Long-term temperature and sea-level rise stabilization before and beyond 2100: Estimating the additional climate mitigation contribution from China’s recent 2060 carbon neutrality pledge

As the largest emitter in the world, China recently pledged to reach a carbon peak before 2030 and carbon neutrality before 2060, which could accelerate the progress of mitigating negative climate change effects. In this study, we used the Minimum Complexity Earth Simulator and a semi-empirical stat...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental research letters Vol. 16; no. 7; pp. 74032 - 74043
Main Authors Chen, Jiewei, Cui, Huijuan, Xu, Yangyang, Ge, Quansheng
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As the largest emitter in the world, China recently pledged to reach a carbon peak before 2030 and carbon neutrality before 2060, which could accelerate the progress of mitigating negative climate change effects. In this study, we used the Minimum Complexity Earth Simulator and a semi-empirical statistical model to quantify the global mean temperature and sea-level rise (SLR) response under a suite of emission pathways that are constructed to cover various carbon peak and carbon neutrality years in China. The results show that China will require a carbon emission reduction rate of no less than 6%/year and a growth rate of more than 10%/year for carbon capture capacity to achieve carbon neutrality by 2060. Carbon peak years and peak emissions contribute significantly to mitigating climate change in the near term, while carbon neutrality years are more influential in the long term. Mitigation due to recent China’s pledge alone will contribute a 0.16 °C–0.21 °C avoided warming at 2100 and also lessen the cumulative warming above 1.5 °C level. When accompanied by coordinated international efforts to reach global carbon neutrality before 2070, the 2 °C target can be achieved. However, the 1.5 °C target requires additional efforts, such as global scale adoption of negative emission technology for CO 2 , as well as a deep cut in non-CO 2 GHG emissions. Collectively, the efforts of adopting negative emission technolgy and curbing all greenhouse gas emissions will reduce global warming by 0.9 °C −1.2 °C at 2100, and also reduce SLR by 49–59 cm in 2200, compared to a baseline mitigation pathway already aiming at 2 °C. Our findings suggest that while China’s ambitious carbon-neutral pledge contributes to Paris Agreement’s targets, additional major efforts will be needed, such as reaching an earlier and lower CO 2 emission peak, developing negative emission technology for CO 2 , and cutting other non-CO 2 GHGs such as N 2 O, CH 4 , O 3 , and HFCs.
AbstractList As the largest emitter in the world, China recently pledged to reach a carbon peak before 2030 and carbon neutrality before 2060, which could accelerate the progress of mitigating negative climate change effects. In this study, we used the Minimum Complexity Earth Simulator and a semi-empirical statistical model to quantify the global mean temperature and sea-level rise (SLR) response under a suite of emission pathways that are constructed to cover various carbon peak and carbon neutrality years in China. The results show that China will require a carbon emission reduction rate of no less than 6%/year and a growth rate of more than 10%/year for carbon capture capacity to achieve carbon neutrality by 2060. Carbon peak years and peak emissions contribute significantly to mitigating climate change in the near term, while carbon neutrality years are more influential in the long term. Mitigation due to recent China’s pledge alone will contribute a 0.16 °C–0.21 °C avoided warming at 2100 and also lessen the cumulative warming above 1.5 °C level. When accompanied by coordinated international efforts to reach global carbon neutrality before 2070, the 2 °C target can be achieved. However, the 1.5 °C target requires additional efforts, such as global scale adoption of negative emission technology for CO _2 , as well as a deep cut in non-CO _2 GHG emissions. Collectively, the efforts of adopting negative emission technolgy and curbing all greenhouse gas emissions will reduce global warming by 0.9 °C −1.2 °C at 2100, and also reduce SLR by 49–59 cm in 2200, compared to a baseline mitigation pathway already aiming at 2 °C. Our findings suggest that while China’s ambitious carbon-neutral pledge contributes to Paris Agreement’s targets, additional major efforts will be needed, such as reaching an earlier and lower CO _2 emission peak, developing negative emission technology for CO _2 , and cutting other non-CO _2 GHGs such as N _2 O, CH _4 , O _3 , and HFCs.
As the largest emitter in the world, China recently pledged to reach a carbon peak before 2030 and carbon neutrality before 2060, which could accelerate the progress of mitigating negative climate change effects. In this study, we used the Minimum Complexity Earth Simulator and a semi-empirical statistical model to quantify the global mean temperature and sea-level rise (SLR) response under a suite of emission pathways that are constructed to cover various carbon peak and carbon neutrality years in China. The results show that China will require a carbon emission reduction rate of no less than 6%/year and a growth rate of more than 10%/year for carbon capture capacity to achieve carbon neutrality by 2060. Carbon peak years and peak emissions contribute significantly to mitigating climate change in the near term, while carbon neutrality years are more influential in the long term. Mitigation due to recent China’s pledge alone will contribute a 0.16 °C–0.21 °C avoided warming at 2100 and also lessen the cumulative warming above 1.5 °C level. When accompanied by coordinated international efforts to reach global carbon neutrality before 2070, the 2 °C target can be achieved. However, the 1.5 °C target requires additional efforts, such as global scale adoption of negative emission technology for CO 2 , as well as a deep cut in non-CO 2 GHG emissions. Collectively, the efforts of adopting negative emission technolgy and curbing all greenhouse gas emissions will reduce global warming by 0.9 °C −1.2 °C at 2100, and also reduce SLR by 49–59 cm in 2200, compared to a baseline mitigation pathway already aiming at 2 °C. Our findings suggest that while China’s ambitious carbon-neutral pledge contributes to Paris Agreement’s targets, additional major efforts will be needed, such as reaching an earlier and lower CO 2 emission peak, developing negative emission technology for CO 2 , and cutting other non-CO 2 GHGs such as N 2 O, CH 4 , O 3 , and HFCs.
As the largest emitter in the world, China recently pledged to reach a carbon peak before 2030 and carbon neutrality before 2060, which could accelerate the progress of mitigating negative climate change effects. In this study, we used the Minimum Complexity Earth Simulator and a semi-empirical statistical model to quantify the global mean temperature and sea-level rise (SLR) response under a suite of emission pathways that are constructed to cover various carbon peak and carbon neutrality years in China. The results show that China will require a carbon emission reduction rate of no less than 6%/year and a growth rate of more than 10%/year for carbon capture capacity to achieve carbon neutrality by 2060. Carbon peak years and peak emissions contribute significantly to mitigating climate change in the near term, while carbon neutrality years are more influential in the long term. Mitigation due to recent China’s pledge alone will contribute a 0.16 °C–0.21 °C avoided warming at 2100 and also lessen the cumulative warming above 1.5 °C level. When accompanied by coordinated international efforts to reach global carbon neutrality before 2070, the 2 °C target can be achieved. However, the 1.5 °C target requires additional efforts, such as global scale adoption of negative emission technology for CO2, as well as a deep cut in non-CO2 GHG emissions. Collectively, the efforts of adopting negative emission technolgy and curbing all greenhouse gas emissions will reduce global warming by 0.9 °C −1.2 °C at 2100, and also reduce SLR by 49–59 cm in 2200, compared to a baseline mitigation pathway already aiming at 2 °C. Our findings suggest that while China’s ambitious carbon-neutral pledge contributes to Paris Agreement’s targets, additional major efforts will be needed, such as reaching an earlier and lower CO2 emission peak, developing negative emission technology for CO2, and cutting other non-CO2 GHGs such as N2O, CH4, O3, and HFCs.
Author Xu, Yangyang
Cui, Huijuan
Chen, Jiewei
Ge, Quansheng
Author_xml – sequence: 1
  givenname: Jiewei
  surname: Chen
  fullname: Chen, Jiewei
  organization: University of Chinese Academy of Sciences , Beijing 100049, People’s Republic of China
– sequence: 2
  givenname: Huijuan
  orcidid: 0000-0002-0308-1550
  surname: Cui
  fullname: Cui, Huijuan
  organization: University of Chinese Academy of Sciences , Beijing 100049, People’s Republic of China
– sequence: 3
  givenname: Yangyang
  orcidid: 0000-0001-7173-7761
  surname: Xu
  fullname: Xu, Yangyang
  organization: College of Geosciences, Texas A&M University Department of Atmospheric Sciences, College Station, TX 77843-3150, United States of America
– sequence: 4
  givenname: Quansheng
  surname: Ge
  fullname: Ge, Quansheng
  organization: University of Chinese Academy of Sciences , Beijing 100049, People’s Republic of China
BookMark eNp9kc2K1TAUx4uM4Mzo3mXAhRvrpGnapO7kMurABTe6Dvk46eTSNjVJhevK1_BdfBqfxPR2_EBUCJzk5Hf-Ofmfi-Js8hMUxeMKP68w51cVo7zsatJeSY211PeK85-ps9_2D4qLGA8YN7Rh_Lz4uvdTXyYII0owzhBkWgIgORkUQZYDfIQBBRcBxSSVG9wnmZyfkALr7zgFR58DqTB-ga5jcmNGph6l23xvjFt5OSA9rBeAxpzoNxHtpxScWk4HG_yIdrdukt8-f4kogIYpIYJbjLQMKhMTLCnIwaUjmgcwPTws7ls5RHh0Fy-L96-u3-3elPu3r292L_elppSnslLUstoCazU3PC_SYGKwgWxTB0RrA1LVEmNpm5oyzljLTG1Jx0jTdRbqy-Jm0zVeHsQc8kfCUXjpxCnhQy9kSE4PIBjhjCpVU84x7VQlqSINyWar1lCuadZ6smnNwX9YICZx8EvIBkWRMd52rOVdptqN0sHHGMAK7dLJtOyAG0SFxTp1sY5VrGMV29RzIf6j8Ee7_yl5upU4P_9qBkJ-pRVMYEZxTcRsbCaf_YX8p_B3RAzR4w
CODEN ERLNAL
CitedBy_id crossref_primary_10_1016_j_atmosres_2022_106384
crossref_primary_10_1093_tse_tdac043
crossref_primary_10_1016_j_watcyc_2022_06_001
crossref_primary_10_1080_23812346_2023_2213540
crossref_primary_10_1016_j_fuel_2021_123016
crossref_primary_10_1177_10755470221147286
crossref_primary_10_1016_j_energy_2023_129181
crossref_primary_10_1016_j_oceaneng_2024_116791
crossref_primary_10_1016_j_jclepro_2021_130233
crossref_primary_10_1007_s43979_022_00009_5
crossref_primary_10_1016_j_biortech_2023_128718
crossref_primary_10_1016_j_applthermaleng_2023_121443
crossref_primary_10_1016_j_enggeo_2022_106871
crossref_primary_10_1007_s42524_022_0205_5
crossref_primary_10_1016_j_ecolind_2023_111310
crossref_primary_10_1016_j_accre_2023_07_006
crossref_primary_10_1016_j_fuel_2023_129390
crossref_primary_10_1080_19475705_2022_2122593
crossref_primary_10_3390_polym13213748
crossref_primary_10_1016_j_renene_2023_04_003
crossref_primary_10_1016_j_scitotenv_2022_154653
crossref_primary_10_1016_j_seppur_2022_122195
crossref_primary_10_1038_s41467_022_33047_9
crossref_primary_10_1038_s43247_023_01184_8
crossref_primary_10_1007_s00603_022_02983_9
crossref_primary_10_1016_j_scitotenv_2021_151718
crossref_primary_10_3390_su15065237
crossref_primary_10_1002_sd_3180
crossref_primary_10_1109_TTE_2022_3220411
crossref_primary_10_1016_j_energy_2021_122534
crossref_primary_10_1080_15481603_2023_2301275
crossref_primary_10_3390_en16020953
crossref_primary_10_1051_e3sconf_202130801021
crossref_primary_10_1016_j_nanoen_2025_110897
crossref_primary_10_3390_en18051258
crossref_primary_10_3390_en15166002
crossref_primary_10_1088_2515_7620_ad61c2
crossref_primary_10_1016_j_applthermaleng_2022_118813
crossref_primary_10_1016_j_eap_2023_01_004
crossref_primary_10_3390_rs16091609
crossref_primary_10_1038_s41612_023_00412_4
crossref_primary_10_3390_land11101673
crossref_primary_10_3390_en14227797
crossref_primary_10_1016_S2542_5196_21_00252_7
crossref_primary_10_3390_land14030618
crossref_primary_10_1016_j_eswa_2024_126184
crossref_primary_10_1007_s11356_025_36167_z
crossref_primary_10_1016_j_scitotenv_2023_165782
crossref_primary_10_54691_bcpssh_v17i_663
crossref_primary_10_1016_j_enpol_2023_113677
crossref_primary_10_3390_en14227782
crossref_primary_10_1016_j_bios_2022_114115
crossref_primary_10_3390_atmos15111322
crossref_primary_10_1007_s13132_024_01902_3
crossref_primary_10_1016_j_scs_2024_105593
crossref_primary_10_1016_j_jclepro_2022_132968
crossref_primary_10_54097_hbem_v3i_4668
crossref_primary_10_1016_j_scitotenv_2022_154909
crossref_primary_10_3390_su15075723
crossref_primary_10_1093_ijlct_ctac027
crossref_primary_10_1016_j_est_2024_113071
crossref_primary_10_1016_j_scitotenv_2022_156842
crossref_primary_10_3390_su14042202
Cites_doi 10.1126/science.aad5761
10.1073/pnas.1618481114
10.1073/pnas.1500515113
10.5194/essd-8-571-2016
10.1016/j.rser.2020.110253
10.5194/bg-17-2987-2020
10.1016/j.eneco.2020.104968
10.1007/s10584-011-0148-z
10.1088/1748-9326/abf9c8
10.5194/gmd-12-4375-2019
10.1088/1748-9326/aaac87
10.1016/j.jes.2020.03.045
10.3390/atmos11010095
10.1038/nclimate3231
10.1016/j.enpol.2019.110938
10.1007/s10584-020-02837-9
10.1088/1748-9326/9/12/124002
10.1038/s41558-020-00960-0
10.1038/nclimate1869
10.1016/j.gloenvcha.2016.05.009
10.5194/bg-17-4173-2020
10.1038/s41586-019-1364-3
10.1088/1748-9326/10/10/105007
10.1073/pnas.0907765106
10.1038/nclimate2870
10.1038/s41586-021-03427-0
10.1007/s00382-011-1226-7
10.1038/d41586-020-00571-x
10.1016/j.accre.2018.06.001
10.1007/s11069-018-3297-9
10.1038/s41558-018-0119-8
10.1038/ngeo3017
10.1038/s41586-019-1541-4
10.1038/s41467-018-02985-8
10.1038/s41467-020-20437-0
10.1038/nature17145
10.1038/nature18307
10.5194/esd-8-827-2017
10.1029/2019RG000678
ContentType Journal Article
Copyright 2021 The Author(s). Published by IOP Publishing Ltd
2021. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Author(s). Published by IOP Publishing Ltd
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
M7S
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
DOA
DOI 10.1088/1748-9326/ac0cac
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection (ProQuest)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection (ProQuest)
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 1748-9326
ExternalDocumentID oai_doaj_org_article_72874bb3488049b1a4b252545b6d48c4
10_1088_1748_9326_ac0cac
erlac0cac
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Strategic Priority Research Program of the Chinese Academy of Sciences
  grantid: XDA23100401
– fundername: Young Talents in IGSNRR, CAS
  grantid: 2017RC201
– fundername: Youth Innovation Promotion Association of CAS
  grantid: 2019053
– fundername: National Natural Science Foundation of China
  grantid: 41877454
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2017YFA0605303
GroupedDBID 1JI
29G
2WC
5B3
5GY
5PX
5VS
7.Q
AAFWJ
AAHBH
AAJKP
ABHWH
ABJCF
ACAFW
ACGFO
ACHIP
ADBBV
AEFHF
AEJGL
AENEX
AFKRA
AFPKN
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATCPS
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
BHPHI
CBCFC
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
KNG
KQ8
LAP
M45
M48
M7S
M~E
N5L
N9A
O3W
OK1
P2P
PATMY
PIMPY
PJBAE
PTHSS
PYCSY
RIN
RNS
RO9
SY9
T37
TR2
TSCCA
W28
~02
AAYXX
AEUYN
CITATION
OVT
PHGZM
PHGZT
8FE
8FG
ABUWG
AEINN
AZQEC
DWQXO
GNUQQ
L6V
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c448t-1b4f73fe76c8d88d82502d0decac9e2ccdeab3a00af534787767d3f2972599fe3
IEDL.DBID M48
ISSN 1748-9326
IngestDate Wed Aug 27 01:31:24 EDT 2025
Wed Aug 13 09:21:01 EDT 2025
Tue Jul 01 04:05:31 EDT 2025
Thu Apr 24 22:52:55 EDT 2025
Tue Aug 20 22:16:54 EDT 2024
Wed Aug 21 03:32:56 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c448t-1b4f73fe76c8d88d82502d0decac9e2ccdeab3a00af534787767d3f2972599fe3
Notes ERL-111392.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0308-1550
0000-0001-7173-7761
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1088/1748-9326/ac0cac
PQID 2548697689
PQPubID 4998671
PageCount 12
ParticipantIDs crossref_primary_10_1088_1748_9326_ac0cac
proquest_journals_2548697689
iop_journals_10_1088_1748_9326_ac0cac
crossref_citationtrail_10_1088_1748_9326_ac0cac
doaj_primary_oai_doaj_org_article_72874bb3488049b1a4b252545b6d48c4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Environmental research letters
PublicationTitleAbbrev ERL
PublicationTitleAlternate Environ. Res. Lett
PublicationYear 2021
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Sanderson (erlac0cacbib36) 2017; 8
(erlac0cacbib15) 2018
Ricke (erlac0cacbib31) 2014; 9
DeConto (erlac0cacbib5) 2021; 593
MacDougall (erlac0cacbib21) 2020; 17
Rogelj (erlac0cacbib34) 2015; 10
Jones (erlac0cacbib18) 2019; 12
Rogelj (erlac0cacbib33) 2019; 573
Vermeer (erlac0cacbib45) 2009; 106
Arora (erlac0cacbib1) 2020; 17
Rasmussen (erlac0cacbib29) 2018; 13
Tong (erlac0cacbib40) 2019; 572
Detz (erlac0cacbib7) 2019; 133
Ocko (erlac0cacbib26) 2021; 16
Rogelj (erlac0cacbib32) 2016; 534
(erlac0cacbib4) 2020
(erlac0cacbib25) 2021
Rahmstorf (erlac0cacbib28) 2012; 39
(erlac0cacbib51) 2021
van Vuuren (erlac0cacbib42) 2011; 109
Jinyi (erlac0cacbib17) 2021
van Vuuren (erlac0cacbib43) 2018; 8
Xu (erlac0cacbib52) 2017; 114
Schaeffer (erlac0cacbib37) 2020; 162
(erlac0cacbib24) 2020
Riahi (erlac0cacbib30) 2017; 42
Smith (erlac0cacbib39) 2016; 6
Knutti (erlac0cacbib19) 2017; 10
(erlac0cacbib8) 2020
Chen (erlac0cacbib3) 2020; 11
(erlac0cacbib50) 2020
Olhoff (erlac0cacbib27) 2020
Mengel (erlac0cacbib23) 2018; 9
Mengel (erlac0cacbib22) 2016; 113
Fawcett (erlac0cacbib9) 2015; 350
DeConto (erlac0cacbib6) 2016; 531
Jiang (erlac0cacbib16) 2018; 9
(erlac0cacbib53) 2020
Wei (erlac0cacbib48) 2018; 92
(erlac0cacbib41) 2017
Wang (erlac0cacbib46) 2020; 12
Mac Dowell (erlac0cacbib20) 2017; 7
Hanna (erlac0cacbib11) 2021; 12
Gütschow (erlac0cacbib10) 2016; 8
Sherwood (erlac0cacbib38) 2020; 58
Salvia (erlac0cacbib35) 2021; 135
Höhne (erlac0cacbib12) 2020; 579
Cai (erlac0cacbib2) 2020
Huang (erlac0cacbib14) 2020; 92
Hu (erlac0cacbib13) 2013; 3
Wang (erlac0cacbib47) 2012; 8
Wei (erlac0cacbib49) 2021; 11
Vaughan (erlac0cacbib44) 2020
References_xml – volume: 350
  start-page: 1168
  year: 2015
  ident: erlac0cacbib9
  article-title: Can Paris pledges avert severe climate change?
  publication-title: Science
  doi: 10.1126/science.aad5761
– start-page: p 128
  year: 2020
  ident: erlac0cacbib27
  article-title: EmissionsGap report 2020
– year: 2018
  ident: erlac0cacbib15
  article-title: Global warming of 1.5 °C
– volume: 114
  start-page: 10315
  year: 2017
  ident: erlac0cacbib52
  article-title: Well below 2 °C: mitigation strategies for avoiding dangerous to catastrophic climate changes
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.1618481114
– volume: 113
  start-page: 2597
  year: 2016
  ident: erlac0cacbib22
  article-title: Future sea level rise constrained by observations and long-term commitment
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.1500515113
– year: 2020
  ident: erlac0cacbib4
  article-title: China going carbon neutral before 2060 would lower warming projections by around 0.2–0.3 degrees celsius
– volume: 8
  start-page: 571
  year: 2016
  ident: erlac0cacbib10
  article-title: The PRIMAP-hist national historical emissions time series (1850–2017)
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-8-571-2016
– year: 2020
  ident: erlac0cacbib2
  article-title: China status of CO2 capture, utilization and storage (CCUS) 2019
– year: 2020
  ident: erlac0cacbib24
– year: 2021
  ident: erlac0cacbib51
  article-title: Xi Jinping presided over the ninth meeting of the financial and economic commission of the CPC Central Committee, emphasizing the promotion of standardized, healthy and sustainable development of the platform economy and incorporating carbon neutrality into the overall layout of ecological civilization
– year: 2017
  ident: erlac0cacbib41
  article-title: The Paris Agreement | UNFCCC
– volume: 135
  year: 2021
  ident: erlac0cacbib35
  article-title: Will climate mitigation ambitions lead to carbon neutrality? An analysis of the local-level plans of 327 cities in the EU
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.110253
– volume: 17
  start-page: 2987
  year: 2020
  ident: erlac0cacbib21
  article-title: Is there warming in the pipeline? A multi-model analysis of the zero emissions commitment from CO2
  publication-title: Biogeosciences
  doi: 10.5194/bg-17-2987-2020
– volume: 92
  year: 2020
  ident: erlac0cacbib14
  article-title: The role of BECCS in deep decarbonization of China’s economy: a computable general equilibrium analysis
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2020.104968
– volume: 109
  start-page: 5
  year: 2011
  ident: erlac0cacbib42
  article-title: The representative concentration pathways: an overview
  publication-title: Clim. Change
  doi: 10.1007/s10584-011-0148-z
– volume: 16
  year: 2021
  ident: erlac0cacbib26
  article-title: Acting rapidly to deploy readily available methane mitigation measures by sector can immediately slow global warming
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/abf9c8
– volume: 12
  start-page: 4375
  year: 2019
  ident: erlac0cacbib18
  article-title: The Zero Emissions Commitment Model Intercomparison roject (ZECMIP) contribution to C4MIP: quantifying committed climate changes following zero carbon emissions
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-12-4375-2019
– volume: 13
  year: 2018
  ident: erlac0cacbib29
  article-title: Extreme sea level implications of 1.5 °C, 2.0 °C, and 2.5 °C temperature stabilization targets in the 21st and 22nd centuries
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aaac87
– volume: 12
  start-page: 58
  year: 2020
  ident: erlac0cacbib46
  article-title: Implementation pathway and policy system of carbon neutrality vision
  publication-title: Chin. J. Environ. Manage.
  doi: 10.1016/j.jes.2020.03.045
– volume: 11
  start-page: 95
  year: 2020
  ident: erlac0cacbib3
  article-title: An investigation of parameter sensitivity of minimum complexity Earth simulator
  publication-title: Atmosphere
  doi: 10.3390/atmos11010095
– volume: 7
  start-page: 243
  year: 2017
  ident: erlac0cacbib20
  article-title: The role of CO2 capture and utilization in mitigating climate change
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate3231
– year: 2021
  ident: erlac0cacbib25
– year: 2020
  ident: erlac0cacbib44
  article-title: Japan steps up climate ambition with 2050 net zero emissions goal
– volume: 133
  year: 2019
  ident: erlac0cacbib7
  article-title: Transitioning towards negative CO2 emissions
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2019.110938
– volume: 162
  start-page: 1787
  year: 2020
  ident: erlac0cacbib37
  article-title: Comparing transformation pathways across major economies’
  publication-title: Clim. Change
  doi: 10.1007/s10584-020-02837-9
– volume: 9
  year: 2014
  ident: erlac0cacbib31
  article-title: Maximum warming occurs about one decade after a carbon dioxide emission
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/9/12/124002
– volume: 11
  start-page: 112
  year: 2021
  ident: erlac0cacbib49
  article-title: A proposed global layout of carbon capture and storage in line with a 2 °C climate target
  publication-title: Nat. Clim. Change
  doi: 10.1038/s41558-020-00960-0
– volume: 3
  start-page: 730
  year: 2013
  ident: erlac0cacbib13
  article-title: Mitigation of short-lived climate pollutants slows sea-level rise
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate1869
– volume: 42
  start-page: 153
  year: 2017
  ident: erlac0cacbib30
  article-title: The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview
  publication-title: Glob. Environ. Change
  doi: 10.1016/j.gloenvcha.2016.05.009
– volume: 17
  start-page: 4173
  year: 2020
  ident: erlac0cacbib1
  article-title: Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models
  publication-title: Biogeosciences
  doi: 10.5194/bg-17-4173-2020
– volume: 572
  start-page: 373
  year: 2019
  ident: erlac0cacbib40
  article-title: Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target
  publication-title: Nature
  doi: 10.1038/s41586-019-1364-3
– year: 2020
  ident: erlac0cacbib8
  article-title: Long-term low greenhouse gas emission development strategy of the EU and its Member States
– volume: 10
  year: 2015
  ident: erlac0cacbib34
  article-title: Zero emission targets as long-term global goals for climate protection
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/10/10/105007
– volume: 106
  start-page: 21527
  year: 2009
  ident: erlac0cacbib45
  article-title: Global sea level linked to global temperature
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0907765106
– volume: 6
  start-page: 42
  year: 2016
  ident: erlac0cacbib39
  article-title: Biophysical and economic limits to negative CO2 emissions
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate2870
– volume: 593
  start-page: 83
  year: 2021
  ident: erlac0cacbib5
  article-title: The Paris climate agreement and future sea-level rise from Antarctica
  publication-title: Nature
  doi: 10.1038/s41586-021-03427-0
– year: 2020
  ident: erlac0cacbib50
  article-title: Xi Jinping delivers an important speech at the general debate of the 75th UN general assembly
– volume: 39
  start-page: 861
  year: 2012
  ident: erlac0cacbib28
  article-title: Testing the robustness of semi-empirical sea level projections
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-011-1226-7
– volume: 579
  start-page: 25
  year: 2020
  ident: erlac0cacbib12
  article-title: Emissions: world has four times the work or one-third of the time
  publication-title: Nature
  doi: 10.1038/d41586-020-00571-x
– volume: 9
  start-page: 93
  year: 2018
  ident: erlac0cacbib16
  article-title: 1.5 °C target: not a hopeless imagination
  publication-title: Adv. Clim. Change Res.
  doi: 10.1016/j.accre.2018.06.001
– volume: 92
  start-page: 585
  year: 2018
  ident: erlac0cacbib48
  article-title: An integrated assessment of INDCs under shared socioeconomic pathways: an implementation of C3IAM
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-018-3297-9
– volume: 8
  start-page: 391
  year: 2018
  ident: erlac0cacbib43
  article-title: Alternative pathways to the 1.5 °C target reduce the need for negative emission technologies
  publication-title: Nat. Clim. Change
  doi: 10.1038/s41558-018-0119-8
– volume: 10
  start-page: 727
  year: 2017
  ident: erlac0cacbib19
  article-title: Beyond equilibrium climate sensitivity
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo3017
– year: 2021
  ident: erlac0cacbib17
  article-title: Carbon neutral, global action: France strives to be the “ecological pioneer” on the international stage
– volume: 573
  start-page: 357
  year: 2019
  ident: erlac0cacbib33
  article-title: A new scenario logic for the Paris agreement long-term temperature goal
  publication-title: Nature
  doi: 10.1038/s41586-019-1541-4
– volume: 9
  start-page: 601
  year: 2018
  ident: erlac0cacbib23
  article-title: Committed sea-level rise under the Paris agreement and the legacy of delayed mitigation action
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-02985-8
– volume: 12
  start-page: 368
  year: 2021
  ident: erlac0cacbib11
  article-title: Emergency deployment of direct air capture as a response to the climate crisis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20437-0
– volume: 531
  start-page: 591
  year: 2016
  ident: erlac0cacbib6
  article-title: Contribution of Antarctica to past and future sea-level rise
  publication-title: Nature
  doi: 10.1038/nature17145
– volume: 534
  start-page: 631
  year: 2016
  ident: erlac0cacbib32
  article-title: Paris agreement climate proposals need a boost to keep warming well below 2 °C
  publication-title: Nature
  doi: 10.1038/nature18307
– volume: 8
  start-page: 232
  year: 2012
  ident: erlac0cacbib47
  article-title: Equilibrium climate sensitivity
  publication-title: Adv. Clim. Change Res.
– volume: 8
  start-page: 827
  year: 2017
  ident: erlac0cacbib36
  article-title: Community climate simulations to assess avoided impacts in 1.5 and 2 °C futures
  publication-title: Earth Syst. Dyn. Discuss.
  doi: 10.5194/esd-8-827-2017
– year: 2020
  ident: erlac0cacbib53
  article-title: Moon to declare S. Korea’s carbon neutrality vision in televised event
– volume: 58
  start-page: e2019RG
  year: 2020
  ident: erlac0cacbib38
  article-title: An assessment of Earth’s climate sensitivity using multiple lines of evidence
  publication-title: Rev. Geophys.
  doi: 10.1029/2019RG000678
SSID ssj0054578
Score 2.5235074
Snippet As the largest emitter in the world, China recently pledged to reach a carbon peak before 2030 and carbon neutrality before 2060, which could accelerate the...
SourceID doaj
proquest
crossref
iop
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 74032
SubjectTerms Carbon
Carbon dioxide
Carbon dioxide emissions
Carbon neutrality
Carbon offsets
Carbon sequestration
Climate change
Climate change mitigation
Climate effects
Emissions
Emissions control
Emitters
Global temperatures
Global warming
Greenhouse effect
Greenhouse gases
Mathematical models
Nitrous oxide
Paris Agreement
Sea level
Sea level rise
Statistical models
temperature rise
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbhMxELZQT70goFQECpoDHDis4qx3115uUKWqEHCiUm-W_7aqFDZRkh648Rq8C0_Dk_D5J_0RUrkg5RRPst6dGc833vE3jL0OprOyl65yHXKTJrSzyiBuV8JKZRVimknE85-_dKdnzcfz9vxWq69YE5bpgfODm8pIyG6tiIbW9HZmGlu3yGpa2_lGucQEipi3S6byGoxhqcpLSbjRFLAbbg2kMjWOO-PuBKHE1Y_Qcrlc_bUgpyhz8og9LPCQ3udpPWYPwviEHc5vTqNhsLjj5oD9-rQcL6q4uFKkmCr8yGRGT7DgahELggheHAgYMFbB5jOXZAOgapaz6QQLISXj72gOf48Idrwg4EKKtUZ5q5DcIg4E-naZOTnwJ6nIvXTLonhKhVIv7t8_fm4IyyjmSjXvODmztpAYw1XaVNl-p1XaxHvKzk7mX49Pq9KOoXLI4bbVzDaDFEOQnVNe4QP0VHvuAx5oH2rnfDBWGM7N0IrI-SM76cVQ9xIpVj8Eccj2xuUYnjECSpPceymCE43z3gYJU6p711gVBi8mbLrTj3aFqzy2zFjo9M5cKR01qqNGddbohL29_sUq83TcI_shqvxaLjJspy9gd7rYnf6X3U3YGxiMLh6_uedidEcurHETnZYa2I2LWq_8MGFHO6u7kcOlVAesqPrn_2O6L9h-HatxUqHxEdvbrq_CS8CprX2VPOcPTOgfow
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: IOP Science Platform
  dbid: IOP
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VcuFCeVWEFjQHOHBw4nht7xpOgFJViNeBSj0grfblChGcKI8DnPgb_Bd-Db-Eb9ebVAVUIaQconictb2zM9-sZ75h7KHXtRGNsJmtEZuUvhpnGn4740ZII-HTdCSef_2mPj4pX55Wpzvs6bYWZjZPpn-Irz1RcP8IU0KcHAFDY40Cdoy0za22V9hVLuE4Q_Xe23cbMwxkIGR6L_m3sy74oUjXD--CIf-wydHRHO2xD5tL7PNLPg3XKzO0X39jb_zPe7jBricASs960Ztsx3e32P7kvN4NB9OCX95mP17NurMsmG8KJFaJgZl05whrJJuGlCOCnfAElBnybPuqTjIeYLiXM7FGhhD05U9oAosSMHJ3RkCeFLKZ-s1IstNwwNPnjz3rB_4kptGnflwU6mAodvv--e37kmCoca1U5HVOVi8MJDq_jts2qy80j9uEd9jJ0eT9i-MsNXzILKLEVTY2ZSt460VtpZP4AJ8VLnceT6jxhbXOa8N1nuu24oFVSNTC8bZoBIK4pvV8n-12s87fZQQcKHLnBPeWl9Y54wWUtWhsaaRvHR-w0Wb6lU1s6KEpx1TFt_JSqjBFKkyR6qdowB5vz5j3TCCXyD4PGrWVCxze8Qfogkq6oERoNWAMDya0bMxYl6aoEK9XpnaltOWAPYL6qGRTlpcMRhfk_AI3USuhgA5zXqi5awfscKPU53IYStZAo7K5948jHbBrRUjpidnKh2x3tVj7-8BkK_Mgrr1fIBE3Cw
  priority: 102
  providerName: IOP Publishing
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtNAEF5BeuGCyk9FoKA5wIHDKo7X9q57QRSlqhBUCFGpt9X-OaoUbJOkh976Gn2XPg1Pwsx606hCiuRTdhLbmb9vZmdnGHsfTGVlLR13FcYmRSin3KDf5sJKZRX6NBMbz38_q07Pi68X5UVKuK1SWeXGJkZD7TtHOfIJBjKqQt-p6k_9H05To2h3NY3QeMz20AQrNWJ7x7OzHz83thjhgVRpcxLVaYLwG9UbEcvEuMwZ98AZxZ796GIuu_4_wxy9zck-e5pgInwe-PqMPQrtc3Yw255Kw8WklqsX7O5b1845GVmgVlOpTzKY1gNKMl9QYRCgNgdALEjVsMPZS7ABIetAZ-NJFsDQLDuCGeo9Idl2DogPgWqOhpQhuAUtBPh9OfTmwB-Jxe5pahbQaRWIM7n_3tyuAM0pPivkWZWBM0uLFG24ismV9TX0MZn3kp2fzH59OeVpLAN3GMut-dQWjRRNkJVTXuGFKCr3mQ_4h9Yhd84HY4XJMtOUgnr_yEp60eS1xFCrboI4YKO2a8MrBojWZOa9FMGJwnlvg0SRymtXWBUaL8ZssuGPdqlnOY3OWOi4d66UJo5q4qgeODpmH--_0Q_9OnbQHhPL7-mo03b8oFvOdVJcLWkggLWCDF1R26kpbF6iMJa28oVyxZh9QIHRSfNXO24GD-jCEl-i0lIjhstErnvfjNnhRuq2dFu5f717-Q17klO9TSwlPmSj9fIqvEXAtLbvklb8AxQWGhk
  priority: 102
  providerName: ProQuest
Title Long-term temperature and sea-level rise stabilization before and beyond 2100: Estimating the additional climate mitigation contribution from China’s recent 2060 carbon neutrality pledge
URI https://iopscience.iop.org/article/10.1088/1748-9326/ac0cac
https://www.proquest.com/docview/2548697689
https://doaj.org/article/72874bb3488049b1a4b252545b6d48c4
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF7R9sIF8aoIlGgOcOBg4njX3nUlhChKKIg-hIjobbUvR5WCkyapRG_8Df4Lv4ZfwszaSVRRVUKKfIgndux5fbM7D8ZeBFNYWUqXuAJjExHyfmLQbyfcSmUV-jQTG88fHReHI_HpLD_blEe3L3BxY2hH86RG88nrHxdXb1Hh3zQZcqqHoBqVFnFIz7jUGbfFdtAvSZpncCTWewoIFaJdXlO3m5Y3XeGak4q9_NH1nE9n_xjs6IWG99m9Fj7Cu4bfD9idUD9ku4NNtRqebNV18Yj9_jytxwkZX6AWVG3_ZDC1B5TwZEIJQ4BaHgAxImXJNjWZYANC2YbOxgoXwJAt3YcB2gNCuPUYEDcC5SI1S4ngJnQiwPfzpmcHXiQmwbfTtICqWCDO6v7z89cC0Mzif4UsLVJwZm6Rog6XcdFleQWzuMj3mI2Gg6_vD5N2XEPiMMZbJn0rKsmrIAunvMIPoqvMpz7gCy1D5pwPxnKTpqbKOfUEkoX0vMpKiSFYWQW-y7braR2eMEAUJ1PvJQ-OC-e9DRJFLSudsCpUnndYb8Uf7dpe5jRSY6LjnrpSmjiqiaO64WiHvVr_Ytb08biF9oBYvqajDtzxi-l8rFuF1pIGBVjLyQCK0vaNsFmO0XZuCy-UEx32EgVGrwT6lpvBNbowx4cotNSI7VKe6ZmvOmxvJXUbOryVKhBLqvLpfzzaM3Y3o6ScmG-8x7aX88vwHFHV0nbZlhp-6LKdg8Hx6ZduXJvA48eT025UIzye8G9_AZe9J1M
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VcoAL4q8itMAc6IGDFcfreNdICPGTkNK0p1bqbdk_R5WCbZJUVW-8Bi_BE_A0PAkza7tRhZRbpZyym42Tmf3mm935Yey115kRubCRzdA3Sf1wEGm02xE3QhqJNk2HwvNHx9nkNP16NjzbYr-7XBgKq-wwMQC1qyydkffRkZEZ2k6Zv69_RNQ1im5XuxYajVoc-qtLdNmW7w4-o3z3k2Q8Ovk0idquApFFV2QVDUxaCF54kVnpJL6QBCQudt5qm_vEWue14TqOdTHkVLpGZMLxIskFegp54Tmue4fdTTlacspMH3_pkB_JiJDtVShu3j6SfQQT5Ed9bWNc_YbpCx0C0KCdV_V_ZiDYtvFD9qAlpfCh0aJHbMuXj9nOaJ0Dh4MtCCyfsD_TqpxFBOlAha3aqsygSwf4B0VzCkMCxA4PyDwp9rbJ9ATjkSA380zImwF0BOO3MEKUId5czgDZKFCEU3NACXZOAx6-nzeVQHCREFrf9ugCyo2B0AH8789fS0DwxmeFJM5isHphcEbpL8JRzuoK6nB0-JSd3oq4dth2WZX-GQPkhiJ2TnBveWqdM16gAie5TY30heM91u_ko2xbIZ0adcxVuKmXUpFEFUlUNRLtsTfXn6ib6iAb5n4kkV_Po7re4Y1qMVMtTChB7QeM4QSraW4GOjXJEFV_aDKXSpv22D4qjGpxZrnhy-DGPL_AH5EpoZAxxjxRtSt6bK_TuvW89S57vnn4Fbs3OTmaqunB8eEuu59QpE8IYt5j26vFhX-BVG1lXob9AezbbW_If8FwVrc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NbhMxFLZKkRAb_itSCrwFXbCYZGLPjD1ILIAmamkpXVCpO-O_qRDpJEomQmXFNTgFF-AQnIGT8OxxUhVQxaYLpCxGmRfb47yf73neDyFPnCo0L7lJTIG-SebyfqLQbidMc6EF2jQVCs-_2S-2D7PXR_nRCvm2zIUZT6Lq7-JlWyi43cIYECd6iKFRRhF29JRJjTK9ia1iVOWuO_2EPtvs-c4W_sGblA4H715tJ7GtQGLQF2mSvs4qzirHCyOswA-iAGpT63Cs0lFjrFOaqTRVVc587RpecMsqWnJ0FcrKMRz3CrmaM7TVPmPw7cFC9SMa4SK-C_3bSs_ZvtAiAC0aPuYfdiAYt-FN8mOxLW1My8fuvNFd8_m3ipH_0b7dIjci0IYX7fJukxVX3yFrg7O8PrwZFdvsLvm-N66PE2-mwBfripWmQdUWcO3JyIdWAepDB4imfTxxm70K2iHob-l0yAUCdG7TZzBAzel9gfoYEGGDj9pqD13BjPwNBycf2uomOEhIF4h9x8Dn-0Doav7zy9cZoEHCtQJNixSMmmqkqN08HE81pzAJx6H3yOGl7OQaWa3HtbtPAPEuT63lzBmWGWu14yiUtDSZFq6yrEN6C5aTJlZ9981HRjJEHwghPVtIzxayZYsOebr8xaSteHIB7UvPxUs6X6s8fIH8JyP_Se5bKmjNvKnISt1XmaY5RVnRhc2EyTpkE1lWRt05u2AyOEfnpvgQheQSUXDKqER27pCNhSCd0eFUokDULcr1f5zpMbl2sDWUezv7uw_IdeqjmEKA9gZZbaZz9xBhaKMfBdEH8v6yZeYXSRqYVA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-term+temperature+and+sea-level+rise+stabilization+before+and+beyond+2100%3A+Estimating+the+additional+climate+mitigation+contribution+from+China%E2%80%99s+recent+2060+carbon+neutrality+pledge&rft.jtitle=Environmental+research+letters&rft.au=Chen%2C+Jiewei&rft.au=Cui%2C+Huijuan&rft.au=Xu%2C+Yangyang&rft.au=Ge%2C+Quansheng&rft.date=2021-07-01&rft.issn=1748-9326&rft.eissn=1748-9326&rft.volume=16&rft.issue=7&rft.spage=74032&rft_id=info:doi/10.1088%2F1748-9326%2Fac0cac&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1748_9326_ac0cac
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-9326&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-9326&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-9326&client=summon