Study of runaway electron behaviour during electron cyclotron resonance heating in the HL-2A Tokamak
During the current flat-top phase of electron cyclotron resonance heating discharges in the HL-2A Tokamak, the behaviour of runaway electrons has been studied by means of hard x-ray detectors and neutron diagnostics. During electron cyclotron resonance heating, it can be found that both hard x-ray r...
Saved in:
Published in | Chinese physics B Vol. 18; no. 12; pp. 5385 - 5394 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.12.2009
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 |
DOI | 10.1088/1674-1056/18/12/044 |
Cover
Loading…
Abstract | During the current flat-top phase of electron cyclotron resonance heating discharges in the HL-2A Tokamak, the behaviour of runaway electrons has been studied by means of hard x-ray detectors and neutron diagnostics. During electron cyclotron resonance heating, it can be found that both hard x-ray radiation intensity and neutron emission flux fall rapidly to a very low level, which suggests that runaway electrons have been suppressed by electron cyclotron resonance heating. From the set of discharges studied in the present experiments, it has also been observed that the efficiency of runaway suppression by electron cyclotron resonance heating was apparently affected by two factors: electroh cyclotron resonance heating power and duration. These results have been analysed by using a test particle model. The decrease of the toroidal electric field due to electron cyclotron resonance heating results in a rapid fall in the runaway electron energy that may lead to a suppression of runaway electrons. During electron cyclotron resonance heating with different powers and durations, the runaway electrons will experience different slowing down processes. These different decay processes are the major cause for influencing the efficiency of runaway suppression. This result is related to the safe operation of the Tokamak and may bring an effective control of runaway electrons. |
---|---|
AbstractList | During the current flat-top phase of electron cyclotron resonance heating discharges in the HL-2A Tokamak, the behaviour of runaway electrons has been studied by means of hard x-ray detectors and neutron diagnostics. During electron cyclotron resonance heating, it can be found that both hard x-ray radiation intensity and neutron emission flux fall rapidly to a very low level, which suggests that runaway electrons have been suppressed by electron cyclotron resonance heating. From the set of discharges studied in the present experiments, it has also been observed that the efficiency of runaway suppression by electron cyclotron resonance heating was apparently affected by two factors: electron cyclotron resonance heating power and duration. These results have been analysed by using a test particle model. The decrease of the toroidal electric field due to electron cyclotron resonance heating results in a rapid fall in the runaway electron energy that may lead to a suppression of runaway electrons. During electron cyclotron resonance heating with different powers and durations, the runaway electrons will experience different slowing down processes. These different decay processes are the major cause for influencing the efficiency of runaway suppression. This result is related to the safe operation of the Tokamak and may bring an effective control of runaway electrons. During the current flat-top phase of electron cyclotron resonance heating discharges in the HL-2A Tokamak, the behaviour of runaway electrons has been studied by means of hard x-ray detectors and neutron diagnostics. During electron cyclotron resonance heating, it can be found that both hard x-ray radiation intensity and neutron emission flux fall rapidly to a very low level, which suggests that runaway electrons have been suppressed by electron cyclotron resonance heating. From the set of discharges studied in the present experiments, it has also been observed that the efficiency of runaway suppression by electron cyclotron resonance heating was apparently affected by two factors: electroh cyclotron resonance heating power and duration. These results have been analysed by using a test particle model. The decrease of the toroidal electric field due to electron cyclotron resonance heating results in a rapid fall in the runaway electron energy that may lead to a suppression of runaway electrons. During electron cyclotron resonance heating with different powers and durations, the runaway electrons will experience different slowing down processes. These different decay processes are the major cause for influencing the efficiency of runaway suppression. This result is related to the safe operation of the Tokamak and may bring an effective control of runaway electrons. |
Author | 张轶泼 杨划蔚 刘仪 宋先瑛 袁国梁 李旭 周艳 周俊 杨青巍 陈燎原 饶军 段旭如 潘传红 HL-2A Team |
AuthorAffiliation | Southwestern Institute of Physics, P O Box 432, Chengdu 610041, China |
Author_xml | – sequence: 1 fullname: 张轶泼 杨划蔚 刘仪 宋先瑛 袁国梁 李旭 周艳 周俊 杨青巍 陈燎原 饶军 段旭如 潘传红 HL-2A Team |
BookMark | eNqNkU1vEzEQhi1UJNLCL-BicQFV2sZfa3uPVQUtUqQeaM_WxB_Nko2d2rtF-fc4pAIJUNuTZ-TnsUfzHqOjmKJH6D0lZ5RoPadSiYaSVs5pbdicCPEKzRhpdcM1F0do9pt4g45L-U6IpITxGXLfxsntcAo4TxF-wA77wdsxp4iXfgUPfZoydlPu492fG7uzQ_pVZV9ShGg9XnkY91Af8bjy-GrRsHN8k9awgfVb9DrAUPy7x_ME3X75fHNx1SyuL79enC8aK4QeG86kU0JR3xFwbajDWgAQ0EJHFRAfuKKEilZq54SzYuklEyxUmgRZVX6CPh7e3eZ0P_kymk1frB8GiD5NxSjBhZK6JZX89CRJlVJdxzupn0e56ATVmnUV5QfU5lRK9sFsc7-BvDOUmH1QZh-D2cdgaG2YqUFVq_vLsv1Yl5nimKEfnnHPDm6fti_87PQ_wr-g2bpQ4Q-Pk61SvLuv8Zol2HXoB284E51kreI_Aau7v48 |
CitedBy_id | crossref_primary_10_1088_1674_1056_22_3_037101 crossref_primary_10_1007_s10773_019_04003_z crossref_primary_10_1088_1674_1056_22_2_020501 crossref_primary_10_1088_1674_1056_23_12_120504 crossref_primary_10_1088_0256_307X_27_3_034101 crossref_primary_10_1088_1674_1056_19_2_020501 crossref_primary_10_1007_s11128_017_1736_2 crossref_primary_10_1016_j_physb_2011_04_056 crossref_primary_10_1088_1674_1056_23_2_028401 crossref_primary_10_1016_j_physleta_2011_10_016 crossref_primary_10_1088_1674_1056_19_2_020510 crossref_primary_10_1088_1674_1056_25_3_038505 crossref_primary_10_1088_1674_1056_19_6_064212 crossref_primary_10_1088_2040_8978_17_4_045606 crossref_primary_10_1088_1674_1056_19_2_029201 crossref_primary_10_1088_1674_1056_23_1_016801 crossref_primary_10_1088_1674_1056_24_3_030502 crossref_primary_10_7498_aps_60_085204 crossref_primary_10_1016_j_physleta_2015_10_002 crossref_primary_10_1016_j_physleta_2016_04_032 crossref_primary_10_1088_1674_1056_19_12_125201 crossref_primary_10_1088_1674_1056_26_6_060202 crossref_primary_10_1088_1674_1056_23_6_066803 crossref_primary_10_1088_1674_1056_19_5_050302 crossref_primary_10_1088_1674_1056_23_6_066801 crossref_primary_10_1088_1674_1056_23_7_070205 crossref_primary_10_1088_1674_1056_28_1_010701 crossref_primary_10_1088_1674_1056_22_11_114210 crossref_primary_10_1088_1674_1056_19_2_028101 crossref_primary_10_1103_PhysRevC_97_034611 crossref_primary_10_1088_1674_1056_18_10_047 crossref_primary_10_1088_1674_1056_19_6_060504 crossref_primary_10_1088_1674_1056_26_9_093201 crossref_primary_10_1007_s00214_019_2439_9 crossref_primary_10_1007_s12043_024_02807_1 crossref_primary_10_1088_1674_1056_22_11_110303 crossref_primary_10_1063_1_3457922 crossref_primary_10_1088_1674_1056_25_12_128702 crossref_primary_10_1364_AO_50_006140 crossref_primary_10_1088_1674_1056_23_4_044101 crossref_primary_10_1016_j_optcom_2010_09_089 crossref_primary_10_1088_1748_0221_18_02_T02006 crossref_primary_10_1088_0256_307X_30_4_044205 crossref_primary_10_1007_s10773_017_3422_7 crossref_primary_10_1088_1674_1056_22_10_108503 crossref_primary_10_1088_1674_1056_20_4_046401 crossref_primary_10_1016_j_spmi_2012_08_012 crossref_primary_10_7498_aps_61_075202 crossref_primary_10_1088_0256_307X_31_11_112501 crossref_primary_10_1088_1674_1056_22_4_040205 crossref_primary_10_1088_1674_1056_22_4_040206 crossref_primary_10_1088_1674_1056_19_2_020512 crossref_primary_10_1088_1674_1056_22_9_097201 crossref_primary_10_1088_1674_1056_23_5_050504 crossref_primary_10_1007_s12648_012_0072_8 crossref_primary_10_1088_1674_1056_19_12_127401 crossref_primary_10_1088_1674_1056_19_5_054211 crossref_primary_10_1142_S021798491650130X crossref_primary_10_1088_1674_1056_19_10_107205 crossref_primary_10_1088_1674_1056_19_2_024204 crossref_primary_10_1088_1674_1056_19_2_024203 crossref_primary_10_1088_1674_1056_23_7_070304 crossref_primary_10_1088_1674_1056_24_11_114207 crossref_primary_10_1007_s10854_017_6432_6 crossref_primary_10_1007_s11082_013_9675_3 crossref_primary_10_1088_1674_1056_24_4_048504 crossref_primary_10_1016_j_optcom_2011_10_010 crossref_primary_10_1088_1674_1056_19_4_047101 crossref_primary_10_1016_j_nuclphysa_2014_11_006 crossref_primary_10_1088_1674_1056_19_5_056103 crossref_primary_10_1088_0256_307X_27_11_114215 crossref_primary_10_1088_1674_4926_31_5_052002 crossref_primary_10_1088_1674_1056_19_7_074216 crossref_primary_10_1088_1674_1056_26_2_024201 crossref_primary_10_1021_jp411343a crossref_primary_10_1016_j_physa_2014_05_051 crossref_primary_10_1088_1674_1056_19_8_088101 crossref_primary_10_1088_1674_1056_19_7_074207 crossref_primary_10_1088_1674_1056_22_7_074202 crossref_primary_10_1007_s11071_016_2615_6 crossref_primary_10_1063_1_4923303 crossref_primary_10_1088_1674_1056_19_11_119501 crossref_primary_10_1088_1674_1056_26_9_098104 crossref_primary_10_1088_1674_1056_19_8_080507 crossref_primary_10_1088_1674_1056_19_8_080506 crossref_primary_10_1039_C7CP00456G crossref_primary_10_1088_1674_1056_19_8_089201 crossref_primary_10_1142_S0218127415500418 crossref_primary_10_1088_0256_307X_26_12_120503 crossref_primary_10_1088_1674_1056_24_4_040201 crossref_primary_10_1088_1674_1056_26_9_094210 crossref_primary_10_1140_epjst_e2014_02181_3 crossref_primary_10_1088_1674_1056_23_3_030504 crossref_primary_10_1088_0253_6102_68_5_617 crossref_primary_10_1088_1674_1056_18_9_044 crossref_primary_10_1007_s11433_014_5542_x crossref_primary_10_1088_1674_1056_26_10_107101 crossref_primary_10_1007_s11128_015_1015_z crossref_primary_10_1088_1674_1056_19_12_126101 crossref_primary_10_1088_1674_1056_19_2_023202 crossref_primary_10_1088_1674_1056_18_11_051 crossref_primary_10_1088_1674_1056_22_12_129401 crossref_primary_10_1088_1674_1056_27_10_104202 crossref_primary_10_1007_s10773_019_04288_0 crossref_primary_10_1007_s00521_012_0871_z crossref_primary_10_1088_1674_1056_19_10_100505 crossref_primary_10_1364_OL_34_002730 crossref_primary_10_1088_1674_1056_19_11_117104 crossref_primary_10_1088_1674_1056_19_10_100507 crossref_primary_10_1088_1674_1056_22_3_038201 crossref_primary_10_1016_j_spmi_2014_09_035 crossref_primary_10_1088_1674_1056_25_2_027901 crossref_primary_10_1088_1674_1056_19_9_097106 crossref_primary_10_4028_www_scientific_net_AMR_664_437 crossref_primary_10_1088_1674_1056_19_7_070514 crossref_primary_10_1088_1674_1056_19_7_070513 crossref_primary_10_1088_1674_1056_19_7_070512 crossref_primary_10_1088_0256_307X_32_5_050301 crossref_primary_10_1088_0256_307X_30_12_125201 crossref_primary_10_1088_1674_1056_19_8_087802 crossref_primary_10_1088_1674_1056_22_10_104212 crossref_primary_10_1088_1674_1056_19_6_060301 crossref_primary_10_1088_1674_1056_18_12_033 crossref_primary_10_1016_j_optcom_2010_11_084 crossref_primary_10_1088_1674_1056_25_11_118201 crossref_primary_10_1016_j_physrep_2014_06_004 crossref_primary_10_1142_S0219749920500136 crossref_primary_10_1063_1_3671386 crossref_primary_10_1002_andp_201800520 crossref_primary_10_1088_1674_1056_18_12_029 crossref_primary_10_1088_1674_1056_19_8_080301 crossref_primary_10_1088_0031_8949_90_1_015206 crossref_primary_10_1134_S1054660X10070388 crossref_primary_10_1088_1674_1056_23_9_096101 crossref_primary_10_1088_1674_1056_27_10_100307 crossref_primary_10_1364_JOSAB_31_002258 crossref_primary_10_1143_JPSJ_81_074302 crossref_primary_10_1088_1674_1056_23_4_046102 crossref_primary_10_1017_S002237781500118X crossref_primary_10_1088_1674_1056_19_12_127103 crossref_primary_10_1142_S021798491450239X crossref_primary_10_1088_1674_1056_24_8_080305 crossref_primary_10_1142_S0218127419501177 crossref_primary_10_4028_www_scientific_net_AMM_300_301_1573 crossref_primary_10_4028_www_scientific_net_AMR_306_307_309 crossref_primary_10_1088_1674_1056_19_6_066103 crossref_primary_10_1039_C6RA22921B crossref_primary_10_1088_1674_1056_18_12_014 crossref_primary_10_1088_1674_1056_22_9_090502 crossref_primary_10_1088_0256_307X_30_3_036102 crossref_primary_10_1088_1674_1056_23_7_074203 crossref_primary_10_1016_j_matchemphys_2019_122463 crossref_primary_10_1016_j_nuclphysa_2011_08_002 crossref_primary_10_1088_1674_1056_18_12_051 crossref_primary_10_1088_1674_1056_23_7_074206 crossref_primary_10_1088_1674_1056_22_4_047803 crossref_primary_10_1088_1674_1056_24_9_090307 crossref_primary_10_1016_j_optcom_2012_06_039 crossref_primary_10_1088_1674_1056_23_6_067503 crossref_primary_10_1142_S0129183118500146 crossref_primary_10_1088_1674_1056_19_11_114209 crossref_primary_10_1038_srep19898 crossref_primary_10_1143_JPSJ_81_124303 crossref_primary_10_1140_epja_s10050_022_00701_1 crossref_primary_10_12693_APhysPolA_119_298 crossref_primary_10_1088_1674_1056_19_8_084207 crossref_primary_10_1088_1674_1056_27_2_024101 crossref_primary_10_1016_S0034_4877_19_30098_9 crossref_primary_10_1088_1674_1056_19_9_097702 crossref_primary_10_1088_0253_6102_70_6_661 crossref_primary_10_1088_1674_1056_27_8_085203 crossref_primary_10_1088_1674_1056_19_7_072501 crossref_primary_10_1088_1674_1056_19_9_090502 crossref_primary_10_1088_1674_1056_19_9_090503 crossref_primary_10_1088_1674_1056_19_9_090501 crossref_primary_10_1007_s10483_012_1631_7 crossref_primary_10_1088_1674_1056_19_9_090506 crossref_primary_10_1088_1674_1056_19_11_110511 crossref_primary_10_1088_1742_5468_ab9e5f crossref_primary_10_1016_j_optcom_2010_03_049 crossref_primary_10_1088_1674_1056_19_11_110510 crossref_primary_10_1088_1674_1056_27_11_110304 crossref_primary_10_1088_1674_1056_22_2_020307 crossref_primary_10_1088_0256_307X_32_12_125202 crossref_primary_10_1016_j_optcom_2011_11_043 crossref_primary_10_1088_1674_1056_26_8_084501 crossref_primary_10_1088_1674_1056_19_9_094101 crossref_primary_10_1088_1009_0630_15_2_08 crossref_primary_10_1007_s11664_018_6169_x crossref_primary_10_1016_j_optcom_2011_07_058 crossref_primary_10_1088_1674_1056_24_5_057102 crossref_primary_10_1016_j_cocom_2018_e00359 crossref_primary_10_1088_1674_4926_34_6_062002 crossref_primary_10_1088_1674_1056_19_2_020310 crossref_primary_10_1016_j_nuclphysa_2021_122311 crossref_primary_10_1088_0256_307X_27_1_014702 crossref_primary_10_1088_1674_1056_19_4_040601 crossref_primary_10_1007_s10773_014_2251_1 crossref_primary_10_1063_1_3696073 crossref_primary_10_1088_1674_1056_19_12_120510 crossref_primary_10_1063_1_3642978 crossref_primary_10_1088_1674_1056_19_5_050506 crossref_primary_10_1088_1674_1056_19_10_107306 crossref_primary_10_1088_1674_1056_19_3_030512 crossref_primary_10_1088_1674_1056_19_4_043202 crossref_primary_10_1088_1674_1056_23_10_104501 crossref_primary_10_1364_AO_50_004457 crossref_primary_10_1088_1674_1056_19_12_124208 crossref_primary_10_1002_chem_201406372 crossref_primary_10_1088_1674_1056_19_7_077304 crossref_primary_10_1088_1674_1056_24_9_098902 crossref_primary_10_1088_1674_1056_19_6_067102 crossref_primary_10_1143_JPSJ_81_084005 crossref_primary_10_1016_j_mtcomm_2022_104278 crossref_primary_10_1016_j_scriptamat_2011_11_043 crossref_primary_10_1016_j_mseb_2018_11_003 crossref_primary_10_1016_j_mssp_2013_04_010 crossref_primary_10_1088_1674_1137_38_3_034101 crossref_primary_10_1016_j_optcom_2010_03_019 crossref_primary_10_1080_15361055_2020_1829457 crossref_primary_10_1088_1674_1056_22_10_104503 crossref_primary_10_1016_j_nuclphysa_2020_121715 crossref_primary_10_1209_0295_5075_92_13002 crossref_primary_10_1088_1674_1056_19_3_030301 crossref_primary_10_1088_1674_1056_19_7_076104 crossref_primary_10_1088_1674_1056_19_12_124211 crossref_primary_10_1364_OL_37_000259 crossref_primary_10_1088_1674_1056_19_9_090304 crossref_primary_10_1088_1674_1056_22_3_030314 crossref_primary_10_1088_1674_1056_19_9_090303 crossref_primary_10_1088_1674_1056_25_7_077307 crossref_primary_10_1088_1674_1056_22_5_050506 crossref_primary_10_1088_1674_1056_22_5_050507 crossref_primary_10_1007_s11071_017_3907_1 crossref_primary_10_1016_j_ssc_2013_03_032 crossref_primary_10_1088_1674_1056_22_3_037502 |
Cites_doi | 10.1063/1.1355028 10.1088/1009-1963/15/7/018 10.1063/1.1418242 10.1088/0029-5515/44/9/005 10.1103/PhysRev.115.238 10.1088/0029-5515/39/12/303 10.1088/0741-3335/44/12B/318 10.1063/1.872911 10.1088/0256-307X/25/3/059 10.1088/0741-3335/48/12B/S33 10.1088/0029-5515/45/12/007 10.1088/0741-3335/48/10/003 10.1088/0029-5515/42/7/311 10.1088/0741-3335/50/10/105007 |
ContentType | Journal Article |
CorporateAuthor | HL-2A Team |
CorporateAuthor_xml | – name: HL-2A Team |
DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION 7U5 8FD L7M |
DOI | 10.1088/1674-1056/18/12/044 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | Technology Research Database Technology Research Database Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Study of runaway electron behaviour during electron cyclotron resonance heating in the HL-2A Tokamak |
EISSN | 2058-3834 |
EndPage | 5394 |
ExternalDocumentID | 10_1088_1674_1056_18_12_044 32496257 |
GroupedDBID | 02O 1JI 1WK 29B 2RA 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q 92L AAGCD AAJIO AAJKP AALHV AAPBV AATNI ABHWH ABPTK ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFUIB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CCEZO CCVFK CDYEO CEBXE CHBEP CJUJL CQIGP CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN FA0 FEDTE HAK HVGLF IJHAN IOP IZVLO JCGBZ KNG KOT M45 N5L NT- NT. PJBAE Q02 RIN RNS ROL RPA RW3 SY9 UCJ W28 W92 ~WA UNR -SA -S~ AAYXX ABJNI ACARI ADEQX AERVB AGQPQ AOAED ARNYC CAJEA CITATION Q-- TCJ TGP U1G U5K 7U5 8FD L7M |
ID | FETCH-LOGICAL-c448t-326d7471e90ad5f056caaa4a5a917a0ef371014568dd4dc4be6242f90a0f66d73 |
IEDL.DBID | IOP |
ISSN | 1674-1056 |
IngestDate | Fri Jul 11 15:54:59 EDT 2025 Fri Jul 11 00:15:01 EDT 2025 Thu Jul 10 18:18:00 EDT 2025 Tue Jul 01 03:59:50 EDT 2025 Thu Apr 24 23:20:36 EDT 2025 Tue Nov 10 14:16:10 EST 2020 Mon May 13 12:59:33 EDT 2019 Fri Nov 25 07:23:28 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c448t-326d7471e90ad5f056caaa4a5a917a0ef371014568dd4dc4be6242f90a0f66d73 |
Notes | S811.8 runaway electron, electron cyclotron resonance heating, runaway suppression, suppression efficiency TL612 11-5639/O4 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PQID | 1349418829 |
PQPubID | 23500 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_743476850 crossref_primary_10_1088_1674_1056_18_12_044 iop_primary_10_1088_1674_1056_18_12_044 proquest_miscellaneous_1777993968 proquest_miscellaneous_1349418829 chongqing_backfile_32496257 crossref_citationtrail_10_1088_1674_1056_18_12_044 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-12-01 |
PublicationDateYYYYMMDD | 2009-12-01 |
PublicationDate_xml | – month: 12 year: 2009 text: 2009-12-01 day: 01 |
PublicationDecade | 2000 |
PublicationTitle | Chinese physics B |
PublicationTitleAlternate | Chinese Physics |
PublicationYear | 2009 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Deng B Q (13) 2006; 15 12 Sokolov Yu A (10) 1979; 29 Coda S (3) 2006; 48 19 Chen Z Y (18) 2006; 48 Martin-Solis J R (6) 2005; 45 Helander P (7) 2002; 44 2 John Lohr (1) 1988; 60 Bozhenkov S A (9) 2008; 50 Salzedas F (4) 2002; 42 Martin-Solis J R (5) 2004; 44 ITER Physics Expert Group on Disruptions (11) 1999; 39 Zhang Y P (14) 2008; 28 8 Rice J E (16) 1988 Yang J W (15) 2008; 25 Plyusnin V V (17) 2003 |
References_xml | – year: 1988 ident: 16 – ident: 2 doi: 10.1063/1.1355028 – year: 2003 ident: 17 – volume: 15 start-page: 1486 issn: 1009-1963 year: 2006 ident: 13 publication-title: Chin. Phys. doi: 10.1088/1009-1963/15/7/018 – volume: 29 start-page: 218 year: 1979 ident: 10 publication-title: JETP Lett. – ident: 12 doi: 10.1063/1.1418242 – volume: 44 start-page: 974 issn: 0029-5515 year: 2004 ident: 5 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/44/9/005 – ident: 8 doi: 10.1103/PhysRev.115.238 – volume: 39 start-page: 2251 issn: 0029-5515 year: 1999 ident: 11 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/39/12/303 – volume: 44 start-page: B247 issn: 0741-3335 year: 2002 ident: 7 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/44/12B/318 – ident: 19 doi: 10.1063/1.872911 – volume: 25 start-page: 1022 issn: 0256-307X year: 2008 ident: 15 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/25/3/059 – volume: 48 start-page: B359 issn: 0741-3335 year: 2006 ident: 3 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/48/12B/S33 – volume: 60 start-page: 3630 issn: 0031-9007 year: 1988 ident: 1 publication-title: Phys. Rev. Lett. – volume: 45 start-page: 1524 issn: 0029-5515 year: 2005 ident: 6 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/45/12/007 – volume: 48 start-page: 1489 issn: 0741-3335 year: 2006 ident: 18 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/48/10/003 – volume: 42 start-page: 881 issn: 0029-5515 year: 2002 ident: 4 publication-title: Nucl. Fusion doi: 10.1088/0029-5515/42/7/311 – volume: 28 start-page: 11 issn: 0254-6086 year: 2008 ident: 14 publication-title: Nucl. Fusion Plasma Phys. – volume: 50 start-page: 105007 issn: 0741-3335 year: 2008 ident: 9 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/50/10/105007 |
SSID | ssj0061023 |
Score | 1.9240992 |
Snippet | During the current flat-top phase of electron cyclotron resonance heating discharges in the HL-2A Tokamak, the behaviour of runaway electrons has been studied... |
SourceID | proquest crossref iop chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5385 |
SubjectTerms | Decay Detectors Diagnostic systems Electric fields Electric power generation Electron cyclotron resonance Electron energy Heating Low level Mathematical models Neutron emission Neutron flux Retarding Tokamak devices X-rays X射线探测器 中子诊断 持续时间 电子回旋共振加热 逃逸电子 |
Title | Study of runaway electron behaviour during electron cyclotron resonance heating in the HL-2A Tokamak |
URI | http://lib.cqvip.com/qk/85823A/200912/32496257.html http://iopscience.iop.org/1674-1056/18/12/044 https://www.proquest.com/docview/1349418829 https://www.proquest.com/docview/1777993968 https://www.proquest.com/docview/743476850 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB61SEi9lFerBihy1UpcyG6SdeLkiKqibdVSDiBxsyaOXdBCsiwbVdtf35k8QGhbtLdE-Zw4fs18sucbgE9oWFPcES2JHfpSxdLHwijfJm6kLEsW5Rzv_OM0GV_Ib5fx5WOw-nU17Vb-AV22O_mJkj7nhx-G6TCMhoFk9U-y_Ey1vv4869fdhEUImF71-F5jiCjeP97BWgpXVfnrjizEE5v0kj68tDA31uZkA077mJ32kMlkUM_zgfmzLOG42o9swuvO7xTH7UDZghe23Ib15vynud-Bgs8TLkTlxKwu8TcuRJ8fR3SB_PVMtCGNj0_MwtxUzRVx9oqVO6zgtZ1B16Ug11KMv_vRsTivJniLkzdwcfLl_PPY7xIw-IZY29wn165g0mqzAIvYUdUNIkqMkUgeBpa6s0n1m6RFIQsjc8vRJo7QgUuo6OgtrJVVad-BcKEjZmKzFFMjrUuRvHojR6M8lmGoTODB3kN3kAE3E5al0uTtZUTQlAdR30HadNrlnELjRjd76GmquXE1N64O6SbS1LgeHD0UmrbSHc_DD6mnVkN-fIJcRuhp4Tz40I8hTVOW92GwtFV9r1kRUoZEbbJnMEopch2zJPVA_AdDzp8kthgHuytXfQ9eRV0CjCDch7X5rLbvyaua5wfNZPoLZn4TQA |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VKqpe-qBFDfThqkhcmt08nNcRtV0tLQUOIHGzJo7dVkuTZdmo2v76zuRBoVCExM1WxpHjiT3zyTPfAGyiZk5xS7AksujKJJIuFjpxTWzDxDBlUc75zl_34vGR_HwcHV_Mhamm3dE_oGZLFNwuYRcQlw45bt7lgvFDnzrB0JNyOC3sEtyPwjjjsK6d_YP-NI6ZmoBBVz-oZx66_kXMsPC9Kr-dkt24ZKmWaDZXjuvGBo0eg-5n34aeTAb1PB_o3_8QO97t857Ao85FFdvtiKdwz5SrsNKEiuqzZ1Bw6OFCVFbM6hJ_4UL0pXREl_Nfz0Sb_fj3iV7ok6ppEbyvmOTDCDYDLPSjFOSFivGuG2yLw2qCP3HyHI5Gnw4_jN2uVoOrCeDNXfICC8a3JvOwiCxNXyOixAgJD6JnSPNNVeA4LQpZaJkbTkyxJO3ZmIaGa7BcVqV5AcL6lkCMyVJMtTQ2RQIAWoZhHknfT7TnwMa5jsjW6wkzWClyDDPCcokDQa81pTuac662caKa6_Y0VbzAihdY-dQJFC2wA-_PB01blo-bxbdIe7eTfHdJ8qqEIt068Lb_sRTtbr6ywdJU9Zli8kjpEwrKbpBJkoS8zCxOHRD_kSE_URKwjLz1W0_9DTw4-DhSuzt7XzbgYdCVzfD8l7A8n9XmFfli8_x1s9n-ALd9IzM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+of+runaway+electron+behaviour+during+electron+cyclotron+resonance+heating+in+the+HL-2A+Tokamak&rft.jtitle=Chinese+physics+B&rft.au=Zhang%2C+Yi-Po&rft.au=Yang%2C+Jin-Wei&rft.au=Liu%2C+Yi&rft.au=Song%2C+Xian-Ying&rft.date=2009-12-01&rft.issn=1674-1056&rft.volume=18&rft.issue=12&rft.spage=5385&rft.epage=5394&rft_id=info:doi/10.1088%2F1674-1056%2F18%2F12%2F044&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1056_18_12_044 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg |