Long-term temperature and sea-level rise stabilization before and beyond 2100: Estimating the additional climate mitigation contribution from China’s recent 2060 carbon neutrality pledge
As the largest emitter in the world, China recently pledged to reach a carbon peak before 2030 and carbon neutrality before 2060, which could accelerate the progress of mitigating negative climate change effects. In this study, we used the Minimum Complexity Earth Simulator and a semi-empirical stat...
Saved in:
Published in | Environmental research letters Vol. 16; no. 7; pp. 74032 - 74043 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
01.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As the largest emitter in the world, China recently pledged to reach a carbon peak before 2030 and carbon neutrality before 2060, which could accelerate the progress of mitigating negative climate change effects. In this study, we used the Minimum Complexity Earth Simulator and a semi-empirical statistical model to quantify the global mean temperature and sea-level rise (SLR) response under a suite of emission pathways that are constructed to cover various carbon peak and carbon neutrality years in China. The results show that China will require a carbon emission reduction rate of no less than 6%/year and a growth rate of more than 10%/year for carbon capture capacity to achieve carbon neutrality by 2060. Carbon peak years and peak emissions contribute significantly to mitigating climate change in the near term, while carbon neutrality years are more influential in the long term. Mitigation due to recent China’s pledge alone will contribute a 0.16 °C–0.21 °C avoided warming at 2100 and also lessen the cumulative warming above 1.5 °C level. When accompanied by coordinated international efforts to reach global carbon neutrality before 2070, the 2 °C target can be achieved. However, the 1.5 °C target requires additional efforts, such as global scale adoption of negative emission technology for CO
2
, as well as a deep cut in non-CO
2
GHG emissions. Collectively, the efforts of adopting negative emission technolgy and curbing all greenhouse gas emissions will reduce global warming by 0.9 °C −1.2 °C at 2100, and also reduce SLR by 49–59 cm in 2200, compared to a baseline mitigation pathway already aiming at 2 °C. Our findings suggest that while China’s ambitious carbon-neutral pledge contributes to Paris Agreement’s targets, additional major efforts will be needed, such as reaching an earlier and lower CO
2
emission peak, developing negative emission technology for CO
2
, and cutting other non-CO
2
GHGs such as N
2
O, CH
4
, O
3
, and HFCs. |
---|---|
AbstractList | As the largest emitter in the world, China recently pledged to reach a carbon peak before 2030 and carbon neutrality before 2060, which could accelerate the progress of mitigating negative climate change effects. In this study, we used the Minimum Complexity Earth Simulator and a semi-empirical statistical model to quantify the global mean temperature and sea-level rise (SLR) response under a suite of emission pathways that are constructed to cover various carbon peak and carbon neutrality years in China. The results show that China will require a carbon emission reduction rate of no less than 6%/year and a growth rate of more than 10%/year for carbon capture capacity to achieve carbon neutrality by 2060. Carbon peak years and peak emissions contribute significantly to mitigating climate change in the near term, while carbon neutrality years are more influential in the long term. Mitigation due to recent China’s pledge alone will contribute a 0.16 °C–0.21 °C avoided warming at 2100 and also lessen the cumulative warming above 1.5 °C level. When accompanied by coordinated international efforts to reach global carbon neutrality before 2070, the 2 °C target can be achieved. However, the 1.5 °C target requires additional efforts, such as global scale adoption of negative emission technology for CO _2 , as well as a deep cut in non-CO _2 GHG emissions. Collectively, the efforts of adopting negative emission technolgy and curbing all greenhouse gas emissions will reduce global warming by 0.9 °C −1.2 °C at 2100, and also reduce SLR by 49–59 cm in 2200, compared to a baseline mitigation pathway already aiming at 2 °C. Our findings suggest that while China’s ambitious carbon-neutral pledge contributes to Paris Agreement’s targets, additional major efforts will be needed, such as reaching an earlier and lower CO _2 emission peak, developing negative emission technology for CO _2 , and cutting other non-CO _2 GHGs such as N _2 O, CH _4 , O _3 , and HFCs. As the largest emitter in the world, China recently pledged to reach a carbon peak before 2030 and carbon neutrality before 2060, which could accelerate the progress of mitigating negative climate change effects. In this study, we used the Minimum Complexity Earth Simulator and a semi-empirical statistical model to quantify the global mean temperature and sea-level rise (SLR) response under a suite of emission pathways that are constructed to cover various carbon peak and carbon neutrality years in China. The results show that China will require a carbon emission reduction rate of no less than 6%/year and a growth rate of more than 10%/year for carbon capture capacity to achieve carbon neutrality by 2060. Carbon peak years and peak emissions contribute significantly to mitigating climate change in the near term, while carbon neutrality years are more influential in the long term. Mitigation due to recent China’s pledge alone will contribute a 0.16 °C–0.21 °C avoided warming at 2100 and also lessen the cumulative warming above 1.5 °C level. When accompanied by coordinated international efforts to reach global carbon neutrality before 2070, the 2 °C target can be achieved. However, the 1.5 °C target requires additional efforts, such as global scale adoption of negative emission technology for CO 2 , as well as a deep cut in non-CO 2 GHG emissions. Collectively, the efforts of adopting negative emission technolgy and curbing all greenhouse gas emissions will reduce global warming by 0.9 °C −1.2 °C at 2100, and also reduce SLR by 49–59 cm in 2200, compared to a baseline mitigation pathway already aiming at 2 °C. Our findings suggest that while China’s ambitious carbon-neutral pledge contributes to Paris Agreement’s targets, additional major efforts will be needed, such as reaching an earlier and lower CO 2 emission peak, developing negative emission technology for CO 2 , and cutting other non-CO 2 GHGs such as N 2 O, CH 4 , O 3 , and HFCs. As the largest emitter in the world, China recently pledged to reach a carbon peak before 2030 and carbon neutrality before 2060, which could accelerate the progress of mitigating negative climate change effects. In this study, we used the Minimum Complexity Earth Simulator and a semi-empirical statistical model to quantify the global mean temperature and sea-level rise (SLR) response under a suite of emission pathways that are constructed to cover various carbon peak and carbon neutrality years in China. The results show that China will require a carbon emission reduction rate of no less than 6%/year and a growth rate of more than 10%/year for carbon capture capacity to achieve carbon neutrality by 2060. Carbon peak years and peak emissions contribute significantly to mitigating climate change in the near term, while carbon neutrality years are more influential in the long term. Mitigation due to recent China’s pledge alone will contribute a 0.16 °C–0.21 °C avoided warming at 2100 and also lessen the cumulative warming above 1.5 °C level. When accompanied by coordinated international efforts to reach global carbon neutrality before 2070, the 2 °C target can be achieved. However, the 1.5 °C target requires additional efforts, such as global scale adoption of negative emission technology for CO2, as well as a deep cut in non-CO2 GHG emissions. Collectively, the efforts of adopting negative emission technolgy and curbing all greenhouse gas emissions will reduce global warming by 0.9 °C −1.2 °C at 2100, and also reduce SLR by 49–59 cm in 2200, compared to a baseline mitigation pathway already aiming at 2 °C. Our findings suggest that while China’s ambitious carbon-neutral pledge contributes to Paris Agreement’s targets, additional major efforts will be needed, such as reaching an earlier and lower CO2 emission peak, developing negative emission technology for CO2, and cutting other non-CO2 GHGs such as N2O, CH4, O3, and HFCs. |
Author | Xu, Yangyang Cui, Huijuan Chen, Jiewei Ge, Quansheng |
Author_xml | – sequence: 1 givenname: Jiewei surname: Chen fullname: Chen, Jiewei organization: University of Chinese Academy of Sciences , Beijing 100049, People’s Republic of China – sequence: 2 givenname: Huijuan orcidid: 0000-0002-0308-1550 surname: Cui fullname: Cui, Huijuan organization: University of Chinese Academy of Sciences , Beijing 100049, People’s Republic of China – sequence: 3 givenname: Yangyang orcidid: 0000-0001-7173-7761 surname: Xu fullname: Xu, Yangyang organization: College of Geosciences, Texas A&M University Department of Atmospheric Sciences, College Station, TX 77843-3150, United States of America – sequence: 4 givenname: Quansheng surname: Ge fullname: Ge, Quansheng organization: University of Chinese Academy of Sciences , Beijing 100049, People’s Republic of China |
BookMark | eNp9kc2K1TAUx4uM4Mzo3mXAhRvrpGnapO7kMurABTe6Dvk46eTSNjVJhevK1_BdfBqfxPR2_EBUCJzk5Hf-Ofmfi-Js8hMUxeMKP68w51cVo7zsatJeSY211PeK85-ps9_2D4qLGA8YN7Rh_Lz4uvdTXyYII0owzhBkWgIgORkUQZYDfIQBBRcBxSSVG9wnmZyfkALr7zgFR58DqTB-ga5jcmNGph6l23xvjFt5OSA9rBeAxpzoNxHtpxScWk4HG_yIdrdukt8-f4kogIYpIYJbjLQMKhMTLCnIwaUjmgcwPTws7ls5RHh0Fy-L96-u3-3elPu3r292L_elppSnslLUstoCazU3PC_SYGKwgWxTB0RrA1LVEmNpm5oyzljLTG1Jx0jTdRbqy-Jm0zVeHsQc8kfCUXjpxCnhQy9kSE4PIBjhjCpVU84x7VQlqSINyWar1lCuadZ6smnNwX9YICZx8EvIBkWRMd52rOVdptqN0sHHGMAK7dLJtOyAG0SFxTp1sY5VrGMV29RzIf6j8Ee7_yl5upU4P_9qBkJ-pRVMYEZxTcRsbCaf_YX8p_B3RAzR4w |
CODEN | ERLNAL |
CitedBy_id | crossref_primary_10_1016_j_atmosres_2022_106384 crossref_primary_10_1093_tse_tdac043 crossref_primary_10_1016_j_watcyc_2022_06_001 crossref_primary_10_1080_23812346_2023_2213540 crossref_primary_10_1016_j_fuel_2021_123016 crossref_primary_10_1177_10755470221147286 crossref_primary_10_1016_j_energy_2023_129181 crossref_primary_10_1016_j_oceaneng_2024_116791 crossref_primary_10_1016_j_jclepro_2021_130233 crossref_primary_10_1007_s43979_022_00009_5 crossref_primary_10_1016_j_biortech_2023_128718 crossref_primary_10_1016_j_applthermaleng_2023_121443 crossref_primary_10_1016_j_enggeo_2022_106871 crossref_primary_10_1007_s42524_022_0205_5 crossref_primary_10_1016_j_ecolind_2023_111310 crossref_primary_10_1016_j_accre_2023_07_006 crossref_primary_10_1016_j_fuel_2023_129390 crossref_primary_10_1080_19475705_2022_2122593 crossref_primary_10_3390_polym13213748 crossref_primary_10_1016_j_renene_2023_04_003 crossref_primary_10_1016_j_scitotenv_2022_154653 crossref_primary_10_1016_j_seppur_2022_122195 crossref_primary_10_1038_s41467_022_33047_9 crossref_primary_10_1038_s43247_023_01184_8 crossref_primary_10_1007_s00603_022_02983_9 crossref_primary_10_1016_j_scitotenv_2021_151718 crossref_primary_10_3390_su15065237 crossref_primary_10_1002_sd_3180 crossref_primary_10_1109_TTE_2022_3220411 crossref_primary_10_1016_j_energy_2021_122534 crossref_primary_10_1080_15481603_2023_2301275 crossref_primary_10_3390_en16020953 crossref_primary_10_1051_e3sconf_202130801021 crossref_primary_10_1016_j_nanoen_2025_110897 crossref_primary_10_3390_en18051258 crossref_primary_10_3390_en15166002 crossref_primary_10_1088_2515_7620_ad61c2 crossref_primary_10_1016_j_applthermaleng_2022_118813 crossref_primary_10_1016_j_eap_2023_01_004 crossref_primary_10_3390_rs16091609 crossref_primary_10_1038_s41612_023_00412_4 crossref_primary_10_3390_land11101673 crossref_primary_10_3390_en14227797 crossref_primary_10_1016_S2542_5196_21_00252_7 crossref_primary_10_3390_land14030618 crossref_primary_10_1016_j_eswa_2024_126184 crossref_primary_10_1007_s11356_025_36167_z crossref_primary_10_1016_j_scitotenv_2023_165782 crossref_primary_10_54691_bcpssh_v17i_663 crossref_primary_10_1016_j_enpol_2023_113677 crossref_primary_10_3390_en14227782 crossref_primary_10_1016_j_bios_2022_114115 crossref_primary_10_3390_atmos15111322 crossref_primary_10_1007_s13132_024_01902_3 crossref_primary_10_1016_j_scs_2024_105593 crossref_primary_10_1016_j_jclepro_2022_132968 crossref_primary_10_54097_hbem_v3i_4668 crossref_primary_10_1016_j_scitotenv_2022_154909 crossref_primary_10_3390_su15075723 crossref_primary_10_1093_ijlct_ctac027 crossref_primary_10_1016_j_est_2024_113071 crossref_primary_10_1016_j_scitotenv_2022_156842 crossref_primary_10_3390_su14042202 |
Cites_doi | 10.1126/science.aad5761 10.1073/pnas.1618481114 10.1073/pnas.1500515113 10.5194/essd-8-571-2016 10.1016/j.rser.2020.110253 10.5194/bg-17-2987-2020 10.1016/j.eneco.2020.104968 10.1007/s10584-011-0148-z 10.1088/1748-9326/abf9c8 10.5194/gmd-12-4375-2019 10.1088/1748-9326/aaac87 10.1016/j.jes.2020.03.045 10.3390/atmos11010095 10.1038/nclimate3231 10.1016/j.enpol.2019.110938 10.1007/s10584-020-02837-9 10.1088/1748-9326/9/12/124002 10.1038/s41558-020-00960-0 10.1038/nclimate1869 10.1016/j.gloenvcha.2016.05.009 10.5194/bg-17-4173-2020 10.1038/s41586-019-1364-3 10.1088/1748-9326/10/10/105007 10.1073/pnas.0907765106 10.1038/nclimate2870 10.1038/s41586-021-03427-0 10.1007/s00382-011-1226-7 10.1038/d41586-020-00571-x 10.1016/j.accre.2018.06.001 10.1007/s11069-018-3297-9 10.1038/s41558-018-0119-8 10.1038/ngeo3017 10.1038/s41586-019-1541-4 10.1038/s41467-018-02985-8 10.1038/s41467-020-20437-0 10.1038/nature17145 10.1038/nature18307 10.5194/esd-8-827-2017 10.1029/2019RG000678 |
ContentType | Journal Article |
Copyright | 2021 The Author(s). Published by IOP Publishing Ltd 2021. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Author(s). Published by IOP Publishing Ltd – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 8FE 8FG ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ L6V M7S PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY DOA |
DOI | 10.1088/1748-9326/ac0cac |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection (ProQuest) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Engineering Database Environmental Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection (ProQuest) Environmental Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
EISSN | 1748-9326 |
ExternalDocumentID | oai_doaj_org_article_72874bb3488049b1a4b252545b6d48c4 10_1088_1748_9326_ac0cac erlac0cac |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: Strategic Priority Research Program of the Chinese Academy of Sciences grantid: XDA23100401 – fundername: Young Talents in IGSNRR, CAS grantid: 2017RC201 – fundername: Youth Innovation Promotion Association of CAS grantid: 2019053 – fundername: National Natural Science Foundation of China grantid: 41877454 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2017YFA0605303 |
GroupedDBID | 1JI 29G 2WC 5B3 5GY 5PX 5VS 7.Q AAFWJ AAHBH AAJKP ABHWH ABJCF ACAFW ACGFO ACHIP ADBBV AEFHF AEJGL AENEX AFKRA AFPKN AFYNE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATCPS ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ BHPHI CBCFC CCPQU CEBXE CJUJL CRLBU CS3 DU5 E3Z EBS EDWGO EQZZN GROUPED_DOAJ GX1 HCIFZ HH5 IJHAN IOP IZVLO KNG KQ8 LAP M45 M48 M7S M~E N5L N9A O3W OK1 P2P PATMY PIMPY PJBAE PTHSS PYCSY RIN RNS RO9 SY9 T37 TR2 TSCCA W28 ~02 AAYXX AEUYN CITATION OVT PHGZM PHGZT 8FE 8FG ABUWG AEINN AZQEC DWQXO GNUQQ L6V PKEHL PQEST PQGLB PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c448t-1b4f73fe76c8d88d82502d0decac9e2ccdeab3a00af534787767d3f2972599fe3 |
IEDL.DBID | M48 |
ISSN | 1748-9326 |
IngestDate | Wed Aug 27 01:31:24 EDT 2025 Wed Aug 13 09:21:01 EDT 2025 Tue Jul 01 04:05:31 EDT 2025 Thu Apr 24 22:52:55 EDT 2025 Tue Aug 20 22:16:54 EDT 2024 Wed Aug 21 03:32:56 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c448t-1b4f73fe76c8d88d82502d0decac9e2ccdeab3a00af534787767d3f2972599fe3 |
Notes | ERL-111392.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0308-1550 0000-0001-7173-7761 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1088/1748-9326/ac0cac |
PQID | 2548697689 |
PQPubID | 4998671 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1088_1748_9326_ac0cac proquest_journals_2548697689 iop_journals_10_1088_1748_9326_ac0cac crossref_citationtrail_10_1088_1748_9326_ac0cac doaj_primary_oai_doaj_org_article_72874bb3488049b1a4b252545b6d48c4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol |
PublicationTitle | Environmental research letters |
PublicationTitleAbbrev | ERL |
PublicationTitleAlternate | Environ. Res. Lett |
PublicationYear | 2021 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Sanderson (erlac0cacbib36) 2017; 8 (erlac0cacbib15) 2018 Ricke (erlac0cacbib31) 2014; 9 DeConto (erlac0cacbib5) 2021; 593 MacDougall (erlac0cacbib21) 2020; 17 Rogelj (erlac0cacbib34) 2015; 10 Jones (erlac0cacbib18) 2019; 12 Rogelj (erlac0cacbib33) 2019; 573 Vermeer (erlac0cacbib45) 2009; 106 Arora (erlac0cacbib1) 2020; 17 Rasmussen (erlac0cacbib29) 2018; 13 Tong (erlac0cacbib40) 2019; 572 Detz (erlac0cacbib7) 2019; 133 Ocko (erlac0cacbib26) 2021; 16 Rogelj (erlac0cacbib32) 2016; 534 (erlac0cacbib4) 2020 (erlac0cacbib25) 2021 Rahmstorf (erlac0cacbib28) 2012; 39 (erlac0cacbib51) 2021 van Vuuren (erlac0cacbib42) 2011; 109 Jinyi (erlac0cacbib17) 2021 van Vuuren (erlac0cacbib43) 2018; 8 Xu (erlac0cacbib52) 2017; 114 Schaeffer (erlac0cacbib37) 2020; 162 (erlac0cacbib24) 2020 Riahi (erlac0cacbib30) 2017; 42 Smith (erlac0cacbib39) 2016; 6 Knutti (erlac0cacbib19) 2017; 10 (erlac0cacbib8) 2020 Chen (erlac0cacbib3) 2020; 11 (erlac0cacbib50) 2020 Olhoff (erlac0cacbib27) 2020 Mengel (erlac0cacbib23) 2018; 9 Mengel (erlac0cacbib22) 2016; 113 Fawcett (erlac0cacbib9) 2015; 350 DeConto (erlac0cacbib6) 2016; 531 Jiang (erlac0cacbib16) 2018; 9 (erlac0cacbib53) 2020 Wei (erlac0cacbib48) 2018; 92 (erlac0cacbib41) 2017 Wang (erlac0cacbib46) 2020; 12 Mac Dowell (erlac0cacbib20) 2017; 7 Hanna (erlac0cacbib11) 2021; 12 Gütschow (erlac0cacbib10) 2016; 8 Sherwood (erlac0cacbib38) 2020; 58 Salvia (erlac0cacbib35) 2021; 135 Höhne (erlac0cacbib12) 2020; 579 Cai (erlac0cacbib2) 2020 Huang (erlac0cacbib14) 2020; 92 Hu (erlac0cacbib13) 2013; 3 Wang (erlac0cacbib47) 2012; 8 Wei (erlac0cacbib49) 2021; 11 Vaughan (erlac0cacbib44) 2020 |
References_xml | – volume: 350 start-page: 1168 year: 2015 ident: erlac0cacbib9 article-title: Can Paris pledges avert severe climate change? publication-title: Science doi: 10.1126/science.aad5761 – start-page: p 128 year: 2020 ident: erlac0cacbib27 article-title: EmissionsGap report 2020 – year: 2018 ident: erlac0cacbib15 article-title: Global warming of 1.5 °C – volume: 114 start-page: 10315 year: 2017 ident: erlac0cacbib52 article-title: Well below 2 °C: mitigation strategies for avoiding dangerous to catastrophic climate changes publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1618481114 – volume: 113 start-page: 2597 year: 2016 ident: erlac0cacbib22 article-title: Future sea level rise constrained by observations and long-term commitment publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1500515113 – year: 2020 ident: erlac0cacbib4 article-title: China going carbon neutral before 2060 would lower warming projections by around 0.2–0.3 degrees celsius – volume: 8 start-page: 571 year: 2016 ident: erlac0cacbib10 article-title: The PRIMAP-hist national historical emissions time series (1850–2017) publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-8-571-2016 – year: 2020 ident: erlac0cacbib2 article-title: China status of CO2 capture, utilization and storage (CCUS) 2019 – year: 2020 ident: erlac0cacbib24 – year: 2021 ident: erlac0cacbib51 article-title: Xi Jinping presided over the ninth meeting of the financial and economic commission of the CPC Central Committee, emphasizing the promotion of standardized, healthy and sustainable development of the platform economy and incorporating carbon neutrality into the overall layout of ecological civilization – year: 2017 ident: erlac0cacbib41 article-title: The Paris Agreement | UNFCCC – volume: 135 year: 2021 ident: erlac0cacbib35 article-title: Will climate mitigation ambitions lead to carbon neutrality? An analysis of the local-level plans of 327 cities in the EU publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.110253 – volume: 17 start-page: 2987 year: 2020 ident: erlac0cacbib21 article-title: Is there warming in the pipeline? A multi-model analysis of the zero emissions commitment from CO2 publication-title: Biogeosciences doi: 10.5194/bg-17-2987-2020 – volume: 92 year: 2020 ident: erlac0cacbib14 article-title: The role of BECCS in deep decarbonization of China’s economy: a computable general equilibrium analysis publication-title: Energy Econ. doi: 10.1016/j.eneco.2020.104968 – volume: 109 start-page: 5 year: 2011 ident: erlac0cacbib42 article-title: The representative concentration pathways: an overview publication-title: Clim. Change doi: 10.1007/s10584-011-0148-z – volume: 16 year: 2021 ident: erlac0cacbib26 article-title: Acting rapidly to deploy readily available methane mitigation measures by sector can immediately slow global warming publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/abf9c8 – volume: 12 start-page: 4375 year: 2019 ident: erlac0cacbib18 article-title: The Zero Emissions Commitment Model Intercomparison roject (ZECMIP) contribution to C4MIP: quantifying committed climate changes following zero carbon emissions publication-title: Geosci. Model Dev. doi: 10.5194/gmd-12-4375-2019 – volume: 13 year: 2018 ident: erlac0cacbib29 article-title: Extreme sea level implications of 1.5 °C, 2.0 °C, and 2.5 °C temperature stabilization targets in the 21st and 22nd centuries publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/aaac87 – volume: 12 start-page: 58 year: 2020 ident: erlac0cacbib46 article-title: Implementation pathway and policy system of carbon neutrality vision publication-title: Chin. J. Environ. Manage. doi: 10.1016/j.jes.2020.03.045 – volume: 11 start-page: 95 year: 2020 ident: erlac0cacbib3 article-title: An investigation of parameter sensitivity of minimum complexity Earth simulator publication-title: Atmosphere doi: 10.3390/atmos11010095 – volume: 7 start-page: 243 year: 2017 ident: erlac0cacbib20 article-title: The role of CO2 capture and utilization in mitigating climate change publication-title: Nat. Clim. Change doi: 10.1038/nclimate3231 – year: 2021 ident: erlac0cacbib25 – year: 2020 ident: erlac0cacbib44 article-title: Japan steps up climate ambition with 2050 net zero emissions goal – volume: 133 year: 2019 ident: erlac0cacbib7 article-title: Transitioning towards negative CO2 emissions publication-title: Energy Policy doi: 10.1016/j.enpol.2019.110938 – volume: 162 start-page: 1787 year: 2020 ident: erlac0cacbib37 article-title: Comparing transformation pathways across major economies’ publication-title: Clim. Change doi: 10.1007/s10584-020-02837-9 – volume: 9 year: 2014 ident: erlac0cacbib31 article-title: Maximum warming occurs about one decade after a carbon dioxide emission publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/9/12/124002 – volume: 11 start-page: 112 year: 2021 ident: erlac0cacbib49 article-title: A proposed global layout of carbon capture and storage in line with a 2 °C climate target publication-title: Nat. Clim. Change doi: 10.1038/s41558-020-00960-0 – volume: 3 start-page: 730 year: 2013 ident: erlac0cacbib13 article-title: Mitigation of short-lived climate pollutants slows sea-level rise publication-title: Nat. Clim. Change doi: 10.1038/nclimate1869 – volume: 42 start-page: 153 year: 2017 ident: erlac0cacbib30 article-title: The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview publication-title: Glob. Environ. Change doi: 10.1016/j.gloenvcha.2016.05.009 – volume: 17 start-page: 4173 year: 2020 ident: erlac0cacbib1 article-title: Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models publication-title: Biogeosciences doi: 10.5194/bg-17-4173-2020 – volume: 572 start-page: 373 year: 2019 ident: erlac0cacbib40 article-title: Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target publication-title: Nature doi: 10.1038/s41586-019-1364-3 – year: 2020 ident: erlac0cacbib8 article-title: Long-term low greenhouse gas emission development strategy of the EU and its Member States – volume: 10 year: 2015 ident: erlac0cacbib34 article-title: Zero emission targets as long-term global goals for climate protection publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/10/10/105007 – volume: 106 start-page: 21527 year: 2009 ident: erlac0cacbib45 article-title: Global sea level linked to global temperature publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0907765106 – volume: 6 start-page: 42 year: 2016 ident: erlac0cacbib39 article-title: Biophysical and economic limits to negative CO2 emissions publication-title: Nat. Clim. Change doi: 10.1038/nclimate2870 – volume: 593 start-page: 83 year: 2021 ident: erlac0cacbib5 article-title: The Paris climate agreement and future sea-level rise from Antarctica publication-title: Nature doi: 10.1038/s41586-021-03427-0 – year: 2020 ident: erlac0cacbib50 article-title: Xi Jinping delivers an important speech at the general debate of the 75th UN general assembly – volume: 39 start-page: 861 year: 2012 ident: erlac0cacbib28 article-title: Testing the robustness of semi-empirical sea level projections publication-title: Clim. Dyn. doi: 10.1007/s00382-011-1226-7 – volume: 579 start-page: 25 year: 2020 ident: erlac0cacbib12 article-title: Emissions: world has four times the work or one-third of the time publication-title: Nature doi: 10.1038/d41586-020-00571-x – volume: 9 start-page: 93 year: 2018 ident: erlac0cacbib16 article-title: 1.5 °C target: not a hopeless imagination publication-title: Adv. Clim. Change Res. doi: 10.1016/j.accre.2018.06.001 – volume: 92 start-page: 585 year: 2018 ident: erlac0cacbib48 article-title: An integrated assessment of INDCs under shared socioeconomic pathways: an implementation of C3IAM publication-title: Nat. Hazards doi: 10.1007/s11069-018-3297-9 – volume: 8 start-page: 391 year: 2018 ident: erlac0cacbib43 article-title: Alternative pathways to the 1.5 °C target reduce the need for negative emission technologies publication-title: Nat. Clim. Change doi: 10.1038/s41558-018-0119-8 – volume: 10 start-page: 727 year: 2017 ident: erlac0cacbib19 article-title: Beyond equilibrium climate sensitivity publication-title: Nat. Geosci. doi: 10.1038/ngeo3017 – year: 2021 ident: erlac0cacbib17 article-title: Carbon neutral, global action: France strives to be the “ecological pioneer” on the international stage – volume: 573 start-page: 357 year: 2019 ident: erlac0cacbib33 article-title: A new scenario logic for the Paris agreement long-term temperature goal publication-title: Nature doi: 10.1038/s41586-019-1541-4 – volume: 9 start-page: 601 year: 2018 ident: erlac0cacbib23 article-title: Committed sea-level rise under the Paris agreement and the legacy of delayed mitigation action publication-title: Nat. Commun. doi: 10.1038/s41467-018-02985-8 – volume: 12 start-page: 368 year: 2021 ident: erlac0cacbib11 article-title: Emergency deployment of direct air capture as a response to the climate crisis publication-title: Nat. Commun. doi: 10.1038/s41467-020-20437-0 – volume: 531 start-page: 591 year: 2016 ident: erlac0cacbib6 article-title: Contribution of Antarctica to past and future sea-level rise publication-title: Nature doi: 10.1038/nature17145 – volume: 534 start-page: 631 year: 2016 ident: erlac0cacbib32 article-title: Paris agreement climate proposals need a boost to keep warming well below 2 °C publication-title: Nature doi: 10.1038/nature18307 – volume: 8 start-page: 232 year: 2012 ident: erlac0cacbib47 article-title: Equilibrium climate sensitivity publication-title: Adv. Clim. Change Res. – volume: 8 start-page: 827 year: 2017 ident: erlac0cacbib36 article-title: Community climate simulations to assess avoided impacts in 1.5 and 2 °C futures publication-title: Earth Syst. Dyn. Discuss. doi: 10.5194/esd-8-827-2017 – year: 2020 ident: erlac0cacbib53 article-title: Moon to declare S. Korea’s carbon neutrality vision in televised event – volume: 58 start-page: e2019RG year: 2020 ident: erlac0cacbib38 article-title: An assessment of Earth’s climate sensitivity using multiple lines of evidence publication-title: Rev. Geophys. doi: 10.1029/2019RG000678 |
SSID | ssj0054578 |
Score | 2.5235074 |
Snippet | As the largest emitter in the world, China recently pledged to reach a carbon peak before 2030 and carbon neutrality before 2060, which could accelerate the... |
SourceID | doaj proquest crossref iop |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 74032 |
SubjectTerms | Carbon Carbon dioxide Carbon dioxide emissions Carbon neutrality Carbon offsets Carbon sequestration Climate change Climate change mitigation Climate effects Emissions Emissions control Emitters Global temperatures Global warming Greenhouse effect Greenhouse gases Mathematical models Nitrous oxide Paris Agreement Sea level Sea level rise Statistical models temperature rise |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbhMxELZQT70goFQECpoDHDis4qx3115uUKWqEHCiUm-W_7aqFDZRkh648Rq8C0_Dk_D5J_0RUrkg5RRPst6dGc833vE3jL0OprOyl65yHXKTJrSzyiBuV8JKZRVimknE85-_dKdnzcfz9vxWq69YE5bpgfODm8pIyG6tiIbW9HZmGlu3yGpa2_lGucQEipi3S6byGoxhqcpLSbjRFLAbbg2kMjWOO-PuBKHE1Y_Qcrlc_bUgpyhz8og9LPCQ3udpPWYPwviEHc5vTqNhsLjj5oD9-rQcL6q4uFKkmCr8yGRGT7DgahELggheHAgYMFbB5jOXZAOgapaz6QQLISXj72gOf48Idrwg4EKKtUZ5q5DcIg4E-naZOTnwJ6nIvXTLonhKhVIv7t8_fm4IyyjmSjXvODmztpAYw1XaVNl-p1XaxHvKzk7mX49Pq9KOoXLI4bbVzDaDFEOQnVNe4QP0VHvuAx5oH2rnfDBWGM7N0IrI-SM76cVQ9xIpVj8Eccj2xuUYnjECSpPceymCE43z3gYJU6p711gVBi8mbLrTj3aFqzy2zFjo9M5cKR01qqNGddbohL29_sUq83TcI_shqvxaLjJspy9gd7rYnf6X3U3YGxiMLh6_uedidEcurHETnZYa2I2LWq_8MGFHO6u7kcOlVAesqPrn_2O6L9h-HatxUqHxEdvbrq_CS8CprX2VPOcPTOgfow priority: 102 providerName: Directory of Open Access Journals – databaseName: IOP Science Platform dbid: IOP link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VcuFCeVWEFjQHOHBw4nht7xpOgFJViNeBSj0grfblChGcKI8DnPgb_Bd-Db-Eb9ebVAVUIaQconictb2zM9-sZ75h7KHXtRGNsJmtEZuUvhpnGn4740ZII-HTdCSef_2mPj4pX55Wpzvs6bYWZjZPpn-Irz1RcP8IU0KcHAFDY40Cdoy0za22V9hVLuE4Q_Xe23cbMwxkIGR6L_m3sy74oUjXD--CIf-wydHRHO2xD5tL7PNLPg3XKzO0X39jb_zPe7jBricASs960Ztsx3e32P7kvN4NB9OCX95mP17NurMsmG8KJFaJgZl05whrJJuGlCOCnfAElBnybPuqTjIeYLiXM7FGhhD05U9oAosSMHJ3RkCeFLKZ-s1IstNwwNPnjz3rB_4kptGnflwU6mAodvv--e37kmCoca1U5HVOVi8MJDq_jts2qy80j9uEd9jJ0eT9i-MsNXzILKLEVTY2ZSt460VtpZP4AJ8VLnceT6jxhbXOa8N1nuu24oFVSNTC8bZoBIK4pvV8n-12s87fZQQcKHLnBPeWl9Y54wWUtWhsaaRvHR-w0Wb6lU1s6KEpx1TFt_JSqjBFKkyR6qdowB5vz5j3TCCXyD4PGrWVCxze8Qfogkq6oERoNWAMDya0bMxYl6aoEK9XpnaltOWAPYL6qGRTlpcMRhfk_AI3USuhgA5zXqi5awfscKPU53IYStZAo7K5948jHbBrRUjpidnKh2x3tVj7-8BkK_Mgrr1fIBE3Cw priority: 102 providerName: IOP Publishing – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtNAEF5BeuGCyk9FoKA5wIHDKo7X9q57QRSlqhBUCFGpt9X-OaoUbJOkh976Gn2XPg1Pwsx606hCiuRTdhLbmb9vZmdnGHsfTGVlLR13FcYmRSin3KDf5sJKZRX6NBMbz38_q07Pi68X5UVKuK1SWeXGJkZD7TtHOfIJBjKqQt-p6k_9H05To2h3NY3QeMz20AQrNWJ7x7OzHz83thjhgVRpcxLVaYLwG9UbEcvEuMwZ98AZxZ796GIuu_4_wxy9zck-e5pgInwe-PqMPQrtc3Yw255Kw8WklqsX7O5b1845GVmgVlOpTzKY1gNKMl9QYRCgNgdALEjVsMPZS7ABIetAZ-NJFsDQLDuCGeo9Idl2DogPgWqOhpQhuAUtBPh9OfTmwB-Jxe5pahbQaRWIM7n_3tyuAM0pPivkWZWBM0uLFG24ismV9TX0MZn3kp2fzH59OeVpLAN3GMut-dQWjRRNkJVTXuGFKCr3mQ_4h9Yhd84HY4XJMtOUgnr_yEp60eS1xFCrboI4YKO2a8MrBojWZOa9FMGJwnlvg0SRymtXWBUaL8ZssuGPdqlnOY3OWOi4d66UJo5q4qgeODpmH--_0Q_9OnbQHhPL7-mo03b8oFvOdVJcLWkggLWCDF1R26kpbF6iMJa28oVyxZh9QIHRSfNXO24GD-jCEl-i0lIjhstErnvfjNnhRuq2dFu5f717-Q17klO9TSwlPmSj9fIqvEXAtLbvklb8AxQWGhk priority: 102 providerName: ProQuest |
Title | Long-term temperature and sea-level rise stabilization before and beyond 2100: Estimating the additional climate mitigation contribution from China’s recent 2060 carbon neutrality pledge |
URI | https://iopscience.iop.org/article/10.1088/1748-9326/ac0cac https://www.proquest.com/docview/2548697689 https://doaj.org/article/72874bb3488049b1a4b252545b6d48c4 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF7R9sIF8aoIlGgOcOBg4njX3nUlhChKKIg-hIjobbUvR5WCkyapRG_8Df4Lv4ZfwszaSVRRVUKKfIgndux5fbM7D8ZeBFNYWUqXuAJjExHyfmLQbyfcSmUV-jQTG88fHReHI_HpLD_blEe3L3BxY2hH86RG88nrHxdXb1Hh3zQZcqqHoBqVFnFIz7jUGbfFdtAvSZpncCTWewoIFaJdXlO3m5Y3XeGak4q9_NH1nE9n_xjs6IWG99m9Fj7Cu4bfD9idUD9ku4NNtRqebNV18Yj9_jytxwkZX6AWVG3_ZDC1B5TwZEIJQ4BaHgAxImXJNjWZYANC2YbOxgoXwJAt3YcB2gNCuPUYEDcC5SI1S4ngJnQiwPfzpmcHXiQmwbfTtICqWCDO6v7z89cC0Mzif4UsLVJwZm6Rog6XcdFleQWzuMj3mI2Gg6_vD5N2XEPiMMZbJn0rKsmrIAunvMIPoqvMpz7gCy1D5pwPxnKTpqbKOfUEkoX0vMpKiSFYWQW-y7braR2eMEAUJ1PvJQ-OC-e9DRJFLSudsCpUnndYb8Uf7dpe5jRSY6LjnrpSmjiqiaO64WiHvVr_Ytb08biF9oBYvqajDtzxi-l8rFuF1pIGBVjLyQCK0vaNsFmO0XZuCy-UEx32EgVGrwT6lpvBNbowx4cotNSI7VKe6ZmvOmxvJXUbOryVKhBLqvLpfzzaM3Y3o6ScmG-8x7aX88vwHFHV0nbZlhp-6LKdg8Hx6ZduXJvA48eT025UIzye8G9_AZe9J1M |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VcoAL4q8itMAc6IGDFcfreNdICPGTkNK0p1bqbdk_R5WCbZJUVW-8Bi_BE_A0PAkza7tRhZRbpZyym42Tmf3mm935Yey115kRubCRzdA3Sf1wEGm02xE3QhqJNk2HwvNHx9nkNP16NjzbYr-7XBgKq-wwMQC1qyydkffRkZEZ2k6Zv69_RNQ1im5XuxYajVoc-qtLdNmW7w4-o3z3k2Q8Ovk0idquApFFV2QVDUxaCF54kVnpJL6QBCQudt5qm_vEWue14TqOdTHkVLpGZMLxIskFegp54Tmue4fdTTlacspMH3_pkB_JiJDtVShu3j6SfQQT5Ed9bWNc_YbpCx0C0KCdV_V_ZiDYtvFD9qAlpfCh0aJHbMuXj9nOaJ0Dh4MtCCyfsD_TqpxFBOlAha3aqsygSwf4B0VzCkMCxA4PyDwp9rbJ9ATjkSA380zImwF0BOO3MEKUId5czgDZKFCEU3NACXZOAx6-nzeVQHCREFrf9ugCyo2B0AH8789fS0DwxmeFJM5isHphcEbpL8JRzuoK6nB0-JSd3oq4dth2WZX-GQPkhiJ2TnBveWqdM16gAie5TY30heM91u_ko2xbIZ0adcxVuKmXUpFEFUlUNRLtsTfXn6ib6iAb5n4kkV_Po7re4Y1qMVMtTChB7QeM4QSraW4GOjXJEFV_aDKXSpv22D4qjGpxZrnhy-DGPL_AH5EpoZAxxjxRtSt6bK_TuvW89S57vnn4Fbs3OTmaqunB8eEuu59QpE8IYt5j26vFhX-BVG1lXob9AezbbW_If8FwVrc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NbhMxFLZKkRAb_itSCrwFXbCYZGLPjD1ILIAmamkpXVCpO-O_qRDpJEomQmXFNTgFF-AQnIGT8OxxUhVQxaYLpCxGmRfb47yf73neDyFPnCo0L7lJTIG-SebyfqLQbidMc6EF2jQVCs-_2S-2D7PXR_nRCvm2zIUZT6Lq7-JlWyi43cIYECd6iKFRRhF29JRJjTK9ia1iVOWuO_2EPtvs-c4W_sGblA4H715tJ7GtQGLQF2mSvs4qzirHCyOswA-iAGpT63Cs0lFjrFOaqTRVVc587RpecMsqWnJ0FcrKMRz3CrmaM7TVPmPw7cFC9SMa4SK-C_3bSs_ZvtAiAC0aPuYfdiAYt-FN8mOxLW1My8fuvNFd8_m3ipH_0b7dIjci0IYX7fJukxVX3yFrg7O8PrwZFdvsLvm-N66PE2-mwBfripWmQdUWcO3JyIdWAepDB4imfTxxm70K2iHob-l0yAUCdG7TZzBAzel9gfoYEGGDj9pqD13BjPwNBycf2uomOEhIF4h9x8Dn-0Doav7zy9cZoEHCtQJNixSMmmqkqN08HE81pzAJx6H3yOGl7OQaWa3HtbtPAPEuT63lzBmWGWu14yiUtDSZFq6yrEN6C5aTJlZ9981HRjJEHwghPVtIzxayZYsOebr8xaSteHIB7UvPxUs6X6s8fIH8JyP_Se5bKmjNvKnISt1XmaY5RVnRhc2EyTpkE1lWRt05u2AyOEfnpvgQheQSUXDKqER27pCNhSCd0eFUokDULcr1f5zpMbl2sDWUezv7uw_IdeqjmEKA9gZZbaZz9xBhaKMfBdEH8v6yZeYXSRqYVA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-term+temperature+and+sea-level+rise+stabilization+before+and+beyond+2100%3A+Estimating+the+additional+climate+mitigation+contribution+from+China%E2%80%99s+recent+2060+carbon+neutrality+pledge&rft.jtitle=Environmental+research+letters&rft.au=Chen%2C+Jiewei&rft.au=Cui%2C+Huijuan&rft.au=Xu%2C+Yangyang&rft.au=Ge%2C+Quansheng&rft.date=2021-07-01&rft.issn=1748-9326&rft.eissn=1748-9326&rft.volume=16&rft.issue=7&rft.spage=74032&rft_id=info:doi/10.1088%2F1748-9326%2Fac0cac&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1748_9326_ac0cac |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-9326&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-9326&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-9326&client=summon |