Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification
A fusion of the FokI nuclease and a catalytically inactive Cas9 is a highly specific genome editing tool. Genome editing by Cas9, which cleaves double-stranded DNA at a sequence programmed by a short single-guide RNA (sgRNA), can result in off-target DNA modification that may be detrimental in some...
Saved in:
Published in | Nature biotechnology Vol. 32; no. 6; pp. 577 - 582 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.06.2014
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A fusion of the FokI nuclease and a catalytically inactive Cas9 is a highly specific genome editing tool.
Genome editing by Cas9, which cleaves double-stranded DNA at a sequence programmed by a short single-guide RNA (sgRNA), can result in off-target DNA modification that may be detrimental in some applications. To improve DNA cleavage specificity, we generated fusions of catalytically inactive Cas9 and FokI nuclease (fCas9). DNA cleavage by fCas9 requires association of two fCas9 monomers that simultaneously bind target sites ∼15 or 25 base pairs apart. In human cells, fCas9 modified target DNA sites with >140-fold higher specificity than wild-type Cas9 and with an efficiency similar to that of paired Cas9 'nickases', recently engineered variants that cleave only one DNA strand per monomer. The specificity of fCas9 was at least fourfold higher than that of paired nickases at loci with highly similar off-target sites. Target sites that conform to the substrate requirements of fCas9 occur on average every 34 bp in the human genome, suggesting the versatility of this approach for highly specific genome-wide editing. |
---|---|
AbstractList | Genome editing by Cas9, which cleaves double-stranded DNA at a sequence programmed by a short single-guide RNA (sgRNA), can result in off-target DNA modification that may be detrimental in some applications. To improve DNA cleavage specificity, we generated fusions of catalytically inactive Cas9 and FokI nuclease (fCas9). DNA cleavage by fCas9 requires association of two fCas9 monomers that simultaneously bind target sites ∼15 or 25 base pairs apart. In human cells, fCas9 modified target DNA sites with >140-fold higher specificity than wild-type Cas9 and with an efficiency similar to that of paired Cas9 'nickases', recently engineered variants that cleave only one DNA strand per monomer. The specificity of fCas9 was at least fourfold higher than that of paired nickases at loci with highly similar off-target sites. Target sites that conform to the substrate requirements of fCas9 occur on average every 34 bp in the human genome, suggesting the versatility of this approach for highly specific genome-wide editing. A fusion of the FokI nuclease and a catalytically inactive Cas9 is a highly specific genome editing tool. Genome editing by Cas9, which cleaves double-stranded DNA at a sequence programmed by a short single-guide RNA (sgRNA), can result in off-target DNA modification that may be detrimental in some applications. To improve DNA cleavage specificity, we generated fusions of catalytically inactive Cas9 and FokI nuclease (fCas9). DNA cleavage by fCas9 requires association of two fCas9 monomers that simultaneously bind target sites ∼15 or 25 base pairs apart. In human cells, fCas9 modified target DNA sites with >140-fold higher specificity than wild-type Cas9 and with an efficiency similar to that of paired Cas9 'nickases', recently engineered variants that cleave only one DNA strand per monomer. The specificity of fCas9 was at least fourfold higher than that of paired nickases at loci with highly similar off-target sites. Target sites that conform to the substrate requirements of fCas9 occur on average every 34 bp in the human genome, suggesting the versatility of this approach for highly specific genome-wide editing. Genome editing by Cas9, which cleaves double-stranded DNA at a sequence programmed by a short single-guide RNA (sgRNA), can result in off-target DNA modification that may be detrimental in some applications. To improve DNA cleavage specificity, we generated fusions of catalytically inactive Cas9 and FokI nuclease (fCas9). DNA cleavage by fCas9 requires association of two fCas9 monomers that simultaneously bind target sites 15 or 25 base pairs apart. In human cells, fCas9 modified target DNA sites with >140-fold higher specificity than wild-type Cas9 and with an efficiency similar to that of paired Cas9 'nickases', recently engineered variants that cleave only one DNA strand per monomer. The specificity of fCas9 was at least fourfold higher than that of paired nickases at loci with highly similar off-target sites. Target sites that conform to the substrate requirements of fCas9 occur on average every 34 bp in the human genome, suggesting the versatility of this approach for highly specific genome-wide editing. Genome editing by Cas9, which cleaves double-stranded DNA at a sequence programmed by a short single-guide RNA (sgRNA), can result in off-target DNA modification that may be detrimental in some applications. To improve DNA cleavage specificity, we generated fusions of catalytically inactive Cas9 and FokI nuclease (fCas9). DNA cleavage by fCas9 requires association of two fCas9 monomers that simultaneously bind target sites ∼15 or 25 base pairs apart. In human cells, fCas9 modified target DNA sites with >140-fold higher specificity than wild-type Cas9 and with an efficiency similar to that of paired Cas9 'nickases', recently engineered variants that cleave only one DNA strand per monomer. The specificity of fCas9 was at least fourfold higher than that of paired nickases at loci with highly similar off-target sites. Target sites that conform to the substrate requirements of fCas9 occur on average every 34 bp in the human genome, suggesting the versatility of this approach for highly specific genome-wide editing.Genome editing by Cas9, which cleaves double-stranded DNA at a sequence programmed by a short single-guide RNA (sgRNA), can result in off-target DNA modification that may be detrimental in some applications. To improve DNA cleavage specificity, we generated fusions of catalytically inactive Cas9 and FokI nuclease (fCas9). DNA cleavage by fCas9 requires association of two fCas9 monomers that simultaneously bind target sites ∼15 or 25 base pairs apart. In human cells, fCas9 modified target DNA sites with >140-fold higher specificity than wild-type Cas9 and with an efficiency similar to that of paired Cas9 'nickases', recently engineered variants that cleave only one DNA strand per monomer. The specificity of fCas9 was at least fourfold higher than that of paired nickases at loci with highly similar off-target sites. Target sites that conform to the substrate requirements of fCas9 occur on average every 34 bp in the human genome, suggesting the versatility of this approach for highly specific genome-wide editing. Genome editing by Cas9, which cleaves double-stranded DNA at a sequence programmed by a short single-guide RNA (sgRNA), can result in off-target DNA modification that may be detrimental in some applications. To improve DNA cleavage specificity, we generated fusions of catalytically inactive Cas9 and Fok I nuclease (fCas9). DNA cleavage by fCas9 requires association of two fCas9 monomers that simultaneously bind target sites ~15 or 25 base pairs apart. In human cells, fCas9 modified target DNA sites with >140-fold higher specificity than wild-type Cas9 and with an efficiency similar to that of paired Cas9 ‘nickases’, recently engineered variants that cleave only one DNA strand per monomer. The specificity of fCas9 was at least 4-fold higher_than that of paired nickases at loci with highly similar off-target sites. Target sites that conform to the substrate requirements of fCas9 occur on average every 34 bp in the human genome, suggesting the broad versatility of this approach for highly specific genome-wide editing. |
Author | Thompson, David B Guilinger, John P Liu, David R |
AuthorAffiliation | 2 Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA 1 Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA, USA |
AuthorAffiliation_xml | – name: 1 Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA, USA – name: 2 Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA |
Author_xml | – sequence: 1 givenname: John P surname: Guilinger fullname: Guilinger, John P organization: Department of Chemistry & Chemical Biology, Harvard University, Howard Hughes Medical Institute, Harvard University – sequence: 2 givenname: David B surname: Thompson fullname: Thompson, David B organization: Department of Chemistry & Chemical Biology, Harvard University, Howard Hughes Medical Institute, Harvard University – sequence: 3 givenname: David R surname: Liu fullname: Liu, David R email: drliu@fas.harvard.edu organization: Department of Chemistry & Chemical Biology, Harvard University, Howard Hughes Medical Institute, Harvard University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24770324$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkkuLFDEURoOMOA8Ff4EE3Oii2pvKq7IRpLGdgQE3ug6pVNKTsSppK6mG_vdWd8_LwYWrhOTk8N2be45OYooOobcEFgRo8ym2ZVErUC_QGeFMVEQocTLvoZEVEC5O0XnOtwAgmBCv0GnNpARaszPkV1MOKeLksTXF9LsSrOn7HQ7R2BK2Di9NVrgkvEq_rnCcbO9MdjgMmzFtXcblxuG8cTb4YEPZ7UVrF9Pg8JC6_aEps_81eulNn92bu_UC_Vx9_bG8rK6_f7tafrmuLGONqrw3rewoBS-d5Rys860AST1vlCBNy5XiQhkrCbQNuLprJesaooQHU5ta0Qv0-ejdTO3gOutiGU2vN2MYzLjTyQT9900MN3qdtprVgrIaZsGHO8GYfk8uFz2EbF3fm-jSlDXhnCkOwOV_oJRJVdOD9f0z9DZNY5w7caAoUHYQvnsa_iH1_W_NwOII2DHlPDqv55Yf-jvXEnpNQO_HQc_joPfj8Bjx4cG98x_oxyOaZySu3fgk4nP2D-N3w58 |
CitedBy_id | crossref_primary_10_1016_j_semcdb_2019_05_007 crossref_primary_10_1038_s41467_019_10735_7 crossref_primary_10_1038_s41434_021_00247_9 crossref_primary_10_1007_s00335_017_9684_9 crossref_primary_10_1146_annurev_immunol_042718_041522 crossref_primary_10_1016_j_omtn_2017_06_006 crossref_primary_10_1038_s41598_019_40219_z crossref_primary_10_1093_protein_gzac011 crossref_primary_10_3390_ijms241914701 crossref_primary_10_1146_annurev_genet_071719_030438 crossref_primary_10_1073_pnas_1616343114 crossref_primary_10_1128_ecosalplus_ESP_0006_2020 crossref_primary_10_3389_fbioe_2020_00692 crossref_primary_10_1186_s13046_019_1229_5 crossref_primary_10_1038_s41467_020_16542_9 crossref_primary_10_1016_j_ygeno_2018_03_011 crossref_primary_10_1016_j_gene_2020_145225 crossref_primary_10_3390_v10010050 crossref_primary_10_1080_10408398_2025_2475240 crossref_primary_10_1146_annurev_biochem_060815_014607 crossref_primary_10_1016_j_tibs_2020_06_003 crossref_primary_10_1538_expanim_15_0116 crossref_primary_10_1016_j_cld_2023_05_006 crossref_primary_10_1111_pbi_12465 crossref_primary_10_1016_j_semcdb_2019_05_014 crossref_primary_10_1038_mt_2016_8 crossref_primary_10_3389_fonc_2021_704999 crossref_primary_10_1042_BSR20160297 crossref_primary_10_1021_acssynbio_0c00012 crossref_primary_10_3389_fnmol_2019_00110 crossref_primary_10_1002_jnr_23776 crossref_primary_10_1038_nrd_2016_238 crossref_primary_10_1073_pnas_1420294112 crossref_primary_10_1186_s13578_016_0088_4 crossref_primary_10_1016_j_cpcardiol_2023_101741 crossref_primary_10_1016_j_gene_2018_02_066 crossref_primary_10_1016_j_ymgme_2021_08_002 crossref_primary_10_1007_s12015_022_10385_1 crossref_primary_10_1038_mt_2016_1 crossref_primary_10_1038_nature14592 crossref_primary_10_1007_s00018_017_2522_0 crossref_primary_10_1016_j_apsb_2017_01_002 crossref_primary_10_1186_s12935_020_01546_8 crossref_primary_10_1101_pdb_top086793 crossref_primary_10_1016_j_htct_2023_05_009 crossref_primary_10_1038_s41571_019_0166_8 crossref_primary_10_1002_jgm_2963 crossref_primary_10_1242_dmm_039321 crossref_primary_10_1038_ncomms15622 crossref_primary_10_1016_j_jbc_2024_107720 crossref_primary_10_1093_hmg_ddad034 crossref_primary_10_3389_fpls_2018_00985 crossref_primary_10_1039_D0CC05890D crossref_primary_10_3390_ijms20164045 crossref_primary_10_1186_s13059_018_1458_5 crossref_primary_10_1038_nature16526 crossref_primary_10_1093_g3journal_jkab393 crossref_primary_10_1038_s41467_020_15053_x crossref_primary_10_1080_09670262_2017_1358827 crossref_primary_10_1016_j_genrep_2020_100983 crossref_primary_10_1007_s11883_017_0668_8 crossref_primary_10_1186_s13059_015_0826_7 crossref_primary_10_1038_s42003_019_0321_x crossref_primary_10_1038_srep25516 crossref_primary_10_3389_fgene_2024_1364742 crossref_primary_10_1007_s00109_020_01893_z crossref_primary_10_1038_srep35794 crossref_primary_10_1007_s00299_018_2355_9 crossref_primary_10_1007_s12185_016_2017_z crossref_primary_10_1039_D1BM01658J crossref_primary_10_1016_j_jgg_2019_11_003 crossref_primary_10_3389_fpls_2020_00010 crossref_primary_10_1016_j_plantsci_2015_07_010 crossref_primary_10_1038_nbt_3528 crossref_primary_10_1002_cplu_202000785 crossref_primary_10_1038_ncomms10194 crossref_primary_10_1016_j_copbio_2014_11_007 crossref_primary_10_1007_s13562_022_00767_4 crossref_primary_10_1016_j_pt_2016_04_013 crossref_primary_10_1073_pnas_1718148115 crossref_primary_10_1089_crispr_2020_0134 crossref_primary_10_1016_j_tibtech_2014_11_008 crossref_primary_10_1016_j_bioactmat_2022_08_013 crossref_primary_10_1016_j_ymthe_2019_08_012 crossref_primary_10_18632_oncotarget_8075 crossref_primary_10_1016_j_csbj_2023_12_036 crossref_primary_10_1186_s13059_017_1325_9 crossref_primary_10_1101_gr_199588_115 crossref_primary_10_1146_annurev_micro_091014_104441 crossref_primary_10_1111_1744_7917_13203 crossref_primary_10_1002_wdev_214 crossref_primary_10_1016_j_gpb_2015_12_001 crossref_primary_10_1021_acssynbio_7b00404 crossref_primary_10_1126_science_1258096 crossref_primary_10_1007_s00412_018_0677_6 crossref_primary_10_1016_j_alcohol_2018_03_001 crossref_primary_10_3389_fgeed_2024_1342193 crossref_primary_10_3389_fpls_2016_00475 crossref_primary_10_3389_fbioe_2022_851712 crossref_primary_10_1038_s41392_024_01750_2 crossref_primary_10_2174_1574893616666210708150439 crossref_primary_10_1016_j_molcel_2016_07_004 crossref_primary_10_1021_acssynbio_0c00576 crossref_primary_10_1039_C5IB00325C crossref_primary_10_1186_s13059_024_03188_9 crossref_primary_10_1177_1535676017694148 crossref_primary_10_1016_j_engmic_2023_100123 crossref_primary_10_1161_ATVBAHA_117_309326 crossref_primary_10_1016_j_ymthe_2021_12_001 crossref_primary_10_1021_acschembio_7b00847 crossref_primary_10_1038_s41434_022_00319_4 crossref_primary_10_5924_abgri_44_23 crossref_primary_10_1038_srep10777 crossref_primary_10_1016_j_bbcan_2015_09_003 crossref_primary_10_3389_fgene_2022_876987 crossref_primary_10_1007_s00344_024_11395_8 crossref_primary_10_1016_j_dnarep_2019_102691 crossref_primary_10_1002_jcp_28482 crossref_primary_10_3390_jdb5040016 crossref_primary_10_1186_s13059_015_0859_y crossref_primary_10_3389_fimmu_2024_1411393 crossref_primary_10_1186_s13059_018_1610_2 crossref_primary_10_1007_s12272_018_1042_2 crossref_primary_10_1016_j_ddtec_2018_08_001 crossref_primary_10_1038_s41540_017_0015_2 crossref_primary_10_1016_j_jplph_2020_153332 crossref_primary_10_1096_fj_202001830RR crossref_primary_10_1016_j_funbio_2020_02_006 crossref_primary_10_1007_s00005_016_0427_5 crossref_primary_10_1038_nmeth_3624 crossref_primary_10_1186_s13059_020_02204_y crossref_primary_10_1186_s13059_020_02193_y crossref_primary_10_3389_fpls_2016_01421 crossref_primary_10_3389_fbioe_2022_942325 crossref_primary_10_3390_plants11151949 crossref_primary_10_3389_fphar_2022_900825 crossref_primary_10_1111_pbi_12448 crossref_primary_10_15252_msb_20145735 crossref_primary_10_1002_cpim_62 crossref_primary_10_3390_cells6010005 crossref_primary_10_1007_s12275_022_00005_5 crossref_primary_10_1002_advs_202102051 crossref_primary_10_1038_s41587_019_0095_1 crossref_primary_10_1016_j_isci_2018_08_001 crossref_primary_10_1080_07352689_2020_1782568 crossref_primary_10_1016_j_tcb_2016_08_004 crossref_primary_10_1093_nar_gkz487 crossref_primary_10_1038_nrg3900 crossref_primary_10_1080_15476286_2019_1669406 crossref_primary_10_1016_j_dib_2020_106447 crossref_primary_10_1016_j_trsl_2015_09_008 crossref_primary_10_1016_j_ymeth_2017_03_008 crossref_primary_10_1074_jbc_M114_564625 crossref_primary_10_1016_j_ymthe_2020_11_009 crossref_primary_10_1016_j_biomaterials_2018_04_031 crossref_primary_10_1016_j_enzmictec_2022_110056 crossref_primary_10_3389_fcell_2021_803252 crossref_primary_10_1038_nrg_2016_28 crossref_primary_10_1093_nar_gkae604 crossref_primary_10_18632_oncotarget_7104 crossref_primary_10_1111_jcmm_14669 crossref_primary_10_3390_ijms21144943 crossref_primary_10_1038_s41587_019_0186_z crossref_primary_10_1111_pbi_12736 crossref_primary_10_1038_nmeth_3684 crossref_primary_10_1080_21553769_2019_1670739 crossref_primary_10_3389_fgene_2016_00047 crossref_primary_10_3390_biom12030409 crossref_primary_10_1016_j_exer_2017_06_007 crossref_primary_10_1124_dmd_118_082842 crossref_primary_10_1007_s12272_018_1037_z crossref_primary_10_1016_j_tibtech_2015_02_011 crossref_primary_10_1007_s13237_021_00353_4 crossref_primary_10_1038_s41587_020_0561_9 crossref_primary_10_1038_hortres_2015_19 crossref_primary_10_1016_j_bios_2016_11_042 crossref_primary_10_1093_nar_gkac556 crossref_primary_10_1007_s12033_021_00345_4 crossref_primary_10_1186_s13578_021_00662_w crossref_primary_10_1016_j_nano_2023_102711 crossref_primary_10_1038_s41581_018_0047_x crossref_primary_10_3390_ijms21197353 crossref_primary_10_1016_j_biomaterials_2019_119711 crossref_primary_10_1016_j_ymthe_2016_11_007 crossref_primary_10_1007_s11427_019_1572_7 crossref_primary_10_1080_21645698_2019_1631115 crossref_primary_10_1038_nmeth_3330 crossref_primary_10_1111_pbi_12634 crossref_primary_10_1038_emm_2016_111 crossref_primary_10_1038_nrd_2016_280 crossref_primary_10_3390_ijms242216077 crossref_primary_10_1534_g3_117_300557 crossref_primary_10_2174_0118715273283786240408034408 crossref_primary_10_1016_j_ymben_2014_11_005 crossref_primary_10_1002_lipd_12249 crossref_primary_10_1271_kagakutoseibutsu_59_113 crossref_primary_10_3389_fbioe_2020_00711 crossref_primary_10_1111_gtc_12589 crossref_primary_10_1182_bloodadvances_2022008966 crossref_primary_10_3390_plants10102055 crossref_primary_10_1042_ETLS20170037 crossref_primary_10_1186_s13578_017_0148_4 crossref_primary_10_1007_s11705_017_1618_2 crossref_primary_10_1016_j_ymthe_2019_09_006 crossref_primary_10_1038_nchembio_2559 crossref_primary_10_1038_nprot_2016_165 crossref_primary_10_1093_nar_gkad743 crossref_primary_10_1002_anie_201609229 crossref_primary_10_1007_s13562_023_00860_2 crossref_primary_10_1186_s12916_017_0798_4 crossref_primary_10_1007_s11886_017_0830_5 crossref_primary_10_1038_s41598_017_09030_6 crossref_primary_10_1161_ATVBAHA_116_307227 crossref_primary_10_7554_eLife_03401 crossref_primary_10_1080_17425247_2018_1517746 crossref_primary_10_1073_pnas_1820523116 crossref_primary_10_1038_s41467_023_41393_5 crossref_primary_10_1038_nrcardio_2016_139 crossref_primary_10_1093_nar_gkab211 crossref_primary_10_1002_dvdy_24414 crossref_primary_10_1186_s13073_015_0178_7 crossref_primary_10_1038_nm_3793 crossref_primary_10_1007_s11010_020_03834_3 crossref_primary_10_1007_s11248_016_9934_8 crossref_primary_10_1007_s12264_020_00599_z crossref_primary_10_1016_j_tibtech_2019_01_009 crossref_primary_10_1016_j_synbio_2020_08_001 crossref_primary_10_1093_nar_gkw707 crossref_primary_10_1093_nar_gky1165 crossref_primary_10_1080_07352689_2021_1883826 crossref_primary_10_3390_biology10121255 crossref_primary_10_1186_s40364_023_00509_1 crossref_primary_10_1101_cshperspect_a023754 crossref_primary_10_1016_j_biotechadv_2016_12_003 crossref_primary_10_1089_crispr_2020_0092 crossref_primary_10_3390_cells9071608 crossref_primary_10_1038_s41573_020_0064_x crossref_primary_10_1111_1744_7917_12633 crossref_primary_10_1186_s11658_022_00336_6 crossref_primary_10_1136_jmedgenet_2017_104960 crossref_primary_10_1016_j_plantsci_2015_09_011 crossref_primary_10_3390_app10249001 crossref_primary_10_1093_nar_gkx1199 crossref_primary_10_3390_ijms19030906 crossref_primary_10_1089_crispr_2019_0030 crossref_primary_10_1016_j_iotech_2019_06_001 crossref_primary_10_1093_pcp_pcy079 crossref_primary_10_1099_vir_0_000139 crossref_primary_10_1186_s13059_016_1144_4 crossref_primary_10_1007_s40472_022_00380_3 crossref_primary_10_1016_j_ymthe_2019_01_014 crossref_primary_10_1007_s00335_017_9697_4 crossref_primary_10_1016_j_jconrel_2016_11_014 crossref_primary_10_1021_acs_biochem_9b00798 crossref_primary_10_1038_nchembio_1793 crossref_primary_10_1530_ERC_18_0039 crossref_primary_10_1097_MOT_0000000000000347 crossref_primary_10_1097_MOT_0000000000000589 crossref_primary_10_1038_s41467_018_03927_0 crossref_primary_10_1534_g3_115_019901 crossref_primary_10_1016_j_biotechadv_2022_107924 crossref_primary_10_1016_j_copbio_2017_06_012 crossref_primary_10_1016_j_gene_2016_02_013 crossref_primary_10_3389_fpls_2017_00177 crossref_primary_10_1007_s11010_023_04759_3 crossref_primary_10_1021_acschembio_7b00689 crossref_primary_10_1038_srep11221 crossref_primary_10_3389_fpls_2015_01001 crossref_primary_10_1111_jipb_12474 crossref_primary_10_1016_j_addr_2020_10_014 crossref_primary_10_1016_j_jbiotec_2015_04_024 crossref_primary_10_1016_j_cell_2019_05_049 crossref_primary_10_1007_s40484_014_0030_x crossref_primary_10_1534_g3_117_300359 crossref_primary_10_1080_10717544_2018_1474964 crossref_primary_10_1016_S2095_3119_16_61437_5 crossref_primary_10_1073_pnas_1405186111 crossref_primary_10_1002_jcp_29052 crossref_primary_10_1016_j_biotechadv_2021_107737 crossref_primary_10_1007_s10725_021_00762_0 crossref_primary_10_1080_14789450_2018_1521275 crossref_primary_10_1002_biot_201400193 crossref_primary_10_1002_biot_202100571 crossref_primary_10_1016_j_molcel_2015_04_028 crossref_primary_10_3389_fgene_2016_00028 crossref_primary_10_1016_j_molcel_2024_01_021 crossref_primary_10_1093_bfgp_elw031 crossref_primary_10_3390_ijms161125950 crossref_primary_10_1016_j_pneurobio_2023_102547 crossref_primary_10_1089_nat_2015_0545 crossref_primary_10_1016_j_jbiotec_2018_08_007 crossref_primary_10_3389_fpls_2019_00114 crossref_primary_10_1089_crispr_2019_0013 crossref_primary_10_1039_C9SC03639C crossref_primary_10_1017_S0033583519000052 crossref_primary_10_3390_v14010004 crossref_primary_10_3904_kjim_2016_198 crossref_primary_10_1002_bit_25662 crossref_primary_10_3389_fimmu_2015_00250 crossref_primary_10_1186_s13287_018_0779_3 crossref_primary_10_1134_S0006297916070038 crossref_primary_10_1111_gtc_12437 crossref_primary_10_1007_s00430_019_00653_2 crossref_primary_10_23868_gc120555 crossref_primary_10_1093_bfgp_elw025 crossref_primary_10_1038_srep23549 crossref_primary_10_1038_s41467_018_04252_2 crossref_primary_10_1016_j_cels_2016_12_010 crossref_primary_10_1038_nmeth_3473 crossref_primary_10_1007_s13365_014_0308_9 crossref_primary_10_1002_tcr_201800036 crossref_primary_10_1242_dev_102186 crossref_primary_10_1038_nchembio_2179 crossref_primary_10_1093_ckj_sfae119 crossref_primary_10_1038_nbt_3081 crossref_primary_10_1016_j_surg_2019_01_030 crossref_primary_10_1097_MOT_0000000000000798 crossref_primary_10_1016_j_jmb_2024_168836 crossref_primary_10_1128_AEM_00340_19 crossref_primary_10_1016_j_stem_2017_09_006 crossref_primary_10_1371_journal_pone_0207302 crossref_primary_10_1016_j_pep_2024_106445 crossref_primary_10_1016_j_biomaterials_2022_121876 crossref_primary_10_1016_j_ddtec_2018_05_001 crossref_primary_10_1007_s13167_023_00324_6 crossref_primary_10_3389_fgene_2015_00362 crossref_primary_10_1016_j_immuni_2015_01_004 crossref_primary_10_1038_nmeth_3284 crossref_primary_10_3390_agronomy12040759 crossref_primary_10_1016_j_chembiol_2024_07_007 crossref_primary_10_1007_s00335_015_9565_z crossref_primary_10_1146_annurev_phyto_080417_050158 crossref_primary_10_1016_j_mib_2017_05_009 crossref_primary_10_1038_nprot_2016_104 crossref_primary_10_1134_S2079059717040116 crossref_primary_10_1002_biot_201700432 crossref_primary_10_1155_2016_5078796 crossref_primary_10_1021_acssynbio_7b00270 crossref_primary_10_1021_acs_analchem_9b04814 crossref_primary_10_3390_ijms221910355 crossref_primary_10_1093_jxb_erae341 crossref_primary_10_1080_07352689_2017_1402989 crossref_primary_10_1016_j_preteyeres_2016_09_001 crossref_primary_10_1126_science_aad5227 crossref_primary_10_1016_j_chembiol_2015_12_009 crossref_primary_10_1155_2018_3797214 crossref_primary_10_1016_j_synbio_2018_10_003 crossref_primary_10_1016_j_rser_2017_01_028 crossref_primary_10_31857_S0026898423020155 crossref_primary_10_3389_fcell_2021_761709 crossref_primary_10_1007_s10565_019_09486_4 crossref_primary_10_1038_nbt_4192 crossref_primary_10_1021_acs_chemrev_6b00799 crossref_primary_10_1016_j_csbj_2020_08_031 crossref_primary_10_1016_j_jbiotec_2023_04_008 crossref_primary_10_1042_BSR20200127 crossref_primary_10_1002_bit_25851 crossref_primary_10_1038_s41467_022_34527_8 crossref_primary_10_1146_annurev_biophys_062215_010830 crossref_primary_10_1038_mt_2016_10 crossref_primary_10_2174_0929867329666220722113832 crossref_primary_10_1111_febs_13763 crossref_primary_10_1038_srep17517 crossref_primary_10_14720_aas_2018_112_1_3 crossref_primary_10_7202_1089787ar crossref_primary_10_1021_acschembio_5b01019 crossref_primary_10_3389_fpls_2023_1171154 crossref_primary_10_1073_pnas_1714640114 crossref_primary_10_1038_nmeth_3020 crossref_primary_10_1007_s12257_017_0094_3 crossref_primary_10_1038_nbt_4066 crossref_primary_10_1038_srep25199 crossref_primary_10_1016_j_addr_2020_02_003 crossref_primary_10_1002_biot_201500082 crossref_primary_10_1016_j_jim_2016_09_006 crossref_primary_10_1016_j_gendis_2014_08_004 crossref_primary_10_3390_genes11101113 crossref_primary_10_1007_s11427_021_2057_0 crossref_primary_10_2478_mjhr_2020_0002 crossref_primary_10_1021_acssynbio_7b00050 crossref_primary_10_1016_j_ymeth_2021_06_003 crossref_primary_10_1038_s41556_020_0518_8 crossref_primary_10_1080_1744666X_2017_1241711 crossref_primary_10_1089_hum_2015_074 crossref_primary_10_1128_JVI_02465_16 crossref_primary_10_1002_ange_201609229 crossref_primary_10_1101_sqb_2015_80_027326 crossref_primary_10_1242_jeb_175737 crossref_primary_10_3389_fchem_2017_00012 crossref_primary_10_1016_j_biomaterials_2021_121229 crossref_primary_10_1016_j_molcel_2015_02_032 crossref_primary_10_1016_j_renene_2019_10_107 crossref_primary_10_1016_j_jmb_2015_12_005 crossref_primary_10_1016_j_cell_2018_11_052 crossref_primary_10_1016_j_biotechadv_2014_12_006 crossref_primary_10_2147_IJN_S286221 crossref_primary_10_1007_s10142_020_00739_8 crossref_primary_10_1089_hum_2015_084 crossref_primary_10_1111_febs_13586 crossref_primary_10_1139_bcb_2016_0137 crossref_primary_10_1161_CIRCRESAHA_116_309948 crossref_primary_10_1007_s10340_022_01520_5 crossref_primary_10_1016_j_omtn_2019_07_009 crossref_primary_10_1146_annurev_genom_083115_022258 crossref_primary_10_1038_s41467_023_40476_7 crossref_primary_10_3390_v8030072 crossref_primary_10_2144_btn_2018_0105 crossref_primary_10_1038_mt_2016_21 crossref_primary_10_3389_fimmu_2020_02062 crossref_primary_10_1089_hum_2015_091 crossref_primary_10_1111_rda_13012 crossref_primary_10_1002_9780470151808_sc05a08s35 crossref_primary_10_1007_s00253_017_8497_9 crossref_primary_10_2217_pme_2016_0026 crossref_primary_10_1016_j_heares_2015_04_016 crossref_primary_10_1038_nrg_2017_59 crossref_primary_10_1089_crispr_2017_0016 crossref_primary_10_1038_srep42661 crossref_primary_10_1093_nar_gkae142 crossref_primary_10_1038_mt_2015_54 crossref_primary_10_1093_bib_bbae066 crossref_primary_10_1016_j_omtn_2023_102072 crossref_primary_10_1016_j_ijbiomac_2024_132546 crossref_primary_10_1093_bioinformatics_btu743 crossref_primary_10_1007_s13562_023_00851_3 crossref_primary_10_1016_j_kint_2017_01_037 crossref_primary_10_1016_j_biotechadv_2016_08_002 crossref_primary_10_1093_synbio_ysaa021 crossref_primary_10_1080_15476286_2019_1582974 crossref_primary_10_1093_nar_gkw883 crossref_primary_10_1080_14712598_2021_1872539 crossref_primary_10_3390_jcdd3020013 crossref_primary_10_1039_c6ib00140h crossref_primary_10_1007_s00253_017_8486_z crossref_primary_10_1080_07388551_2017_1356803 crossref_primary_10_1002_dvg_22997 crossref_primary_10_1042_ETLS20180157 crossref_primary_10_2174_1389201021666200621161610 crossref_primary_10_3390_life11101021 crossref_primary_10_3390_ijms18122565 crossref_primary_10_1038_s41467_022_31386_1 crossref_primary_10_3389_fgene_2015_00300 crossref_primary_10_1002_jcb_30329 crossref_primary_10_1093_jxb_erad199 crossref_primary_10_1016_j_cobme_2017_04_001 crossref_primary_10_1002_jcb_26198 crossref_primary_10_1152_physrev_00046_2017 crossref_primary_10_1007_s11481_019_09849_y crossref_primary_10_1101_gr_190124_115 crossref_primary_10_1038_mt_2015_70 crossref_primary_10_3390_microorganisms11041040 crossref_primary_10_3389_fpls_2016_00703 crossref_primary_10_1016_j_coche_2016_12_002 crossref_primary_10_1038_srep24356 crossref_primary_10_1007_s00299_016_1985_z crossref_primary_10_4049_immunohorizons_2000082 crossref_primary_10_7554_eLife_10606 crossref_primary_10_3389_fcell_2021_718466 crossref_primary_10_3389_fimmu_2022_1063303 crossref_primary_10_1007_s00438_025_02231_z crossref_primary_10_1016_j_jgg_2019_02_004 crossref_primary_10_1093_nar_gky884 crossref_primary_10_1016_j_cell_2016_10_044 crossref_primary_10_1038_nbt_3117 crossref_primary_10_3390_ijms161024751 crossref_primary_10_3390_biology10060530 crossref_primary_10_3390_ijms21114040 crossref_primary_10_3390_cimb46050248 crossref_primary_10_1371_journal_pone_0133373 crossref_primary_10_3390_cells8111386 crossref_primary_10_1002_jcp_26299 crossref_primary_10_15436_2741_0598_15_004 crossref_primary_10_3390_ijms22168571 crossref_primary_10_1093_nar_gkab1072 crossref_primary_10_1007_s00425_020_03372_8 crossref_primary_10_1038_s41598_019_55463_6 crossref_primary_10_1177_1087057115587916 crossref_primary_10_1186_s12864_017_3746_y crossref_primary_10_1021_acssynbio_6b00215 crossref_primary_10_1089_hum_2021_283 crossref_primary_10_1080_15427528_2017_1333192 crossref_primary_10_3389_fbioe_2020_00062 crossref_primary_10_1016_j_ibmb_2020_103336 crossref_primary_10_15407_visn2020_03_050 crossref_primary_10_1016_j_bbrc_2016_11_129 crossref_primary_10_1038_s41467_020_15021_5 crossref_primary_10_1016_j_pnpbp_2017_05_019 crossref_primary_10_1002_jcp_26141 crossref_primary_10_1007_s11248_016_9930_z crossref_primary_10_3390_cells11111853 crossref_primary_10_3389_fgene_2024_1382445 crossref_primary_10_1002_jcp_27476 crossref_primary_10_1007_s00018_020_03725_2 crossref_primary_10_1016_j_omtn_2017_04_018 crossref_primary_10_1111_febs_13248 crossref_primary_10_1016_j_drudis_2014_12_016 crossref_primary_10_1016_j_stem_2015_12_002 crossref_primary_10_1016_j_semcdb_2019_03_010 crossref_primary_10_1016_j_omtn_2023_102038 crossref_primary_10_3389_fmicb_2021_638096 crossref_primary_10_1016_j_ymeth_2015_12_012 crossref_primary_10_1146_annurev_pharmtox_010814_124454 crossref_primary_10_1038_s41594_018_0173_y crossref_primary_10_1016_j_apsb_2021_05_020 crossref_primary_10_1038_srep28508 crossref_primary_10_1155_2016_6186281 crossref_primary_10_1016_j_celrep_2019_08_033 crossref_primary_10_3390_microorganisms12010118 crossref_primary_10_1016_j_csbj_2016_12_006 crossref_primary_10_3390_biomedicines6040105 crossref_primary_10_1038_ncomms14958 crossref_primary_10_1016_j_jgg_2020_10_007 crossref_primary_10_1111_febs_13110 crossref_primary_10_1177_0963689718754560 crossref_primary_10_3389_fimmu_2023_1111777 crossref_primary_10_3390_cells9112518 crossref_primary_10_3390_ijms25042243 crossref_primary_10_1016_j_stemcr_2015_10_009 crossref_primary_10_1111_pbi_12256 crossref_primary_10_1007_s00299_016_1987_x crossref_primary_10_1038_ncomms7244 crossref_primary_10_1038_s41598_017_17081_y crossref_primary_10_1186_s13045_015_0127_3 crossref_primary_10_1038_s41586_020_2477_4 crossref_primary_10_1126_sciadv_ade7047 crossref_primary_10_1039_D2SC07067G crossref_primary_10_1186_s12896_015_0144_x crossref_primary_10_1186_s13059_017_1318_8 crossref_primary_10_1016_j_bbamcr_2016_06_009 crossref_primary_10_3109_07388551_2015_1134437 crossref_primary_10_1038_nbt_3437 crossref_primary_10_1021_acssynbio_8b00455 crossref_primary_10_1111_pbi_13232 crossref_primary_10_1038_s41587_019_0310_0 crossref_primary_10_1038_mtna_2014_64 crossref_primary_10_1016_j_bone_2022_116612 crossref_primary_10_1155_2018_1652567 crossref_primary_10_2174_1574888X16666211124095527 crossref_primary_10_1002_wsbm_1380 crossref_primary_10_1111_jcmm_14916 crossref_primary_10_12688_f1000research_11243_1 crossref_primary_10_1126_sciadv_abm0314 crossref_primary_10_1186_s40169_019_0244_7 crossref_primary_10_1128_ecosalplus_esp_0010_2015 crossref_primary_10_3389_fchem_2021_717609 crossref_primary_10_1016_j_tibtech_2018_03_004 crossref_primary_10_1134_S0026893323020139 crossref_primary_10_15406_mojcsr_2014_01_00006 crossref_primary_10_1016_j_jbiotec_2021_09_011 crossref_primary_10_1002_0471142727_mb3103s112 crossref_primary_10_1007_s13238_017_0410_x crossref_primary_10_1007_s11684_017_0572_1 crossref_primary_10_1126_sciadv_abh1022 crossref_primary_10_1093_nar_gky571 crossref_primary_10_1007_s11248_016_9998_5 crossref_primary_10_1089_scd_2015_0131 crossref_primary_10_1038_s41598_017_02785_y crossref_primary_10_1080_21655979_2017_1282018 crossref_primary_10_1038_srep25029 crossref_primary_10_1097_IAE_0000000000002197 crossref_primary_10_1146_annurev_biochem_013118_111730 crossref_primary_10_3390_molecules24122297 crossref_primary_10_1016_j_tig_2021_11_006 crossref_primary_10_1128_JB_00580_17 crossref_primary_10_2174_0929867329666221006112615 crossref_primary_10_1007_s11816_022_00749_x crossref_primary_10_1111_pbi_13012 crossref_primary_10_1007_s00204_015_1504_y crossref_primary_10_1371_journal_ppat_1007193 crossref_primary_10_1038_s41570_017_0078 crossref_primary_10_2174_1570162X17666191025112918 crossref_primary_10_31083_j_fbl2708241 crossref_primary_10_1016_j_preteyeres_2016_05_001 crossref_primary_10_1007_s00294_019_01040_3 crossref_primary_10_1016_j_ocsci_2021_03_005 crossref_primary_10_1016_j_tibtech_2014_12_001 crossref_primary_10_1038_mtna_2015_37 crossref_primary_10_1089_hum_2016_071 crossref_primary_10_1111_xen_12551 crossref_primary_10_1186_s13578_015_0027_9 crossref_primary_10_3389_fonc_2024_1388475 crossref_primary_10_1038_s41587_024_02388_9 crossref_primary_10_1093_nar_gkw138 crossref_primary_10_1371_journal_pone_0100448 crossref_primary_10_1016_j_jhep_2017_05_012 crossref_primary_10_1007_s00439_019_02028_2 crossref_primary_10_3389_fpls_2024_1370675 crossref_primary_10_1016_j_jmb_2015_10_014 crossref_primary_10_1016_j_omtn_2017_05_009 crossref_primary_10_1186_s12964_024_01713_8 crossref_primary_10_3390_ijms231911919 crossref_primary_10_1172_JCI72992 |
Cites_doi | 10.1016/j.cell.2013.08.021 10.1093/nar/gkt716 10.1073/pnas.1208507109 10.1006/jmbi.2001.4635 10.1038/nmeth.2521 10.1038/nmeth.2845 10.1038/nmeth.2089 10.1038/nbt.2675 10.1007/978-1-60761-753-2_15 10.1038/nmeth.1670 10.1038/nbt.1588 10.1038/nmeth.1539 10.1101/gr.162339.113 10.1038/nbt.2808 10.1126/science.1225829 10.1038/nmeth.2681 10.1038/nbt.2623 10.1126/science.1231143 10.1126/science.1232033 10.1038/nbt.2673 10.1038/nmeth.2364 10.1126/science.1247005 10.1101/gr.122879.111 10.1093/nar/gks179 10.1038/nbt1410 10.1038/nbt.2647 10.1016/j.cell.2014.02.001 10.1016/j.cell.2013.02.022 10.7554/eLife.00471 10.1093/nar/gkt714 10.1038/nbt.2889 |
ContentType | Journal Article |
Copyright | Springer Nature America, Inc. 2014 Copyright Nature Publishing Group Jun 2014 |
Copyright_xml | – notice: Springer Nature America, Inc. 2014 – notice: Copyright Nature Publishing Group Jun 2014 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7QP 7QR 7T7 7TK 7TM 7X7 7XB 88A 88E 88I 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. L6V LK8 M0S M1P M2O M2P M7P M7S MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS Q9U RC3 7X8 5PM |
DOI | 10.1038/nbt.2909 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Biological Sciences ProQuest Health & Medical Collection Medical Database ProQuest Research Library Science Database Biological Science Database Engineering Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Genetics Abstracts Research Library Prep MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Agriculture Biology |
EISSN | 1546-1696 |
EndPage | 582 |
ExternalDocumentID | PMC4263420 3329498551 24770324 10_1038_nbt_2909 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM095501 – fundername: Howard Hughes Medical Institute |
GroupedDBID | --- -~X .55 .GJ 0R~ 123 29M 2FS 2XV 36B 39C 3V. 4.4 4R4 53G 5BI 5M7 5RE 5S5 70F 7X7 88A 88E 88I 8AO 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 A8Z AAEEF AAHBH AAIKC AAMNW AARCD AAYOK AAYZH AAZLF ABAWZ ABDBF ABDPE ABEFU ABJCF ABJNI ABLJU ABOCM ABUWG ACBTR ACBWK ACGFO ACGFS ACGOD ACIWK ACMJI ACPRK ACUHS ADBBV ADFRT AENEX AEUYN AFANA AFBBN AFFNX AFKRA AFRAH AFSHS AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BAAKF BBNVY BENPR BGLVJ BHPHI BKKNO BKOMP BPHCQ BVXVI C0K CCPQU D1J DB5 DU5 DWQXO EAD EAP EAS EBC EBS EE. EJD EMB EMK EMOBN ESX EXGXG F5P FA8 FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH GX1 HCIFZ HMCUK HVGLF HZ~ IAG IAO IEA IEP IH2 IHR INH INR IOV ISR ITC KOO L6V LGEZI LK8 LOTEE M0L M1P M2O M2P M7P M7S ML0 MVM N95 NADUK NEJ NNMJJ NXXTH O9- ODYON P2P PKN PQQKQ PROAC PSQYO PTHSS Q2X QF4 QM4 QN7 QO4 RNS RNT RNTTT RVV RXW SHXYY SIXXV SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TN5 TSG TUS U5U UKHRP X7M XI7 XOL Y6R YZZ ZGI ZHY ZXP ~KM AAYXX ABFSG ACMFV ACSTC ALPWD ATHPR CITATION PHGZM PHGZT AEZWR AFHIU AHWEU AIXLP CGR CUY CVF ECM EIF NFIDA NPM PJZUB PPXIY PQGLB 7QO 7QP 7QR 7T7 7TK 7TM 7XB 8FD 8FK C1K FR3 K9. MBDVC P64 PKEHL PQEST PQUKI Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c4489-ffab7d330f7ec550cefb6073f589618b599569ac710b80e2db74d8196f0a2a293 |
IEDL.DBID | 7X7 |
ISSN | 1087-0156 1546-1696 |
IngestDate | Thu Aug 21 18:30:35 EDT 2025 Fri Jul 11 03:00:24 EDT 2025 Thu Jul 10 20:33:10 EDT 2025 Fri Jul 25 08:58:00 EDT 2025 Mon Jul 21 06:05:47 EDT 2025 Tue Jul 01 04:29:35 EDT 2025 Thu Apr 24 22:59:12 EDT 2025 Fri Feb 21 02:38:16 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4489-ffab7d330f7ec550cefb6073f589618b599569ac710b80e2db74d8196f0a2a293 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4263420 |
PMID | 24770324 |
PQID | 1534303457 |
PQPubID | 47191 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4263420 proquest_miscellaneous_1554950057 proquest_miscellaneous_1534792320 proquest_journals_1534303457 pubmed_primary_24770324 crossref_citationtrail_10_1038_nbt_2909 crossref_primary_10_1038_nbt_2909 springer_journals_10_1038_nbt_2909 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20140600 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 6 year: 2014 text: 20140600 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationSubtitle | The Science and Business of Biotechnology |
PublicationTitle | Nature biotechnology |
PublicationTitleAbbrev | Nat Biotechnol |
PublicationTitleAlternate | Nat Biotechnol |
PublicationYear | 2014 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | Perez (CR2) 2008; 26 Ramirez (CR16) 2012; 40 Nishimasu (CR21) 2014; 156 Wang (CR17) 2012; 22 Vanamee, Santagata, Aggarwal (CR18) 2001; 309 Cradick, Fine, Antico, Bao (CR11) 2013; 41 Fu, Sander, Reyon, Cascio, Joung (CR4) 2014; 32 Sander (CR32) 2013; 41 Schneider, Rasband, Eliceiri (CR30) 2012; 9 Ran (CR14) 2013; 154 Pattanayak, Ramirez, Joung, Liu (CR19) 2011; 8 Schellenberger (CR23) 2009; 27 Doyon (CR28) 2011; 8 Shalem (CR1) 2014; 343 Guilinger (CR20) 2014; 11 Mali (CR3) 2013; 339 Fu (CR9) 2013; 31 Kim, Kweon, Kim (CR26) 2013; 10 Cho (CR12) 2014; 24 Shcherbakova, Verkhusha (CR29) 2013; 10 Hsu (CR10) 2013; 31 Guschin (CR31) 2010 Gasiunas, Barrangou, Horvath, Siksnys (CR15) 2012; 109 Jinek (CR22) 2014; 31 CR27 Mali (CR13) 2013; 31 Jinek (CR5) 2012; 337 Esvelt (CR25) 2013; 10 Cong (CR6) 2013; 339 Qi (CR24) 2013; 152 Pattanayak (CR8) 2013; 31 Jinek (CR7) 2013; 2 LS Qi (BFnbt2909_CR24) 2013; 152 G Gasiunas (BFnbt2909_CR15) 2012; 109 L Cong (BFnbt2909_CR6) 2013; 339 ÉS Vanamee (BFnbt2909_CR18) 2001; 309 JP Guilinger (BFnbt2909_CR20) 2014; 11 M Jinek (BFnbt2909_CR22) 2014; 31 DM Shcherbakova (BFnbt2909_CR29) 2013; 10 M Jinek (BFnbt2909_CR7) 2013; 2 M Jinek (BFnbt2909_CR5) 2012; 337 CL Ramirez (BFnbt2909_CR16) 2012; 40 PD Hsu (BFnbt2909_CR10) 2013; 31 Y Doyon (BFnbt2909_CR28) 2011; 8 P Mali (BFnbt2909_CR3) 2013; 339 KM Esvelt (BFnbt2909_CR25) 2013; 10 Y Fu (BFnbt2909_CR4) 2014; 32 TJ Cradick (BFnbt2909_CR11) 2013; 41 CA Schneider (BFnbt2909_CR30) 2012; 9 O Shalem (BFnbt2909_CR1) 2014; 343 V Pattanayak (BFnbt2909_CR8) 2013; 31 FA Ran (BFnbt2909_CR14) 2013; 154 JD Sander (BFnbt2909_CR32) 2013; 41 Y Fu (BFnbt2909_CR9) 2013; 31 DY Guschin (BFnbt2909_CR31) 2010 H Nishimasu (BFnbt2909_CR21) 2014; 156 J Wang (BFnbt2909_CR17) 2012; 22 P Mali (BFnbt2909_CR13) 2013; 31 SW Cho (BFnbt2909_CR12) 2014; 24 BFnbt2909_CR27 V Schellenberger (BFnbt2909_CR23) 2009; 27 Y Kim (BFnbt2909_CR26) 2013; 10 EE Perez (BFnbt2909_CR2) 2008; 26 V Pattanayak (BFnbt2909_CR19) 2011; 8 25110782 - Nat Methods. 2014 Jul;11(7):712. doi: 10.1038/nmeth.3020. |
References_xml | – volume: 154 start-page: 1380 year: 2013 end-page: 1389 ident: CR14 article-title: Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity publication-title: Cell doi: 10.1016/j.cell.2013.08.021 – volume: 31 start-page: 6176 year: 2014 ident: CR22 article-title: Structures of Cas9 endonucleases reveal RNA-mediated conformational activation publication-title: Science – volume: 41 start-page: e181 year: 2013 ident: CR32 article-title: abstraction of zinc finger nuclease cleavage profiles reveals an expanded landscape of off-target sites publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt716 – volume: 109 start-page: E2579 year: 2012 end-page: E2586 ident: CR15 article-title: Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1208507109 – volume: 309 start-page: 69 year: 2001 end-page: 78 ident: CR18 article-title: FokI requires two specific DNA sites for cleavage publication-title: J. Mol. Biol. doi: 10.1006/jmbi.2001.4635 – volume: 10 start-page: 751 year: 2013 end-page: 754 ident: CR29 article-title: Near-infrared fluorescent proteins for multicolor imaging publication-title: Nat. Methods doi: 10.1038/nmeth.2521 – volume: 11 start-page: 429 year: 2014 end-page: 435 ident: CR20 article-title: Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity publication-title: Nat. Methods doi: 10.1038/nmeth.2845 – volume: 9 start-page: 671 year: 2012 end-page: 675 ident: CR30 article-title: NIH Image to ImageJ: 25 years of image analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2089 – volume: 31 start-page: 833 year: 2013 end-page: 838 ident: CR13 article-title: CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2675 – start-page: 247 year: 2010 end-page: 256 ident: CR31 publication-title: Engineering Zinc Finger Proteins doi: 10.1007/978-1-60761-753-2_15 – volume: 8 start-page: 765 year: 2011 end-page: 770 ident: CR19 article-title: Revealing off-target cleavage specificities of zinc-finger nucleases by selection publication-title: Nat. Methods doi: 10.1038/nmeth.1670 – volume: 27 start-page: 1186 year: 2009 end-page: 1190 ident: CR23 article-title: A recombinant polypeptide extends the half-life of peptides and proteins in a tunable manner publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1588 – volume: 8 start-page: 74 year: 2011 end-page: 79 ident: CR28 article-title: Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures publication-title: Nat. Methods doi: 10.1038/nmeth.1539 – volume: 24 start-page: 132 year: 2014 end-page: 141 ident: CR12 article-title: Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases publication-title: Genome Res. doi: 10.1101/gr.162339.113 – ident: CR27 – volume: 32 start-page: 279 year: 2014 end-page: 284 ident: CR4 article-title: Improving CRISPR-Cas nuclease specificity using truncated guide RNAs publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2808 – volume: 337 start-page: 816 year: 2012 end-page: 821 ident: CR5 article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity publication-title: Science doi: 10.1126/science.1225829 – volume: 10 start-page: 1116 year: 2013 end-page: 1121 ident: CR25 article-title: Orthogonal Cas9 proteins for RNA-guided gene regulation and editing publication-title: Nat. Methods doi: 10.1038/nmeth.2681 – volume: 31 start-page: 822 year: 2013 end-page: 826 ident: CR9 article-title: High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2623 – volume: 339 start-page: 819 year: 2013 end-page: 823 ident: CR6 article-title: Multiplex genome engineering using CRISPR/Cas systems publication-title: Science doi: 10.1126/science.1231143 – volume: 339 start-page: 823 year: 2013 end-page: 826 ident: CR3 article-title: RNA-guided human genome engineering via Cas9 publication-title: Science doi: 10.1126/science.1232033 – volume: 31 start-page: 839 year: 2013 end-page: 843 ident: CR8 article-title: High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2673 – volume: 10 start-page: 185 year: 2013 end-page: 185 ident: CR26 article-title: TALENs and ZFNs are associated with different mutation signatures publication-title: Nat. Methods doi: 10.1038/nmeth.2364 – volume: 343 start-page: 84 year: 2014 end-page: 87 ident: CR1 article-title: Genome-scale CRISPR-Cas9 knockout screening in human cells publication-title: Science doi: 10.1126/science.1247005 – volume: 22 start-page: 1316 year: 2012 end-page: 1326 ident: CR17 article-title: Targeted gene addition to a predetermined site in the human genome using a ZFN-based nicking enzyme publication-title: Genome Res. doi: 10.1101/gr.122879.111 – volume: 40 start-page: 5560 year: 2012 end-page: 5568 ident: CR16 article-title: Engineered zinc finger nickases induce homology-directed repair with reduced mutagenic effects publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks179 – volume: 26 start-page: 808 year: 2008 end-page: 816 ident: CR2 article-title: Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases publication-title: Nat. Biotechnol. doi: 10.1038/nbt1410 – volume: 31 start-page: 827 year: 2013 end-page: 832 ident: CR10 article-title: DNA targeting specificity of RNA-guided Cas9 nucleases publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2647 – volume: 156 start-page: 935 year: 2014 end-page: 949 ident: CR21 article-title: Crystal structure of Cas9 in complex with guide RNA and target DNA publication-title: Cell doi: 10.1016/j.cell.2014.02.001 – volume: 152 start-page: 1173 year: 2013 end-page: 1183 ident: CR24 article-title: Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression publication-title: Cell doi: 10.1016/j.cell.2013.02.022 – volume: 2 start-page: e00471 year: 2013 ident: CR7 article-title: RNA-programmed genome editing in human cells publication-title: eLife doi: 10.7554/eLife.00471 – volume: 41 start-page: 9584 year: 2013 end-page: 9592 ident: CR11 article-title: CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt714 – volume: 31 start-page: 822 year: 2013 ident: BFnbt2909_CR9 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2623 – volume: 152 start-page: 1173 year: 2013 ident: BFnbt2909_CR24 publication-title: Cell doi: 10.1016/j.cell.2013.02.022 – volume: 26 start-page: 808 year: 2008 ident: BFnbt2909_CR2 publication-title: Nat. Biotechnol. doi: 10.1038/nbt1410 – volume: 154 start-page: 1380 year: 2013 ident: BFnbt2909_CR14 publication-title: Cell doi: 10.1016/j.cell.2013.08.021 – volume: 10 start-page: 185 year: 2013 ident: BFnbt2909_CR26 publication-title: Nat. Methods doi: 10.1038/nmeth.2364 – volume: 339 start-page: 819 year: 2013 ident: BFnbt2909_CR6 publication-title: Science doi: 10.1126/science.1231143 – volume: 343 start-page: 84 year: 2014 ident: BFnbt2909_CR1 publication-title: Science doi: 10.1126/science.1247005 – start-page: 247 volume-title: Engineering Zinc Finger Proteins year: 2010 ident: BFnbt2909_CR31 doi: 10.1007/978-1-60761-753-2_15 – volume: 10 start-page: 751 year: 2013 ident: BFnbt2909_CR29 publication-title: Nat. Methods doi: 10.1038/nmeth.2521 – volume: 109 start-page: E2579 year: 2012 ident: BFnbt2909_CR15 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1208507109 – volume: 32 start-page: 279 year: 2014 ident: BFnbt2909_CR4 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2808 – volume: 31 start-page: 6176 year: 2014 ident: BFnbt2909_CR22 publication-title: Science – volume: 156 start-page: 935 year: 2014 ident: BFnbt2909_CR21 publication-title: Cell doi: 10.1016/j.cell.2014.02.001 – volume: 41 start-page: 9584 year: 2013 ident: BFnbt2909_CR11 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt714 – volume: 22 start-page: 1316 year: 2012 ident: BFnbt2909_CR17 publication-title: Genome Res. doi: 10.1101/gr.122879.111 – volume: 2 start-page: e00471 year: 2013 ident: BFnbt2909_CR7 publication-title: eLife doi: 10.7554/eLife.00471 – volume: 11 start-page: 429 year: 2014 ident: BFnbt2909_CR20 publication-title: Nat. Methods doi: 10.1038/nmeth.2845 – volume: 27 start-page: 1186 year: 2009 ident: BFnbt2909_CR23 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1588 – volume: 8 start-page: 765 year: 2011 ident: BFnbt2909_CR19 publication-title: Nat. Methods doi: 10.1038/nmeth.1670 – volume: 339 start-page: 823 year: 2013 ident: BFnbt2909_CR3 publication-title: Science doi: 10.1126/science.1232033 – volume: 337 start-page: 816 year: 2012 ident: BFnbt2909_CR5 publication-title: Science doi: 10.1126/science.1225829 – ident: BFnbt2909_CR27 doi: 10.1038/nbt.2889 – volume: 9 start-page: 671 year: 2012 ident: BFnbt2909_CR30 publication-title: Nat. Methods doi: 10.1038/nmeth.2089 – volume: 31 start-page: 827 year: 2013 ident: BFnbt2909_CR10 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2647 – volume: 24 start-page: 132 year: 2014 ident: BFnbt2909_CR12 publication-title: Genome Res. doi: 10.1101/gr.162339.113 – volume: 31 start-page: 833 year: 2013 ident: BFnbt2909_CR13 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2675 – volume: 309 start-page: 69 year: 2001 ident: BFnbt2909_CR18 publication-title: J. Mol. Biol. doi: 10.1006/jmbi.2001.4635 – volume: 40 start-page: 5560 year: 2012 ident: BFnbt2909_CR16 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks179 – volume: 10 start-page: 1116 year: 2013 ident: BFnbt2909_CR25 publication-title: Nat. Methods doi: 10.1038/nmeth.2681 – volume: 41 start-page: e181 year: 2013 ident: BFnbt2909_CR32 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt716 – volume: 31 start-page: 839 year: 2013 ident: BFnbt2909_CR8 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2673 – volume: 8 start-page: 74 year: 2011 ident: BFnbt2909_CR28 publication-title: Nat. Methods doi: 10.1038/nmeth.1539 – reference: 25110782 - Nat Methods. 2014 Jul;11(7):712. doi: 10.1038/nmeth.3020. |
SSID | ssj0006466 |
Score | 2.629057 |
Snippet | A fusion of the FokI nuclease and a catalytically inactive Cas9 is a highly specific genome editing tool.
Genome editing by Cas9, which cleaves double-stranded... Genome editing by Cas9, which cleaves double-stranded DNA at a sequence programmed by a short single-guide RNA (sgRNA), can result in off-target DNA... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 577 |
SubjectTerms | 631/1647/1511 Agriculture Bacterial Proteins - chemistry Bacterial Proteins - genetics Bioinformatics Biomedical Engineering/Biotechnology Biomedicine Biotechnology Clustered Regularly Interspaced Short Palindromic Repeats CRISPR-Associated Protein 9 CRISPR-Cas Systems Deoxyribonucleases, Type II Site-Specific - chemistry Deoxyribonucleases, Type II Site-Specific - genetics Deoxyribonucleic acid DNA Endonucleases - chemistry Endonucleases - genetics Gene Editing - methods Genetic engineering Genome, Human Genomics Humans Life Sciences Protein Multimerization Recombinant Fusion Proteins - chemistry Recombinant Fusion Proteins - genetics RNA - genetics |
Title | Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification |
URI | https://link.springer.com/article/10.1038/nbt.2909 https://www.ncbi.nlm.nih.gov/pubmed/24770324 https://www.proquest.com/docview/1534303457 https://www.proquest.com/docview/1534792320 https://www.proquest.com/docview/1554950057 https://pubmed.ncbi.nlm.nih.gov/PMC4263420 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB61oFZwQDQtEF5aqko9uTjetXdzQhTh0kpFVVWk3Kxde1dEgA0kOeTfM7N-EKDikkM82tiZx347M_4G4IvWYay0soGKZBgI6VxguIgDwaVO0NGN0b7b4jw5uxC_RvGoSbhNmrbKNib6QF1UOeXID9EzBYZbEcuj27uApkZRdbUZofEWlom6jKxajroDF-62vlY5CBW1V8ZJSz7L1WFppt-iIbUhLm5HLzDmy1bJZ_VSvw2l67DW4Ed2XCv8A7yxZQ_e1RMl5z1YXeAX7MH7303l_CO4dEZ5MVY55jM2c5_Dvp6zcal9yGMnejJk04ql1dVPVhLNMW5wbOyTDnbCECgyei2TWosQudNCxO96Y9lNVdCXXsWf4CI9_XdyFjQzFoIcD2bDwDltZMF56KTN8bSSW2cSdHsXK5oFY4iPLBnqHIGIUaGNCiNFgSgicaGONGKFDVgqq9JuAUPVOj3gccEHuVC6MDbSOUcApCSuacM-fG3_6ixvCMhpDsZ15gvhXGWolIyU0oeDTvK2Jt34j8xuq62scbtJ9mgkuER3GR2GqiC6tNWsliHSxCh8TQaPzTG9qNuHzdoAuhuJhMQoGYk-yCem0QkQYffTK-X40hN3Ezm-oN_93BrRwq0_e77t159vB1YQuom6aW0Xlqb3M7uH8Ghq9r0P4KdKf-zD8vfT8z9_HwDCmhQj |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH6qitgOCIalAwUMAnEKzThO7BwQQoUwQ5dTK_UW7MQWo7ZJYWaE5k_xG3nPWZi2qLdeE8tZ3r74ewBvtA5jpZUNFJdhIKRzgYlEHIhI6gQF3Rjtuy32k_Gh-HYUH63Bn-4sDLVVdjrRK-qyLihHvoWSKVDdilh-PPsZ0NQoqq52IzQattixy98Yss0-TD4jfd9ynn052B4H7VSBoMBQJA2c00aWGMY7aQv0zwvrTIKM7mJF008MIXAlqS7Q9BoVWl4aKUq0m4kLNdecwJdQ5d8QEVpyOpmefe01f9LURkehonbOOOnAbiO1VZn5e55S2-Oq-bvk015uzbxQn_VmL7sP91p_lX1qGOwBrNlqADebCZbLAdxdwTMcwK29tlL_EFy2oDwcqx3zGaKlz5mfLNm00l7Fsm09S9m8Zll9PGEVwSqjQWVTn-SwM4aOKaNjoNTKhJECbUR4sqeWndYlXfQs9QgOr-XvP4b1qq7sBjBkJadHUVxGo0IoXRrLdYFUSZXEPW04hHfdr86LFvCc5m6c5L7wHqkciZITUYbwql951oB8_GfNZketvBXzWf6PKXGL_jYKKFVddGXrRbOGQBp5eNUaDNNjOhg8hCcNA_QvwoVErczFEOQ51ugXEED4-TvV9IcHCicwfkHPfd0x0cqrX_i-p1d_30u4PT7Y2813J_s7z-AOuo2iaZjbhPX5r4V9jq7Z3Lzw8sDg-3UL4F8Pt03_ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VW1HBAcHyWihgEIhTaNZxYu8BIWgbdSmsKkSl3lI7scWKNinsrtD-NX4dM86DbYt66zUZOQ_Pe8bfALzSOoyVVjZQXIaBkM4FJhJxICKpExR0Y7Tvtpgke4fi01F8tAZ_2rMw1FbZ6kSvqIsqpxz5FkqmQHUrMIB3TVvEwU76_uxnQBOkqNLajtOoWWTfLn9j-DZ7N97BvX7Nebr7bXsvaCYMBDmGJaPAOW1kgSG9kzZHXz23ziTI9C5WNAnFEBpXMtI5mmGjQssLI0WBNjRxoeaaExATqv91SVFRD9Y_7k4OvnZ2IKkrpcNQUXNnnLTQt5HaKs38LR9RE-SqMbzk4V5u1LxQrfVGML0DtxvvlX2o2e0urNmyDzfqeZbLPtxaQTfsw8aXpm5_D1y6oKwcqxzz-aKlz6CfLNm01F7hsm09G7F5xdLqx5iVBLKM5pVNfcrDzhi6qYwOhVJjE8YNtBChy55adloVdNEz2H04vJb__wB6ZVXaR8CQsZweRnERDXOhdGEs13mE7peSuKYNB_Cm_dVZ3sCf0xSOk8yX4SOV4aZktCkDeNFRntWQH_-h2Wx3K2uEfpb9Y1FcoruN4ko1GF3aalHTEGQjD6-iwaA9pmPCA3hYM0D3IlxI1NFcDECeY42OgODCz98pp989bDhB8wt67suWiVZe_cL3Pb76-57DBgpf9nk82X8CN9GHFHX33Cb05r8W9in6aXPzrBEIBsfXLYN_AQgXU5E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fusion+of+catalytically+inactive+Cas9+to+FokI+nuclease+improves+the+specificity+of+genome+modification&rft.jtitle=Nature+biotechnology&rft.au=Guilinger%2C+John+P&rft.au=Thompson%2C+David+B&rft.au=Liu%2C+David+R&rft.date=2014-06-01&rft.pub=Nature+Publishing+Group&rft.issn=1087-0156&rft.eissn=1546-1696&rft.volume=32&rft.issue=6&rft.spage=577&rft_id=info:doi/10.1038%2Fnbt.2909&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3329498551 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1087-0156&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1087-0156&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1087-0156&client=summon |