.90.3.1096 10.1007/s002849900368 10.1007/s11240-009-9514-1 10.1371/journal.pone.0126638 10.1007/s11248-012-9611-5 10.1007/s00299-010-0826-8 10.1007/s12033-014-9831-4 10.1007/s11248-009-9289-5 10.1007/s11240-009-9656-1 10.1007/s00299-005-0006-4 10.1007/s00425-013-1956-3 10.1079/IVP2006770 10.1146/annurev-arplant-043014-114633 10.1104/pp.108.3.929 10.1016/j.pmpp.2016.09.005 10.1007/BF01092762 10.3389/fpls.2015.00900 10.1023/B:TRAG.0000026075.79097.c9 10.1016/j.plantsci.2014.03.023 10.1094/MPMI-20-10-1308 10.1007/s00299-005-0959-3 10.1007/s11816-008-0043-x 10.1016/bs.aivir.2014.11.002 10.1111/j.1364-3703.2009.00566.x 10.1111/pce.12937 10.1093/pcp/pcr172 10.1128/JVI.01238-06 10.1007/978-3-319-57706-7_8 10.1002/pca.1078 10.1186/s12870-014-0343-y 10.1186/1471-2229-8-78 10.1016/S0168-9452(01)00576-3 10.1007/s00709-016-1047-y 10.1016/0014-4827(68)90403-5 10.1105/tpc.17.00348 10.1016/0168-9452(95)04246-Q 10.1007/s00294-015-0530-x 10.1590/S0100-41582007000400008 10.1038/nmeth.2089 |
ContentType | Journal Article |
Copyright | Springer International Publishing AG, part of Springer Nature 2018 Transgenic Research is a copyright of Springer, (2018). All Rights Reserved. |
Copyright_xml | – notice: Springer International Publishing AG, part of Springer Nature 2018 – notice: Transgenic Research is a copyright of Springer, (2018). All Rights Reserved. |
DBID | AAYXX CITATION NPM 3V. 7TK 7TM 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 7S9 L.6 |
DOI | 10.1007/s11248-018-0082-1 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA ProQuest Central Student MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Biology |
EISSN | 1573-9368 |
EndPage | 396 |
ExternalDocumentID | 29876789 10_1007_s11248_018_0082_1 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico grantid: 381107/97-3 funderid: http://dx.doi.org/10.13039/501100003593 – fundername: Sistema Embrapa de Gestão grantid: 03.08.06.003.00.00; 02.08.07.004.00.00 |
GroupedDBID | --- -4W -56 -5G -BR -EM -Y2 -~C .86 .GJ .VR 06C 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29Q 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67N 67Z 6NX 78A 7X7 88A 88E 8AO 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS ECGQY EDH EIOEI EJD EMOBN EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAK LK8 LLZTM M0L M1P M4Y M7P MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 Y6R YLTOR Z45 Z7S Z7U Z7V Z7W Z7Y Z82 Z87 Z8N Z8O Z8P Z8Q Z8S Z8V Z91 ZMTXR ZOVNA ~A9 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ NPM PJZUB PPXIY PQGLB 7TK 7TM 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c448t-406dfb68edb634b63aa9c5b6ab30c71297e31f8229e2a6a60c8f6f0b8c0b14693 |
IEDL.DBID | 7X7 |
ISSN | 0962-8819 1573-9368 |
IngestDate | Fri Jul 11 01:44:50 EDT 2025 Fri Jul 11 06:33:13 EDT 2025 Fri Jul 25 19:11:50 EDT 2025 Mon Jul 21 06:06:30 EDT 2025 Thu Apr 24 23:04:52 EDT 2025 Tue Jul 01 02:28:35 EDT 2025 Fri Feb 21 02:36:39 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Chitinase Epigenetics Fungus Grapevine leafroll-associated virus 3 Pathogenesis related protein 5 Vitis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c448t-406dfb68edb634b63aa9c5b6ab30c71297e31f8229e2a6a60c8f6f0b8c0b14693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7806-3309 |
OpenAccessLink | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1092380 |
PMID | 29876789 |
PQID | 2050759306 |
PQPubID | 54641 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_2153620107 proquest_miscellaneous_2051657675 proquest_journals_2050759306 pubmed_primary_29876789 crossref_citationtrail_10_1007_s11248_018_0082_1 crossref_primary_10_1007_s11248_018_0082_1 springer_journals_10_1007_s11248_018_0082_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180800 2018-8-00 2018-08-00 20180801 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 8 year: 2018 text: 20180800 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Netherlands – name: Dordrecht |
PublicationSubtitle | Associated with the International Society for Transgenic Technologies (ISTT) |
PublicationTitle | Transgenic research |
PublicationTitleAbbrev | Transgenic Res |
PublicationTitleAlternate | Transgenic Res |
PublicationYear | 2018 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Chowdhury, Basu, Kundu (CR14) 2017; 8 Li, Hopkins, Gray (CR37) 2015; 24 Miyao, Nakagome, Ohnuma, Yamagata, Kanamori, Katayose, Takahashi, Matsumoto, Hirochika (CR46) 2012; 53 Fox, Weisberg (CR69) 2011 Weber, Wiebke-Strohm, Bredemeier, Margis-Pinheiro, de Brito, Rechenmacher, Bertagnolli, de Sá, Campos, de Amorim, Beneventi, Margis, Grossi-de-Sa, Bodanese-Zanettini (CR64) 2014; 14 Ribeiro, Lohuis, Goldbach, Prins (CR52) 2007; 81 CR35 Singh, Nelson, Kuhn, Hasegawa, Bressan (CR58) 1989; 90 Gamborg, Miller, Ojima (CR24) 1968; 50 Lewsey, Hardcastle, Melnyk, Molnar, Valli, Urich, Nery, Baulcombe, Ecker (CR36) 2016; 113 Wan, Hou, Wang, Qu, Singer, Wang, Wang (CR63) 2015; 6 Carstens, Vivier, Pretorius (CR10) 2003; 12 Langner, Göhre (CR34) 2016; 62 Matzke, Kanno, Matzke (CR44) 2015; 66 Yamamoto, Iketani, Ieki, Nishizawa, Notsuka, Hibi, Hayashi, Matsuta (CR66) 2000; 19 Baránek, Křižan, Ondrušiková, Pidra (CR1) 2010; 101 Breen, Solomon, Bedon, Vincent (CR6) 2015; 6 Dutt, Li, Dhekney, Gray (CR17) 2007; 26 Seymour, Becker (CR57) 2017; 36 CR8 Schneider, Rasband, Eliceiri (CR56) 2012; 9 Gadoury, Seem, Wilcox, Henick-Kling, Conterno, Day, Ficke (CR19) 2007; 97 Gambino, Perrone, Carra, Chitarra, Boccacci, Torello Marinoni, Barberis, Maghuly, Laimer, Gribaudo (CR23) 2010; 19 Rubio, Montes, Castro, Álvarez, Olmedo, Muñoz, Tapia, Reyes, Ortega, Sánchez, Miccono, Dalla Costa, Martinelli, Malnoy, Prieto (CR54) 2015; 24 Vigne, Komar, Fuchs (CR62) 2004; 13 López, Cervera, Fagoaga, Moreno, Navarro, Flores, Peña (CR41) 2010; 11 Gray, Li, Dhekney (CR25) 2014; 228 Jardak-Jamoussi, Winterhagen, Bouamama, Dubois, Mliki, Wetzel, Ghorbel, Reustle (CR32) 2009; 97 Chong, Le Henanff, Bertsch, Walter (CR12) 2008; 46 Chowdhury, Basu, Kundu (CR13) 2015; 57 Baránek, Čechová, Raddová, Holleinová, Ondrušíková, Pidra (CR2) 2015; 10 Zhu, Chen, Li (CR68) 1995; 108 Núñez de Cáceres González, Davey, Cancho Sanchez, Wilson (CR48) 2015; 34 Robert, Roche, Lebeau, Breda, Boulay, Esnault, Buffard (CR53) 2002; 162 Lodhi, Ye, Weeden, Reisch (CR40) 1994; 12 Pooggin (CR49) 2017; 26 Mauro, Toutain, Walter, Pinck, Otten, Coutos-Thevenot, Deloire, Barbier (CR45) 1995; 112 He, Wu, Zhang, Agüero, Li, Liu, Wang, Walker, Lu (CR29) 2017; 254 Fajardo, Dianese, Eiras, Cerqueira, Lopes, Ferreira, Martins (CR18) 2007; 32 Das, Chauhan, Chhibbar, Rizwanul Haq, Khurana (CR15) 2011; 20 Terakawa, Takaya, Horiuchi, Koike, Takagi (CR60) 1997; 16 Smith, Singh, Wang, Stoutjesdijk, Green, Waterhouse (CR59) 2000; 407 Zhang, Corwin, Copeland, Feusier, Eshbaugh, Chen, Atwell, Kliebenstein (CR67) 2017; 29 Valat, Fuchs, Burrus (CR61) 2006; 170 Bolar, Norelli, Harman, Brown, Aldwinckle (CR4) 2001; 10 Campos, Silva, Magalhães, Ribeiro, Sarto, Vieira, Grossi de Sá (CR9) 2008; 7 Haile, Pilati, Sonego, Malacarne, Vrhovsek, Engelen, Tudzynski, Zottini, Baraldi, Moser (CR26) 2017; 40 Liu, Kennedy, Greenshields, Peng, Forseille, Selvaraj, Wei (CR38) 2007; 20 Li, Dhekney, Dutt, Van Aman, Tattersall, Kelley, Gray (CR70) 2006; 42 CR50 Maliogka, Martelli, Fuchs, Katis (CR42) 2015; 91 Jelly, Schellenbaum, Walter, Maillo (CR33) 2012; 21 Schellenbaum, Mohler, Wenzel, Walter (CR55) 2008; 15 Marcato, Sella, Lucchetta, Vincenzi, Odorizzi, Curioni, Favaron (CR43) 2017; 99 Murashige, Skoog (CR47) 1962; 15 Bogo, Rota, Pinto, Ocampos, Correa, Vainstein, Schrank (CR3) 1998; 73 Hassan, Meens, Jacobsen, Kiesecker (CR28) 2009; 143 Raham, Rinaldi, Ikuo, Masahiro (CR51) 2008; 2 CR27 Choi, Hong, Hwang (CR11) 2013; 238 Bornhoff, Harst, Zyprian, Topfer (CR5) 2005; 24 CR65 Gambino, Perrone, Gribaudo (CR22) 2008; 19 Hewezi, Pantalone, Bennett, Neal Stewart, Burch-Smith (CR30) 2017 Burger, Maree, Gouveia, Naidu, Meng, Martelli, Golino, Fuchs (CR7) 2017 Dhekney, Li, Gray (CR16) 2011; 47 Iocco, Franks, Thomas (CR31) 2001; 10 Liu, Sturrock, Ekramoddoullah (CR39) 2010; 29 Gambino, Gribaudo, Leopold, Schartl, Laimer (CR20) 2005; 24 MM Pooggin (82_CR49) 2017; 26 CA Schneider (82_CR56) 2012; 9 DS Choi (82_CR11) 2013; 238 L Valat (82_CR61) 2006; 170 TVM Fajardo (82_CR18) 2007; 32 T Hewezi (82_CR30) 2017 JJ Liu (82_CR39) 2010; 29 SK Raham (82_CR51) 2008; 2 82_CR27 R Marcato (82_CR43) 2017; 99 Ma Campos (82_CR9) 2008; 7 A Miyao (82_CR46) 2012; 53 S Breen (82_CR6) 2015; 6 82_CR8 MG Lewsey (82_CR36) 2016; 113 T Terakawa (82_CR60) 1997; 16 G Gambino (82_CR22) 2008; 19 82_CR65 MC Mauro (82_CR45) 1995; 112 ZT Li (82_CR70) 2006; 42 J Chong (82_CR12) 2008; 46 NK Singh (82_CR58) 1989; 90 BA Bornhoff (82_CR5) 2005; 24 RL Weber (82_CR64) 2014; 14 G Liu (82_CR38) 2007; 20 NA Smith (82_CR59) 2000; 407 S Dhekney (82_CR16) 2011; 47 J Rubio (82_CR54) 2015; 24 M Baránek (82_CR2) 2015; 10 B Zhu (82_CR68) 1995; 108 P Iocco (82_CR31) 2001; 10 T Langner (82_CR34) 2016; 62 82_CR35 DJ Gray (82_CR25) 2014; 228 P Schellenbaum (82_CR55) 2008; 15 M Dutt (82_CR17) 2007; 26 R Wan (82_CR63) 2015; 6 C López (82_CR41) 2010; 11 J Fox (82_CR69) 2011 MA Lodhi (82_CR40) 1994; 12 MR Bogo (82_CR3) 1998; 73 NS Jelly (82_CR33) 2012; 21 JT Burger (82_CR7) 2017 G Gambino (82_CR23) 2010; 19 JP Bolar (82_CR4) 2001; 10 FF Núñez de Cáceres González (82_CR48) 2015; 34 SG Ribeiro (82_CR52) 2007; 81 O Gamborg (82_CR24) 1968; 50 ZM Haile (82_CR26) 2017; 40 MA Matzke (82_CR44) 2015; 66 82_CR50 M Das (82_CR15) 2011; 20 R Jardak-Jamoussi (82_CR32) 2009; 97 W Zhang (82_CR67) 2017; 29 T Yamamoto (82_CR66) 2000; 19 S Chowdhury (82_CR14) 2017; 8 F Hassan (82_CR28) 2009; 143 M Baránek (82_CR1) 2010; 101 S Chowdhury (82_CR13) 2015; 57 ZT Li (82_CR37) 2015; 24 M Carstens (82_CR10) 2003; 12 G Gambino (82_CR20) 2005; 24 DM Gadoury (82_CR19) 2007; 97 T Murashige (82_CR47) 1962; 15 VI Maliogka (82_CR42) 2015; 91 E Vigne (82_CR62) 2004; 13 N Robert (82_CR53) 2002; 162 DK Seymour (82_CR57) 2017; 36 R He (82_CR29) 2017; 254 |
References_xml | – volume: 143 start-page: 302 year: 2009 end-page: 330 ident: CR28 article-title: A family 19 chitinase (Chit30) from ATCC 11238 expressed in transgenic pea affects the development of in vitro publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2009.08.011 – volume: 19 start-page: 639 year: 2000 end-page: 646 ident: CR66 article-title: Transgenic grapevine plants expressing a rice chitinase with enhanced resistance to fungal pathogens publication-title: Plant Cell Rep doi: 10.1007/s002999900174 – volume: 12 start-page: 497 year: 2003 end-page: 508 ident: CR10 article-title: The chitinase, encoded by the – gene, confers antifungal activity against to transgenic tobacco publication-title: Transgenic Res doi: 10.1023/A:1024220023057 – volume: 34 start-page: 1201 issue: 7 year: 2015 end-page: 1209 ident: CR48 article-title: Conferred resistance to in by overexpression of the chitinase gene publication-title: Plant Cell Rep doi: 10.1007/s00299-015-1778-9 – volume: 12 start-page: 6 issue: 1 year: 1994 end-page: 13 ident: CR40 article-title: A simple and efficient method for DNA extraction from grapevine cultivars, species and publication-title: Plant Mol Biol Rep doi: 10.1007/BF02668658 – volume: 26 start-page: 2101 issue: 12 year: 2007 end-page: 2110 ident: CR17 article-title: Transgenic plants from shoot apical meristems of L. “Thompson Seedless” via -mediated transformation publication-title: Plant Cell Rep doi: 10.1007/s00299-007-0424-6 – volume: 47 start-page: 458 year: 2011 end-page: 466 ident: CR16 article-title: Grapevines engineered to express cisgenic thaumatin-like protein exhibit fungal disease resistance publication-title: In Vitro Cell Dev Biol Plant doi: 10.1007/s11627-011-9358-3 – year: 2017 ident: CR30 article-title: Phytopathogen-induced changes to plant methylomes publication-title: Plant Cell Rep doi: 10.1007/s00299-017-2188-y – volume: 36 start-page: 56 year: 2017 end-page: 63 ident: CR57 article-title: The causes and consequences of DNA methylome variation in plants publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2017.01.005 – volume: 170 start-page: 739 year: 2006 end-page: 747 ident: CR61 article-title: Transgenic grapevine rootstock clones expressing the coat protein or movement protein genes of Grapevine fanleaf virus: characterization and reaction to virus infection upon protoplast electroporation publication-title: Plant Sci doi: 10.1016/j.plantsci.2005.11.005 – ident: CR35 – volume: 8 start-page: 410 year: 2017 ident: CR14 article-title: Overexpression of a new osmotin-like protein gene ( ) confers tolerance against biotic and abiotic stresses in sesame publication-title: Front Plant Sci doi: 10.3389/fpls.2017.00410 – year: 2011 ident: CR69 publication-title: An R companion to applied regression – ident: CR8 – volume: 10 start-page: 105 issue: 2 year: 2001 end-page: 112 ident: CR31 article-title: Genetic transformation of major wine grape cultivars of L publication-title: Transgenic Res doi: 10.1023/A:1008989610340 – volume: 113 start-page: E801 issue: 6 year: 2016 end-page: E810 ident: CR36 article-title: Mobile small RNAs regulate genome-wide DNA methylation publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1515072113 – volume: 26 start-page: 28 year: 2017 end-page: 35 ident: CR49 article-title: RNAi-mediated resistance to viruses: a critical assessment of methodologies publication-title: Curr Opin Virol doi: 10.1016/j.coviro.2017.07.010 – volume: 24 start-page: 43 issue: 1 year: 2015 end-page: 60 ident: CR54 article-title: Genetically engineered Thompson Seedless grapevine plants designed for fungal tolerance: selection and characterization of the best performing individuals in a field trial publication-title: Transgenic Res doi: 10.1007/s11248-014-9811-2 – volume: 7 start-page: 7 year: 2008 ident: CR9 article-title: Expression in , purification, refolding and antifungal activity of an osmotin from publication-title: Microb Cell Fact doi: 10.1186/1475-2859-7-7 – volume: 97 start-page: 1356 issue: 10 year: 2007 end-page: 13565 ident: CR19 article-title: Effects of diffuse colonization of grape berries by on bunch rots, berry microflora, and juice and wine quality publication-title: Phytopathology doi: 10.1094/PHYTO-97-10-1356 – volume: 20 start-page: 231 issue: 2 year: 2011 end-page: 246 ident: CR15 article-title: High-efficiency transformation and selective tolerance against biotic and abiotic stress in mulberry, cv. K2, by constitutive and inducible expression of tobacco osmotin publication-title: Transgenic Res doi: 10.1007/s11248-010-9405-6 – volume: 10 start-page: 533 issue: 6 year: 2001 end-page: 543 ident: CR4 article-title: Synergistic activity of endochitinase and exochitinase from ( ) against the pathogenic fungus ( ) in transgenic apple plants publication-title: Transgenic Res doi: 10.1023/A:1013036732691 – ident: CR50 – volume: 6 start-page: 854 year: 2015 ident: CR63 article-title: Resistance evaluation of Chinese wild genotypes against and different responses of resistant and susceptible hosts to the infection publication-title: Front Plant Sci doi: 10.3389/fpls.2015.00854 – volume: 46 start-page: 469 year: 2008 end-page: 481 ident: CR12 article-title: Identification, expression analysis and characterization of defense and signaling genes in publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2007.09.010 – volume: 24 start-page: 821 issue: 5 year: 2015 end-page: 836 ident: CR37 article-title: Overexpression of antimicrobial lytic peptides protects grapevine from Pierce’s disease under greenhouse but not field conditions publication-title: Transgenic Res doi: 10.1007/s11248-015-9876-6 – volume: 407 start-page: 319 issue: 6802 year: 2000 end-page: 320 ident: CR59 article-title: Total silencing by intron-spliced hairpin RNAs publication-title: Nature doi: 10.1038/35030305 – volume: 15 start-page: 473 year: 1962 end-page: 497 ident: CR47 article-title: A revised medium for rapid growth and bioassays with tobacco tissue culture publication-title: Physiol Plant doi: 10.1111/j.1399-3054.1962.tb08052.x – volume: 90 start-page: 1096 year: 1989 end-page: 1101 ident: CR58 article-title: Molecular cloning of osmotin and regulation of its expression by ABA and adaptation to low water potential publication-title: Plant Physiol doi: 10.1104/pp.90.3.1096 – volume: 73 start-page: 221 year: 1998 end-page: 225 ident: CR3 article-title: A chitinase encoding gene ( gene) from the entomopathogen : isolation and characterisation of genomic and full-length cDNA publication-title: Curr Microbiol doi: 10.1007/s002849900368 – volume: 97 start-page: 187 year: 2009 end-page: 196 ident: CR32 article-title: Development and evaluation of GFLV inverted repeat construct for genetic transformation of grapevine publication-title: Plant Cell Tissue Organ Cult doi: 10.1007/s11240-009-9514-1 – volume: 10 start-page: e0126638 issue: 5 year: 2015 ident: CR2 article-title: Dynamics and reversibility of the DNA methylation landscape of grapevine plants ( ) stressed by in vitro cultivation and thermotherapy publication-title: PLoS ONE doi: 10.1371/journal.pone.0126638 – volume: 21 start-page: 1319 issue: 6 year: 2012 end-page: 1327 ident: CR33 article-title: Transient expression of artificial microRNAs targeting Grapevine fanleaf virus and evidence for RNA silencing in grapevine somatic embryos publication-title: Transgenic Res doi: 10.1007/s11248-012-9611-5 – volume: 29 start-page: 419 issue: 5 year: 2010 end-page: 436 ident: CR39 article-title: The superfamily of thaumatin-like proteins: its origin, evolution, and expression towards biological function publication-title: Plant Cell Rep doi: 10.1007/s00299-010-0826-8 – volume: 57 start-page: 371 issue: 4 year: 2015 end-page: 381 ident: CR13 article-title: Cloning, characterization, and bacterial over-expression of an osmotin-like protein gene from L. with antifungal activity against three necrotrophic fungi publication-title: Mol Biotechnol doi: 10.1007/s12033-014-9831-4 – volume: 19 start-page: 17 issue: 1 year: 2010 end-page: 27 ident: CR23 article-title: Transgene silencing in grapevines transformed with GFLV resistance genes: analysis of variable expression of transgene, siRNAs production and cytosine methylation publication-title: Transgenic Res doi: 10.1007/s11248-009-9289-5 – volume: 101 start-page: 11 year: 2010 end-page: 22 ident: CR1 article-title: DNA-methylation changes in grapevine somaclones following in vitro culture and thermotherapy publication-title: Plant Cell Tissue Organ Cult doi: 10.1007/s11240-009-9656-1 – volume: 24 start-page: 655 year: 2005 end-page: 662 ident: CR20 article-title: Molecular characterization of grapevine plants transformed with GFLV resistance genes: I publication-title: Plant Cell Rep doi: 10.1007/s00299-005-0006-4 – volume: 238 start-page: 1113 issue: 6 year: 2013 end-page: 1124 ident: CR11 article-title: Pepper osmotin-like protein 1 ( ) is an essential component for defense response, cell death, and oxidative burst in plants publication-title: Planta doi: 10.1007/s00425-013-1956-3 – volume: 42 start-page: 220 issue: 3 year: 2006 end-page: 227 ident: CR70 article-title: Optimizing Agrobacterium-mediated transformation of grapevine publication-title: In Vitro Cell Dev Biol—Plant doi: 10.1079/IVP2006770 – volume: 66 start-page: 243 year: 2015 end-page: 267 ident: CR44 article-title: RNA-directed DNA methylation: the evolution of a complex epigenetic pathway in flowering plants publication-title: Annu Rev Plant Biol doi: 10.1146/annurev-arplant-043014-114633 – volume: 108 start-page: 929 issue: 3 year: 1995 end-page: 937 ident: CR68 article-title: Activation of two osmotin-like protein genes by abiotic stimuli and fungal pathogen in transgenic potato plants publication-title: Plant Physiol doi: 10.1104/pp.108.3.929 – volume: 99 start-page: 7 year: 2017 end-page: 15 ident: CR43 article-title: Necrotrophic fungal plant pathogens display different mechanisms to counteract grape chitinase and thaumatin-like protein publication-title: Physiol Mol Plant Pathol doi: 10.1016/j.pmpp.2016.09.005 – volume: 16 start-page: 439 year: 1997 end-page: 443 ident: CR60 article-title: A fungal chitinase gene from confers antifungal activity to transgenic tobacco publication-title: Plant Cell Rep doi: 10.1007/BF01092762 – volume: 6 start-page: 900 year: 2015 ident: CR6 article-title: Surveying the potential of secreted antimicrobial peptides to enhance plant disease resistance publication-title: Front Plant Sci doi: 10.3389/fpls.2015.00900 – volume: 13 start-page: 165 year: 2004 end-page: 179 ident: CR62 article-title: Field safety assessment of recombination in transgenic grapevines publication-title: Transgenic Res doi: 10.1023/B:TRAG.0000026075.79097.c9 – volume: 228 start-page: 3 year: 2014 end-page: 10 ident: CR25 article-title: Precision breeding of grapevine ( L.) for improved traits publication-title: Plant Sci doi: 10.1016/j.plantsci.2014.03.023 – volume: 20 start-page: 1308 issue: 10 year: 2007 end-page: 1319 ident: CR38 article-title: Detached and attached leaf assays reveal distinctive defense responses against hemibiotrophic spp publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-20-10-1308 – ident: CR27 – volume: 24 start-page: 433 year: 2005 end-page: 438 ident: CR5 article-title: Transgenic plants of ‘Seyval Blanc’ publication-title: Plant Cell Rep doi: 10.1007/s00299-005-0959-3 – volume: 2 start-page: 13 year: 2008 end-page: 20 ident: CR51 article-title: Production of transgenic potato exhibiting enhanced resistance to fungal infections and herbicide applications publication-title: Plant Biotechnol Rep doi: 10.1007/s11816-008-0043-x – volume: 91 start-page: 175 year: 2015 end-page: 227 ident: CR42 article-title: Control of viruses infecting grapevine publication-title: Adv Virus Res doi: 10.1016/bs.aivir.2014.11.002 – volume: 11 start-page: 33 issue: 1 year: 2010 end-page: 41 ident: CR41 article-title: Accumulation of transgene-derived siRNAs is not sufficient for RNAi-mediated protection against Citrus tristeza virus in transgenic Mexican lime publication-title: Mol Plant Pathol doi: 10.1111/j.1364-3703.2009.00566.x – volume: 40 start-page: 1409 issue: 8 year: 2017 end-page: 1428 ident: CR26 article-title: Molecular analysis of the early interaction between the grapevine flower and reveals that prompt activation of specific host pathways leads to fungus quiescence publication-title: Plant Cell Environ doi: 10.1111/pce.12937 – volume: 53 start-page: 256 issue: 1 year: 2012 end-page: 264 ident: CR46 article-title: Molecular spectrum of somaclonal variation in regenerated rice revealed by whole-genome sequencing publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcr172 – volume: 81 start-page: 1563 issue: 4 year: 2007 end-page: 1573 ident: CR52 article-title: Tomato chlorotic mottle virus is a target of RNA silencing but the presence of specific short interfering RNAs does not guarantee resistance in transgenic plants publication-title: J Virol doi: 10.1128/JVI.01238-06 – ident: CR65 – start-page: 167 year: 2017 end-page: 195 ident: CR7 article-title: Grapevine leafroll-associated virus 3 publication-title: Grapevine viruses: molecular biology, diagnostics and management doi: 10.1007/978-3-319-57706-7_8 – volume: 19 start-page: 520 issue: 6 year: 2008 end-page: 525 ident: CR22 article-title: A rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants publication-title: Phytochem Anal doi: 10.1002/pca.1078 – volume: 14 start-page: 343 year: 2014 ident: CR64 article-title: Expression of an osmotin-like protein from confers drought tolerance in transgenic soybean publication-title: BMC Plant Biol doi: 10.1186/s12870-014-0343-y – volume: 15 start-page: 78 issue: 8 year: 2008 ident: CR55 article-title: Variation in DNA methylation patterns of grapevine somaclones ( L.) publication-title: BMC Plant Biol doi: 10.1186/1471-2229-8-78 – volume: 162 start-page: 389 year: 2002 end-page: 400 ident: CR53 article-title: Expression of grapevine chitinase genes in berries and leaves infected by fungal or bacterial pathogens publication-title: Plant Sci doi: 10.1016/S0168-9452(01)00576-3 – volume: 254 start-page: 1579 issue: 4 year: 2017 end-page: 1589 ident: CR29 article-title: Overexpression of a thaumatin-like protein gene from improves downy mildew resistance in grapevine publication-title: Protoplasma doi: 10.1007/s00709-016-1047-y – volume: 50 start-page: 151 year: 1968 end-page: 155 ident: CR24 article-title: Nutrient requirement of suspensions cultures of soybean root cells publication-title: Exp Cell Res doi: 10.1016/0014-4827(68)90403-5 – volume: 29 start-page: 2727 issue: 11 year: 2017 end-page: 2752 ident: CR67 article-title: Plastic transcriptomes stabilize immunity to pathogen diversity: the jasmonic acid and salicylic acid networks within the / pathosystem publication-title: Plant Cell doi: 10.1105/tpc.17.00348 – volume: 112 start-page: 97 year: 1995 end-page: 106 ident: CR45 article-title: High efficiency regeneration of grapevine plants transformed with the GFLV coat protein gene publication-title: Plant Sci doi: 10.1016/0168-9452(95)04246-Q – volume: 62 start-page: 243 issue: 2 year: 2016 end-page: 254 ident: CR34 article-title: Fungal chitinases: function, regulation, and potential roles in plant/pathogen interactions publication-title: Curr Genet doi: 10.1007/s00294-015-0530-x – volume: 32 start-page: 335 issue: 4 year: 2007 end-page: 340 ident: CR18 article-title: Variability of the coat protein gene of Grapevine leafroll-associated virus 3 in Brazil publication-title: Fitopatol Bras doi: 10.1590/S0100-41582007000400008 – volume: 9 start-page: 671 year: 2012 end-page: 675 ident: CR56 article-title: NIH Image to ImageJ: 25 years of image analysis publication-title: Nat Methods doi: 10.1038/nmeth.2089 – volume: 53 start-page: 256 issue: 1 year: 2012 ident: 82_CR46 publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcr172 – volume: 6 start-page: 854 year: 2015 ident: 82_CR63 publication-title: Front Plant Sci doi: 10.3389/fpls.2015.00854 – ident: 82_CR35 – volume: 90 start-page: 1096 year: 1989 ident: 82_CR58 publication-title: Plant Physiol doi: 10.1104/pp.90.3.1096 – volume: 15 start-page: 473 year: 1962 ident: 82_CR47 publication-title: Physiol Plant doi: 10.1111/j.1399-3054.1962.tb08052.x – volume: 9 start-page: 671 year: 2012 ident: 82_CR56 publication-title: Nat Methods doi: 10.1038/nmeth.2089 – volume: 10 start-page: 105 issue: 2 year: 2001 ident: 82_CR31 publication-title: Transgenic Res doi: 10.1023/A:1008989610340 – volume: 26 start-page: 2101 issue: 12 year: 2007 ident: 82_CR17 publication-title: Plant Cell Rep doi: 10.1007/s00299-007-0424-6 – volume: 12 start-page: 6 issue: 1 year: 1994 ident: 82_CR40 publication-title: Plant Mol Biol Rep doi: 10.1007/BF02668658 – volume: 34 start-page: 1201 issue: 7 year: 2015 ident: 82_CR48 publication-title: Plant Cell Rep doi: 10.1007/s00299-015-1778-9 – volume: 62 start-page: 243 issue: 2 year: 2016 ident: 82_CR34 publication-title: Curr Genet doi: 10.1007/s00294-015-0530-x – volume: 24 start-page: 655 year: 2005 ident: 82_CR20 publication-title: Plant Cell Rep doi: 10.1007/s00299-005-0006-4 – volume: 97 start-page: 1356 issue: 10 year: 2007 ident: 82_CR19 publication-title: Phytopathology doi: 10.1094/PHYTO-97-10-1356 – volume: 15 start-page: 78 issue: 8 year: 2008 ident: 82_CR55 publication-title: BMC Plant Biol doi: 10.1186/1471-2229-8-78 – volume: 66 start-page: 243 year: 2015 ident: 82_CR44 publication-title: Annu Rev Plant Biol doi: 10.1146/annurev-arplant-043014-114633 – volume-title: An R companion to applied regression year: 2011 ident: 82_CR69 – volume: 91 start-page: 175 year: 2015 ident: 82_CR42 publication-title: Adv Virus Res doi: 10.1016/bs.aivir.2014.11.002 – volume: 36 start-page: 56 year: 2017 ident: 82_CR57 publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2017.01.005 – volume: 20 start-page: 231 issue: 2 year: 2011 ident: 82_CR15 publication-title: Transgenic Res doi: 10.1007/s11248-010-9405-6 – volume: 29 start-page: 419 issue: 5 year: 2010 ident: 82_CR39 publication-title: Plant Cell Rep doi: 10.1007/s00299-010-0826-8 – volume: 6 start-page: 900 year: 2015 ident: 82_CR6 publication-title: Front Plant Sci doi: 10.3389/fpls.2015.00900 – volume: 254 start-page: 1579 issue: 4 year: 2017 ident: 82_CR29 publication-title: Protoplasma doi: 10.1007/s00709-016-1047-y – volume: 99 start-page: 7 year: 2017 ident: 82_CR43 publication-title: Physiol Mol Plant Pathol doi: 10.1016/j.pmpp.2016.09.005 – volume: 143 start-page: 302 year: 2009 ident: 82_CR28 publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2009.08.011 – ident: 82_CR65 – volume: 8 start-page: 410 year: 2017 ident: 82_CR14 publication-title: Front Plant Sci doi: 10.3389/fpls.2017.00410 – volume: 228 start-page: 3 year: 2014 ident: 82_CR25 publication-title: Plant Sci doi: 10.1016/j.plantsci.2014.03.023 – volume: 19 start-page: 639 year: 2000 ident: 82_CR66 publication-title: Plant Cell Rep doi: 10.1007/s002999900174 – volume: 24 start-page: 821 issue: 5 year: 2015 ident: 82_CR37 publication-title: Transgenic Res doi: 10.1007/s11248-015-9876-6 – volume: 24 start-page: 43 issue: 1 year: 2015 ident: 82_CR54 publication-title: Transgenic Res doi: 10.1007/s11248-014-9811-2 – volume: 16 start-page: 439 year: 1997 ident: 82_CR60 publication-title: Plant Cell Rep doi: 10.1007/BF01092762 – volume: 108 start-page: 929 issue: 3 year: 1995 ident: 82_CR68 publication-title: Plant Physiol doi: 10.1104/pp.108.3.929 – volume: 101 start-page: 11 year: 2010 ident: 82_CR1 publication-title: Plant Cell Tissue Organ Cult doi: 10.1007/s11240-009-9656-1 – volume: 12 start-page: 497 year: 2003 ident: 82_CR10 publication-title: Transgenic Res doi: 10.1023/A:1024220023057 – volume: 407 start-page: 319 issue: 6802 year: 2000 ident: 82_CR59 publication-title: Nature doi: 10.1038/35030305 – start-page: 167 volume-title: Grapevine viruses: molecular biology, diagnostics and management year: 2017 ident: 82_CR7 doi: 10.1007/978-3-319-57706-7_8 – ident: 82_CR50 – volume: 21 start-page: 1319 issue: 6 year: 2012 ident: 82_CR33 publication-title: Transgenic Res doi: 10.1007/s11248-012-9611-5 – volume: 10 start-page: e0126638 issue: 5 year: 2015 ident: 82_CR2 publication-title: PLoS ONE doi: 10.1371/journal.pone.0126638 – volume: 24 start-page: 433 year: 2005 ident: 82_CR5 publication-title: Plant Cell Rep doi: 10.1007/s00299-005-0959-3 – volume: 40 start-page: 1409 issue: 8 year: 2017 ident: 82_CR26 publication-title: Plant Cell Environ doi: 10.1111/pce.12937 – volume: 10 start-page: 533 issue: 6 year: 2001 ident: 82_CR4 publication-title: Transgenic Res doi: 10.1023/A:1013036732691 – volume: 11 start-page: 33 issue: 1 year: 2010 ident: 82_CR41 publication-title: Mol Plant Pathol doi: 10.1111/j.1364-3703.2009.00566.x – volume: 47 start-page: 458 year: 2011 ident: 82_CR16 publication-title: In Vitro Cell Dev Biol Plant doi: 10.1007/s11627-011-9358-3 – volume: 20 start-page: 1308 issue: 10 year: 2007 ident: 82_CR38 publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI-20-10-1308 – volume: 19 start-page: 520 issue: 6 year: 2008 ident: 82_CR22 publication-title: Phytochem Anal doi: 10.1002/pca.1078 – ident: 82_CR8 – volume: 19 start-page: 17 issue: 1 year: 2010 ident: 82_CR23 publication-title: Transgenic Res doi: 10.1007/s11248-009-9289-5 – volume: 81 start-page: 1563 issue: 4 year: 2007 ident: 82_CR52 publication-title: J Virol doi: 10.1128/JVI.01238-06 – volume: 46 start-page: 469 year: 2008 ident: 82_CR12 publication-title: Plant Physiol Biochem doi: 10.1016/j.plaphy.2007.09.010 – volume: 26 start-page: 28 year: 2017 ident: 82_CR49 publication-title: Curr Opin Virol doi: 10.1016/j.coviro.2017.07.010 – ident: 82_CR27 – volume: 97 start-page: 187 year: 2009 ident: 82_CR32 publication-title: Plant Cell Tissue Organ Cult doi: 10.1007/s11240-009-9514-1 – volume: 112 start-page: 97 year: 1995 ident: 82_CR45 publication-title: Plant Sci doi: 10.1016/0168-9452(95)04246-Q – volume: 13 start-page: 165 year: 2004 ident: 82_CR62 publication-title: Transgenic Res doi: 10.1023/B:TRAG.0000026075.79097.c9 – volume: 7 start-page: 7 year: 2008 ident: 82_CR9 publication-title: Microb Cell Fact doi: 10.1186/1475-2859-7-7 – volume: 2 start-page: 13 year: 2008 ident: 82_CR51 publication-title: Plant Biotechnol Rep doi: 10.1007/s11816-008-0043-x – volume: 14 start-page: 343 year: 2014 ident: 82_CR64 publication-title: BMC Plant Biol doi: 10.1186/s12870-014-0343-y – volume: 50 start-page: 151 year: 1968 ident: 82_CR24 publication-title: Exp Cell Res doi: 10.1016/0014-4827(68)90403-5 – volume: 162 start-page: 389 year: 2002 ident: 82_CR53 publication-title: Plant Sci doi: 10.1016/S0168-9452(01)00576-3 – volume: 73 start-page: 221 year: 1998 ident: 82_CR3 publication-title: Curr Microbiol doi: 10.1007/s002849900368 – volume: 42 start-page: 220 issue: 3 year: 2006 ident: 82_CR70 publication-title: In Vitro Cell Dev Biol—Plant doi: 10.1079/IVP2006770 – volume: 32 start-page: 335 issue: 4 year: 2007 ident: 82_CR18 publication-title: Fitopatol Bras doi: 10.1590/S0100-41582007000400008 – volume: 113 start-page: E801 issue: 6 year: 2016 ident: 82_CR36 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1515072113 – volume: 238 start-page: 1113 issue: 6 year: 2013 ident: 82_CR11 publication-title: Planta doi: 10.1007/s00425-013-1956-3 – volume: 57 start-page: 371 issue: 4 year: 2015 ident: 82_CR13 publication-title: Mol Biotechnol doi: 10.1007/s12033-014-9831-4 – year: 2017 ident: 82_CR30 publication-title: Plant Cell Rep doi: 10.1007/s00299-017-2188-y – volume: 170 start-page: 739 year: 2006 ident: 82_CR61 publication-title: Plant Sci doi: 10.1016/j.plantsci.2005.11.005 – volume: 29 start-page: 2727 issue: 11 year: 2017 ident: 82_CR67 publication-title: Plant Cell doi: 10.1105/tpc.17.00348 |
SSID | ssj0010083 |
Score | 2.2414548 |
Snippet | Increased tolerance to pathogens is an important goal in conventional and biotechnology-assisted grapevine breeding programs worldwide. Fungal and viral... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 379 |
SubjectTerms | Agrobacterium Animal Genetics and Genomics apical meristems Biomedical and Life Sciences Biomedical Engineering/Biotechnology Biotechnology Botrytis cinerea Breeding breeding programs Chitinase Coat protein coat proteins cultivars disease course Disease resistance DNA methylation epigenetics Fruits fungi genes Genetic Engineering Genetic transformation Genomes Grapevine leafroll-associated virus 3 Immunological tolerance Life Sciences Meristems Metarhizium anisopliae Molecular Medicine Nucleotide sequence Original Paper Osmotin pathogenesis Pathogens Plant Genetics and Genomics Solanum nigrum Somatic embryos T-DNA transfer DNA Transgenics Vitaceae Vitis |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5EEfQgWl_RKit4UgLbPDbJsWhLEeyphd7CZrOBQpqIbcH-GX-rM3lVqRY85JJMNgszu_NN5tsZgHslYy61iE2FeMJ0nNg1pZNoMyFj5o5EH0unkV-HYjB2XibupDrHPa_Z7nVKstip14fd0BUR8Qov9Fsmhjx7LoXuaMRjq9ukDghUFAX2BC519Hd1KvO3IX46ow2EuZEdLZxO_xiOKrTIuqV6T2BHZy3YL_tHrlpw-K2a4Cl89j4qVmvG8oRVqReGtwgjonLZNGNoL-WxxXTFZnk8TRCCMqpajQ4Sdz2mqFtHSgCU0S9ahviQEZ2d-BY0KnGCU9YQsGlIEhmZz8MukxmOVVQYoe_kM82oQfWqpNudwbjfGz0NzKr9gqkwZltgZCniJBK-jiNhO3hJGSg3EjKyufIQJ3ja7iRUMF5bUqBWlZ-IhEe-4hHuv4F9DrtZnulLYIEfa64xdrOVcqTSkepon1JyHr6rODeA13oIVVWbnFpkpOG6qjKpLkTVhaS6sGPAQ_PKW1mYY5twu1ZuWK3ReWhxxMJugDGTAXfNY1xdlDKRmc6XhUxHuFTwZosMOg1BpALPgIvScJoZWQF6G88PDHisLWk9gT-ne_Uv6Ws4sAqTJstuw-7ifalvECktottiZXwBrT0Lgg priority: 102 providerName: Springer Nature |
Title | Expression of disease resistance in genetically modified grapevines correlates with the contents of viral sequences in the T-DNA and global genome methylation |
URI | https://link.springer.com/article/10.1007/s11248-018-0082-1 https://www.ncbi.nlm.nih.gov/pubmed/29876789 https://www.proquest.com/docview/2050759306 https://www.proquest.com/docview/2051657675 https://www.proquest.com/docview/2153620107 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_alEH7MNauH16zokGfNgRybMv2U0nWpKWlYZQGsicjyzIEUrsfKTT_zP7W3dmys1KWB2OwZVlwJ93vdD_dAZxqlQllZMY14gnu-1nAlZ8bnpMyC1-hjaXTyDdjeTnxr6bB1G64PVtaZbMmVgt1VmraI0cnHZFLECPCPXt45FQ1iqKrtoTGJmxR6jKidIXT1uGivDV1KXmJsx5NXxPVrI7OoWEjGhdeaAW5-9YuvQOb7wKllf0ZfYKPFjiyfi3pXdgwxR58qEtJLvdg55_Egp_hz_DVElwLVubMRmEYPiK4iHJms4Kh6tQnGOdLdl9msxzRKKME1mgrcQFkmgp3zAmLMtqtZQgVGTHbiXpBvRI9eM5aLjZ1SU3u-Pm4z1SBfVXJRug_5b1hVKt6WTPv9mEyGt79vOS2EgPX6L4t0MmUWZ7KyGSp9Hy8lIp1kEqVekKHCBlC47k55Y43PSVRwDrKZS7SSIsUl-LYO4BOURbmCFgcZUYYdOM8rX2lTapdE1F0LsRvtRAOiEYOibZpyqlaxjxZJVgm0SUouoREl7gOfG8_eahzdKxr3G2Em9jp-pyslMuBb-1rnGgUPVGFKV-qNq4MKPfNmjZoPyTxC0IHDmvFaUfUi9HwhFHswI9Gk1YD-O9wv6wf7jFs9yodJlXuQmfx9GK-IkpapCfVVDiBrf5oMBjT_eL39RDvg-H41y2-nfT6fwHjaBSY |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWyHggKC8AgWMBBeQpTyd5IBQoVttabtCaCv1FhzHkSptk0K3gv0z_AR-I9_ktaCKvfWQS-I4lubzzDeZ8QzRK6MLV1tVSAM-IcOwiKQOSytLBrMbathYPo18NFWT4_DTSXSyQb_7szCcVtnrxEZRF7Xhf-Rw0sFcohQM9_35N8ldozi62rfQaGFxYJc_4LJdvNvfhXxf-_7eePZxIruuAtLAFVnAYVJFmavEFrkKQlxapybKlc4D18Qwf7ENvJLroFtfKyzWJKUq3Twxbg61wsWXoPI3wwCuzIg2P4ynn78McQtmNE11PwU9A2Pbx1Gbw3owpZw4hgt2V3r_WsIr9PZKaLaxeHt36U5HVcVOi617tGGrLbrRNq9cbtHtv0oZ3qdf459dSm0l6lJ0cR-BW0xQgSxxWgmAtT0zOV-Ks7o4LcF_BZfMhnWGyhWGW4XMmf0K_j8sQE4F59JzsgfPygnJczFkf_OUPGQmd6c7QleYqylvwt-pz6zg7tjLNtfvAR1fi5Qe0qiqK_uYRJoU1rVwHANjQm1sbjybcDwwxrvGdR1yezlkpiuMzv055tmqpDOLLoPoMhZd5jn0ZnjlvK0Ksm7wdi_crFMQF9kKzg69HB5ja3O8Rle2vmzGeCriajtrxsBiKc5oiB161AJnWJGfwtTFSerQ2x5JqwX8d7lP1i_3Bd2czI4Os8P96cFTuuU3eGZYb9No8f3SPgNHW-TPu40h6Ot178U_lltNZA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLaqIhA9ICiPBgoYCS6gEZPXJDkgVLFdtRRWHFppb2EymZEqbZM-tqL7Z_pD-HXYeS2oYm895JJMJpb8-RV7bIC3RpdSW1UKQ_6EiKIyFjpyVjgGs4w02Vg-jfx9ovaOoq_TeLoGv_uzMFxW2evERlGXteF_5BSkk-cSZ-ThfnRdWcSP0fjz6ZngCVKcae3HabQQObCLXxS-XXzaHxGv3wXBePfwy57oJgwIQ2HJnIInVbpCpbYsVBjRpXVm4kLpIpQmIVOY2NB33BPdBloR4SZ1yskiNbIgFcONmEj930nC2GcZS6ZDsMc9c9ox9oo0DpndPqPaHNsjo8olZHSRBRb-vzbxhqN7I0nb2L7xQ3jQOa2406LsEazZahPutmMsF5uw8VdTw8dwvXvVFddWWDvsMkBIt9hVJYzhcYUE2_b05GyBJ3V57MgTRm6eTXaalC8aHhoyYz8Y-U8xkpuKXFXPZR-8K5cmz3CoA-ctecmhGE12UFe0V9PohL9Tn1jkOdmLturvCRzdCo-ewnpVV3YLMEtLKy2FkKExkTa2ML5NOTOY0LtGSg9kz4fcdC3SeVLHLF82d2bW5cS6nFmX-x68H145bfuDrFq83TM371TFRb4Etgdvhsck5Jy50ZWtL5s1voq5786KNWS7FNc2JB48a4EzUBRkZPSSNPPgQ4-kJQH_Jff5anJfwz2SwPzb_uTgBdwPGjgzqrdhfX5-aV-SszYvXjVSgfDztsXwD3rOUDQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expression+of+disease+resistance+in+genetically+modified+grapevines+correlates+with+the+contents+of+viral+sequences+in+the+T-DNA+and+global+genome+methylation&rft.jtitle=Transgenic+research&rft.au=Daniela+Dal+Bosco&rft.au=Sinski%2C+Iraci&rft.au=Ritschel%2C+Patr%C3%ADcia+S&rft.au=Camargo%2C+Umberto+A&rft.date=2018-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0962-8819&rft.eissn=1573-9368&rft.volume=27&rft.issue=4&rft.spage=379&rft.epage=396&rft_id=info:doi/10.1007%2Fs11248-018-0082-1&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-8819&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-8819&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-8819&client=summon |