Study of runaway electron behaviour during electron cyclotron resonance heating in the HL-2A Tokamak

During the current flat-top phase of electron cyclotron resonance heating discharges in the HL-2A Tokamak, the behaviour of runaway electrons has been studied by means of hard x-ray detectors and neutron diagnostics. During electron cyclotron resonance heating, it can be found that both hard x-ray r...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 18; no. 12; pp. 5385 - 5394
Main Author 张轶泼 杨划蔚 刘仪 宋先瑛 袁国梁 李旭 周艳 周俊 杨青巍 陈燎原 饶军 段旭如 潘传红 HL-2A Team
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.12.2009
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
DOI10.1088/1674-1056/18/12/044

Cover

Loading…
Abstract During the current flat-top phase of electron cyclotron resonance heating discharges in the HL-2A Tokamak, the behaviour of runaway electrons has been studied by means of hard x-ray detectors and neutron diagnostics. During electron cyclotron resonance heating, it can be found that both hard x-ray radiation intensity and neutron emission flux fall rapidly to a very low level, which suggests that runaway electrons have been suppressed by electron cyclotron resonance heating. From the set of discharges studied in the present experiments, it has also been observed that the efficiency of runaway suppression by electron cyclotron resonance heating was apparently affected by two factors: electroh cyclotron resonance heating power and duration. These results have been analysed by using a test particle model. The decrease of the toroidal electric field due to electron cyclotron resonance heating results in a rapid fall in the runaway electron energy that may lead to a suppression of runaway electrons. During electron cyclotron resonance heating with different powers and durations, the runaway electrons will experience different slowing down processes. These different decay processes are the major cause for influencing the efficiency of runaway suppression. This result is related to the safe operation of the Tokamak and may bring an effective control of runaway electrons.
AbstractList During the current flat-top phase of electron cyclotron resonance heating discharges in the HL-2A Tokamak, the behaviour of runaway electrons has been studied by means of hard x-ray detectors and neutron diagnostics. During electron cyclotron resonance heating, it can be found that both hard x-ray radiation intensity and neutron emission flux fall rapidly to a very low level, which suggests that runaway electrons have been suppressed by electron cyclotron resonance heating. From the set of discharges studied in the present experiments, it has also been observed that the efficiency of runaway suppression by electron cyclotron resonance heating was apparently affected by two factors: electron cyclotron resonance heating power and duration. These results have been analysed by using a test particle model. The decrease of the toroidal electric field due to electron cyclotron resonance heating results in a rapid fall in the runaway electron energy that may lead to a suppression of runaway electrons. During electron cyclotron resonance heating with different powers and durations, the runaway electrons will experience different slowing down processes. These different decay processes are the major cause for influencing the efficiency of runaway suppression. This result is related to the safe operation of the Tokamak and may bring an effective control of runaway electrons.
During the current flat-top phase of electron cyclotron resonance heating discharges in the HL-2A Tokamak, the behaviour of runaway electrons has been studied by means of hard x-ray detectors and neutron diagnostics. During electron cyclotron resonance heating, it can be found that both hard x-ray radiation intensity and neutron emission flux fall rapidly to a very low level, which suggests that runaway electrons have been suppressed by electron cyclotron resonance heating. From the set of discharges studied in the present experiments, it has also been observed that the efficiency of runaway suppression by electron cyclotron resonance heating was apparently affected by two factors: electroh cyclotron resonance heating power and duration. These results have been analysed by using a test particle model. The decrease of the toroidal electric field due to electron cyclotron resonance heating results in a rapid fall in the runaway electron energy that may lead to a suppression of runaway electrons. During electron cyclotron resonance heating with different powers and durations, the runaway electrons will experience different slowing down processes. These different decay processes are the major cause for influencing the efficiency of runaway suppression. This result is related to the safe operation of the Tokamak and may bring an effective control of runaway electrons.
Author 张轶泼 杨划蔚 刘仪 宋先瑛 袁国梁 李旭 周艳 周俊 杨青巍 陈燎原 饶军 段旭如 潘传红 HL-2A Team
AuthorAffiliation Southwestern Institute of Physics, P O Box 432, Chengdu 610041, China
Author_xml – sequence: 1
  fullname: 张轶泼 杨划蔚 刘仪 宋先瑛 袁国梁 李旭 周艳 周俊 杨青巍 陈燎原 饶军 段旭如 潘传红 HL-2A Team
BookMark eNqNkU1vEzEQhi1UJNLCL-BicQFV2sZfa3uPVQUtUqQeaM_WxB_Nko2d2rtF-fc4pAIJUNuTZ-TnsUfzHqOjmKJH6D0lZ5RoPadSiYaSVs5pbdicCPEKzRhpdcM1F0do9pt4g45L-U6IpITxGXLfxsntcAo4TxF-wA77wdsxp4iXfgUPfZoydlPu492fG7uzQ_pVZV9ShGg9XnkY91Af8bjy-GrRsHN8k9awgfVb9DrAUPy7x_ME3X75fHNx1SyuL79enC8aK4QeG86kU0JR3xFwbajDWgAQ0EJHFRAfuKKEilZq54SzYuklEyxUmgRZVX6CPh7e3eZ0P_kymk1frB8GiD5NxSjBhZK6JZX89CRJlVJdxzupn0e56ATVmnUV5QfU5lRK9sFsc7-BvDOUmH1QZh-D2cdgaG2YqUFVq_vLsv1Yl5nimKEfnnHPDm6fti_87PQ_wr-g2bpQ4Q-Pk61SvLuv8Zol2HXoB284E51kreI_Aau7v48
CitedBy_id crossref_primary_10_1088_1674_1056_22_3_037101
crossref_primary_10_1007_s10773_019_04003_z
crossref_primary_10_1088_1674_1056_22_2_020501
crossref_primary_10_1088_1674_1056_23_12_120504
crossref_primary_10_1088_0256_307X_27_3_034101
crossref_primary_10_1088_1674_1056_19_2_020501
crossref_primary_10_1007_s11128_017_1736_2
crossref_primary_10_1016_j_physb_2011_04_056
crossref_primary_10_1088_1674_1056_23_2_028401
crossref_primary_10_1016_j_physleta_2011_10_016
crossref_primary_10_1088_1674_1056_19_2_020510
crossref_primary_10_1088_1674_1056_25_3_038505
crossref_primary_10_1088_1674_1056_19_6_064212
crossref_primary_10_1088_2040_8978_17_4_045606
crossref_primary_10_1088_1674_1056_19_2_029201
crossref_primary_10_1088_1674_1056_23_1_016801
crossref_primary_10_1088_1674_1056_24_3_030502
crossref_primary_10_7498_aps_60_085204
crossref_primary_10_1016_j_physleta_2015_10_002
crossref_primary_10_1016_j_physleta_2016_04_032
crossref_primary_10_1088_1674_1056_19_12_125201
crossref_primary_10_1088_1674_1056_26_6_060202
crossref_primary_10_1088_1674_1056_23_6_066803
crossref_primary_10_1088_1674_1056_19_5_050302
crossref_primary_10_1088_1674_1056_23_6_066801
crossref_primary_10_1088_1674_1056_23_7_070205
crossref_primary_10_1088_1674_1056_28_1_010701
crossref_primary_10_1088_1674_1056_22_11_114210
crossref_primary_10_1088_1674_1056_19_2_028101
crossref_primary_10_1103_PhysRevC_97_034611
crossref_primary_10_1088_1674_1056_18_10_047
crossref_primary_10_1088_1674_1056_19_6_060504
crossref_primary_10_1088_1674_1056_26_9_093201
crossref_primary_10_1007_s00214_019_2439_9
crossref_primary_10_1007_s12043_024_02807_1
crossref_primary_10_1088_1674_1056_22_11_110303
crossref_primary_10_1063_1_3457922
crossref_primary_10_1088_1674_1056_25_12_128702
crossref_primary_10_1364_AO_50_006140
crossref_primary_10_1088_1674_1056_23_4_044101
crossref_primary_10_1016_j_optcom_2010_09_089
crossref_primary_10_1088_1748_0221_18_02_T02006
crossref_primary_10_1088_0256_307X_30_4_044205
crossref_primary_10_1007_s10773_017_3422_7
crossref_primary_10_1088_1674_1056_22_10_108503
crossref_primary_10_1088_1674_1056_20_4_046401
crossref_primary_10_1016_j_spmi_2012_08_012
crossref_primary_10_7498_aps_61_075202
crossref_primary_10_1088_0256_307X_31_11_112501
crossref_primary_10_1088_1674_1056_22_4_040205
crossref_primary_10_1088_1674_1056_22_4_040206
crossref_primary_10_1088_1674_1056_19_2_020512
crossref_primary_10_1088_1674_1056_22_9_097201
crossref_primary_10_1088_1674_1056_23_5_050504
crossref_primary_10_1007_s12648_012_0072_8
crossref_primary_10_1088_1674_1056_19_12_127401
crossref_primary_10_1088_1674_1056_19_5_054211
crossref_primary_10_1142_S021798491650130X
crossref_primary_10_1088_1674_1056_19_10_107205
crossref_primary_10_1088_1674_1056_19_2_024204
crossref_primary_10_1088_1674_1056_19_2_024203
crossref_primary_10_1088_1674_1056_23_7_070304
crossref_primary_10_1088_1674_1056_24_11_114207
crossref_primary_10_1007_s10854_017_6432_6
crossref_primary_10_1007_s11082_013_9675_3
crossref_primary_10_1088_1674_1056_24_4_048504
crossref_primary_10_1016_j_optcom_2011_10_010
crossref_primary_10_1088_1674_1056_19_4_047101
crossref_primary_10_1016_j_nuclphysa_2014_11_006
crossref_primary_10_1088_1674_1056_19_5_056103
crossref_primary_10_1088_0256_307X_27_11_114215
crossref_primary_10_1088_1674_4926_31_5_052002
crossref_primary_10_1088_1674_1056_19_7_074216
crossref_primary_10_1088_1674_1056_26_2_024201
crossref_primary_10_1021_jp411343a
crossref_primary_10_1016_j_physa_2014_05_051
crossref_primary_10_1088_1674_1056_19_8_088101
crossref_primary_10_1088_1674_1056_19_7_074207
crossref_primary_10_1088_1674_1056_22_7_074202
crossref_primary_10_1007_s11071_016_2615_6
crossref_primary_10_1063_1_4923303
crossref_primary_10_1088_1674_1056_19_11_119501
crossref_primary_10_1088_1674_1056_26_9_098104
crossref_primary_10_1088_1674_1056_19_8_080507
crossref_primary_10_1088_1674_1056_19_8_080506
crossref_primary_10_1039_C7CP00456G
crossref_primary_10_1088_1674_1056_19_8_089201
crossref_primary_10_1142_S0218127415500418
crossref_primary_10_1088_0256_307X_26_12_120503
crossref_primary_10_1088_1674_1056_24_4_040201
crossref_primary_10_1088_1674_1056_26_9_094210
crossref_primary_10_1140_epjst_e2014_02181_3
crossref_primary_10_1088_1674_1056_23_3_030504
crossref_primary_10_1088_0253_6102_68_5_617
crossref_primary_10_1088_1674_1056_18_9_044
crossref_primary_10_1007_s11433_014_5542_x
crossref_primary_10_1088_1674_1056_26_10_107101
crossref_primary_10_1007_s11128_015_1015_z
crossref_primary_10_1088_1674_1056_19_12_126101
crossref_primary_10_1088_1674_1056_19_2_023202
crossref_primary_10_1088_1674_1056_18_11_051
crossref_primary_10_1088_1674_1056_22_12_129401
crossref_primary_10_1088_1674_1056_27_10_104202
crossref_primary_10_1007_s10773_019_04288_0
crossref_primary_10_1007_s00521_012_0871_z
crossref_primary_10_1088_1674_1056_19_10_100505
crossref_primary_10_1364_OL_34_002730
crossref_primary_10_1088_1674_1056_19_11_117104
crossref_primary_10_1088_1674_1056_19_10_100507
crossref_primary_10_1088_1674_1056_22_3_038201
crossref_primary_10_1016_j_spmi_2014_09_035
crossref_primary_10_1088_1674_1056_25_2_027901
crossref_primary_10_1088_1674_1056_19_9_097106
crossref_primary_10_4028_www_scientific_net_AMR_664_437
crossref_primary_10_1088_1674_1056_19_7_070514
crossref_primary_10_1088_1674_1056_19_7_070513
crossref_primary_10_1088_1674_1056_19_7_070512
crossref_primary_10_1088_0256_307X_32_5_050301
crossref_primary_10_1088_0256_307X_30_12_125201
crossref_primary_10_1088_1674_1056_19_8_087802
crossref_primary_10_1088_1674_1056_22_10_104212
crossref_primary_10_1088_1674_1056_19_6_060301
crossref_primary_10_1088_1674_1056_18_12_033
crossref_primary_10_1016_j_optcom_2010_11_084
crossref_primary_10_1088_1674_1056_25_11_118201
crossref_primary_10_1016_j_physrep_2014_06_004
crossref_primary_10_1142_S0219749920500136
crossref_primary_10_1063_1_3671386
crossref_primary_10_1002_andp_201800520
crossref_primary_10_1088_1674_1056_18_12_029
crossref_primary_10_1088_1674_1056_19_8_080301
crossref_primary_10_1088_0031_8949_90_1_015206
crossref_primary_10_1134_S1054660X10070388
crossref_primary_10_1088_1674_1056_23_9_096101
crossref_primary_10_1088_1674_1056_27_10_100307
crossref_primary_10_1364_JOSAB_31_002258
crossref_primary_10_1143_JPSJ_81_074302
crossref_primary_10_1088_1674_1056_23_4_046102
crossref_primary_10_1017_S002237781500118X
crossref_primary_10_1088_1674_1056_19_12_127103
crossref_primary_10_1142_S021798491450239X
crossref_primary_10_1088_1674_1056_24_8_080305
crossref_primary_10_1142_S0218127419501177
crossref_primary_10_4028_www_scientific_net_AMM_300_301_1573
crossref_primary_10_4028_www_scientific_net_AMR_306_307_309
crossref_primary_10_1088_1674_1056_19_6_066103
crossref_primary_10_1039_C6RA22921B
crossref_primary_10_1088_1674_1056_18_12_014
crossref_primary_10_1088_1674_1056_22_9_090502
crossref_primary_10_1088_0256_307X_30_3_036102
crossref_primary_10_1088_1674_1056_23_7_074203
crossref_primary_10_1016_j_matchemphys_2019_122463
crossref_primary_10_1016_j_nuclphysa_2011_08_002
crossref_primary_10_1088_1674_1056_18_12_051
crossref_primary_10_1088_1674_1056_23_7_074206
crossref_primary_10_1088_1674_1056_22_4_047803
crossref_primary_10_1088_1674_1056_24_9_090307
crossref_primary_10_1016_j_optcom_2012_06_039
crossref_primary_10_1088_1674_1056_23_6_067503
crossref_primary_10_1142_S0129183118500146
crossref_primary_10_1088_1674_1056_19_11_114209
crossref_primary_10_1038_srep19898
crossref_primary_10_1143_JPSJ_81_124303
crossref_primary_10_1140_epja_s10050_022_00701_1
crossref_primary_10_12693_APhysPolA_119_298
crossref_primary_10_1088_1674_1056_19_8_084207
crossref_primary_10_1088_1674_1056_27_2_024101
crossref_primary_10_1016_S0034_4877_19_30098_9
crossref_primary_10_1088_1674_1056_19_9_097702
crossref_primary_10_1088_0253_6102_70_6_661
crossref_primary_10_1088_1674_1056_27_8_085203
crossref_primary_10_1088_1674_1056_19_7_072501
crossref_primary_10_1088_1674_1056_19_9_090502
crossref_primary_10_1088_1674_1056_19_9_090503
crossref_primary_10_1088_1674_1056_19_9_090501
crossref_primary_10_1007_s10483_012_1631_7
crossref_primary_10_1088_1674_1056_19_9_090506
crossref_primary_10_1088_1674_1056_19_11_110511
crossref_primary_10_1088_1742_5468_ab9e5f
crossref_primary_10_1016_j_optcom_2010_03_049
crossref_primary_10_1088_1674_1056_19_11_110510
crossref_primary_10_1088_1674_1056_27_11_110304
crossref_primary_10_1088_1674_1056_22_2_020307
crossref_primary_10_1088_0256_307X_32_12_125202
crossref_primary_10_1016_j_optcom_2011_11_043
crossref_primary_10_1088_1674_1056_26_8_084501
crossref_primary_10_1088_1674_1056_19_9_094101
crossref_primary_10_1088_1009_0630_15_2_08
crossref_primary_10_1007_s11664_018_6169_x
crossref_primary_10_1016_j_optcom_2011_07_058
crossref_primary_10_1088_1674_1056_24_5_057102
crossref_primary_10_1016_j_cocom_2018_e00359
crossref_primary_10_1088_1674_4926_34_6_062002
crossref_primary_10_1088_1674_1056_19_2_020310
crossref_primary_10_1016_j_nuclphysa_2021_122311
crossref_primary_10_1088_0256_307X_27_1_014702
crossref_primary_10_1088_1674_1056_19_4_040601
crossref_primary_10_1007_s10773_014_2251_1
crossref_primary_10_1063_1_3696073
crossref_primary_10_1088_1674_1056_19_12_120510
crossref_primary_10_1063_1_3642978
crossref_primary_10_1088_1674_1056_19_5_050506
crossref_primary_10_1088_1674_1056_19_10_107306
crossref_primary_10_1088_1674_1056_19_3_030512
crossref_primary_10_1088_1674_1056_19_4_043202
crossref_primary_10_1088_1674_1056_23_10_104501
crossref_primary_10_1364_AO_50_004457
crossref_primary_10_1088_1674_1056_19_12_124208
crossref_primary_10_1002_chem_201406372
crossref_primary_10_1088_1674_1056_19_7_077304
crossref_primary_10_1088_1674_1056_24_9_098902
crossref_primary_10_1088_1674_1056_19_6_067102
crossref_primary_10_1143_JPSJ_81_084005
crossref_primary_10_1016_j_mtcomm_2022_104278
crossref_primary_10_1016_j_scriptamat_2011_11_043
crossref_primary_10_1016_j_mseb_2018_11_003
crossref_primary_10_1016_j_mssp_2013_04_010
crossref_primary_10_1088_1674_1137_38_3_034101
crossref_primary_10_1016_j_optcom_2010_03_019
crossref_primary_10_1080_15361055_2020_1829457
crossref_primary_10_1088_1674_1056_22_10_104503
crossref_primary_10_1016_j_nuclphysa_2020_121715
crossref_primary_10_1209_0295_5075_92_13002
crossref_primary_10_1088_1674_1056_19_3_030301
crossref_primary_10_1088_1674_1056_19_7_076104
crossref_primary_10_1088_1674_1056_19_12_124211
crossref_primary_10_1364_OL_37_000259
crossref_primary_10_1088_1674_1056_19_9_090304
crossref_primary_10_1088_1674_1056_22_3_030314
crossref_primary_10_1088_1674_1056_19_9_090303
crossref_primary_10_1088_1674_1056_25_7_077307
crossref_primary_10_1088_1674_1056_22_5_050506
crossref_primary_10_1088_1674_1056_22_5_050507
crossref_primary_10_1007_s11071_017_3907_1
crossref_primary_10_1016_j_ssc_2013_03_032
crossref_primary_10_1088_1674_1056_22_3_037502
Cites_doi 10.1063/1.1355028
10.1088/1009-1963/15/7/018
10.1063/1.1418242
10.1088/0029-5515/44/9/005
10.1103/PhysRev.115.238
10.1088/0029-5515/39/12/303
10.1088/0741-3335/44/12B/318
10.1063/1.872911
10.1088/0256-307X/25/3/059
10.1088/0741-3335/48/12B/S33
10.1088/0029-5515/45/12/007
10.1088/0741-3335/48/10/003
10.1088/0029-5515/42/7/311
10.1088/0741-3335/50/10/105007
ContentType Journal Article
CorporateAuthor HL-2A Team
CorporateAuthor_xml – name: HL-2A Team
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
7U5
8FD
L7M
DOI 10.1088/1674-1056/18/12/044
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList Technology Research Database

Technology Research Database
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Study of runaway electron behaviour during electron cyclotron resonance heating in the HL-2A Tokamak
EISSN 2058-3834
EndPage 5394
ExternalDocumentID 10_1088_1674_1056_18_12_044
32496257
GroupedDBID 02O
1JI
1WK
29B
2RA
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
92L
AAGCD
AAJIO
AAJKP
AALHV
AAPBV
AATNI
ABHWH
ABPTK
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CCEZO
CCVFK
CDYEO
CEBXE
CHBEP
CJUJL
CQIGP
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FA0
FEDTE
HAK
HVGLF
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
M45
N5L
NT-
NT.
PJBAE
Q02
RIN
RNS
ROL
RPA
RW3
SY9
UCJ
W28
W92
~WA
UNR
-SA
-S~
AAYXX
ABJNI
ACARI
ADEQX
AERVB
AGQPQ
AOAED
ARNYC
CAJEA
CITATION
Q--
TCJ
TGP
U1G
U5K
7U5
8FD
L7M
ID FETCH-LOGICAL-c448t-326d7471e90ad5f056caaa4a5a917a0ef371014568dd4dc4be6242f90a0f66d73
IEDL.DBID IOP
ISSN 1674-1056
IngestDate Fri Jul 11 15:54:59 EDT 2025
Fri Jul 11 00:15:01 EDT 2025
Thu Jul 10 18:18:00 EDT 2025
Tue Jul 01 03:59:50 EDT 2025
Thu Apr 24 23:20:36 EDT 2025
Tue Nov 10 14:16:10 EST 2020
Mon May 13 12:59:33 EDT 2019
Fri Nov 25 07:23:28 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c448t-326d7471e90ad5f056caaa4a5a917a0ef371014568dd4dc4be6242f90a0f66d73
Notes S811.8
runaway electron, electron cyclotron resonance heating, runaway suppression, suppression efficiency
TL612
11-5639/O4
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1349418829
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_743476850
crossref_primary_10_1088_1674_1056_18_12_044
iop_primary_10_1088_1674_1056_18_12_044
proquest_miscellaneous_1777993968
proquest_miscellaneous_1349418829
chongqing_backfile_32496257
crossref_citationtrail_10_1088_1674_1056_18_12_044
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-12-01
PublicationDateYYYYMMDD 2009-12-01
PublicationDate_xml – month: 12
  year: 2009
  text: 2009-12-01
  day: 01
PublicationDecade 2000
PublicationTitle Chinese physics B
PublicationTitleAlternate Chinese Physics
PublicationYear 2009
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Deng B Q (13) 2006; 15
12
Sokolov Yu A (10) 1979; 29
Coda S (3) 2006; 48
19
Chen Z Y (18) 2006; 48
Martin-Solis J R (6) 2005; 45
Helander P (7) 2002; 44
2
John Lohr (1) 1988; 60
Bozhenkov S A (9) 2008; 50
Salzedas F (4) 2002; 42
Martin-Solis J R (5) 2004; 44
ITER Physics Expert Group on Disruptions (11) 1999; 39
Zhang Y P (14) 2008; 28
8
Rice J E (16) 1988
Yang J W (15) 2008; 25
Plyusnin V V (17) 2003
References_xml – year: 1988
  ident: 16
– ident: 2
  doi: 10.1063/1.1355028
– year: 2003
  ident: 17
– volume: 15
  start-page: 1486
  issn: 1009-1963
  year: 2006
  ident: 13
  publication-title: Chin. Phys.
  doi: 10.1088/1009-1963/15/7/018
– volume: 29
  start-page: 218
  year: 1979
  ident: 10
  publication-title: JETP Lett.
– ident: 12
  doi: 10.1063/1.1418242
– volume: 44
  start-page: 974
  issn: 0029-5515
  year: 2004
  ident: 5
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/44/9/005
– ident: 8
  doi: 10.1103/PhysRev.115.238
– volume: 39
  start-page: 2251
  issn: 0029-5515
  year: 1999
  ident: 11
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/39/12/303
– volume: 44
  start-page: B247
  issn: 0741-3335
  year: 2002
  ident: 7
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/44/12B/318
– ident: 19
  doi: 10.1063/1.872911
– volume: 25
  start-page: 1022
  issn: 0256-307X
  year: 2008
  ident: 15
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/25/3/059
– volume: 48
  start-page: B359
  issn: 0741-3335
  year: 2006
  ident: 3
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/48/12B/S33
– volume: 60
  start-page: 3630
  issn: 0031-9007
  year: 1988
  ident: 1
  publication-title: Phys. Rev. Lett.
– volume: 45
  start-page: 1524
  issn: 0029-5515
  year: 2005
  ident: 6
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/45/12/007
– volume: 48
  start-page: 1489
  issn: 0741-3335
  year: 2006
  ident: 18
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/48/10/003
– volume: 42
  start-page: 881
  issn: 0029-5515
  year: 2002
  ident: 4
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/42/7/311
– volume: 28
  start-page: 11
  issn: 0254-6086
  year: 2008
  ident: 14
  publication-title: Nucl. Fusion Plasma Phys.
– volume: 50
  start-page: 105007
  issn: 0741-3335
  year: 2008
  ident: 9
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/50/10/105007
SSID ssj0061023
Score 1.9240992
Snippet During the current flat-top phase of electron cyclotron resonance heating discharges in the HL-2A Tokamak, the behaviour of runaway electrons has been studied...
SourceID proquest
crossref
iop
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5385
SubjectTerms Decay
Detectors
Diagnostic systems
Electric fields
Electric power generation
Electron cyclotron resonance
Electron energy
Heating
Low level
Mathematical models
Neutron emission
Neutron flux
Retarding
Tokamak devices
X-rays
X射线探测器
中子诊断
持续时间
电子回旋共振加热
逃逸电子
Title Study of runaway electron behaviour during electron cyclotron resonance heating in the HL-2A Tokamak
URI http://lib.cqvip.com/qk/85823A/200912/32496257.html
http://iopscience.iop.org/1674-1056/18/12/044
https://www.proquest.com/docview/1349418829
https://www.proquest.com/docview/1777993968
https://www.proquest.com/docview/743476850
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB61SEi9lFerBihy1UpcyG6SdeLkiKqibdVSDiBxsyaOXdBCsiwbVdtf35k8QGhbtLdE-Zw4fs18sucbgE9oWFPcES2JHfpSxdLHwijfJm6kLEsW5Rzv_OM0GV_Ib5fx5WOw-nU17Vb-AV22O_mJkj7nhx-G6TCMhoFk9U-y_Ey1vv4869fdhEUImF71-F5jiCjeP97BWgpXVfnrjizEE5v0kj68tDA31uZkA077mJ32kMlkUM_zgfmzLOG42o9swuvO7xTH7UDZghe23Ib15vynud-Bgs8TLkTlxKwu8TcuRJ8fR3SB_PVMtCGNj0_MwtxUzRVx9oqVO6zgtZ1B16Ug11KMv_vRsTivJniLkzdwcfLl_PPY7xIw-IZY29wn165g0mqzAIvYUdUNIkqMkUgeBpa6s0n1m6RFIQsjc8vRJo7QgUuo6OgtrJVVad-BcKEjZmKzFFMjrUuRvHojR6M8lmGoTODB3kN3kAE3E5al0uTtZUTQlAdR30HadNrlnELjRjd76GmquXE1N64O6SbS1LgeHD0UmrbSHc_DD6mnVkN-fIJcRuhp4Tz40I8hTVOW92GwtFV9r1kRUoZEbbJnMEopch2zJPVA_AdDzp8kthgHuytXfQ9eRV0CjCDch7X5rLbvyaua5wfNZPoLZn4TQA
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VKqpe-qBFDfThqkhcmt08nNcRtV0tLQUOIHGzJo7dVkuTZdmo2v76zuRBoVCExM1WxpHjiT3zyTPfAGyiZk5xS7AksujKJJIuFjpxTWzDxDBlUc75zl_34vGR_HwcHV_Mhamm3dE_oGZLFNwuYRcQlw45bt7lgvFDnzrB0JNyOC3sEtyPwjjjsK6d_YP-NI6ZmoBBVz-oZx66_kXMsPC9Kr-dkt24ZKmWaDZXjuvGBo0eg-5n34aeTAb1PB_o3_8QO97t857Ao85FFdvtiKdwz5SrsNKEiuqzZ1Bw6OFCVFbM6hJ_4UL0pXREl_Nfz0Sb_fj3iV7ok6ppEbyvmOTDCDYDLPSjFOSFivGuG2yLw2qCP3HyHI5Gnw4_jN2uVoOrCeDNXfICC8a3JvOwiCxNXyOixAgJD6JnSPNNVeA4LQpZaJkbTkyxJO3ZmIaGa7BcVqV5AcL6lkCMyVJMtTQ2RQIAWoZhHknfT7TnwMa5jsjW6wkzWClyDDPCcokDQa81pTuac662caKa6_Y0VbzAihdY-dQJFC2wA-_PB01blo-bxbdIe7eTfHdJ8qqEIt068Lb_sRTtbr6ywdJU9Zli8kjpEwrKbpBJkoS8zCxOHRD_kSE_URKwjLz1W0_9DTw4-DhSuzt7XzbgYdCVzfD8l7A8n9XmFfli8_x1s9n-ALd9IzM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+of+runaway+electron+behaviour+during+electron+cyclotron+resonance+heating+in+the+HL-2A+Tokamak&rft.jtitle=Chinese+physics+B&rft.au=Zhang%2C+Yi-Po&rft.au=Yang%2C+Jin-Wei&rft.au=Liu%2C+Yi&rft.au=Song%2C+Xian-Ying&rft.date=2009-12-01&rft.issn=1674-1056&rft.volume=18&rft.issue=12&rft.spage=5385&rft.epage=5394&rft_id=info:doi/10.1088%2F1674-1056%2F18%2F12%2F044&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1056_18_12_044
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg