A review of rigid point cloud registration based on deep learning
With the development of 3D scanning devices, point cloud registration is gradually being applied in various fields. Traditional point cloud registration methods face challenges in noise, low overlap, uneven density, and large data scale, which limits the further application of point cloud registrati...
Saved in:
Published in | Frontiers in neurorobotics Vol. 17; p. 1281332 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
04.01.2024
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the development of 3D scanning devices, point cloud registration is gradually being applied in various fields. Traditional point cloud registration methods face challenges in noise, low overlap, uneven density, and large data scale, which limits the further application of point cloud registration in actual scenes. With the above deficiency, point cloud registration methods based on deep learning technology gradually emerged. This review summarizes the point cloud registration technology based on deep learning. Firstly, point cloud registration based on deep learning can be categorized into two types: complete overlap point cloud registration and partially overlapping point cloud registration. And the characteristics of the two kinds of methods are classified and summarized in detail. The characteristics of the partially overlapping point cloud registration method are introduced and compared with the completely overlapping method to provide further research insight. Secondly, the review delves into network performance improvement summarizes how to accelerate the point cloud registration method of deep learning from the hardware and software. Then, this review discusses point cloud registration applications in various domains. Finally, this review summarizes and outlooks the current challenges and future research directions of deep learning-based point cloud registration. |
---|---|
AbstractList | With the development of 3D scanning devices, point cloud registration is gradually being applied in various fields. Traditional point cloud registration methods face challenges in noise, low overlap, uneven density, and large data scale, which limits the further application of point cloud registration in actual scenes. With the above deficiency, point cloud registration methods based on deep learning technology gradually emerged. This review summarizes the point cloud registration technology based on deep learning. Firstly, point cloud registration based on deep learning can be categorized into two types: complete overlap point cloud registration and partially overlapping point cloud registration. And the characteristics of the two kinds of methods are classified and summarized in detail. The characteristics of the partially overlapping point cloud registration method are introduced and compared with the completely overlapping method to provide further research insight. Secondly, the review delves into network performance improvement summarizes how to accelerate the point cloud registration method of deep learning from the hardware and software. Then, this review discusses point cloud registration applications in various domains. Finally, this review summarizes and outlooks the current challenges and future research directions of deep learning-based point cloud registration. |
Author | Feng, Changzhou Zhao, Yikai Wang, Chaorong Ma, Yunpeng Chen, Lei |
AuthorAffiliation | School of Information Engineering, Tianjin University of Commerce , Tianjin , China |
AuthorAffiliation_xml | – name: School of Information Engineering, Tianjin University of Commerce , Tianjin , China |
Author_xml | – sequence: 1 givenname: Lei surname: Chen fullname: Chen, Lei organization: School of Information Engineering, Tianjin University of Commerce, Tianjin, China – sequence: 2 givenname: Changzhou surname: Feng fullname: Feng, Changzhou organization: School of Information Engineering, Tianjin University of Commerce, Tianjin, China – sequence: 3 givenname: Yunpeng surname: Ma fullname: Ma, Yunpeng organization: School of Information Engineering, Tianjin University of Commerce, Tianjin, China – sequence: 4 givenname: Yikai surname: Zhao fullname: Zhao, Yikai organization: School of Information Engineering, Tianjin University of Commerce, Tianjin, China – sequence: 5 givenname: Chaorong surname: Wang fullname: Wang, Chaorong organization: School of Information Engineering, Tianjin University of Commerce, Tianjin, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38239758$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkUtvEzEUhS1URB_wB1igkdiwSfD7sUJRxaNSJTawtjz2ncHRxA72TCv-PU4TqpaVj3zP_eTjc4nOUk6A0FuC14xp83FIfZ7XFFO2JlQTxugLdEGkpCtBiT57os_RZa1bjCWVQr9C50xTZpTQF2iz6QrcRbjv8tCVOMbQ7XNMc-envIQ2G2Odi5tjTl3vKoSuiQCw7yZwJcU0vkYvBzdVeHM6r9DPL59_XH9b3X7_enO9uV15zvW8YkAN94wxwoRQTpIgMA-85017afoeDCZY98R7JWjgXGoaht6TwRgI2rErdHPkhuy2dl_izpU_NrtoHy5yGa0rc_QTWA90UB5Y4NhzIXHvB888VaBxGLBijfXpyNov_Q6Ch9QyTs-gzycp_rJjvrMEK8OZOBA-nAgl_16gznYXq4dpcgnyUi011GChW8Zmff-fdZuXktpfNRc2RinJSXPRo8uXXGuB4fE1BNtD3fahbnuo257qbkvvnuZ4XPnXL_sLIgOoew |
Cites_doi | 10.1145/3326362 10.1109/CVPR42600.2020.01054 10.1109/CVPR46437.2021.01560 10.1038/324446a0 10.1109/CVPR46437.2021.01290 10.1061/(ASCE)SU.1943-5428.0000063 10.1109/CVPR42600.2020.00639 10.1561/2300000035 10.1145/2523616.2523633 10.1109/ICASSP.2019.8682746 10.1109/ICCV.2019.00362 10.1109/ICCMA54375.2021.9646215 10.1109/TPAMI.2022.3214347 10.1007/BF02291478 10.1016/j.ymssp.2022.109243 10.1016/S0031-3203(98)80010-1 10.1016/j.eswa.2020.113861 10.1109/ICCV.2019.00651 10.1109/IROS.2003.1249285 10.1109/ICRA.2018.8460825 10.1109/TRO.2022.3150683 10.3390/atmos11020178 10.1109/CVPR42600.2020.01184 10.1109/CVPR46437.2021.00425 10.1016/j.aei.2019.100923 10.1109/CVPR42600.2020.00259 10.1109/CVPR.2019.00569 10.1109/ICASSP39728.2021.9414549 10.1109/IROS.2015.7353481 10.1109/TPAMI.2021.3126713 10.1007/978-3-030-01267-0_37 10.1109/ACCESS.2022.3204652 10.1109/3DV53792.2021.00142 10.1145/3190508.3190517 10.3390/rs14194874 10.1145/1399504.1360684 10.1109/ICIP46576.2022.9897800 10.1109/TVCG.2021.3086113 10.1109/TMM.2013.2286580 10.3390/rs12111729 10.1007/978-3-319-46484-8_48 10.1109/CVPR42600.2020.00722 10.1061/(ASCE)CP.1943-5487.0000959 10.1007/s41095-021-0229-5 10.1007/s00521-021-06464-y 10.1145/1365490.1365500 10.1109/ICCV.2013.184 10.1109/MSP.2020.2984780 10.1145/1815961.1816021 10.3390/rs14205271 10.1109/ICCV48922.2021.01595 10.1109/ISPASS.2009.4919648 10.1109/CVPR.2019.00446 10.1109/ICASSP39728.2021.9414384 10.1109/LRA.2020.2970946 10.1080/01691864.2022.2084346 10.3390/app112110377 10.1016/j.aei.2015.01.011 10.1016/j.vrih.2020.05.002 10.1109/CVPR.2019.00589 10.1016/j.birob.2023.100114 10.1002/rob.20296 10.1145/3127479.3127490 10.1109/TITS.2021.3123619 10.3390/rs11192243 10.1109/IJCNN52387.2021.9534365 10.1109/CVPR.2019.00733 10.1109/3DV50981.2020.00113 10.1109/3DV.2019.00074 10.3390/s18051641 10.1109/ICCV.2017.26 10.1109/ICCV.2019.00010 10.1109/TPDS.2021.3064966 10.3390/rs14164099 10.1214/aoms/1177703591 10.1061/9780784480823.049 10.1109/CVPR42600.2020.00178 10.1109/ICCV48922.2021.00607 10.1109/ICIP.2018.8451621 10.1007/978-3-319-46475-6_47 10.1109/LRA.2021.3097268 10.1061/(ASCE)CP.1943-5487.0000720 10.1007/978-3-030-01228-1_37 10.1109/MCHPC49590.2019.00014 10.3390/ijgi10080525 10.1109/CVPR42600.2020.01112 10.1109/CVPR.2013.377 10.1109/CVPR42600.2020.00199 10.1007/978-3-030-58586-0_23 10.1145/358669.358692 10.1109/CVPR.2015.7298965 10.1109/CVPR.2018.00028 10.1007/978-3-030-88007-1_6 10.1016/j.autcon.2016.06.016 10.1109/CVPR.2018.00029 10.1109/CVPR42600.2020.01138 10.1109/ROBOT.2009.5152473 10.1109/IROS45743.2020.9341176 10.1016/j.birob.2023.100127 10.1111/cgf.14715 10.1109/ICCV.2019.00905 10.3390/s22135023 10.1109/JSTARS.2020.3035359 10.1117/12.2580786 10.1109/CVPR.2019.00110 10.1109/ACCESS.2022.3191352 10.1007/978-3-030-58604-1_41 10.1007/978-3-030-58558-7_43 10.1007/978-3-030-11009-3_13 10.1109/CVPR.2017.29 10.1016/j.media.2020.101845 10.1109/IROS.2008.4650967 10.1109/LRA.2022.3183899 10.1007/s11042-020-09203-y |
ContentType | Journal Article |
Copyright | Copyright © 2024 Chen, Feng, Ma, Zhao and Wang. 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2024 Chen, Feng, Ma, Zhao and Wang. 2024 Chen, Feng, Ma, Zhao and Wang |
Copyright_xml | – notice: Copyright © 2024 Chen, Feng, Ma, Zhao and Wang. – notice: 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2024 Chen, Feng, Ma, Zhao and Wang. 2024 Chen, Feng, Ma, Zhao and Wang |
DBID | NPM AAYXX CITATION 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PIMPY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3389/fnbot.2023.1281332 |
DatabaseName | PubMed CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) Biological Sciences ProQuest Science Journals Biological Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest Biological Science Collection ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: AUTh Library subscriptions: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1662-5218 |
EndPage | 1281332 |
ExternalDocumentID | oai_doaj_org_article_ce2f7ce3d40c4560bcfc3c27e80df073 10_3389_fnbot_2023_1281332 38239758 |
Genre | Journal Article Review |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAKPC ABUWG ACGFS ACXDI ADBBV ADDVE ADRAZ AEGXH AENEX AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ C1A CCPQU CS3 DIK DWQXO E3Z F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE IAO IEA IHR IPNFZ ISR KQ8 LK8 M2P M48 M7P M~E NPM O5R O5S OK1 PGMZT PIMPY PQQKQ PROAC RIG RNS RPM TR2 AAYXX CITATION 3V. 7XB 8FK PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c448t-3e294c33313557a61d504d4b47a6c69bbe90108b1cc752d44682dfbc1f99ed8a3 |
IEDL.DBID | RPM |
ISSN | 1662-5218 |
IngestDate | Tue Oct 22 15:13:17 EDT 2024 Tue Sep 17 21:29:59 EDT 2024 Fri Oct 25 07:10:00 EDT 2024 Thu Oct 10 16:37:59 EDT 2024 Thu Sep 26 17:35:48 EDT 2024 Tue Oct 29 09:19:27 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | deep learning partial overlap point cloud registration neural networks network acceleration |
Language | English |
License | Copyright © 2024 Chen, Feng, Ma, Zhao and Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c448t-3e294c33313557a61d504d4b47a6c69bbe90108b1cc752d44682dfbc1f99ed8a3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 Edited by: Peng Wang, Chinese Academy of Sciences (CAS), China Yanhong Peng, Nagoya University, Japan Reviewed by: Marlon Marcon, Federal Technological University of Paraná Dois Vizinhos, Brazil |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10794353/ |
PMID | 38239758 |
PQID | 2909977641 |
PQPubID | 4424403 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ce2f7ce3d40c4560bcfc3c27e80df073 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10794353 proquest_miscellaneous_2929058504 proquest_journals_2909977641 crossref_primary_10_3389_fnbot_2023_1281332 pubmed_primary_38239758 |
PublicationCentury | 2000 |
PublicationDate | 2024-01-04 |
PublicationDateYYYYMMDD | 2024-01-04 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Frontiers in neurorobotics |
PublicationTitleAlternate | Front Neurorobot |
PublicationYear | 2024 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | Lu (B71) Hindman (B40) 2011 Yang (B122) 2015; 29 Cheng (B18) 2018; 18 Ginzburg (B32) 2022 Peng (B84) 2018 Yu (B128); 14 Bai (B6) 2020 Sakharnykh (B92) 2018 Bello (B10) 2020; 12 Lu (B70) 2020; 33 Qi (B88) 2017 Yu (B129) 2021 Harris (B39) 2017 Nagy (B80) 2018 Tâche (B103) 2009; 26 Chen (B15) 2013; 16 Hu (B44) 2020 Gu (B37) 2019 Yan (B118) 2022; 36 Zhang (B135) 2017 Zhang (B138) 2020; 2 Yang (B123) 2018 Mao (B74) 2023; 3 Zhang (B137) 2021; 35 Tang (B104) 2020 Yew (B125) 2018 Wang (B109) 2022; 34 Kurobe (B58) 2020; 5 Pomerleau (B87) 2015; 4 Yang (B120) 2021 Mahajan (B73) 2020 Gao (B30) 2022 Jeon (B49) 2022; 7 Khoury (B53) 2017 Zhou (B141) 2016 Jin (B52) 2021; 80 Fischler (B27) 1981; 24 Jang (B48) 2016 Zeng (B133) 2017 Besl (B11) 1992 Huang (B45) Min (B77) 2021; 6 Bader (B4) 2012 Groß (B36) 2019 Aiger (B1) 2008 Jiang (B51) 2021 Hori (B43) 2002 Marcon (B75) 2021; 44 Sinkhorn (B100) 1964; 35 Long (B69) 2015 Shi (B97) 2020 Sheik (B96) 2022; 14 Fu (B29) Horache (B42) 2021 Li (B61) 2021 Liu (B67); 11 Min (B79) 2018 Socher (B101) 2011 Thomas (B106) 2019 Yew (B126) 2020 Xu (B117) Xu (B116) Chen (B17) 2021 Li (B62) Pais (B83) 2020 Gower (B35) 1975; 40 Min (B78) 2019 Yu (B130) Ali (B2) 2021 Yi (B127) 2017 Fu (B28); 67 Wu (B113) 2021; 33 Liu (B68) Cattaneo (B13) 2022; 38 Huang (B47) Wang (B112) 2019; 38 Bakhoda (B7) 2009 Liu (B66) 2020; 14 Rosenberg (B89) 2020; 11 Jia (B50) 2021 Xie (B115) 2022; 178 Zhao (B139) 2021 Kim (B56) 2017 Dong (B25) 2022; 45 Žagar (B132) 2022; 10 Vavilapalli (B108) 2013 Hinton (B41) 1993 Zhou (B142) 2019 Deng (B24) Yuan (B131) 2020 Shi (B98) 2020 Wang (B110) Wang (B111) Chien (B19) 2019 Zhang (B134) 2012; 138 Thein (B105) 2011 Lin (B65) 2022 Zhang (B136) 2022; 22 Kim (B54) 2021; 167 Choy (B22) 2019 Fioraio (B26) 2011 Shotton (B99) 2013 Lei (B60) 2019; 41 Bai (B5) 2021 Nickolls (B81) 2008; 6 Gojcic (B33) 2019 Peng (B86) 2022; 10 Xiao (B114) 2018 Li (B64) Barnes (B8) 1986; 324 Yang (B121) 2013 Ghorbani (B31) 2022; 14 Shan (B95) 2020 Biber (B12) 2003 Yan (B119) 2021; 28 Rusu (B90) 2009 Sarode (B94) 2019 Ko (B57) 2018 Varior (B107) 2016 Huang (B46) 2020 Yao (B124) 2021; 10 Zhao (B140) 2019 Barron (B9) 2019 Chang (B14) 2021 Chen (B16) 2020; 38 Lee (B59) 2010 Maturana (B76) 2015 Gold (B34) 1998; 31 Rusu (B91) 2008 Choy (B21) 2020 Lu (B72) Spezialetti (B102) 2020; 33 Li (B63) 2021; 23 Aoki (B3) 2019 Kim (B55) 2018; 32 Choi (B20) 2021; 11 Peng (B85) 2023; 3 Omar (B82) 2016; 70 Sarode (B93) 2020 Deng (B23) Guo (B38) 2021; 7 |
References_xml | – volume: 38 start-page: 1 year: 2019 ident: B112 article-title: Dynamic graph cnn for learning on point clouds publication-title: ACM Trans. Graph doi: 10.1145/3326362 contributor: fullname: Wang – start-page: 10526 year: 2020 ident: B97 article-title: “PV-RCNN: point-voxel feature set abstraction for 3D object detection,” publication-title: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) doi: 10.1109/CVPR42600.2020.01054 contributor: fullname: Shi – year: 2021 ident: B5 article-title: “POINTDSC: robust point cloud registration using deep spatial consistency,” publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition doi: 10.1109/CVPR46437.2021.01560 contributor: fullname: Bai – volume: 324 start-page: 446 year: 1986 ident: B8 article-title: A hierarchical o (n log n) force-calculation algorithm publication-title: Nature doi: 10.1038/324446a0 contributor: fullname: Barnes – start-page: 13095 year: 2021 ident: B2 article-title: “Rpsrnet: end-to-end trainable rigid point set registration network using barnes-hut 2d-tree representation,” publication-title: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) doi: 10.1109/CVPR46437.2021.01290 contributor: fullname: Ali – year: 2017 ident: B39 publication-title: Unified Memory for Cuda Beginners contributor: fullname: Harris – volume: 138 start-page: 31 year: 2012 ident: B134 article-title: Robust algorithm for registration of building point clouds using planar patches publication-title: J. Surv. Eng doi: 10.1061/(ASCE)SU.1943-5428.0000063 contributor: fullname: Zhang – year: 2011 ident: B26 article-title: “Realtime visual and point cloud slam,” publication-title: Proceedings of the RGB-D Workshop on Advanced Reasoning With Depth Cameras at Robotics: Science and Systems Conf. (RSS) contributor: fullname: Fioraio – year: 2020 ident: B6 article-title: “D3feat: joint learning of dense detection and description of 3d local features,” publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition doi: 10.1109/CVPR42600.2020.00639 contributor: fullname: Bai – volume: 4 start-page: 1 year: 2015 ident: B87 article-title: A review of point cloud registration algorithms for mobile robotics publication-title: Found. Trends Regist. Robot doi: 10.1561/2300000035 contributor: fullname: Pomerleau – year: 2013 ident: B108 article-title: “Apache hadoop yarn: yet another resource negotiator,” publication-title: Proceedings of the 4th annual Symposium on Cloud Computing doi: 10.1145/2523616.2523633 contributor: fullname: Vavilapalli – start-page: 1992 ident: B71 article-title: “SCANET: spatial-channel attention network for 3d object detection,” publication-title: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) doi: 10.1109/ICASSP.2019.8682746 contributor: fullname: Lu – ident: B110 article-title: “Deep closest point: learning representations for point cloud registration,” publication-title: Proceedings of the IEEE/CVF international conference on computer vision doi: 10.1109/ICCV.2019.00362 contributor: fullname: Wang – start-page: 595 year: 2018 ident: B114 article-title: “Gandiva: introspective cluster scheduling for deep learning,” publication-title: 13th contributor: fullname: Xiao – start-page: 218 year: 2021 ident: B14 article-title: “Vision-based flexible and precise automated assembly with 3D point clouds,” publication-title: 2021 9th International Conference on Control, Mechatronics and Automation (ICCMA) doi: 10.1109/ICCMA54375.2021.9646215 contributor: fullname: Chang – volume: 33 start-page: 21297 year: 2020 ident: B70 article-title: RSKDD-net: random sample-based keypoint detector and descriptor publication-title: Adv. Neural Infor. Proc. Syst contributor: fullname: Lu – volume: 45 start-page: 5417 year: 2022 ident: B25 article-title: ASH: a modern framework for parallel spatial hashing in 3d perception publication-title: IEEE Trans. Patt. Anal. Mach. Intell doi: 10.1109/TPAMI.2022.3214347 contributor: fullname: Dong – volume: 40 start-page: 33 year: 1975 ident: B35 article-title: Generalized procrustes analysis publication-title: Psychometrika doi: 10.1007/BF02291478 contributor: fullname: Gower – volume: 178 start-page: 109243 year: 2022 ident: B115 article-title: Self-feature-based point cloud registration method with a novel convolutional siamese point net for optical measurement of blade profile publication-title: Mech. Syst. Signal Proc doi: 10.1016/j.ymssp.2022.109243 contributor: fullname: Xie – volume: 31 start-page: 1019 year: 1998 ident: B34 article-title: New algorithms for 2d and 3d point matching: pose estimation and correspondence publication-title: Patt. Recogn doi: 10.1016/S0031-3203(98)80010-1 contributor: fullname: Gold – volume: 167 start-page: 113861 year: 2021 ident: B54 article-title: Deep learning-based dynamic object classification using lidar point cloud augmented by layer-based accumulation for intelligent vehicles publication-title: Expert Syst. Applic doi: 10.1016/j.eswa.2020.113861 contributor: fullname: Kim – year: 2019 ident: B106 article-title: “KPCONV: flexible and deformable convolution for point clouds,” publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision doi: 10.1109/ICCV.2019.00651 contributor: fullname: Thomas – start-page: 2743 year: 2003 ident: B12 article-title: “The normal distributions transform: a new approach to laser scan matching,” publication-title: Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No. 03CH37453) doi: 10.1109/IROS.2003.1249285 contributor: fullname: Biber – start-page: 4812 year: 2018 ident: B79 article-title: “Robust generalized point cloud registration using hybrid mixture model,” publication-title: 2018 IEEE International Conference on Robotics and Automation (ICRA) doi: 10.1109/ICRA.2018.8460825 contributor: fullname: Min – volume: 38 start-page: 2074 year: 2022 ident: B13 article-title: LCDNET: deep loop closure detection and point cloud registration for lidar slam publication-title: IEEE Trans. Robot doi: 10.1109/TRO.2022.3150683 contributor: fullname: Cattaneo – start-page: 2282 year: 2017 ident: B127 article-title: “Syncspeccnn: synchronized spectral cnn for 3D shape segmentation,” publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition contributor: fullname: Yi – volume: 11 start-page: 178 year: 2020 ident: B89 article-title: GPU parallelization of a hybrid pseudospectral geophysical turbulence framework using cuda publication-title: Atmosphere doi: 10.3390/atmos11020178 contributor: fullname: Rosenberg – start-page: 11821 year: 2020 ident: B126 article-title: “RPM-NET: robust point matching using learned features,” publication-title: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) doi: 10.1109/CVPR42600.2020.01184 contributor: fullname: Yew – ident: B45 article-title: “Predator: Registration of 3D point clouds with low overlap,” publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition doi: 10.1109/CVPR46437.2021.00425 contributor: fullname: Huang – volume: 41 start-page: 100923 year: 2019 ident: B60 article-title: A CNN-based 3D patch registration approach for integrating sequential models in support of progress monitoring publication-title: Adv. Eng. Inform doi: 10.1016/j.aei.2019.100923 contributor: fullname: Lei – year: 2020 ident: B21 article-title: “Deep global registration,” publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition doi: 10.1109/CVPR42600.2020.00259 contributor: fullname: Choy – year: 2019 ident: B33 article-title: “The perfect match: 3d point cloud matching with smoothed densities,” publication-title: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition doi: 10.1109/CVPR.2019.00569 contributor: fullname: Gojcic – start-page: 1230 year: 2021 ident: B50 article-title: “Improving intraoperative liver registration in image-guided surgery with learning-based reconstruction,” publication-title: ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) doi: 10.1109/ICASSP39728.2021.9414549 contributor: fullname: Jia – start-page: 922 year: 2015 ident: B76 article-title: “Voxnet: a 3D convolutional neural network for real-time object recognition,” publication-title: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) doi: 10.1109/IROS.2015.7353481 contributor: fullname: Maturana – volume: 44 start-page: 9687 year: 2021 ident: B75 article-title: Unsupervised learning of local equivariant descriptors for point clouds publication-title: IEEE Trans. Patt. Anal. Mach. Intell doi: 10.1109/TPAMI.2021.3126713 contributor: fullname: Marcon – year: 2018 ident: B125 article-title: “3DFEAT-net: weakly supervised local 3D features for point cloud registration,” publication-title: Proceedings of the European Conference on Computer Vision (ECCV) doi: 10.1007/978-3-030-01267-0_37 contributor: fullname: Yew – volume: 10 start-page: 94363 year: 2022 ident: B86 article-title: Modeling fabric-type actuator using point clouds by deep learning publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3204652 contributor: fullname: Peng – start-page: 1351 year: 2021 ident: B42 article-title: “3D point cloud registration with multi-scale architecture and unsupervised transfer learning,” publication-title: 2021 International Conference on 3D Vision (3DV) doi: 10.1109/3DV53792.2021.00142 contributor: fullname: Horache – year: 2018 ident: B84 article-title: “Optimus: an efficient dynamic resource scheduler for deep learning clusters,” publication-title: Proceedings of the Thirteenth EuroSys Conference doi: 10.1145/3190508.3190517 contributor: fullname: Peng – volume: 14 start-page: 4874 ident: B128 article-title: Mspr-net: a multi-scale features based point cloud registration network publication-title: Rem. Sens doi: 10.3390/rs14194874 contributor: fullname: Yu – year: 2008 ident: B1 article-title: “4-points congruent sets for robust pairwise surface registration,” publication-title: ACM SIGGRAPH 2008 doi: 10.1145/1399504.1360684 contributor: fullname: Aiger – start-page: 1 year: 2002 ident: B43 article-title: “Future vehicle driven by electricity and control-research on four wheel motored uot electric march ii” contributor: fullname: Hori – start-page: 71 year: 2022 ident: B32 article-title: “Deep weighted consensus dense correspondence confidence maps for 3D shape registration,” publication-title: 2022 IEEE International Conference on Image Processing (ICIP) doi: 10.1109/ICIP46576.2022.9897800 contributor: fullname: Ginzburg – start-page: 19313 ident: B130 article-title: “Point-bert: pre-training 3D point cloud transformers with masked point modeling,” publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition contributor: fullname: Yu – volume: 28 start-page: 4304 year: 2021 ident: B119 article-title: Consistent two-flow network for tele-registration of point clouds publication-title: IEEE Trans. Visualiz. Comput. Graph doi: 10.1109/TVCG.2021.3086113 contributor: fullname: Yan – volume: 16 start-page: 337 year: 2013 ident: B15 article-title: Point cloud encoding for 3D building model retrieval publication-title: IEEE Trans. Multim doi: 10.1109/TMM.2013.2286580 contributor: fullname: Chen – volume: 12 start-page: 1729 year: 2020 ident: B10 article-title: Deep learning on 3D point clouds publication-title: Rem. Sens doi: 10.3390/rs12111729 contributor: fullname: Bello – year: 2016 ident: B48 article-title: Categorical reparameterization with gumbel-softmax publication-title: arXiv preprint arXiv:1611.01144 contributor: fullname: Jang – start-page: 791 year: 2016 ident: B107 article-title: “Gated siamese convolutional neural network architecture for human re-identification,” publication-title: Computer Vision-ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part VIII 14 doi: 10.1007/978-3-319-46484-8_48 contributor: fullname: Varior – year: 2020 ident: B83 article-title: “3DREGNET: a deep neural network for 3D point registration,” publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition doi: 10.1109/CVPR42600.2020.00722 contributor: fullname: Pais – volume: 35 start-page: 04020069 year: 2021 ident: B137 article-title: Sparse and low-overlapping point cloud registration network for indoor building environments publication-title: J. Comput. Civil Eng doi: 10.1061/(ASCE)CP.1943-5487.0000959 contributor: fullname: Zhang – volume: 7 start-page: 187 year: 2021 ident: B38 article-title: PCT: point cloud transformer publication-title: Comput. Visual Media doi: 10.1007/s41095-021-0229-5 contributor: fullname: Guo – volume: 34 start-page: 1623 year: 2022 ident: B109 article-title: Multi-features guidance network for partial-to-partial point cloud registration publication-title: Neural Comput. Applic doi: 10.1007/s00521-021-06464-y contributor: fullname: Wang – volume: 6 start-page: 40 year: 2008 ident: B81 article-title: Scalable parallel programming with cuda: is cuda the parallel programming model that application developers have been waiting for? publication-title: Queue doi: 10.1145/1365490.1365500 contributor: fullname: Nickolls – year: 2013 ident: B121 article-title: “GO-ICP: solving 3D registration efficiently and globally optimally,” publication-title: Proceedings of the IEEE International Conference on Computer Vision doi: 10.1109/ICCV.2013.184 contributor: fullname: Yang – volume: 38 start-page: 68 year: 2020 ident: B16 article-title: 3D point cloud processing and learning for autonomous driving: impacting map creation, localization, and perception publication-title: IEEE Signal Proc. Magaz doi: 10.1109/MSP.2020.2984780 contributor: fullname: Chen – year: 2019 ident: B94 article-title: Pcrnet: Point cloud registration network using pointnet encoding publication-title: arXiv e-prints arXiv-1908 contributor: fullname: Sarode – year: 2010 ident: B59 article-title: “Debunking the 100x GPU vs. CPU myth: an evaluation of throughput computing on CPU and GPU,” publication-title: Proceedings of the 37th Annual International Symposium on Computer Architecture doi: 10.1145/1815961.1816021 contributor: fullname: Lee – volume: 14 start-page: 5271 year: 2022 ident: B96 article-title: Registration of building scan with IFC-based bim using the corner points publication-title: Rem. Sens doi: 10.3390/rs14205271 contributor: fullname: Sheik – year: 2021 ident: B139 article-title: “Point transformer,” publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision doi: 10.1109/ICCV48922.2021.01595 contributor: fullname: Zhao – start-page: 163 year: 2009 ident: B7 article-title: “Analyzing cuda workloads using a detailed gpu simulator,” doi: 10.1109/ISPASS.2009.4919648 contributor: fullname: Bakhoda – year: 2019 ident: B9 article-title: “A general and adaptive robust loss function,” publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition doi: 10.1109/CVPR.2019.00446 contributor: fullname: Barron – start-page: 1900 year: 2021 ident: B17 article-title: “Vk-net: category-level point cloud registration with unsupervised rotation invariant keypoints,” publication-title: ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) doi: 10.1109/ICASSP39728.2021.9414384 contributor: fullname: Chen – year: 2022 ident: B65 publication-title: Non-Rigid Point Set Registration with Diffeomorphic Supervised Learning contributor: fullname: Lin – volume: 5 start-page: 3960 year: 2020 ident: B58 article-title: “Corsnet: 3D point cloud registration by deep neural network publication-title: IEEE Robot. Autom. Lett doi: 10.1109/LRA.2020.2970946 contributor: fullname: Kurobe – year: 2019 ident: B78 publication-title: A Set of Novel Normal-Assisted Surface Registration Algorithms and Analysis for Image-Guided Surgery contributor: fullname: Min – volume: 33 start-page: 5381 year: 2020 ident: B102 article-title: Learning to orient surfaces by self-supervised spherical cnns publication-title: Adv. Neural Inf. Proc. Syst contributor: fullname: Spezialetti – start-page: 652 year: 2017 ident: B88 article-title: “Pointnet: deep learning on point sets for 3D classification and segmentation,” publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition contributor: fullname: Qi – volume: 36 start-page: 724 year: 2022 ident: B118 article-title: Pointpartnet: 3D point-cloud registration via deep part-based feature extraction publication-title: Adv. Robot doi: 10.1080/01691864.2022.2084346 contributor: fullname: Yan – volume: 11 start-page: 10377 year: 2021 ident: B20 article-title: Efficient use of GPU memory for large-scale deep learning model training publication-title: Appl. Sci doi: 10.3390/app112110377 contributor: fullname: Choi – volume: 29 start-page: 211 year: 2015 ident: B122 article-title: Construction performance monitoring via still images, time-lapse photos, and video streams: now, tomorrow, and the future publication-title: Adv. Eng. Inf doi: 10.1016/j.aei.2015.01.011 contributor: fullname: Yang – volume: 2 start-page: 222 year: 2020 ident: B138 article-title: Deep learning based point cloud registration: an overview publication-title: Virtual Real. Intell. Hardw doi: 10.1016/j.vrih.2020.05.002 contributor: fullname: Zhang – year: 2019 ident: B142 article-title: “On the continuity of rotation representations in neural networks,” publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition doi: 10.1109/CVPR.2019.00589 contributor: fullname: Zhou – year: 2018 ident: B92 publication-title: Everything You Need to Know About Unified Memory contributor: fullname: Sakharnykh – volume: 3 start-page: 100114 year: 2023 ident: B74 article-title: Soft computing-based predictive modeling of flexible electrohydrodynamic pumps publication-title: Biomim. Intell. Robot doi: 10.1016/j.birob.2023.100114 contributor: fullname: Mao – volume: 26 start-page: 453 year: 2009 ident: B103 article-title: Magnebike: a magnetic wheeled robot with high mobility for inspecting complex-shaped structures publication-title: J. Field Rob doi: 10.1002/rob.20296 contributor: fullname: Tâche – year: 2017 ident: B135 article-title: “SLAQ: quality-driven scheduling for distributed machine learning,” publication-title: Proceedings of the 2017 Symposium on Cloud Computing doi: 10.1145/3127479.3127490 contributor: fullname: Zhang – volume: 23 start-page: 13346 year: 2021 ident: B63 article-title: Point cloud registration based on direct deep features with applications in intelligent vehicles publication-title: IEEE Trans. Intell. Transp. Syst doi: 10.1109/TITS.2021.3123619 contributor: fullname: Li – volume: 11 start-page: 2243 ident: B67 article-title: Ae-gan-net: learning invariant feature descriptor to match ground camera images and a large-scale 3D image-based point cloud for outdoor augmented reality publication-title: Rem. Sens doi: 10.3390/rs11192243 contributor: fullname: Liu – start-page: 1 year: 2021 ident: B61 article-title: “DWG-REG: deep weight global registration,” publication-title: 2021 International Joint Conference on Neural Networks (IJCNN) doi: 10.1109/IJCNN52387.2021.9534365 contributor: fullname: Li – start-page: 7156 year: 2019 ident: B3 article-title: “Pointnetlk: robust &efficient point cloud registration using pointnet,” publication-title: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) doi: 10.1109/CVPR.2019.00733 contributor: fullname: Aoki – start-page: 1029 year: 2020 ident: B93 article-title: “Masknet: a fully-convolutional network to estimate inlier points,” publication-title: 2020 International Conference on 3D Vision (3DV) doi: 10.1109/3DV50981.2020.00113 contributor: fullname: Sarode – year: 1993 ident: B41 article-title: “Autoencoders, minimum description length and helmholtz free energy,” publication-title: Advances in Neural Information Processing Systems contributor: fullname: Hinton – start-page: 623 year: 2019 ident: B36 article-title: “Alignnet-3D: fast point cloud registration of partially observed objects,” publication-title: 2019 International Conference on 3D Vision (3DV) doi: 10.1109/3DV.2019.00074 contributor: fullname: Groß – volume: 18 start-page: 1641 year: 2018 ident: B18 article-title: Registration of laser scanning point clouds: a review publication-title: Sensors doi: 10.3390/s18051641 contributor: fullname: Cheng – year: 2017 ident: B53 article-title: “Learning compact geometric features,” publication-title: Proceedings of the IEEE International Conference on Computer Vision doi: 10.1109/ICCV.2017.26 contributor: fullname: Khoury – ident: B47 article-title: A comprehensive survey on point cloud registration publication-title: arXiv preprint arXiv:2103.02690 contributor: fullname: Huang – ident: B72 article-title: “DEEPVCP: an end-to-end deep neural network for point cloud registration,” publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision doi: 10.1109/ICCV.2019.00010 contributor: fullname: Lu – volume: 33 start-page: 144 year: 2021 ident: B113 article-title: Elastic deep learning in multi-tenant GPU clusters publication-title: IEEE Trans. Parallel Distr. Syst doi: 10.1109/TPDS.2021.3064966 contributor: fullname: Wu – volume: 14 start-page: 4099 year: 2022 ident: B31 article-title: Uniform and competency-based 3D keypoint detection for coarse registration of point clouds with homogeneous structure publication-title: Rem. Sens doi: 10.3390/rs14164099 contributor: fullname: Ghorbani – volume: 35 start-page: 876 year: 1964 ident: B100 article-title: A relationship between arbitrary positive matrices and doubly stochastic matrices publication-title: Ann. Mathem. Stat doi: 10.1214/aoms/1177703591 contributor: fullname: Sinkhorn – start-page: 3173 ident: B117 article-title: “PACONV: position adaptive convolution with dynamic kernel assembling on point clouds,” publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition contributor: fullname: Xu – year: 2017 ident: B56 article-title: “An automatic robust point cloud registration on construction sites,” publication-title: Computing in Civil Engineering doi: 10.1061/9780784480823.049 contributor: fullname: Kim – year: 2020 ident: B98 article-title: “Point-GNN: graph neural network for 3D object detection in a point cloud,” publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition doi: 10.1109/CVPR42600.2020.00178 contributor: fullname: Shi – year: 2021 ident: B51 article-title: “Sampling network guided cross-entropy method for unsupervised point cloud registration,” publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision doi: 10.1109/ICCV48922.2021.00607 contributor: fullname: Jiang – start-page: 3112 ident: B116 article-title: “OMNET: learning overlapping mask for partial-to-partial point cloud registration,” publication-title: 2021 IEEE/CVF International Conference on Computer Vision (ICCV) contributor: fullname: Xu – start-page: 2491 year: 2018 ident: B57 article-title: “PAC-NET: pairwise aesthetic comparison network for image aesthetic assessment,” publication-title: 2018 25th IEEE International Conference on Image Processing (ICIP) doi: 10.1109/ICIP.2018.8451621 contributor: fullname: Ko – start-page: 766 year: 2016 ident: B141 article-title: “Fast global registration,” publication-title: Computer Vision-ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part II 14 doi: 10.1007/978-3-319-46475-6_47 contributor: fullname: Zhou – volume: 6 start-page: 7270 year: 2021 ident: B77 article-title: Geometry guided network for point cloud registration publication-title: IEEE Rob. Autom. Lett doi: 10.1109/LRA.2021.3097268 contributor: fullname: Min – volume: 32 start-page: 04017076 year: 2018 ident: B55 article-title: Automated point cloud registration using visual and planar features for construction environments publication-title: J. Comput. Civil Eng doi: 10.1061/(ASCE)CP.1943-5487.0000720 contributor: fullname: Kim – year: 2020 ident: B73 article-title: “Themis: fair and efficient GPU cluster scheduling,” publication-title: 17th USENIX Symposium on Networked Systems Design and Implementation contributor: fullname: Mahajan – ident: B23 article-title: “Ppf-foldnet: unsupervised learning of rotation invariant 3D local descriptors,” publication-title: Proceedings of the European Conference on Computer Vision (ECCV) doi: 10.1007/978-3-030-01228-1_37 contributor: fullname: Deng – start-page: 50 year: 2019 ident: B19 article-title: “Performance evaluation of advanced features in cuda unified memory,” publication-title: 2019 IEEE/ACM Workshop on Memory Centric High Performance Computing (MCHPC) doi: 10.1109/MCHPC49590.2019.00014 contributor: fullname: Chien – volume: 10 start-page: 525 year: 2021 ident: B124 article-title: SPPD: a novel reassembly method for 3D terracotta warrior fragments based on fracture surface information publication-title: ISPRS Int. J. Geo-Inf doi: 10.3390/ijgi10080525 contributor: fullname: Yao – year: 2020 ident: B44 article-title: “Randla-net: efficient semantic segmentation of large-scale point clouds,” publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition doi: 10.1109/CVPR42600.2020.01112 contributor: fullname: Hu – ident: B68 article-title: “Point-voxel cnn for efficient 3D deep learning,” publication-title: Advances in Neural Information Processing Systems contributor: fullname: Liu – year: 2013 ident: B99 article-title: “Scene coordinate regression forests for camera relocalization in RGB-D images,” publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition doi: 10.1109/CVPR.2013.377 contributor: fullname: Shotton – year: 2012 ident: B4 publication-title: Space-Filling Curves: An Introduction With Applications in Scientific Computing contributor: fullname: Bader – start-page: 151 year: 2011 ident: B101 article-title: “Semi-supervised recursive autoencoders for predicting sentiment distributions,” publication-title: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing contributor: fullname: Socher – ident: B64 article-title: “End-to-end learning local multi-view descriptors for 3d point clouds,” publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition doi: 10.1109/CVPR42600.2020.00199 contributor: fullname: Li – start-page: 378 ident: B62 article-title: “Iterative distance-aware similarity matrix convolution with mutual-supervised point elimination for efficient point cloud registration,” publication-title: Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXIV 16 doi: 10.1007/978-3-030-58586-0_23 contributor: fullname: Li – volume: 24 start-page: 381 year: 1981 ident: B27 article-title: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography publication-title: Commun. ACM doi: 10.1145/358669.358692 contributor: fullname: Fischler – year: 2015 ident: B69 article-title: “Fully convolutional networks for semantic segmentation,” publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition doi: 10.1109/CVPR.2015.7298965 contributor: fullname: Long – start-page: 195 ident: B24 article-title: “Ppfnet: global context aware local features for robust 3D point matching,” publication-title: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) doi: 10.1109/CVPR.2018.00028 contributor: fullname: Deng – start-page: 66 year: 2021 ident: B120 article-title: “3D correspondence grouping with compatibility features,” publication-title: Pattern Recognition and Computer Vision: 4th Chinese Conference, PRCV 2021, Beijing, China, October 29-November 1, 2021, Proceedings, Part II doi: 10.1007/978-3-030-88007-1_6 contributor: fullname: Yang – volume: 70 start-page: 143 year: 2016 ident: B82 article-title: Data acquisition technologies for construction progress tracking publication-title: Autom. Constr doi: 10.1016/j.autcon.2016.06.016 contributor: fullname: Omar – ident: B111 article-title: “PRNET: self-supervised learning for partial-to-partial registration,” publication-title: Advances in Neural Information Processing Systems contributor: fullname: Wang – year: 2018 ident: B123 article-title: “Foldingnet: point cloud auto-encoder via deep grid deformation,” publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition doi: 10.1109/CVPR.2018.00029 contributor: fullname: Yang – start-page: 11363 year: 2020 ident: B46 article-title: “Feature-metric registration: a fast semi-supervised approach for robust point cloud registration without correspondences,” publication-title: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) doi: 10.1109/CVPR42600.2020.01138 contributor: fullname: Huang – start-page: 3212 year: 2009 ident: B90 article-title: “Fast point feature histograms (FPFH) for 3D registration,” publication-title: 2009 IEEE International Conference on Robotics and Automation doi: 10.1109/ROBOT.2009.5152473 contributor: fullname: Rusu – year: 2011 ident: B40 article-title: “MESOS: a platform for fine-grained resource sharing in the data center,” publication-title: NSDI contributor: fullname: Hindman – start-page: 5135 year: 2020 ident: B95 article-title: “Lio-sam: tightly-coupled lidar inertial odometry via smoothing and mapping,” publication-title: 2020 IEEE/RSJ international conference on intelligent robots and systems (IROS) doi: 10.1109/IROS45743.2020.9341176 contributor: fullname: Shan – volume: 3 start-page: 100127 year: 2023 ident: B85 article-title: Funabot-suit: a bio-inspired and mckibben muscle-actuated suit for natural kinesthetic perception publication-title: Biomim. Intell. Robot doi: 10.1016/j.birob.2023.100127 contributor: fullname: Peng – year: 2022 ident: B30 article-title: “Hdrnet: High-dimensional regression network for point cloud registration,” publication-title: Computer Graphics Forum doi: 10.1111/cgf.14715 contributor: fullname: Gao – year: 2019 ident: B22 article-title: “Fully convolutional geometric features” publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision doi: 10.1109/ICCV.2019.00905 contributor: fullname: Choy – volume: 22 start-page: 5023 year: 2022 ident: B136 article-title: A two-stage correspondence-free algorithm for partially overlapping point cloud registration publication-title: Sensors doi: 10.3390/s22135023 contributor: fullname: Zhang – start-page: 485 year: 2019 ident: B37 article-title: “Tiresias: a GPU cluster manager for distributed deep learning,” publication-title: NSDI contributor: fullname: Gu – volume: 14 start-page: 997 year: 2020 ident: B66 article-title: Ground camera image and large-scale 3-D image-based point cloud registration based on learning domain invariant feature descriptors publication-title: IEEE J. Select. Topics Appl. Earth Observ. Rem. Sens doi: 10.1109/JSTARS.2020.3035359 contributor: fullname: Liu – start-page: 376 ident: B29 article-title: “A learning-based nonrigid mri-cbct image registration method for MRI-guided prostate cancer radiotherapy,” publication-title: Medical Imaging 2021: Biomedical Applications in Molecular, Structural, and Functional Imaging doi: 10.1117/12.2580786 contributor: fullname: Fu – year: 2019 ident: B140 article-title: “3D point capsule networks,” publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition doi: 10.1109/CVPR.2019.00110 contributor: fullname: Zhao – volume: 10 start-page: 76586 year: 2022 ident: B132 article-title: Point cloud registration with object-centric alignment publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3191352 contributor: fullname: Žagar – start-page: 586 year: 1992 ident: B11 article-title: “Method for registration of 3-D shapes,” publication-title: Sensor Fusion IV: Control Paradigms and Data Structures contributor: fullname: Besl – start-page: 685 year: 2020 ident: B104 article-title: “Searching efficient 3D architectures with sparse point-voxel convolution,” publication-title: Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXVIII doi: 10.1007/978-3-030-58604-1_41 contributor: fullname: Tang – year: 2020 ident: B131 article-title: “Deepgmr: learning latent gaussian mixture models for registration,” publication-title: Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part V doi: 10.1007/978-3-030-58558-7_43 contributor: fullname: Yuan – year: 2018 ident: B80 article-title: “Real-time point cloud alignment for vehicle localization in a high resolution 3D map,” publication-title: Proceedings of the European Conference on Computer Vision (ECCV) Workshops doi: 10.1007/978-3-030-11009-3_13 contributor: fullname: Nagy – year: 2017 ident: B133 article-title: “3DMATCH: learning local geometric descriptors from RGB-D reconstructions,” publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition doi: 10.1109/CVPR.2017.29 contributor: fullname: Zeng – volume: 67 start-page: 101845 ident: B28 article-title: Biomechanically constrained non-rigid mr-trus prostate registration using deep learning based 3D point cloud matching publication-title: Med. Image Analy doi: 10.1016/j.media.2020.101845 contributor: fullname: Fu – start-page: 3384 year: 2008 ident: B91 article-title: “Aligning point cloud views using persistent feature histograms,” publication-title: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems doi: 10.1109/IROS.2008.4650967 contributor: fullname: Rusu – start-page: 12498 year: 2021 ident: B129 article-title: “Pointr: diverse point cloud completion with geometry-aware transformers,” publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision contributor: fullname: Yu – year: 2011 ident: B105 publication-title: Industry foundation classes (ifc). BIM interoperability through a vendor-independent file format contributor: fullname: Thein – volume: 7 start-page: 7511 year: 2022 ident: B49 article-title: EFGHNET: a versatile image-to-point cloud registration network for extreme outdoor environment publication-title: IEEE Robot. Autom. Lett doi: 10.1109/LRA.2022.3183899 contributor: fullname: Jeon – volume: 80 start-page: 17377 year: 2021 ident: B52 article-title: Topology-preserving nonlinear shape registration on the shape manifold publication-title: Multim. Tools Applic doi: 10.1007/s11042-020-09203-y contributor: fullname: Jin |
SSID | ssj0062658 |
Score | 2.3355553 |
SecondaryResourceType | review_article |
Snippet | With the development of 3D scanning devices, point cloud registration is gradually being applied in various fields. Traditional point cloud registration... |
SourceID | doaj pubmedcentral proquest crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 1281332 |
SubjectTerms | Data processing Deep learning Methods network acceleration neural networks Neuroscience Optimization techniques partial overlap point cloud registration Registration Reviews Software |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA_ikz6I31anRPBN6tp8tM3jFMcQ9MnB3kJzSXQg7dDt__fSdmMTwRffQnPQ6--S3F1zH4TciDLzDPI0tgxYLABtuMIZGUujcH3xQgobEpyfX7LRWDxN5GSt1VeICWvLA7fA9cExn4PjViSAyj4x4IEDy12RWI_rszl9E7V0ptozGK10WbQpMvg-1feVqUPgJON34eaIc7ahhppq_b-ZmD8jJddUz3Cf7HU2Ix20vB6QLVcdkt21SoJHZDCgbRIKrT0Nva4sndXTak7ho15YGtovLAvk0qC4LMWBdW5Gu7YRb8dkPHx8fRjFXXeEGNClmsfcMSWAc56iyZCXWWplIqwwAseQKWNciLwoTAqQS2bR7SuY9QZSr5SzRclPyHZVV-6MUBBeGtSWAs0vwRJZgsJ5JHU-N96kEbldgqVnbREMjc5DgFY30OoAre6gjch9wHNFGQpYNw9QrLoTq_5LrBHpLaWhu131pZkKeb55JpCj69U07odwyVFWrl4EGqRCHygRETlthbfiJNx5KnSQIlJsiHWD1c2Zavre1NxGL1mhZcnP_-PjLsgOAiaaPzmiR7bnnwt3ibbN3Fw1y_gb4eD5dg priority: 102 providerName: Directory of Open Access Journals – databaseName: AUTh Library subscriptions: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEB_0-qIP4rdbq0TwTdbuJtmPPMlVWopgEbHQt7CZJLUgu2d79_93Zjd79kR8C5uBDTPJzG-S-QB4r7s6SmzK3EuUuUbCcG1wVV45Q_tLtZX2nOD89aw-PddfLqqLdOF2k8IqZ504Kmo_IN-RH0rDOZ5NrctPq985d43i19XUQuM-7EnyFOQC9o6Oz759n3UxofWqnVJl6L_mMPZu4ABKqT7yC5JScsccjVX7_wU1_46YvGOCTh7Do4QdxXIS9hO4F_qn8PBORcFnsFyKKRlFDFFwzysvVsNVvxb4a9h4wW0Y5kK5gg2YFzTwIaxEah9x-RzOT45_fD7NU5eEHMm1WucqSKNRKVUSdGi6uvRVob12msZYG-cCR2C0rkRsKunJ_Wuljw7LaEzwbadewKIf-vAKBOpYObKammCYlkXVoaF5Ig2xcdGVGXyYmWVXUzEMS04Es9aOrLXMWptYm8ER83NLyYWsxw_D9aVN58JikLHBoLwukLBc4TCiQtmEtvCR1E8GB7M0bDpdN_bPXsjg3XaazgU_dnR9GDZMQ1TkCxU6g5eT8LYr4bdPQ45SBu2OWHeWujvTX_0ca2-Tt2wIYar9_6_rNTwgVujxrkYfwGJ9vQlvCL2s3du0RW8BcWvxQA priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxUxEA-lXvQgfrtaJYI32bqbTHY3B5GnWIqgJx_0FjaTpBbK7vP5HrT_vTP78eiTevEWNhMIM0nmNztfQryFtkoK6zIPClUOSBiuid7kxls6X7oxEDjB-dv36nQJX8_M2YGY2x1NDPx9q2nH_aSW68vjq1_XH-nCf2CLk_Tt-9T5nsMilT5mv5DW9CTfUVyYi0P5YOdVIOxumjFx5h_r9pTTUMP_NuD5d_zkDYV08kDcn5CkXIyifygOYvdI3LtRX_CxWCzkmJoi-yS5A1aQq_6i20i87LdBclOGuWyuZHUWJA1CjCs5NZM4fyKWJ19-fD7Np54JOZKhtcl1VBZQa10SkKjbqgymgAAeaIyV9T5yPEbjS8TaqEDGYKNC8lgma2NoWv1UHHZ9F58LiZCMJx0KBMpAFaZFS_NEGlPtky8z8W5mlluNpTEcmRTMWjew1jFr3cTaTHxifu4ouaz18KFfn7vpljiMKtUYdYACCdkVHhNqVHVsipDoMcrE0SwNNx8Vpyxn_9YV0I7e7KbplrDro-1iv2UaoiLLqIBMPBuFt9sJe0ItmU2ZaPbEurfV_Znu4udQiZtsZ0t4U7_4_6UvxV1iEwx_deBIHG7W2_iKcM7Gvx4O7x9C5v-o priority: 102 providerName: Scholars Portal |
Title | A review of rigid point cloud registration based on deep learning |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38239758 https://www.proquest.com/docview/2909977641 https://search.proquest.com/docview/2929058504 https://pubmed.ncbi.nlm.nih.gov/PMC10794353 https://doaj.org/article/ce2f7ce3d40c4560bcfc3c27e80df073 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1da9sw8Gi7l-1h7Htuu6DB3oYTWx-29ZiWdmWQUsYKeTPWSeoCrR265P_vJNuhGXvaixHWGR93J92ddB8AX2RTeI5lnlqOPJVINlzljEqV0SRfolLShgTnxXVxdSu_L9XyAIoxFyYG7aNZTdv7h2m7-hVjK9cPOBvjxGY3i3NyWTSpeTE7hEOS0NFH7_dfstBV1afH0L_0zLemC0GTXEzDrZEQfE8FxUr9_zIv_46SfKJ2Ll_By8FeZPMer9dw4No38OJJFcG3MJ-zPgGFdZ6FPleWrbtVu2F4320tC60XxuK4LCgty2hgnVuzoWXE3Tu4vbz4eX6VDp0RUiR3apMKx7VEIURO5kLZFLlVmbTSSBpjoY1xIeqiMjliqbgll6_i1hvMvdbOVo14D0dt17qPwFB6ZUhTSjK9JM9Ug5rmCdT50niTJ_B1JFa97gtg1OQ4BNLWkbR1IG09kDaBs0DPHWQoXh1fdI939cDCGh33JTphZYZkv2UGPQrkpasy62nLSeB05EY9rKjfNdchx7csJGH0eTdNayFccDSt67YBhqDI_8lkAh965u0wCfedmpyjBKo9tu6huj9D4hfrbY_idvz_n57AcyKTjGc38hSONo9b94msmY2ZwLOzi-ubH5N4GkDPb8ucngtZTaJY_wE_APvJ |
link.rule.ids | 230,315,730,783,787,867,888,2109,21402,24332,27938,27939,33758,33759,43819,53806,53808,74638 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagPQAHxJtAASNxQ6GJH0l8QlvUaoF2hVAr9WbFY7tUQsnS7v5_ZhJn6SLEzYpHijW2Z77xvBh7p9oqCqjL3AsQuQLEcE1wOtfO4PmSjVaeEpxPFtX8TH051-fpwe06hVVOMnEQ1L4HeiPfF4ZyPOtKlR-Xv3LqGkXe1dRC4zbbpVJVeKp3Dw4X375PshjRum7GVBn8r9mPnespgFLID-RBklJsqaOhav-_oObfEZM3VNDRA3Y_YUc-Gzf7IbsVukfs3o2Kgo_ZbMbHZBTeR049rzxf9pfdisPPfu05tWGYCuVyUmCe48CHsOSpfcTFE3Z2dHj6aZ6nLgk5oGm1ymUQRoGUskToULdV6XWhvHIKx1AZ5wJFYDSuBKi18Gj-NcJHB2U0JvimlU_ZTtd34TnjoKJ2qDUVwjAlCt2CwXkkDbF20ZUZez8xyy7HYhgWjQhirR1Ya4m1NrE2YwfEzw0lFbIePvRXFzbdCwtBxBqC9KoAxHKFgwgSRB2awkcUPxnbm3bDptt1bf-chYy93UzjvSBnR9uFfk00SIW2UKEy9mzcvM1KyPdp0FDKWLO1rVtL3Z7pLn8MtbfRWjaIMOWL_6_rDbszPz05tsefF19fsrvIFjW826g9trO6WodXiGRW7nU6rr8BDCT0Og |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BVkJwQOVVAgWMxA2FTWzn4RPaQlfltaoQlXqz4rHdVqqSpd39_4wTZ9tFiJsV-zCaGXu-ybwA3smm9ByrPLUceSqRMFztTJEWRpF-ibqQNhQ4_1iURyfy62lxGvOfrmNa5fgm9g-17TD8I59yFWo8q1LmUx_TIo4_zz8uf6dhglSItMZxGndhp5KkVRPYOThcHP8c32VC7kU9lM0QDWrqW9OFZEouPoRokhB8yzT1Hfz_BTv_zp68ZY7mu_Aw4kg2GwT_CO649jE8uNVd8AnMZmwoTGGdZ2H-lWXL7qJdMbzs1paFkQxj01wWjJlltLDOLVkcJXH2FE7mh78-HaVxYkKK5GatUuG4kiiEyAlGVE2Z2yKTVhpJayyVMS5kY9QmR6wKbskVrLn1BnOvlLN1I57BpO1a9xwYSl8YsqCSIJnkWdGgon066nxlvMkTeD8ySy-HxhiaHIrAWt2zVgfW6sjaBA4CPzcnQ1Pr_kN3dabjHdHouK_QCSszJFyXGfQokFeuzqynpyiB_VEaOt60a32jFwm83WzTHQmBj6Z13TqcoVPkF2Uygb1BeBtKQhxUkdOUQL0l1i1St3fai_O-Dzd5zorQpnjxf7rewD3SVP39y-LbS7hPXJH9Lxy5D5PV1dq9IlCzMq-jtv4BU6_4bg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+rigid+point+cloud+registration+based+on+deep+learning&rft.jtitle=Frontiers+in+neurorobotics&rft.au=Chen%2C+Lei&rft.au=Feng%2C+Changzhou&rft.au=Ma%2C+Yunpeng&rft.au=Zhao%2C+Yikai&rft.date=2024-01-04&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-5218&rft.volume=17&rft_id=info:doi/10.3389%2Ffnbot.2023.1281332&rft.externalDBID=PMC10794353 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5218&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5218&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5218&client=summon |