Mitochondrial Retroprocessing Promoted Functional Transfers of rpl5 to the Nucleus in Grasses
Functional gene transfers from the mitochondrion to the nucleus are ongoing in angiosperms and have occurred repeatedly for all 15 ribosomal protein genes, but it is not clear why some of these genes are transferred more often than others nor what the balance is between DNA- and RNA-mediated transfe...
Saved in:
Published in | Molecular biology and evolution Vol. 34; no. 9; pp. 2340 - 2354 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Oxford University Press
01.09.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Functional gene transfers from the mitochondrion to the nucleus are ongoing in angiosperms and have occurred repeatedly for all 15 ribosomal protein genes, but it is not clear why some of these genes are transferred more often than others nor what the balance is between DNA- and RNA-mediated transfers. Although direct insertion of mitochondrial DNA into the nucleus occurs frequently in angiosperms, case studies of functional mitochondrial gene transfer have implicated an RNA-mediated mechanism that eliminates introns and RNA editing sites, which would otherwise impede proper expression of mitochondrial genes in the nucleus. To elucidate the mechanisms that facilitate functional gene transfers and the evolutionary dynamics of the coexisting nuclear and mitochondrial gene copies that are established during these transfers, we have analyzed rpl5 genes from 90 grasses (Poaceae) and related monocots. Multiple lines of evidence indicate that rpl5 has been functionally transferred to the nucleus at least three separate times in the grass family and that at least seven species have intact and transcribed (but not necessarily functional) copies in both the mitochondrion and nucleus. In two grasses, likely functional nuclear copies of rpl5 have been subject to recent gene conversion events via secondarily transferred mitochondrial copies in what we believe are the first described cases of mitochondrial-to-nuclear gene conversion. We show that rpl5 underwent a retroprocessing event within the mitochondrial genome early in the evolution of the grass family, which we argue predisposed the gene towards successful, DNA-mediated functional transfer by generating a “pre-edited” sequence. |
---|---|
AbstractList | Functional gene transfers from the mitochondrion to the nucleus are ongoing in angiosperms and have occurred repeatedly for all 15 ribosomal protein genes, but it is not clear why some of these genes are transferred more often than others nor what the balance is between DNA- and RNA-mediated transfers. Although direct insertion of mitochondrial DNA into the nucleus occurs frequently in angiosperms, case studies of functional mitochondrial gene transfer have implicated an RNA-mediated mechanism that eliminates introns and RNA editing sites, which would otherwise impede proper expression of mitochondrial genes in the nucleus. To elucidate the mechanisms that facilitate functional gene transfers and the evolutionary dynamics of the coexisting nuclear and mitochondrial gene copies that are established during these transfers, we have analyzed rpl5 genes from 90 grasses (Poaceae) and related monocots. Multiple lines of evidence indicate that rpl5 has been functionally transferred to the nucleus at least three separate times in the grass family and that at least seven species have intact and transcribed (but not necessarily functional) copies in both the mitochondrion and nucleus. In two grasses, likely functional nuclear copies of rpl5 have been subject to recent gene conversion events via secondarily transferred mitochondrial copies in what we believe are the first described cases of mitochondrial-to-nuclear gene conversion. We show that rpl5 underwent a retroprocessing event within the mitochondrial genome early in the evolution of the grass family, which we argue predisposed the gene towards successful, DNA-mediated functional transfer by generating a "pre-edited" sequence. Functional gene transfers from the mitochondrion to the nucleus are ongoing in angiosperms and have occurred repeatedly for all 15 ribosomal protein genes, but it is not clear why some of these genes are transferred more often than others nor what the balance is between DNA- and RNA-mediated transfers. Although direct insertion of mitochondrial DNA into the nucleus occurs frequently in angiosperms, case studies of functional mitochondrial gene transfer have implicated an RNA-mediated mechanism that eliminates introns and RNA editing sites, which would otherwise impede proper expression of mitochondrial genes in the nucleus. To elucidate the mechanisms that facilitate functional gene transfers and the evolutionary dynamics of the coexisting nuclear and mitochondrial gene copies that are established during these transfers, we have analyzed rpl5 genes from 90 grasses (Poaceae) and related monocots. Multiple lines of evidence indicate that rpl5 has been functionally transferred to the nucleus at least three separate times in the grass family and that at least seven species have intact and transcribed (but not necessarily functional) copies in both the mitochondrion and nucleus. In two grasses, likely functional nuclear copies of rpl5 have been subject to recent gene conversion events via secondarily transferred mitochondrial copies in what we believe are the first described cases of mitochondrial-to-nuclear gene conversion. We show that rpl5 underwent a retroprocessing event within the mitochondrial genome early in the evolution of the grass family, which we argue predisposed the gene towards successful, DNA-mediated functional transfer by generating a “pre-edited” sequence. Functional gene transfers from the mitochondrion to the nucleus are ongoing in angiosperms and have occurred repeatedly for all 15 ribosomal protein genes, but it is not clear why some of these genes are transferred more often than others nor what the balance is between DNA- and RNA-mediated transfers. Although direct insertion of mitochondrial DNA into the nucleus occurs frequently in angiosperms, case studies of functional mitochondrial gene transfer have implicated an RNA-mediated mechanism that eliminates introns and RNA editing sites, which would otherwise impede proper expression of mitochondrial genes in the nucleus. To elucidate the mechanisms that facilitate functional gene transfers and the evolutionary dynamics of the coexisting nuclear and mitochondrial gene copies that are established during these transfers, we have analyzed rpl5 genes from 90 grasses (Poaceae) and related monocots. Multiple lines of evidence indicate that rpl5 has been functionally transferred to the nucleus at least three separate times in the grass family and that at least seven species have intact and transcribed (but not necessarily functional) copies in both the mitochondrion and nucleus. In two grasses, likely functional nuclear copies of rpl5 have been subject to recent gene conversion events via secondarily transferred mitochondrial copies in what we believe are the first described cases of mitochondrial-to-nuclear gene conversion. We show that rpl5 underwent a retroprocessing event within the mitochondrial genome early in the evolution of the grass family, which we argue predisposed the gene towards successful, DNA-mediated functional transfer by generating a "pre-edited" sequence.Functional gene transfers from the mitochondrion to the nucleus are ongoing in angiosperms and have occurred repeatedly for all 15 ribosomal protein genes, but it is not clear why some of these genes are transferred more often than others nor what the balance is between DNA- and RNA-mediated transfers. Although direct insertion of mitochondrial DNA into the nucleus occurs frequently in angiosperms, case studies of functional mitochondrial gene transfer have implicated an RNA-mediated mechanism that eliminates introns and RNA editing sites, which would otherwise impede proper expression of mitochondrial genes in the nucleus. To elucidate the mechanisms that facilitate functional gene transfers and the evolutionary dynamics of the coexisting nuclear and mitochondrial gene copies that are established during these transfers, we have analyzed rpl5 genes from 90 grasses (Poaceae) and related monocots. Multiple lines of evidence indicate that rpl5 has been functionally transferred to the nucleus at least three separate times in the grass family and that at least seven species have intact and transcribed (but not necessarily functional) copies in both the mitochondrion and nucleus. In two grasses, likely functional nuclear copies of rpl5 have been subject to recent gene conversion events via secondarily transferred mitochondrial copies in what we believe are the first described cases of mitochondrial-to-nuclear gene conversion. We show that rpl5 underwent a retroprocessing event within the mitochondrial genome early in the evolution of the grass family, which we argue predisposed the gene towards successful, DNA-mediated functional transfer by generating a "pre-edited" sequence. |
Author | Rosenblueth, Mónica Ong, Han Chuan Wu, Zhiqiang Palmer, Jeffrey D. Sloan, Daniel B. Brown, Colin W. |
AuthorAffiliation | 1 Department of Biology, Colorado State University, Fort Collins, CO 4 Department of Biology, Indiana University, Bloomington, IN 3 Center for Genomics Sciences, UNAM, Cuernavaca, Mexico 2 Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 5 Department of Biology, King University, Bristol, TN |
AuthorAffiliation_xml | – name: 3 Center for Genomics Sciences, UNAM, Cuernavaca, Mexico – name: 2 Institute for Cellular and Molecular Biology, University of Texas, Austin, TX – name: 1 Department of Biology, Colorado State University, Fort Collins, CO – name: 4 Department of Biology, Indiana University, Bloomington, IN – name: 5 Department of Biology, King University, Bristol, TN |
Author_xml | – sequence: 1 givenname: Zhiqiang surname: Wu fullname: Wu, Zhiqiang organization: 1Department of Biology, Colorado State University, Fort Collins, CO – sequence: 2 givenname: Daniel B. surname: Sloan fullname: Sloan, Daniel B. organization: 1Department of Biology, Colorado State University, Fort Collins, CO – sequence: 3 givenname: Colin W. surname: Brown fullname: Brown, Colin W. organization: 2Institute for Cellular and Molecular Biology, University of Texas, Austin, TX – sequence: 4 givenname: Mónica surname: Rosenblueth fullname: Rosenblueth, Mónica organization: 3Center for Genomics Sciences, UNAM, Cuernavaca, Mexico – sequence: 5 givenname: Jeffrey D. surname: Palmer fullname: Palmer, Jeffrey D. organization: 4Department of Biology, Indiana University, Bloomington, IN – sequence: 6 givenname: Han Chuan surname: Ong fullname: Ong, Han Chuan email: hanchuanong@king.edu organization: 5Department of Biology, King University, Bristol, TN |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28541477$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1rFTEUxYNU7Gt16VYCbtyMzedMshGk2CrUD-RtJWQyd_pSZpIxyRT97015r6IFcRESyO8ezj3nBB2FGACh55S8pkTzszlOPdyezfkH7cgjtKGSdw3tqD5CG9LVtyBcHaOTnG8IoUK07RN0zJQUVHTdBn376Et0uxiG5O2Ev0JJcUnRQc4-XOMvKc6xwIAv1uCKj6Ey22RDHiFlHEeclkniEnHZAf60ugnWjH3Al8nmDPkpejzaKcOzw32Kthfvtufvm6vPlx_O3141TghVGkrkoFtnte456wfbu7G1HWu14yPXlvSUSd0RDbztpXXQKlAjk064ERgX_BS92csuaz_D4CCUZCezJD_b9NNE683fP8HvzHW8NVJJoqSuAq8OAil-XyEXM_vsYJpsgLhmQzVhQjEiVEVfPkBv4ppqLtnwGjvT9bSVevGno99W7oOvAN8DLsWcE4zG-WLvEq4G_WQoMXf1mn29Zl9vnWoeTN0L_4s_7BXX5T_oL-nUukw |
CitedBy_id | crossref_primary_10_1111_mec_16615 crossref_primary_10_1007_s00425_024_04386_2 crossref_primary_10_1007_s11103_018_0734_9 crossref_primary_10_1186_s12915_021_01096_z crossref_primary_10_1007_s00299_024_03232_9 crossref_primary_10_1111_tpj_15676 crossref_primary_10_1038_s41598_021_88160_4 crossref_primary_10_3390_f16030385 crossref_primary_10_1111_jse_12655 crossref_primary_10_1016_j_ympev_2018_04_037 crossref_primary_10_3390_genes8100260 crossref_primary_10_1002_ajb2_1397 crossref_primary_10_1038_s41576_018_0035_9 crossref_primary_10_1186_s12862_020_1582_1 crossref_primary_10_1038_s41388_022_02343_5 crossref_primary_10_1038_s41514_021_00072_9 crossref_primary_10_1186_s12864_021_07967_7 crossref_primary_10_3389_fpls_2023_1266797 crossref_primary_10_1016_j_gene_2023_147393 crossref_primary_10_1093_molbev_msad163 crossref_primary_10_1186_s12870_023_04104_2 |
Cites_doi | 10.1093/nar/19.24.6923 10.1007/BF00283881 10.4161/mge.19030 10.1007/BF02143500 10.1093/nar/gki925 10.1073/pnas.091110398 10.1111/j.1096-0031.2005.00059.x 10.1111/nph.14135 10.1007/s11103-011-9764-2 10.1038/nature01435 10.1093/molbev/mss130 10.1023/A:1005972513322 10.1093/sysbio/syt072 10.1534/genetics.110.118000 10.1371/journal.pone.0037164 10.1038/nrg1271 10.1093/molbev/msh110 10.1016/j.gene.2007.09.019 10.1016/j.gene.2003.09.027 10.1074/mcp.M114.043083 10.1073/pnas.96.26.15324 10.1186/1471-2164-15-31 10.1093/molbev/msj080 10.1016/j.cub.2012.03.043 10.1007/s00239-012-9496-1 10.1073/pnas.1016295107 10.1038/nature03895 10.1038/ncomms1482 10.1016/j.ympev.2009.09.011 10.1186/1471-2148-6-55 10.1038/35042567 10.1007/BF00028903 10.1186/1471-2148-10-349 10.1016/j.cpb.2014.08.002 10.1111/j.1469-8137.2006.01821.x 10.1016/j.tree.2004.10.003 10.1073/pnas.96.24.13863 10.1007/BF00314448 10.1101/gr.3788705 10.1007/s00438-015-1087-6 10.1111/nph.13467 10.1126/science.1246275 10.1038/nmeth.2109 10.1046/j.1365-313x.1999.00485.x 10.1016/0014-5793(95)01100-S 10.1016/j.ympev.2011.10.019 10.1016/0014-5793(93)81430-8 10.1093/molbev/msw185 10.1093/molbev/msp011 10.1093/molbev/msm088 10.1093/gbe/evw233 10.1126/science.283.5407.1476 10.1186/1471-2148-10-274 10.1534/genetics.107.073312 10.1111/j.1469-8137.2011.03972.x 10.1038/nature01743 10.1016/j.cub.2012.03.005 10.1093/bioinformatics/btg180 10.1186/1471-2148-7-248 10.1016/j.biochi.2006.09.011 10.1186/1471-2148-5-73 10.1105/tpc.010483 10.1007/s00438-006-0139-3 10.1093/gbe/evw148 10.1016/j.mito.2014.05.008 10.1038/hdy.2013.51 10.1073/pnas.84.24.9054 10.1186/s12864-015-2155-3 10.1073/pnas.0908766106 10.1007/s001220100744 10.1002/j.1460-2075.1992.tb05473.x 10.1007/s00438-002-0767-1 10.1016/j.ympev.2008.09.009 10.1093/nar/26.4.865 10.1038/nrg3186 10.1016/j.tplants.2013.12.008 10.1073/pnas.93.15.7727 10.1007/BF00040580 10.1186/s12862-015-0321-5 10.1080/10635150390235520 10.1093/molbev/mst010 10.1016/j.ympev.2008.01.035 10.1093/nar/19.12.3275 10.1007/978-3-7091-1130-7_9 10.1007/BF00336785 10.1186/1741-7007-8-150 10.1093/nar/gkp337 10.1073/pnas.1430924100 10.1016/S0168-9525(01)02312-5 10.2307/25065682 10.1104/pp.104.044602 10.1186/s12870-015-0563-9 10.1139/g05-098 10.1016/S1055-7903(03)00194-5 10.1016/j.cub.2015.11.043 10.1016/0092-8674(81)90011-8 10.1371/journal.pgen.1000834 10.1111/j.1469-8137.2012.04340.x 10.1534/genetics.107.079624 10.1007/BF00160310 10.1006/jmbi.2000.3903 10.1073/pnas.96.16.9207 10.1073/pnas.042694899 10.1007/BF00312637 |
ContentType | Journal Article |
Copyright | The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2017 The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2017 – notice: The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7QP 7QR 7SN 7SS 7TK 7TM 7TO 7U9 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M7N M7P MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM |
DOI | 10.1093/molbev/msx170 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Biological Science Collection ProQuest Central ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) ProQuest Research Library Algology Mycology and Protozoology Abstracts (Microbiology C) ProQuest Biological Science Database (NC LIVE) Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Central Basic ProQuest SciTech Collection ProQuest Medical Library Animal Behavior Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Research Library Prep |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1537-1719 |
EndPage | 2354 |
ExternalDocumentID | PMC5850859 28541477 10_1093_molbev_msx170 10.1093/molbev/msx170 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Health funderid: 10.13039/100000002 – fundername: NIGMS NIH HHS grantid: R01 GM035087 – fundername: NIGMS NIH HHS grantid: R01 GM070612 – fundername: ; ; ; |
GroupedDBID | --- -E4 -~X .2P .I3 .ZR 0R~ 18M 1TH 29M 2WC 4.4 48X 5VS 5WA 70D 7X7 AAFWJ AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPNW AAPQZ AAPXW AAUQX AAVAP AAVLN ABEJV ABEUO ABGNP ABIXL ABKDP ABLJU ABNKS ABPTD ABQLI ABXVV ABZBJ ACGFO ACGFS ACIPB ACIWK ACNCT ACPRK ACUFI ACUTO ACYTK ADBBV ADEYI ADEZT ADFTL ADGZP ADHKW ADHZD ADJQC ADOCK ADRIX ADRTK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFIYH AFOFC AFPKN AFRAH AFULF AFXEN AGINJ AGKEF AGSYK AHMBA AHXPO AIAGR AIJHB AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN BTRTY BVRKM CDBKE CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EBS EE~ EJD EMOBN F5P F9B FHSFR FLIZI FOTVD GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HH5 HW0 HZ~ IOX J21 KOP KQ8 KSI KSN M-Z M49 ML0 N9A NGC NLBLG NMDNZ NOYVH NU- O9- OAWHX ODMLO OJQWA OK1 OVD P2P PAFKI PEELM PQQKQ Q1. Q5Y RD5 RHF ROL ROX ROZ RPM RUSNO RW1 RXO TEORI TJP TJX TLC TN5 TOX TR2 VQA W8F WOQ X7H XSW YAYTL YKOAZ YXANX ZCA ZKX ~02 ~91 AAYXX BBNVY CITATION BENPR CGR CUY CVF ECM EIF FYUFA NPM 3V. 7QG 7QP 7QR 7SN 7SS 7TK 7TM 7TO 7U9 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BHPHI C1K CCPQU DWQXO FR3 GNUQQ GUQSH H94 HCIFZ K9. LK8 M1P M2O M7N M7P MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c448t-105d96ca99b32bdabcf6a7269c3f39a0b1259709e36b5ace68e8f25c4cfe2343 |
IEDL.DBID | 7X7 |
ISSN | 0737-4038 1537-1719 |
IngestDate | Thu Aug 21 14:10:07 EDT 2025 Mon Jul 21 10:45:03 EDT 2025 Fri Jul 25 19:27:34 EDT 2025 Mon Jul 21 05:53:20 EDT 2025 Tue Jul 01 03:45:50 EDT 2025 Thu Apr 24 22:52:39 EDT 2025 Fri Feb 07 10:35:43 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | endosymbiotic gene transfer pseudogene intracellular gene transfer mtDNA reverse transcription |
Language | English |
License | The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c448t-105d96ca99b32bdabcf6a7269c3f39a0b1259709e36b5ace68e8f25c4cfe2343 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Associate editor: Michael Purugganan |
OpenAccessLink | https://academic.oup.com/mbe/article-pdf/34/9/2340/24367750/msx170.pdf |
PMID | 28541477 |
PQID | 3171297126 |
PQPubID | 36253 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5850859 proquest_miscellaneous_1902482048 proquest_journals_3171297126 pubmed_primary_28541477 crossref_citationtrail_10_1093_molbev_msx170 crossref_primary_10_1093_molbev_msx170 oup_primary_10_1093_molbev_msx170 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-09-01 |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Molecular biology and evolution |
PublicationTitleAlternate | Mol Biol Evol |
PublicationYear | 2017 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Sandoval ( key 20180315050518_msx170-B88) 2004; 324 Sheppard ( key 20180315050518_msx170-B90) 2011; 76 Bergthorsson ( key 20180315050518_msx170-B11) 2003; 424 Emanuelsson ( key 20180315050518_msx170-B28) 2000; 300 Ong ( key 20180315050518_msx170-B76) 2006; 6 Palmer ( key 20180315050518_msx170-B77) 1988; 28 Christin ( key 20180315050518_msx170-B18) 2014; 63 Wu ( key 20180315050518_msx170-B103) 2015; 16 Fukasawa ( key 20180315050518_msx170-B32) 2015; 14 Sloan ( key 20180315050518_msx170-B93) 2012; 196 Havird ( key 20180315050518_msx170-B48) 2016; 33 Geiss ( key 20180315050518_msx170-B34) 1994; 243 Mower ( key 20180315050518_msx170-B70) 2010; 8 Hepburn ( key 20180315050518_msx170-B52) 2012; 29 Barkman ( key 20180315050518_msx170-B9) 2007; 7 Wysocki ( key 20180315050518_msx170-B104) 2015; 15 Adams ( key 20180315050518_msx170-B1) 2000; 408 Wolfe ( key 20180315050518_msx170-B101) 1987; 84 Hazkani-Covo ( key 20180315050518_msx170-B49) 2010; 6 Schuster ( key 20180315050518_msx170-B89) 1993; 19 GPWG II (Grass Phylogeny Working Group II) ( key 20180315050518_msx170-B36) 2012; 193 Bergsten ( key 20180315050518_msx170-B10) 2005; 21 Notsu ( key 20180315050518_msx170-B72) 2002; 268 Fang ( key 20180315050518_msx170-B29) 2012; 7 Guo ( key 20180315050518_msx170-B43) 2017; 213 Long ( key 20180315050518_msx170-B63) 1996; 93 Cuenca ( key 20180315050518_msx170-B23) 2012; 74 Kubo ( key 20180315050518_msx170-B59) 1999; 96 Adams ( key 20180315050518_msx170-B2) 2003; 29 Huang ( key 20180315050518_msx170-B53) 2003; 422 Liu ( key 20180315050518_msx170-B62) 2009; 26 Clifton ( key 20180315050518_msx170-B19) 2004; 136 Covello ( key 20180315050518_msx170-B21) 1992; 11 Krishnasamy ( key 20180315050518_msx170-B58) 1994; 24 Atluri ( key 20180315050518_msx170-B7) 2015; 290 Fuentes ( key 20180315050518_msx170-B31) 2012; 22 Wu ( key 20180315050518_msx170-B102) 2012; 62 Gaut ( key 20180315050518_msx170-B33) 1998; 30 Katoh ( key 20180315050518_msx170-B56) 2013; 30 Timmis ( key 20180315050518_msx170-B98) 2004; 5 Hazle ( key 20180315050518_msx170-B50) 2007; 405 Wischmann ( key 20180315050518_msx170-B100) 1995; 374 Lopez ( key 20180315050518_msx170-B64) 2007; 89 key 20180315050518_msx170-B107 Hao ( key 20180315050518_msx170-B47) 2010; 107 Bouchenak-Khelladi ( key 20180315050518_msx170-B14) 2008; 47 Mower ( key 20180315050518_msx170-B71) 2012 Gray ( key 20180315050518_msx170-B37) 1999; 283 Darriba ( key 20180315050518_msx170-B25) 2012; 9 Itchoda ( key 20180315050518_msx170-B55) 2002; 104 Bonen ( key 20180315050518_msx170-B13) 2006; 23 Sutton ( key 20180315050518_msx170-B97) 1993; 23 Prasad ( key 20180315050518_msx170-B81) 2011; 2 Blanchard ( key 20180315050518_msx170-B12) 1995; 41 Ran ( key 20180315050518_msx170-B83) 2010; 54 Sloan ( key 20180315050518_msx170-B92) 2010; 185 International Rice Genome Sequencing Project ( key 20180315050518_msx170-B54) 2005; 436 Noutsos ( key 20180315050518_msx170-B73) 2005; 15 Grimes ( key 20180315050518_msx170-B41) 2014; 15 Sloan ( key 20180315050518_msx170-B91) 2010; 10 Lough ( key 20180315050518_msx170-B65) 2008; 178 Grewe ( key 20180315050518_msx170-B39) 2014; 19 Subramanian ( key 20180315050518_msx170-B96) 2006; 49 Adams ( key 20180315050518_msx170-B3) 2002; 14 Rand ( key 20180315050518_msx170-B84) 2004; 19 Ronquist ( key 20180315050518_msx170-B87) 2003; 19 Qiu ( key 20180315050518_msx170-B82) 2014; 1 Aubert ( key 20180315050518_msx170-B8) 1992; 20 Petersen ( key 20180315050518_msx170-B80) 2006; 55 Stegemann ( key 20180315050518_msx170-B94) 2003; 100 Parkinson ( key 20180315050518_msx170-B79) 2005; 5 Lavrov ( key 20180315050518_msx170-B61) 2016; 26 Ogihara ( key 20180315050518_msx170-B75) 2005; 33 Mower ( key 20180315050518_msx170-B69) 2006; 276 Hao ( key 20180315050518_msx170-B45) 2009; 106 Stupar ( key 20180315050518_msx170-B95) 2001; 98 Allen ( key 20180315050518_msx170-B6) 2007; 177 Cuenca ( key 20180315050518_msx170-B24) 2016; 8 Doyle ( key 20180315050518_msx170-B26) 1987; 19 Hao ( key 20180315050518_msx170-B46) 2011; 1 Figueroa ( key 20180315050518_msx170-B30) 1999; 18 Hammani ( key 20180315050518_msx170-B44) 2014; 19 Choi ( key 20180315050518_msx170-B17) 2006; 172 Lamattina ( key 20180315050518_msx170-B60) 1991; 19 Park ( key 20180315050518_msx170-B78) 2015; 208 Brennicke ( key 20180315050518_msx170-B16) 1993; 325 Cuenca ( key 20180315050518_msx170-B22) 2010; 10 Richly ( key 20180315050518_msx170-B86) 2004; 21 Guindon ( key 20180315050518_msx170-B42) 2003; 52 Henze ( key 20180315050518_msx170-B51) 2001; 17 Giegé ( key 20180315050518_msx170-B35) 1999; 96 Adams ( key 20180315050518_msx170-B5) 1999; 96 Rice ( key 20180315050518_msx170-B85) 2013; 342 Gray ( key 20180315050518_msx170-B38) 1998; 26 Knoop ( key 20180315050518_msx170-B57) 1995; 27 Nugent ( key 20180315050518_msx170-B74) 1991; 66 Mower ( key 20180315050518_msx170-B68) 2009; 37 Lu ( key 20180315050518_msx170-B66) 1998; 37 Yang ( key 20180315050518_msx170-B106) 2012; 13 Brandt ( key 20180315050518_msx170-B15) 1993; 24 Michalovova ( key 20180315050518_msx170-B67) 2013; 111 Cotton ( key 20180315050518_msx170-B20) 2015; 15 Drouin ( key 20180315050518_msx170-B27) 2008; 49 Yang ( key 20180315050518_msx170-B105) 2007; 24 Adams ( key 20180315050518_msx170-B4) 2002; 99 Grewe ( key 20180315050518_msx170-B40) 2016; 8 Timmis ( key 20180315050518_msx170-B99) 2012; 22 |
References_xml | – volume: 19 start-page: 6923 year: 1993 ident: key 20180315050518_msx170-B89 article-title: RNA editing makes mistakes in plant mitochondria: editing loses sense in transcripts of a rps19 pseudogene and in creating stop codons in coxI and rps3 mRNAs of Oenothera publication-title: Nucleic Acids Res doi: 10.1093/nar/19.24.6923 – volume: 243 start-page: 97 year: 1994 ident: key 20180315050518_msx170-B34 article-title: Intron loss from the NADH dehydrogenase subunit 4 gene of lettuce mitochondrial DNA: evidence for homologous recombination of a cDNA intermediate publication-title: Mol Gen Genet doi: 10.1007/BF00283881 – volume: 1 start-page: 256 year: 2011 ident: key 20180315050518_msx170-B46 article-title: HGT turbulence: confounding phylogenetic influence of duplicative horizontal transfer and differential gene conversion publication-title: Mob Genet Elements doi: 10.4161/mge.19030 – volume: 28 start-page: 87 year: 1988 ident: key 20180315050518_msx170-B77 article-title: Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence publication-title: J Mol Evol doi: 10.1007/BF02143500 – volume: 33 start-page: 6235 year: 2005 ident: key 20180315050518_msx170-B75 article-title: Structural dynamics of cereal mitochondrial genomes as revealed by complete nucleotide sequencing of the wheat mitochondrial genome publication-title: Nucleic Acids Res doi: 10.1093/nar/gki925 – volume: 98 start-page: 5099 year: 2001 ident: key 20180315050518_msx170-B95 article-title: Complex mtDNA constitutes an approximate 620-kb insertion on Arabidopsis thaliana chromosome 2: implication of potential sequencing errors caused by large-unit repeats publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.091110398 – volume: 21 start-page: 163 year: 2005 ident: key 20180315050518_msx170-B10 article-title: A review of long-branch attraction publication-title: Cladistics doi: 10.1111/j.1096-0031.2005.00059.x – volume: 213 start-page: 391 year: 2017 ident: key 20180315050518_msx170-B43 article-title: Complete mitochondrial genomes from the ferns Ophioglossum californicum and Psilotum nudum are highly repetitive with the largest organellar introns publication-title: New Phytol doi: 10.1111/nph.14135 – volume: 76 start-page: 299 year: 2011 ident: key 20180315050518_msx170-B90 article-title: Introducing an RNA editing requirement into a plastid-localised transgene reduces but does not eliminate functional gene transfer to the nucleus publication-title: Plant Mol Biol doi: 10.1007/s11103-011-9764-2 – volume: 422 start-page: 72 year: 2003 ident: key 20180315050518_msx170-B53 article-title: Direct measurement of the transfer rate of chloroplast DNA into the nucleus publication-title: Nature doi: 10.1038/nature01435 – volume: 29 start-page: 3111 year: 2012 ident: key 20180315050518_msx170-B52 article-title: Loss of two introns from the Magnolia tripetala mitochondrial cox2 gene implicates horizontal gene transfer and gene conversion as a novel mechanism of intron loss publication-title: Mol Biol Evol doi: 10.1093/molbev/mss130 – volume: 37 start-page: 225 year: 1998 ident: key 20180315050518_msx170-B66 article-title: RNA editing in gymnosperms and its impact on the evolution of the mitochondrial coxI gene publication-title: Plant Mol Biol doi: 10.1023/A:1005972513322 – volume: 63 start-page: 153 year: 2014 ident: key 20180315050518_msx170-B18 article-title: Molecular dating, evolutionary rates, and the age of the grasses publication-title: Syst Biol doi: 10.1093/sysbio/syt072 – volume: 185 start-page: 1369 year: 2010 ident: key 20180315050518_msx170-B92 article-title: Extensive loss of RNA editing sites in rapidly evolving Silene mitochondrial genomes: Selection vs. retroprocessing as the driving force publication-title: Genetics doi: 10.1534/genetics.110.118000 – volume: 7 start-page: E37164 year: 2012 ident: key 20180315050518_msx170-B29 article-title: A complete sequence and transcriptomic analyses of date palm (Phoenix dactylifera L.) mitochondrial genome publication-title: PLoS One doi: 10.1371/journal.pone.0037164 – volume: 5 start-page: 123 year: 2004 ident: key 20180315050518_msx170-B98 article-title: Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes publication-title: Nat Rev Genet doi: 10.1038/nrg1271 – volume: 21 start-page: 1081 year: 2004 ident: key 20180315050518_msx170-B86 article-title: NUMTs in sequenced eukaryotic genomes publication-title: Mol Biol Evol doi: 10.1093/molbev/msh110 – ident: key 20180315050518_msx170-B107 – volume: 405 start-page: 108 year: 2007 ident: key 20180315050518_msx170-B50 article-title: Status of genes encoding the mitochondrial S1 ribosomal protein in closely-related legumes publication-title: Gene doi: 10.1016/j.gene.2007.09.019 – volume: 324 start-page: 139 year: 2004 ident: key 20180315050518_msx170-B88 article-title: Transfer of RPS14 and RPL5 from the mitochondrion to the nucleus in grasses publication-title: Gene doi: 10.1016/j.gene.2003.09.027 – volume: 14 start-page: 1113 year: 2015 ident: key 20180315050518_msx170-B32 article-title: MitoFates: Improved prediction of mitochondrial targeting sequences and their cleavage sites publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M114.043083 – volume: 96 start-page: 15324 year: 1999 ident: key 20180315050518_msx170-B35 article-title: RNA editing in Arabidopsis mitochondria effects 441 C to U changes in ORFs publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.96.26.15324 – volume: 15 start-page: 31 year: 2014 ident: key 20180315050518_msx170-B41 article-title: Deep sequencing of the tobacco mitochondrial transcriptome reveals expressed ORFs and numerous editing sites outside coding regions publication-title: BMC Genomics doi: 10.1186/1471-2164-15-31 – volume: 23 start-page: 701 year: 2006 ident: key 20180315050518_msx170-B13 article-title: Comparative analysis of bacterial-origin genes for plant mitochondrial ribosomal proteins publication-title: Mol Biol Evol doi: 10.1093/molbev/msj080 – volume: 22 start-page: R296 year: 2012 ident: key 20180315050518_msx170-B99 article-title: Endosymbiotic evolution: RNA intermediates in endosymbiotic gene transfer publication-title: Curr Biol doi: 10.1016/j.cub.2012.03.043 – volume: 74 start-page: 158 year: 2012 ident: key 20180315050518_msx170-B23 article-title: Genes and processed paralogs coexist in plant mitochondria publication-title: J Mol Evol doi: 10.1007/s00239-012-9496-1 – volume: 107 start-page: 21576 year: 2010 ident: key 20180315050518_msx170-B47 article-title: Gorgeous mosaic of mitochondrial genes created by horizontal transfer and gene conversion publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1016295107 – volume: 436 start-page: 793 year: 2005 ident: key 20180315050518_msx170-B54 article-title: The map-based sequence of the rice genome publication-title: Nature doi: 10.1038/nature03895 – volume: 2 start-page: 480 year: 2011 ident: key 20180315050518_msx170-B81 article-title: Late Cretaceous origin of the rice tribe provides evidence for early diversification in Poaceae publication-title: Nat Commun doi: 10.1038/ncomms1482 – volume: 54 start-page: 136 year: 2010 ident: key 20180315050518_msx170-B83 article-title: Fast evolution of the retroprocessed mitochondrial rps3 gene in conifer II and further evidence for the phylogeny of gymnosperms publication-title: Mol Phylogenet Evol doi: 10.1016/j.ympev.2009.09.011 – volume: 6 start-page: 55 year: 2006 ident: key 20180315050518_msx170-B76 article-title: Pervasive survival of expressed mitochondrial rps14 pseudogenes in grasses and their relatives for 80 million years following three functional transfers to the nucleus publication-title: BMC Evol Biol doi: 10.1186/1471-2148-6-55 – volume: 408 start-page: 354 year: 2000 ident: key 20180315050518_msx170-B1 article-title: Repeated, recent and diverse transfers of a mitochondrial gene to the nucleus in flowering plants publication-title: Nature doi: 10.1038/35042567 – volume: 20 start-page: 1169 year: 1992 ident: key 20180315050518_msx170-B8 article-title: Mitochondrial rps14 is a transcribed and edited pseudogene in Arabidopsis thaliana publication-title: Plant Mol Biol doi: 10.1007/BF00028903 – volume: 10 start-page: 349 year: 2010 ident: key 20180315050518_msx170-B22 article-title: Are substitution rates and RNA editing correlated? publication-title: BMC Evol Biol doi: 10.1186/1471-2148-10-349 – volume: 1 start-page: 68 year: 2014 ident: key 20180315050518_msx170-B82 article-title: Expression of a transferred nuclear gene in a mitochondrial genome publication-title: Curr Plant Biol doi: 10.1016/j.cpb.2014.08.002 – volume: 172 start-page: 429 year: 2006 ident: key 20180315050518_msx170-B17 article-title: Evolutionary transfers of mitochondrial genes to the nucleus in the Populus lineage and coexpression of nuclear and mitochondrial Sdh4 genes publication-title: New Phytol doi: 10.1111/j.1469-8137.2006.01821.x – volume: 19 start-page: 645 year: 2004 ident: key 20180315050518_msx170-B84 article-title: Cytonuclear coevolution: the genomics of cooperation publication-title: Trends Ecol Evol doi: 10.1016/j.tree.2004.10.003 – volume: 19 start-page: 11 year: 1987 ident: key 20180315050518_msx170-B26 article-title: A rapid DNA isolation procedure for small quantities of fresh leaf tissues publication-title: Phytochem Bull – volume: 96 start-page: 13863 year: 1999 ident: key 20180315050518_msx170-B5 article-title: Intracellular gene transfer in action: dual transcription and multiple silencing of nuclear and mitochondrial cox2 genes in legumes publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.96.24.13863 – volume: 27 start-page: 559 year: 1995 ident: key 20180315050518_msx170-B57 article-title: The gene for ribosomal protein S10 is present in mitochondria of pea and potato but absent from those of Arabidopsis and Oenothera publication-title: Curr Genet doi: 10.1007/BF00314448 – volume: 15 start-page: 616 year: 2005 ident: key 20180315050518_msx170-B73 article-title: Generation and evolutionary fate of insertions of organelle DNA in the nuclear genomes of flowering plants publication-title: Genome Res doi: 10.1101/gr.3788705 – volume: 290 start-page: 2325 year: 2015 ident: key 20180315050518_msx170-B7 article-title: Retention of functional genes for S19 ribosomal protein in both the mitochondrion and nucleus for over 60 million years publication-title: Mol Genet Genomics doi: 10.1007/s00438-015-1087-6 – volume: 208 start-page: 570 year: 2015 ident: key 20180315050518_msx170-B78 article-title: Dynamic evolution of Geranium mitochondrial genomes through multiple horizontal and intracellular gene transfers publication-title: New Phytol doi: 10.1111/nph.13467 – volume: 342 start-page: 1468 year: 2013 ident: key 20180315050518_msx170-B85 article-title: Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm Amborella publication-title: Science doi: 10.1126/science.1246275 – volume: 9 start-page: 772 year: 2012 ident: key 20180315050518_msx170-B25 article-title: jModelTest 2: more models, new heuristics and parallel computing publication-title: Nat Methods doi: 10.1038/nmeth.2109 – volume: 18 start-page: 601 year: 1999 ident: key 20180315050518_msx170-B30 article-title: Transfer of rps14 from the mitochondrion to the nucleus in maize implied integration within a gene encoding the iron-sulphur subunit of succinate dehydrogenase and expression by alternative splicing publication-title: Plant J doi: 10.1046/j.1365-313x.1999.00485.x – volume: 30 start-page: 93 year: 1998 ident: key 20180315050518_msx170-B33 article-title: Molecular clocks and nucleotide substitution rates in higher plants publication-title: Evol Biol – volume: 374 start-page: 152 year: 1995 ident: key 20180315050518_msx170-B100 article-title: Transfer of rps10 from the mitochondrion to the nucleus in Arabidopsis thaliana: evidence for RNA-mediated transfer and exon shuffling at the integration site publication-title: FEBS Lett doi: 10.1016/0014-5793(95)01100-S – volume: 62 start-page: 573 year: 2012 ident: key 20180315050518_msx170-B102 article-title: The phylogeny of the BEP clade in grasses revisited: Evidence from the whole-genome sequences of chloroplasts publication-title: Mol Phylogenet Evol doi: 10.1016/j.ympev.2011.10.019 – volume: 325 start-page: 140 year: 1993 ident: key 20180315050518_msx170-B16 article-title: The mitochondrial genome on its way to the nucleus: different stages of gene transfer in higher plants publication-title: FEBS Lett doi: 10.1016/0014-5793(93)81430-8 – volume: 33 start-page: 3042 year: 2016 ident: key 20180315050518_msx170-B48 article-title: The roles of mutation, selection, and expression in determining relative rates of evolution in mitochondrial vs. nuclear genomes publication-title: Mol Biol Evol doi: 10.1093/molbev/msw185 – volume: 26 start-page: 875 year: 2009 ident: key 20180315050518_msx170-B62 article-title: Comparative analysis of structural diversity and sequence evolution in plant mitochondrial genes transferred to the nucleus publication-title: Mol Biol Evol doi: 10.1093/molbev/msp011 – volume: 24 start-page: 1586 year: 2007 ident: key 20180315050518_msx170-B105 article-title: PAML 4: phylogenetic analysis by maximum likelihood publication-title: Mol Biol Evol doi: 10.1093/molbev/msm088 – volume: 8 start-page: 3193 year: 2016 ident: key 20180315050518_msx170-B40 article-title: Loss of a trans-splicing nad1 intron from Geraniaceae and transfer of the maturase gene matR to the nucleus in Pelargonium publication-title: Genome Biol Evol doi: 10.1093/gbe/evw233 – volume: 283 start-page: 1476 year: 1999 ident: key 20180315050518_msx170-B37 article-title: Mitochondrial evolution publication-title: Science doi: 10.1126/science.283.5407.1476 – volume: 10 start-page: 274. year: 2010 ident: key 20180315050518_msx170-B91 article-title: Extensive loss of translational genes in the structurally dynamic mitochondrial genome of Silene latifolia publication-title: BMC Evol Biol doi: 10.1186/1471-2148-10-274 – volume: 177 start-page: 1173 year: 2007 ident: key 20180315050518_msx170-B6 article-title: Comparisons among two fertile and three male-sterile mitochondrial genomes of maize publication-title: Genetics doi: 10.1534/genetics.107.073312 – volume: 193 start-page: 304 year: 2012 ident: key 20180315050518_msx170-B36 article-title: New grass phylogeny resolves deep evolutionary relationships and discovers C4 origins publication-title: New Phytol doi: 10.1111/j.1469-8137.2011.03972.x – volume: 424 start-page: 197 year: 2003 ident: key 20180315050518_msx170-B11 article-title: Widespread horizontal transfer of mitochondrial genes in flowering plants publication-title: Nature doi: 10.1038/nature01743 – volume: 22 start-page: 763 year: 2012 ident: key 20180315050518_msx170-B31 article-title: Experimental reconstruction of the functional transfer of intron-containing plastid genes to the nucleus publication-title: Curr Biol doi: 10.1016/j.cub.2012.03.005 – volume: 19 start-page: 1572 year: 2003 ident: key 20180315050518_msx170-B87 article-title: MrBAYES 3, Bayesian phylogenetic inference under mixed models publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg180 – volume: 7 start-page: 248 year: 2007 ident: key 20180315050518_msx170-B9 article-title: Mitochondrial DNA suggests at least 11 origins of parasitism in angiosperms and reveals genomic chimerism in parasitic plants publication-title: BMC Evol Biol doi: 10.1186/1471-2148-7-248 – volume: 89 start-page: 159 year: 2007 ident: key 20180315050518_msx170-B64 article-title: RNA editing has been lost in the mitochondrial cox3 and rps13 mRNAs in Asparagales publication-title: Biochimie doi: 10.1016/j.biochi.2006.09.011 – volume: 5 start-page: 73 year: 2005 ident: key 20180315050518_msx170-B79 article-title: Multiple major increases and decreases in mitochondrial substitution rates in the plant family Geraniaceae publication-title: BMC Evol Biol doi: 10.1186/1471-2148-5-73 – volume: 14 start-page: 931 year: 2002 ident: key 20180315050518_msx170-B3 article-title: Genes for two mitochondrial ribosomal proteins in flowering plants are derived from their chloroplast or cytosolic counterparts publication-title: Plant Cell doi: 10.1105/tpc.010483 – volume: 276 start-page: 285 year: 2006 ident: key 20180315050518_msx170-B69 article-title: Patterns of partial RNA editing in mitochondrial genes of Beta vulgaris publication-title: Mol Genet Genomics doi: 10.1007/s00438-006-0139-3 – volume: 8 start-page: 2176 year: 2016 ident: key 20180315050518_msx170-B24 article-title: Localized retroprocessing as a model of intron loss in the plant mitochondrial genome publication-title: Genome Biol Evol doi: 10.1093/gbe/evw148 – volume: 19 start-page: 135 year: 2014 ident: key 20180315050518_msx170-B39 article-title: Comparative analysis of 11 Brassicales mitochondrial genomes and the mitochondrial transcriptome of Brassica oleracea publication-title: Mitochondrion doi: 10.1016/j.mito.2014.05.008 – volume: 111 start-page: 314 year: 2013 ident: key 20180315050518_msx170-B67 article-title: Analysis of plastid and mitochondrial DNA insertion in the nucleus (NUPTs and NUMTs) of six plant species: size, relative age and chromosomal localization publication-title: Heredity doi: 10.1038/hdy.2013.51 – volume: 84 start-page: 9054 year: 1987 ident: key 20180315050518_msx170-B101 article-title: Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.84.24.9054 – volume: 16 start-page: 938 year: 2015 ident: key 20180315050518_msx170-B103 article-title: High transcript abundance, RNA editing, and small RNAs in intergenic regions within the massive mitochondrial genome of the angiosperm Silene noctiflora publication-title: BMC Genomics doi: 10.1186/s12864-015-2155-3 – volume: 106 start-page: 16728 year: 2009 ident: key 20180315050518_msx170-B45 article-title: Fine-scale mergers of chloroplast and mitochondrial genes create functional, transcompartmentally chimeric mitochondrial genes publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0908766106 – volume: 104 start-page: 209 year: 2002 ident: key 20180315050518_msx170-B55 article-title: The sugar beet mitochondrial nad4 gene: an intron loss and its phylogenetic implication in the Caryophyllales publication-title: Theor Appl Genet doi: 10.1007/s001220100744 – volume: 11 start-page: 3815 year: 1992 ident: key 20180315050518_msx170-B21 article-title: Silent mitochondrial and active nuclear genes for subunit 2 of cytochrome c oxidase (cox2) in soybean: evidence for RNA-mediated gene transfer publication-title: EMBO J doi: 10.1002/j.1460-2075.1992.tb05473.x – volume: 268 start-page: 434 year: 2002 ident: key 20180315050518_msx170-B72 article-title: The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants publication-title: Mol Genet Genomics doi: 10.1007/s00438-002-0767-1 – volume: 49 start-page: 827 year: 2008 ident: key 20180315050518_msx170-B27 article-title: Relative rates of synonymous substitutions in the mitochondrial, chloroplast and nuclear genomes of seed plants publication-title: Mol Phylogenet Evol doi: 10.1016/j.ympev.2008.09.009 – volume: 26 start-page: 865 year: 1998 ident: key 20180315050518_msx170-B38 article-title: Genome structure and gene content in protist mitochondrial DNAs publication-title: Nucleic Acids Res doi: 10.1093/nar/26.4.865 – volume: 13 start-page: 303 year: 2012 ident: key 20180315050518_msx170-B106 article-title: Molecular phylogenetics: principles and practice publication-title: Nat Rev Genet doi: 10.1038/nrg3186 – volume: 19 start-page: 380 year: 2014 ident: key 20180315050518_msx170-B44 article-title: RNA metabolism in plant mitochondria publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2013.12.008 – volume: 93 start-page: 7727 year: 1996 ident: key 20180315050518_msx170-B63 article-title: Exon shuffling and the origin of the mitochondrial targeting function in plant cytochrome c1 precursor publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.93.15.7727 – volume: 24 start-page: 129 year: 1994 ident: key 20180315050518_msx170-B58 article-title: Subunit 6 of the Fo-ATP synthase complex from cytoplasmic male-sterile radish: RNA editing and NH2-terminal protein sequencing publication-title: Plant Mol Biol doi: 10.1007/BF00040580 – volume: 15 start-page: 50 year: 2015 ident: key 20180315050518_msx170-B104 article-title: Evolution of the bamboos (Bambusoideae; Poaceae): a full plastome phylogenomic analysis publication-title: BMC Evol Biol doi: 10.1186/s12862-015-0321-5 – volume: 52 start-page: 696 year: 2003 ident: key 20180315050518_msx170-B42 article-title: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood publication-title: Syst Biol doi: 10.1080/10635150390235520 – volume: 30 start-page: 772 year: 2013 ident: key 20180315050518_msx170-B56 article-title: MAFFT multiple sequence alignment software version 7: improvements in performance and usability publication-title: Mol Biol Evol doi: 10.1093/molbev/mst010 – volume: 47 start-page: 488 year: 2008 ident: key 20180315050518_msx170-B14 article-title: Large multi-gene phylogenetic trees of the grasses (Poaceae): progress towards complete tribal and generic level sampling publication-title: Mol Phylogenet Evol doi: 10.1016/j.ympev.2008.01.035 – volume: 19 start-page: 3275 year: 1991 ident: key 20180315050518_msx170-B60 article-title: RNA editing of the transcript coding for subunit 4 of NADH dehydrogenase in wheat mitochondria: uneven distribution of the editing sites among the four exons publication-title: Nucleic Acids Res doi: 10.1093/nar/19.12.3275 – start-page: 123 volume-title: Plant Genome Diversity year: 2012 ident: key 20180315050518_msx170-B71 doi: 10.1007/978-3-7091-1130-7_9 – volume: 24 start-page: 330 year: 1993 ident: key 20180315050518_msx170-B15 article-title: An rps14 pseudogene is transcribed and edited in Arabidopsis mitochondria publication-title: Curr Genet doi: 10.1007/BF00336785 – volume: 8 start-page: 150 year: 2010 ident: key 20180315050518_msx170-B70 article-title: Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes publication-title: BMC Biol doi: 10.1186/1741-7007-8-150 – volume: 37 start-page: W253 year: 2009 ident: key 20180315050518_msx170-B68 article-title: The PREP Suite: Predictive RNA editors for plant mitochondrial genes, chloroplast genes and user-defined alignments publication-title: Nucleic Acids Res doi: 10.1093/nar/gkp337 – volume: 100 start-page: 8828 year: 2003 ident: key 20180315050518_msx170-B94 article-title: High-frequency gene transfer from the chloroplast genome to the nucleus publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1430924100 – volume: 17 start-page: 383 year: 2001 ident: key 20180315050518_msx170-B51 article-title: How do mitochondrial genes get into the nucleus? publication-title: Trends Genet doi: 10.1016/S0168-9525(01)02312-5 – volume: 55 start-page: 871 year: 2006 ident: key 20180315050518_msx170-B80 article-title: RNA editing and phylogenetic reconstruction in two monocot mitochondrial genes publication-title: Taxon doi: 10.2307/25065682 – volume: 136 start-page: 3486 year: 2004 ident: key 20180315050518_msx170-B19 article-title: Sequence and comparative analysis of the maize NB mitochondrial genome publication-title: Plant Physiol doi: 10.1104/pp.104.044602 – volume: 15 start-page: 178 year: 2015 ident: key 20180315050518_msx170-B20 article-title: Resolving deep relationships of PACMAD grasses: a phylogenomic approach publication-title: BMC Plant Biol doi: 10.1186/s12870-015-0563-9 – volume: 49 start-page: 275 year: 2006 ident: key 20180315050518_msx170-B96 article-title: Rapid evolution in sequence and length of the nuclear-located gene for mitochondrial L2 ribosomal protein in cereals publication-title: Genome doi: 10.1139/g05-098 – volume: 29 start-page: 380 year: 2003 ident: key 20180315050518_msx170-B2 article-title: Evolution of mitochondrial gene content: gene loss and transfer to the nucleus publication-title: Mol Phylogenet Evol doi: 10.1016/S1055-7903(03)00194-5 – volume: 26 start-page: 86 year: 2016 ident: key 20180315050518_msx170-B61 article-title: Extensive mitochondrial mRNA editing and unusual mitochondrial genome organization in calcaronean sponges (Calcarea, Porifera) publication-title: Curr Biol doi: 10.1016/j.cub.2015.11.043 – volume: 66 start-page: 473 year: 1991 ident: key 20180315050518_msx170-B74 article-title: RNA-mediated transfer of the gene coxII from the mitochondrion to the nucleus during flowering plant evolution publication-title: Cell doi: 10.1016/0092-8674(81)90011-8 – volume: 6 start-page: e1000834 year: 2010 ident: key 20180315050518_msx170-B49 article-title: Molecular poltergeists: mitochondrial DNA copies (numts) in sequenced nuclear genomes publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000834 – volume: 196 start-page: 1228 year: 2012 ident: key 20180315050518_msx170-B93 article-title: Intraspecific variation in mitochondrial genome sequence, structure, and gene content in Silene vulgaris, an angiosperm with pervasive cytoplasmic male sterility publication-title: New Phytol doi: 10.1111/j.1469-8137.2012.04340.x – volume: 178 start-page: 47 year: 2008 ident: key 20180315050518_msx170-B65 article-title: Mitochondrial DNA transfer to the nucleus generates extensive insertion site variation in maize publication-title: Genetics doi: 10.1534/genetics.107.079624 – volume: 41 start-page: 397 year: 1995 ident: key 20180315050518_msx170-B12 article-title: Pervasive migration of organellar DNA to the nucleus in plants publication-title: J Mol Evol doi: 10.1007/BF00160310 – volume: 300 start-page: 1005 year: 2000 ident: key 20180315050518_msx170-B28 article-title: Predicting subcellular localization of proteins based on their N-terminal amino acid sequence publication-title: J Mol Biol doi: 10.1006/jmbi.2000.3903 – volume: 96 start-page: 9207 year: 1999 ident: key 20180315050518_msx170-B59 article-title: A single nuclear transcript encoding mitochondrial RPS14 and SDHB of rice is processed by alternative splicing: Common use of the same mitochondrial targeting signal for different proteins publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.96.16.9207 – volume: 99 start-page: 9905 year: 2002 ident: key 20180315050518_msx170-B4 article-title: Punctuated evolution of mitochondrial gene content: high and variable rates of mitochondrial gene loss and transfer to the nucleus during angiosperm evolution publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.042694899 – volume: 23 start-page: 472 year: 1993 ident: key 20180315050518_msx170-B97 article-title: Editing of rps3/rpl16 transcripts creates a premature truncation of the rpl16 open reading frame publication-title: Curr Genet doi: 10.1007/BF00312637 |
SSID | ssj0014466 |
Score | 2.3534002 |
Snippet | Functional gene transfers from the mitochondrion to the nucleus are ongoing in angiosperms and have occurred repeatedly for all 15 ribosomal protein genes, but... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2340 |
SubjectTerms | Amino Acid Sequence - genetics Angiosperms Cell Nucleus - genetics Deoxyribonucleic acid Discoveries DNA DNA, Mitochondrial - genetics Evolution, Molecular Gene conversion Gene Conversion - genetics Gene transfer Genes Genes, Mitochondrial - genetics Genes, Plant Genome, Mitochondrial Grasses Introns Magnoliopsida - genetics Mitochondria - genetics Mitochondrial DNA Nuclei (cytology) Nucleotide sequence Phylogeny Plant Proteins - genetics Poaceae - genetics Pseudogenes - genetics Ribonucleic acid Ribosomal Proteins - genetics RNA RNA Editing Sequence Homology, Amino Acid Yeast |
Title | Mitochondrial Retroprocessing Promoted Functional Transfers of rpl5 to the Nucleus in Grasses |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28541477 https://www.proquest.com/docview/3171297126 https://www.proquest.com/docview/1902482048 https://pubmed.ncbi.nlm.nih.gov/PMC5850859 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9RAEF-0RfBF_Pa0lhXEJ8M1u5vd7FNR6VmEnqWccC8S9itYuCbnJSftf9-ZbC7eCepDHkKWJOx878z8hpC3ygdtmTOJzmyeCF3KRBtuE-G4NCDoOQvYKHw2laffxJd5Nu8P3Jq-rHKjEztF7WuHZ-RjsHNgmuCSx8ufCU6NwuxqP0LjLtlH6DLkajUfAq50k6tUXEGcxPMeYxOC-PFVvbDh1_iquU5xTvGWTdrpc9tyN_-smtwyQ5OH5EHvP9IPkeCPyJ1QPSb34kTJmyfk-xlIKGi0yiNj0YvQrupl7AUAG0XPu-K74OkEzFk8BaSdtSrBC6R1SVfLRUbbmoJbSKcIdbxu6GVFP68MJoefktnkZPbpNOknKCQOwq4WdGzmtXRGa8uZ9ca6UhrFpHa85NocWXBvtDrSgUubGRdkHvKSZU64MjAu-DOyV9VVeEEoRGUIsxOYCKWwxhlvvEaCOi_yNPUj8n6zhYXr0cVxyMWiiFluXsQdL-KOj8i7Yfkywmr8beEboMf_1hxsqFX0EtgUv_kFXjE8BtnBhIipQr1uCnCGmMgRunhEnkfiDl_CztJUKDUiaofswwLE5d59Ul3-6PC5IQJD2LiX__6tV-Q-Qxehq1c7IHvtah1eg4PT2sOOiw_J_seT6fkF3M2-zm8BTI4DPw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB4tixBcEG8KCxgJOBG1sZ2HDwghoHTZbYVQkXpBkV8RK3WT0qTA_ij-I-M4CS0ScNpDTracyDOebybj-QbgSWKsUFTLQEQqDbjI40BIpgKuWSzxoKfUukLh6SyefOLvF9FiD352tTDuWmVnExtDbUrt_pEPEecQmvCJX66-Bq5rlMuudi00vFoc2bPvGLJVLw7foHyfUjp-O389CdquAoHGUKRGuxMZEWsphGJUGal0HsuExkKznAk5Ugj5IhkJy2IVSW3j1KY5jTTXuaWMM1z2AlxE3B25WC9Z9PFd2KVGE5ZgWMbSltJzJNjwtFwq-214Wv0IXVvkLQjcKavb8m7_vKS5hXrja3C1dVfJK69f12HPFjfgkm9geXYTPk_RIKABLYzTY_LR1uty5UsPEBLJh-aunzVkjOjpfzqSBhxzdDpJmZP1ahmRuiTohZKZY1beVOSkIO_W0uWib8H8PLb2NuwXZWHvAsEg0LH6WMptzpXU0kgjnP5ow9MwNAN43m1hplsyc9dTY5n5pDrL_I5nfscH8KyfvvIsHn-b-Bjl8b85B520svbAV9lv9cQl-mE8qi7_IgtbbqoMfS_KU8eUPIA7Xrj9m1wha8iTZADJjtj7CY4GfHekOPnS0IFjwOdY6u79-7MeweXJfHqcHR_Oju7DFeq8k-aq3AHs1-uNfYC-Va0eNhpNIDvnE_QLO9w9kg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondrial+Retroprocessing+Promoted+Functional+Transfers+of+rpl5+to+the+Nucleus+in+Grasses&rft.jtitle=Molecular+biology+and+evolution&rft.au=Wu%2C+Zhiqiang&rft.au=Sloan%2C+Daniel+B.&rft.au=Brown%2C+Colin+W.&rft.au=Rosenblueth%2C+M%C3%B3nica&rft.date=2017-09-01&rft.pub=Oxford+University+Press&rft.issn=0737-4038&rft.eissn=1537-1719&rft.volume=34&rft.issue=9&rft.spage=2340&rft.epage=2354&rft_id=info:doi/10.1093%2Fmolbev%2Fmsx170&rft.externalDocID=10.1093%2Fmolbev%2Fmsx170 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0737-4038&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0737-4038&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0737-4038&client=summon |