Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification

A fusion of the FokI nuclease and a catalytically inactive Cas9 is a highly specific genome editing tool. Genome editing by Cas9, which cleaves double-stranded DNA at a sequence programmed by a short single-guide RNA (sgRNA), can result in off-target DNA modification that may be detrimental in some...

Full description

Saved in:
Bibliographic Details
Published inNature biotechnology Vol. 32; no. 6; pp. 577 - 582
Main Authors Guilinger, John P, Thompson, David B, Liu, David R
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.06.2014
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A fusion of the FokI nuclease and a catalytically inactive Cas9 is a highly specific genome editing tool. Genome editing by Cas9, which cleaves double-stranded DNA at a sequence programmed by a short single-guide RNA (sgRNA), can result in off-target DNA modification that may be detrimental in some applications. To improve DNA cleavage specificity, we generated fusions of catalytically inactive Cas9 and FokI nuclease (fCas9). DNA cleavage by fCas9 requires association of two fCas9 monomers that simultaneously bind target sites ∼15 or 25 base pairs apart. In human cells, fCas9 modified target DNA sites with >140-fold higher specificity than wild-type Cas9 and with an efficiency similar to that of paired Cas9 'nickases', recently engineered variants that cleave only one DNA strand per monomer. The specificity of fCas9 was at least fourfold higher than that of paired nickases at loci with highly similar off-target sites. Target sites that conform to the substrate requirements of fCas9 occur on average every 34 bp in the human genome, suggesting the versatility of this approach for highly specific genome-wide editing.
AbstractList Genome editing by Cas9, which cleaves double-stranded DNA at a sequence programmed by a short single-guide RNA (sgRNA), can result in off-target DNA modification that may be detrimental in some applications. To improve DNA cleavage specificity, we generated fusions of catalytically inactive Cas9 and FokI nuclease (fCas9). DNA cleavage by fCas9 requires association of two fCas9 monomers that simultaneously bind target sites ∼15 or 25 base pairs apart. In human cells, fCas9 modified target DNA sites with >140-fold higher specificity than wild-type Cas9 and with an efficiency similar to that of paired Cas9 'nickases', recently engineered variants that cleave only one DNA strand per monomer. The specificity of fCas9 was at least fourfold higher than that of paired nickases at loci with highly similar off-target sites. Target sites that conform to the substrate requirements of fCas9 occur on average every 34 bp in the human genome, suggesting the versatility of this approach for highly specific genome-wide editing.
A fusion of the FokI nuclease and a catalytically inactive Cas9 is a highly specific genome editing tool. Genome editing by Cas9, which cleaves double-stranded DNA at a sequence programmed by a short single-guide RNA (sgRNA), can result in off-target DNA modification that may be detrimental in some applications. To improve DNA cleavage specificity, we generated fusions of catalytically inactive Cas9 and FokI nuclease (fCas9). DNA cleavage by fCas9 requires association of two fCas9 monomers that simultaneously bind target sites ∼15 or 25 base pairs apart. In human cells, fCas9 modified target DNA sites with >140-fold higher specificity than wild-type Cas9 and with an efficiency similar to that of paired Cas9 'nickases', recently engineered variants that cleave only one DNA strand per monomer. The specificity of fCas9 was at least fourfold higher than that of paired nickases at loci with highly similar off-target sites. Target sites that conform to the substrate requirements of fCas9 occur on average every 34 bp in the human genome, suggesting the versatility of this approach for highly specific genome-wide editing.
Genome editing by Cas9, which cleaves double-stranded DNA at a sequence programmed by a short single-guide RNA (sgRNA), can result in off-target DNA modification that may be detrimental in some applications. To improve DNA cleavage specificity, we generated fusions of catalytically inactive Cas9 and FokI nuclease (fCas9). DNA cleavage by fCas9 requires association of two fCas9 monomers that simultaneously bind target sites 15 or 25 base pairs apart. In human cells, fCas9 modified target DNA sites with >140-fold higher specificity than wild-type Cas9 and with an efficiency similar to that of paired Cas9 'nickases', recently engineered variants that cleave only one DNA strand per monomer. The specificity of fCas9 was at least fourfold higher than that of paired nickases at loci with highly similar off-target sites. Target sites that conform to the substrate requirements of fCas9 occur on average every 34 bp in the human genome, suggesting the versatility of this approach for highly specific genome-wide editing.
Genome editing by Cas9, which cleaves double-stranded DNA at a sequence programmed by a short single-guide RNA (sgRNA), can result in off-target DNA modification that may be detrimental in some applications. To improve DNA cleavage specificity, we generated fusions of catalytically inactive Cas9 and FokI nuclease (fCas9). DNA cleavage by fCas9 requires association of two fCas9 monomers that simultaneously bind target sites ∼15 or 25 base pairs apart. In human cells, fCas9 modified target DNA sites with >140-fold higher specificity than wild-type Cas9 and with an efficiency similar to that of paired Cas9 'nickases', recently engineered variants that cleave only one DNA strand per monomer. The specificity of fCas9 was at least fourfold higher than that of paired nickases at loci with highly similar off-target sites. Target sites that conform to the substrate requirements of fCas9 occur on average every 34 bp in the human genome, suggesting the versatility of this approach for highly specific genome-wide editing.Genome editing by Cas9, which cleaves double-stranded DNA at a sequence programmed by a short single-guide RNA (sgRNA), can result in off-target DNA modification that may be detrimental in some applications. To improve DNA cleavage specificity, we generated fusions of catalytically inactive Cas9 and FokI nuclease (fCas9). DNA cleavage by fCas9 requires association of two fCas9 monomers that simultaneously bind target sites ∼15 or 25 base pairs apart. In human cells, fCas9 modified target DNA sites with >140-fold higher specificity than wild-type Cas9 and with an efficiency similar to that of paired Cas9 'nickases', recently engineered variants that cleave only one DNA strand per monomer. The specificity of fCas9 was at least fourfold higher than that of paired nickases at loci with highly similar off-target sites. Target sites that conform to the substrate requirements of fCas9 occur on average every 34 bp in the human genome, suggesting the versatility of this approach for highly specific genome-wide editing.
Genome editing by Cas9, which cleaves double-stranded DNA at a sequence programmed by a short single-guide RNA (sgRNA), can result in off-target DNA modification that may be detrimental in some applications. To improve DNA cleavage specificity, we generated fusions of catalytically inactive Cas9 and Fok I nuclease (fCas9). DNA cleavage by fCas9 requires association of two fCas9 monomers that simultaneously bind target sites ~15 or 25 base pairs apart. In human cells, fCas9 modified target DNA sites with >140-fold higher specificity than wild-type Cas9 and with an efficiency similar to that of paired Cas9 ‘nickases’, recently engineered variants that cleave only one DNA strand per monomer. The specificity of fCas9 was at least 4-fold higher_than that of paired nickases at loci with highly similar off-target sites. Target sites that conform to the substrate requirements of fCas9 occur on average every 34 bp in the human genome, suggesting the broad versatility of this approach for highly specific genome-wide editing.
Author Thompson, David B
Guilinger, John P
Liu, David R
AuthorAffiliation 2 Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
1 Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA, USA
AuthorAffiliation_xml – name: 1 Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA, USA
– name: 2 Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
Author_xml – sequence: 1
  givenname: John P
  surname: Guilinger
  fullname: Guilinger, John P
  organization: Department of Chemistry & Chemical Biology, Harvard University, Howard Hughes Medical Institute, Harvard University
– sequence: 2
  givenname: David B
  surname: Thompson
  fullname: Thompson, David B
  organization: Department of Chemistry & Chemical Biology, Harvard University, Howard Hughes Medical Institute, Harvard University
– sequence: 3
  givenname: David R
  surname: Liu
  fullname: Liu, David R
  email: drliu@fas.harvard.edu
  organization: Department of Chemistry & Chemical Biology, Harvard University, Howard Hughes Medical Institute, Harvard University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24770324$$D View this record in MEDLINE/PubMed
BookMark eNqNkkuLFDEURoOMOA8Ff4EE3Oii2pvKq7IRpLGdgQE3ug6pVNKTsSppK6mG_vdWd8_LwYWrhOTk8N2be45OYooOobcEFgRo8ym2ZVErUC_QGeFMVEQocTLvoZEVEC5O0XnOtwAgmBCv0GnNpARaszPkV1MOKeLksTXF9LsSrOn7HQ7R2BK2Di9NVrgkvEq_rnCcbO9MdjgMmzFtXcblxuG8cTb4YEPZ7UVrF9Pg8JC6_aEps_81eulNn92bu_UC_Vx9_bG8rK6_f7tafrmuLGONqrw3rewoBS-d5Rys860AST1vlCBNy5XiQhkrCbQNuLprJesaooQHU5ta0Qv0-ejdTO3gOutiGU2vN2MYzLjTyQT9900MN3qdtprVgrIaZsGHO8GYfk8uFz2EbF3fm-jSlDXhnCkOwOV_oJRJVdOD9f0z9DZNY5w7caAoUHYQvnsa_iH1_W_NwOII2DHlPDqv55Yf-jvXEnpNQO_HQc_joPfj8Bjx4cG98x_oxyOaZySu3fgk4nP2D-N3w58
CitedBy_id crossref_primary_10_1016_j_semcdb_2019_05_007
crossref_primary_10_1038_s41467_019_10735_7
crossref_primary_10_1038_s41434_021_00247_9
crossref_primary_10_1007_s00335_017_9684_9
crossref_primary_10_1146_annurev_immunol_042718_041522
crossref_primary_10_1016_j_omtn_2017_06_006
crossref_primary_10_1038_s41598_019_40219_z
crossref_primary_10_1093_protein_gzac011
crossref_primary_10_3390_ijms241914701
crossref_primary_10_1146_annurev_genet_071719_030438
crossref_primary_10_1073_pnas_1616343114
crossref_primary_10_1128_ecosalplus_ESP_0006_2020
crossref_primary_10_3389_fbioe_2020_00692
crossref_primary_10_1186_s13046_019_1229_5
crossref_primary_10_1038_s41467_020_16542_9
crossref_primary_10_1016_j_ygeno_2018_03_011
crossref_primary_10_1016_j_gene_2020_145225
crossref_primary_10_3390_v10010050
crossref_primary_10_1080_10408398_2025_2475240
crossref_primary_10_1146_annurev_biochem_060815_014607
crossref_primary_10_1016_j_tibs_2020_06_003
crossref_primary_10_1538_expanim_15_0116
crossref_primary_10_1016_j_cld_2023_05_006
crossref_primary_10_1111_pbi_12465
crossref_primary_10_1016_j_semcdb_2019_05_014
crossref_primary_10_1038_mt_2016_8
crossref_primary_10_3389_fonc_2021_704999
crossref_primary_10_1042_BSR20160297
crossref_primary_10_1021_acssynbio_0c00012
crossref_primary_10_3389_fnmol_2019_00110
crossref_primary_10_1002_jnr_23776
crossref_primary_10_1038_nrd_2016_238
crossref_primary_10_1073_pnas_1420294112
crossref_primary_10_1186_s13578_016_0088_4
crossref_primary_10_1016_j_cpcardiol_2023_101741
crossref_primary_10_1016_j_gene_2018_02_066
crossref_primary_10_1016_j_ymgme_2021_08_002
crossref_primary_10_1007_s12015_022_10385_1
crossref_primary_10_1038_mt_2016_1
crossref_primary_10_1038_nature14592
crossref_primary_10_1007_s00018_017_2522_0
crossref_primary_10_1016_j_apsb_2017_01_002
crossref_primary_10_1186_s12935_020_01546_8
crossref_primary_10_1101_pdb_top086793
crossref_primary_10_1016_j_htct_2023_05_009
crossref_primary_10_1038_s41571_019_0166_8
crossref_primary_10_1002_jgm_2963
crossref_primary_10_1242_dmm_039321
crossref_primary_10_1038_ncomms15622
crossref_primary_10_1016_j_jbc_2024_107720
crossref_primary_10_1093_hmg_ddad034
crossref_primary_10_3389_fpls_2018_00985
crossref_primary_10_1039_D0CC05890D
crossref_primary_10_3390_ijms20164045
crossref_primary_10_1186_s13059_018_1458_5
crossref_primary_10_1038_nature16526
crossref_primary_10_1093_g3journal_jkab393
crossref_primary_10_1038_s41467_020_15053_x
crossref_primary_10_1080_09670262_2017_1358827
crossref_primary_10_1016_j_genrep_2020_100983
crossref_primary_10_1007_s11883_017_0668_8
crossref_primary_10_1186_s13059_015_0826_7
crossref_primary_10_1038_s42003_019_0321_x
crossref_primary_10_1038_srep25516
crossref_primary_10_3389_fgene_2024_1364742
crossref_primary_10_1007_s00109_020_01893_z
crossref_primary_10_1038_srep35794
crossref_primary_10_1007_s00299_018_2355_9
crossref_primary_10_1007_s12185_016_2017_z
crossref_primary_10_1039_D1BM01658J
crossref_primary_10_1016_j_jgg_2019_11_003
crossref_primary_10_3389_fpls_2020_00010
crossref_primary_10_1016_j_plantsci_2015_07_010
crossref_primary_10_1038_nbt_3528
crossref_primary_10_1002_cplu_202000785
crossref_primary_10_1038_ncomms10194
crossref_primary_10_1016_j_copbio_2014_11_007
crossref_primary_10_1007_s13562_022_00767_4
crossref_primary_10_1016_j_pt_2016_04_013
crossref_primary_10_1073_pnas_1718148115
crossref_primary_10_1089_crispr_2020_0134
crossref_primary_10_1016_j_tibtech_2014_11_008
crossref_primary_10_1016_j_bioactmat_2022_08_013
crossref_primary_10_1016_j_ymthe_2019_08_012
crossref_primary_10_18632_oncotarget_8075
crossref_primary_10_1016_j_csbj_2023_12_036
crossref_primary_10_1186_s13059_017_1325_9
crossref_primary_10_1101_gr_199588_115
crossref_primary_10_1146_annurev_micro_091014_104441
crossref_primary_10_1111_1744_7917_13203
crossref_primary_10_1002_wdev_214
crossref_primary_10_1016_j_gpb_2015_12_001
crossref_primary_10_1021_acssynbio_7b00404
crossref_primary_10_1126_science_1258096
crossref_primary_10_1007_s00412_018_0677_6
crossref_primary_10_1016_j_alcohol_2018_03_001
crossref_primary_10_3389_fgeed_2024_1342193
crossref_primary_10_3389_fpls_2016_00475
crossref_primary_10_3389_fbioe_2022_851712
crossref_primary_10_1038_s41392_024_01750_2
crossref_primary_10_2174_1574893616666210708150439
crossref_primary_10_1016_j_molcel_2016_07_004
crossref_primary_10_1021_acssynbio_0c00576
crossref_primary_10_1039_C5IB00325C
crossref_primary_10_1186_s13059_024_03188_9
crossref_primary_10_1177_1535676017694148
crossref_primary_10_1016_j_engmic_2023_100123
crossref_primary_10_1161_ATVBAHA_117_309326
crossref_primary_10_1016_j_ymthe_2021_12_001
crossref_primary_10_1021_acschembio_7b00847
crossref_primary_10_1038_s41434_022_00319_4
crossref_primary_10_5924_abgri_44_23
crossref_primary_10_1038_srep10777
crossref_primary_10_1016_j_bbcan_2015_09_003
crossref_primary_10_3389_fgene_2022_876987
crossref_primary_10_1007_s00344_024_11395_8
crossref_primary_10_1016_j_dnarep_2019_102691
crossref_primary_10_1002_jcp_28482
crossref_primary_10_3390_jdb5040016
crossref_primary_10_1186_s13059_015_0859_y
crossref_primary_10_3389_fimmu_2024_1411393
crossref_primary_10_1186_s13059_018_1610_2
crossref_primary_10_1007_s12272_018_1042_2
crossref_primary_10_1016_j_ddtec_2018_08_001
crossref_primary_10_1038_s41540_017_0015_2
crossref_primary_10_1016_j_jplph_2020_153332
crossref_primary_10_1096_fj_202001830RR
crossref_primary_10_1016_j_funbio_2020_02_006
crossref_primary_10_1007_s00005_016_0427_5
crossref_primary_10_1038_nmeth_3624
crossref_primary_10_1186_s13059_020_02204_y
crossref_primary_10_1186_s13059_020_02193_y
crossref_primary_10_3389_fpls_2016_01421
crossref_primary_10_3389_fbioe_2022_942325
crossref_primary_10_3390_plants11151949
crossref_primary_10_3389_fphar_2022_900825
crossref_primary_10_1111_pbi_12448
crossref_primary_10_15252_msb_20145735
crossref_primary_10_1002_cpim_62
crossref_primary_10_3390_cells6010005
crossref_primary_10_1007_s12275_022_00005_5
crossref_primary_10_1002_advs_202102051
crossref_primary_10_1038_s41587_019_0095_1
crossref_primary_10_1016_j_isci_2018_08_001
crossref_primary_10_1080_07352689_2020_1782568
crossref_primary_10_1016_j_tcb_2016_08_004
crossref_primary_10_1093_nar_gkz487
crossref_primary_10_1038_nrg3900
crossref_primary_10_1080_15476286_2019_1669406
crossref_primary_10_1016_j_dib_2020_106447
crossref_primary_10_1016_j_trsl_2015_09_008
crossref_primary_10_1016_j_ymeth_2017_03_008
crossref_primary_10_1074_jbc_M114_564625
crossref_primary_10_1016_j_ymthe_2020_11_009
crossref_primary_10_1016_j_biomaterials_2018_04_031
crossref_primary_10_1016_j_enzmictec_2022_110056
crossref_primary_10_3389_fcell_2021_803252
crossref_primary_10_1038_nrg_2016_28
crossref_primary_10_1093_nar_gkae604
crossref_primary_10_18632_oncotarget_7104
crossref_primary_10_1111_jcmm_14669
crossref_primary_10_3390_ijms21144943
crossref_primary_10_1038_s41587_019_0186_z
crossref_primary_10_1111_pbi_12736
crossref_primary_10_1038_nmeth_3684
crossref_primary_10_1080_21553769_2019_1670739
crossref_primary_10_3389_fgene_2016_00047
crossref_primary_10_3390_biom12030409
crossref_primary_10_1016_j_exer_2017_06_007
crossref_primary_10_1124_dmd_118_082842
crossref_primary_10_1007_s12272_018_1037_z
crossref_primary_10_1016_j_tibtech_2015_02_011
crossref_primary_10_1007_s13237_021_00353_4
crossref_primary_10_1038_s41587_020_0561_9
crossref_primary_10_1038_hortres_2015_19
crossref_primary_10_1016_j_bios_2016_11_042
crossref_primary_10_1093_nar_gkac556
crossref_primary_10_1007_s12033_021_00345_4
crossref_primary_10_1186_s13578_021_00662_w
crossref_primary_10_1016_j_nano_2023_102711
crossref_primary_10_1038_s41581_018_0047_x
crossref_primary_10_3390_ijms21197353
crossref_primary_10_1016_j_biomaterials_2019_119711
crossref_primary_10_1016_j_ymthe_2016_11_007
crossref_primary_10_1007_s11427_019_1572_7
crossref_primary_10_1080_21645698_2019_1631115
crossref_primary_10_1038_nmeth_3330
crossref_primary_10_1111_pbi_12634
crossref_primary_10_1038_emm_2016_111
crossref_primary_10_1038_nrd_2016_280
crossref_primary_10_3390_ijms242216077
crossref_primary_10_1534_g3_117_300557
crossref_primary_10_2174_0118715273283786240408034408
crossref_primary_10_1016_j_ymben_2014_11_005
crossref_primary_10_1002_lipd_12249
crossref_primary_10_1271_kagakutoseibutsu_59_113
crossref_primary_10_3389_fbioe_2020_00711
crossref_primary_10_1111_gtc_12589
crossref_primary_10_1182_bloodadvances_2022008966
crossref_primary_10_3390_plants10102055
crossref_primary_10_1042_ETLS20170037
crossref_primary_10_1186_s13578_017_0148_4
crossref_primary_10_1007_s11705_017_1618_2
crossref_primary_10_1016_j_ymthe_2019_09_006
crossref_primary_10_1038_nchembio_2559
crossref_primary_10_1038_nprot_2016_165
crossref_primary_10_1093_nar_gkad743
crossref_primary_10_1002_anie_201609229
crossref_primary_10_1007_s13562_023_00860_2
crossref_primary_10_1186_s12916_017_0798_4
crossref_primary_10_1007_s11886_017_0830_5
crossref_primary_10_1038_s41598_017_09030_6
crossref_primary_10_1161_ATVBAHA_116_307227
crossref_primary_10_7554_eLife_03401
crossref_primary_10_1080_17425247_2018_1517746
crossref_primary_10_1073_pnas_1820523116
crossref_primary_10_1038_s41467_023_41393_5
crossref_primary_10_1038_nrcardio_2016_139
crossref_primary_10_1093_nar_gkab211
crossref_primary_10_1002_dvdy_24414
crossref_primary_10_1186_s13073_015_0178_7
crossref_primary_10_1038_nm_3793
crossref_primary_10_1007_s11010_020_03834_3
crossref_primary_10_1007_s11248_016_9934_8
crossref_primary_10_1007_s12264_020_00599_z
crossref_primary_10_1016_j_tibtech_2019_01_009
crossref_primary_10_1016_j_synbio_2020_08_001
crossref_primary_10_1093_nar_gkw707
crossref_primary_10_1093_nar_gky1165
crossref_primary_10_1080_07352689_2021_1883826
crossref_primary_10_3390_biology10121255
crossref_primary_10_1186_s40364_023_00509_1
crossref_primary_10_1101_cshperspect_a023754
crossref_primary_10_1016_j_biotechadv_2016_12_003
crossref_primary_10_1089_crispr_2020_0092
crossref_primary_10_3390_cells9071608
crossref_primary_10_1038_s41573_020_0064_x
crossref_primary_10_1111_1744_7917_12633
crossref_primary_10_1186_s11658_022_00336_6
crossref_primary_10_1136_jmedgenet_2017_104960
crossref_primary_10_1016_j_plantsci_2015_09_011
crossref_primary_10_3390_app10249001
crossref_primary_10_1093_nar_gkx1199
crossref_primary_10_3390_ijms19030906
crossref_primary_10_1089_crispr_2019_0030
crossref_primary_10_1016_j_iotech_2019_06_001
crossref_primary_10_1093_pcp_pcy079
crossref_primary_10_1099_vir_0_000139
crossref_primary_10_1186_s13059_016_1144_4
crossref_primary_10_1007_s40472_022_00380_3
crossref_primary_10_1016_j_ymthe_2019_01_014
crossref_primary_10_1007_s00335_017_9697_4
crossref_primary_10_1016_j_jconrel_2016_11_014
crossref_primary_10_1021_acs_biochem_9b00798
crossref_primary_10_1038_nchembio_1793
crossref_primary_10_1530_ERC_18_0039
crossref_primary_10_1097_MOT_0000000000000347
crossref_primary_10_1097_MOT_0000000000000589
crossref_primary_10_1038_s41467_018_03927_0
crossref_primary_10_1534_g3_115_019901
crossref_primary_10_1016_j_biotechadv_2022_107924
crossref_primary_10_1016_j_copbio_2017_06_012
crossref_primary_10_1016_j_gene_2016_02_013
crossref_primary_10_3389_fpls_2017_00177
crossref_primary_10_1007_s11010_023_04759_3
crossref_primary_10_1021_acschembio_7b00689
crossref_primary_10_1038_srep11221
crossref_primary_10_3389_fpls_2015_01001
crossref_primary_10_1111_jipb_12474
crossref_primary_10_1016_j_addr_2020_10_014
crossref_primary_10_1016_j_jbiotec_2015_04_024
crossref_primary_10_1016_j_cell_2019_05_049
crossref_primary_10_1007_s40484_014_0030_x
crossref_primary_10_1534_g3_117_300359
crossref_primary_10_1080_10717544_2018_1474964
crossref_primary_10_1016_S2095_3119_16_61437_5
crossref_primary_10_1073_pnas_1405186111
crossref_primary_10_1002_jcp_29052
crossref_primary_10_1016_j_biotechadv_2021_107737
crossref_primary_10_1007_s10725_021_00762_0
crossref_primary_10_1080_14789450_2018_1521275
crossref_primary_10_1002_biot_201400193
crossref_primary_10_1002_biot_202100571
crossref_primary_10_1016_j_molcel_2015_04_028
crossref_primary_10_3389_fgene_2016_00028
crossref_primary_10_1016_j_molcel_2024_01_021
crossref_primary_10_1093_bfgp_elw031
crossref_primary_10_3390_ijms161125950
crossref_primary_10_1016_j_pneurobio_2023_102547
crossref_primary_10_1089_nat_2015_0545
crossref_primary_10_1016_j_jbiotec_2018_08_007
crossref_primary_10_3389_fpls_2019_00114
crossref_primary_10_1089_crispr_2019_0013
crossref_primary_10_1039_C9SC03639C
crossref_primary_10_1017_S0033583519000052
crossref_primary_10_3390_v14010004
crossref_primary_10_3904_kjim_2016_198
crossref_primary_10_1002_bit_25662
crossref_primary_10_3389_fimmu_2015_00250
crossref_primary_10_1186_s13287_018_0779_3
crossref_primary_10_1134_S0006297916070038
crossref_primary_10_1111_gtc_12437
crossref_primary_10_1007_s00430_019_00653_2
crossref_primary_10_23868_gc120555
crossref_primary_10_1093_bfgp_elw025
crossref_primary_10_1038_srep23549
crossref_primary_10_1038_s41467_018_04252_2
crossref_primary_10_1016_j_cels_2016_12_010
crossref_primary_10_1038_nmeth_3473
crossref_primary_10_1007_s13365_014_0308_9
crossref_primary_10_1002_tcr_201800036
crossref_primary_10_1242_dev_102186
crossref_primary_10_1038_nchembio_2179
crossref_primary_10_1093_ckj_sfae119
crossref_primary_10_1038_nbt_3081
crossref_primary_10_1016_j_surg_2019_01_030
crossref_primary_10_1097_MOT_0000000000000798
crossref_primary_10_1016_j_jmb_2024_168836
crossref_primary_10_1128_AEM_00340_19
crossref_primary_10_1016_j_stem_2017_09_006
crossref_primary_10_1371_journal_pone_0207302
crossref_primary_10_1016_j_pep_2024_106445
crossref_primary_10_1016_j_biomaterials_2022_121876
crossref_primary_10_1016_j_ddtec_2018_05_001
crossref_primary_10_1007_s13167_023_00324_6
crossref_primary_10_3389_fgene_2015_00362
crossref_primary_10_1016_j_immuni_2015_01_004
crossref_primary_10_1038_nmeth_3284
crossref_primary_10_3390_agronomy12040759
crossref_primary_10_1016_j_chembiol_2024_07_007
crossref_primary_10_1007_s00335_015_9565_z
crossref_primary_10_1146_annurev_phyto_080417_050158
crossref_primary_10_1016_j_mib_2017_05_009
crossref_primary_10_1038_nprot_2016_104
crossref_primary_10_1134_S2079059717040116
crossref_primary_10_1002_biot_201700432
crossref_primary_10_1155_2016_5078796
crossref_primary_10_1021_acssynbio_7b00270
crossref_primary_10_1021_acs_analchem_9b04814
crossref_primary_10_3390_ijms221910355
crossref_primary_10_1093_jxb_erae341
crossref_primary_10_1080_07352689_2017_1402989
crossref_primary_10_1016_j_preteyeres_2016_09_001
crossref_primary_10_1126_science_aad5227
crossref_primary_10_1016_j_chembiol_2015_12_009
crossref_primary_10_1155_2018_3797214
crossref_primary_10_1016_j_synbio_2018_10_003
crossref_primary_10_1016_j_rser_2017_01_028
crossref_primary_10_31857_S0026898423020155
crossref_primary_10_3389_fcell_2021_761709
crossref_primary_10_1007_s10565_019_09486_4
crossref_primary_10_1038_nbt_4192
crossref_primary_10_1021_acs_chemrev_6b00799
crossref_primary_10_1016_j_csbj_2020_08_031
crossref_primary_10_1016_j_jbiotec_2023_04_008
crossref_primary_10_1042_BSR20200127
crossref_primary_10_1002_bit_25851
crossref_primary_10_1038_s41467_022_34527_8
crossref_primary_10_1146_annurev_biophys_062215_010830
crossref_primary_10_1038_mt_2016_10
crossref_primary_10_2174_0929867329666220722113832
crossref_primary_10_1111_febs_13763
crossref_primary_10_1038_srep17517
crossref_primary_10_14720_aas_2018_112_1_3
crossref_primary_10_7202_1089787ar
crossref_primary_10_1021_acschembio_5b01019
crossref_primary_10_3389_fpls_2023_1171154
crossref_primary_10_1073_pnas_1714640114
crossref_primary_10_1038_nmeth_3020
crossref_primary_10_1007_s12257_017_0094_3
crossref_primary_10_1038_nbt_4066
crossref_primary_10_1038_srep25199
crossref_primary_10_1016_j_addr_2020_02_003
crossref_primary_10_1002_biot_201500082
crossref_primary_10_1016_j_jim_2016_09_006
crossref_primary_10_1016_j_gendis_2014_08_004
crossref_primary_10_3390_genes11101113
crossref_primary_10_1007_s11427_021_2057_0
crossref_primary_10_2478_mjhr_2020_0002
crossref_primary_10_1021_acssynbio_7b00050
crossref_primary_10_1016_j_ymeth_2021_06_003
crossref_primary_10_1038_s41556_020_0518_8
crossref_primary_10_1080_1744666X_2017_1241711
crossref_primary_10_1089_hum_2015_074
crossref_primary_10_1128_JVI_02465_16
crossref_primary_10_1002_ange_201609229
crossref_primary_10_1101_sqb_2015_80_027326
crossref_primary_10_1242_jeb_175737
crossref_primary_10_3389_fchem_2017_00012
crossref_primary_10_1016_j_biomaterials_2021_121229
crossref_primary_10_1016_j_molcel_2015_02_032
crossref_primary_10_1016_j_renene_2019_10_107
crossref_primary_10_1016_j_jmb_2015_12_005
crossref_primary_10_1016_j_cell_2018_11_052
crossref_primary_10_1016_j_biotechadv_2014_12_006
crossref_primary_10_2147_IJN_S286221
crossref_primary_10_1007_s10142_020_00739_8
crossref_primary_10_1089_hum_2015_084
crossref_primary_10_1111_febs_13586
crossref_primary_10_1139_bcb_2016_0137
crossref_primary_10_1161_CIRCRESAHA_116_309948
crossref_primary_10_1007_s10340_022_01520_5
crossref_primary_10_1016_j_omtn_2019_07_009
crossref_primary_10_1146_annurev_genom_083115_022258
crossref_primary_10_1038_s41467_023_40476_7
crossref_primary_10_3390_v8030072
crossref_primary_10_2144_btn_2018_0105
crossref_primary_10_1038_mt_2016_21
crossref_primary_10_3389_fimmu_2020_02062
crossref_primary_10_1089_hum_2015_091
crossref_primary_10_1111_rda_13012
crossref_primary_10_1002_9780470151808_sc05a08s35
crossref_primary_10_1007_s00253_017_8497_9
crossref_primary_10_2217_pme_2016_0026
crossref_primary_10_1016_j_heares_2015_04_016
crossref_primary_10_1038_nrg_2017_59
crossref_primary_10_1089_crispr_2017_0016
crossref_primary_10_1038_srep42661
crossref_primary_10_1093_nar_gkae142
crossref_primary_10_1038_mt_2015_54
crossref_primary_10_1093_bib_bbae066
crossref_primary_10_1016_j_omtn_2023_102072
crossref_primary_10_1016_j_ijbiomac_2024_132546
crossref_primary_10_1093_bioinformatics_btu743
crossref_primary_10_1007_s13562_023_00851_3
crossref_primary_10_1016_j_kint_2017_01_037
crossref_primary_10_1016_j_biotechadv_2016_08_002
crossref_primary_10_1093_synbio_ysaa021
crossref_primary_10_1080_15476286_2019_1582974
crossref_primary_10_1093_nar_gkw883
crossref_primary_10_1080_14712598_2021_1872539
crossref_primary_10_3390_jcdd3020013
crossref_primary_10_1039_c6ib00140h
crossref_primary_10_1007_s00253_017_8486_z
crossref_primary_10_1080_07388551_2017_1356803
crossref_primary_10_1002_dvg_22997
crossref_primary_10_1042_ETLS20180157
crossref_primary_10_2174_1389201021666200621161610
crossref_primary_10_3390_life11101021
crossref_primary_10_3390_ijms18122565
crossref_primary_10_1038_s41467_022_31386_1
crossref_primary_10_3389_fgene_2015_00300
crossref_primary_10_1002_jcb_30329
crossref_primary_10_1093_jxb_erad199
crossref_primary_10_1016_j_cobme_2017_04_001
crossref_primary_10_1002_jcb_26198
crossref_primary_10_1152_physrev_00046_2017
crossref_primary_10_1007_s11481_019_09849_y
crossref_primary_10_1101_gr_190124_115
crossref_primary_10_1038_mt_2015_70
crossref_primary_10_3390_microorganisms11041040
crossref_primary_10_3389_fpls_2016_00703
crossref_primary_10_1016_j_coche_2016_12_002
crossref_primary_10_1038_srep24356
crossref_primary_10_1007_s00299_016_1985_z
crossref_primary_10_4049_immunohorizons_2000082
crossref_primary_10_7554_eLife_10606
crossref_primary_10_3389_fcell_2021_718466
crossref_primary_10_3389_fimmu_2022_1063303
crossref_primary_10_1007_s00438_025_02231_z
crossref_primary_10_1016_j_jgg_2019_02_004
crossref_primary_10_1093_nar_gky884
crossref_primary_10_1016_j_cell_2016_10_044
crossref_primary_10_1038_nbt_3117
crossref_primary_10_3390_ijms161024751
crossref_primary_10_3390_biology10060530
crossref_primary_10_3390_ijms21114040
crossref_primary_10_3390_cimb46050248
crossref_primary_10_1371_journal_pone_0133373
crossref_primary_10_3390_cells8111386
crossref_primary_10_1002_jcp_26299
crossref_primary_10_15436_2741_0598_15_004
crossref_primary_10_3390_ijms22168571
crossref_primary_10_1093_nar_gkab1072
crossref_primary_10_1007_s00425_020_03372_8
crossref_primary_10_1038_s41598_019_55463_6
crossref_primary_10_1177_1087057115587916
crossref_primary_10_1186_s12864_017_3746_y
crossref_primary_10_1021_acssynbio_6b00215
crossref_primary_10_1089_hum_2021_283
crossref_primary_10_1080_15427528_2017_1333192
crossref_primary_10_3389_fbioe_2020_00062
crossref_primary_10_1016_j_ibmb_2020_103336
crossref_primary_10_15407_visn2020_03_050
crossref_primary_10_1016_j_bbrc_2016_11_129
crossref_primary_10_1038_s41467_020_15021_5
crossref_primary_10_1016_j_pnpbp_2017_05_019
crossref_primary_10_1002_jcp_26141
crossref_primary_10_1007_s11248_016_9930_z
crossref_primary_10_3390_cells11111853
crossref_primary_10_3389_fgene_2024_1382445
crossref_primary_10_1002_jcp_27476
crossref_primary_10_1007_s00018_020_03725_2
crossref_primary_10_1016_j_omtn_2017_04_018
crossref_primary_10_1111_febs_13248
crossref_primary_10_1016_j_drudis_2014_12_016
crossref_primary_10_1016_j_stem_2015_12_002
crossref_primary_10_1016_j_semcdb_2019_03_010
crossref_primary_10_1016_j_omtn_2023_102038
crossref_primary_10_3389_fmicb_2021_638096
crossref_primary_10_1016_j_ymeth_2015_12_012
crossref_primary_10_1146_annurev_pharmtox_010814_124454
crossref_primary_10_1038_s41594_018_0173_y
crossref_primary_10_1016_j_apsb_2021_05_020
crossref_primary_10_1038_srep28508
crossref_primary_10_1155_2016_6186281
crossref_primary_10_1016_j_celrep_2019_08_033
crossref_primary_10_3390_microorganisms12010118
crossref_primary_10_1016_j_csbj_2016_12_006
crossref_primary_10_3390_biomedicines6040105
crossref_primary_10_1038_ncomms14958
crossref_primary_10_1016_j_jgg_2020_10_007
crossref_primary_10_1111_febs_13110
crossref_primary_10_1177_0963689718754560
crossref_primary_10_3389_fimmu_2023_1111777
crossref_primary_10_3390_cells9112518
crossref_primary_10_3390_ijms25042243
crossref_primary_10_1016_j_stemcr_2015_10_009
crossref_primary_10_1111_pbi_12256
crossref_primary_10_1007_s00299_016_1987_x
crossref_primary_10_1038_ncomms7244
crossref_primary_10_1038_s41598_017_17081_y
crossref_primary_10_1186_s13045_015_0127_3
crossref_primary_10_1038_s41586_020_2477_4
crossref_primary_10_1126_sciadv_ade7047
crossref_primary_10_1039_D2SC07067G
crossref_primary_10_1186_s12896_015_0144_x
crossref_primary_10_1186_s13059_017_1318_8
crossref_primary_10_1016_j_bbamcr_2016_06_009
crossref_primary_10_3109_07388551_2015_1134437
crossref_primary_10_1038_nbt_3437
crossref_primary_10_1021_acssynbio_8b00455
crossref_primary_10_1111_pbi_13232
crossref_primary_10_1038_s41587_019_0310_0
crossref_primary_10_1038_mtna_2014_64
crossref_primary_10_1016_j_bone_2022_116612
crossref_primary_10_1155_2018_1652567
crossref_primary_10_2174_1574888X16666211124095527
crossref_primary_10_1002_wsbm_1380
crossref_primary_10_1111_jcmm_14916
crossref_primary_10_12688_f1000research_11243_1
crossref_primary_10_1126_sciadv_abm0314
crossref_primary_10_1186_s40169_019_0244_7
crossref_primary_10_1128_ecosalplus_esp_0010_2015
crossref_primary_10_3389_fchem_2021_717609
crossref_primary_10_1016_j_tibtech_2018_03_004
crossref_primary_10_1134_S0026893323020139
crossref_primary_10_15406_mojcsr_2014_01_00006
crossref_primary_10_1016_j_jbiotec_2021_09_011
crossref_primary_10_1002_0471142727_mb3103s112
crossref_primary_10_1007_s13238_017_0410_x
crossref_primary_10_1007_s11684_017_0572_1
crossref_primary_10_1126_sciadv_abh1022
crossref_primary_10_1093_nar_gky571
crossref_primary_10_1007_s11248_016_9998_5
crossref_primary_10_1089_scd_2015_0131
crossref_primary_10_1038_s41598_017_02785_y
crossref_primary_10_1080_21655979_2017_1282018
crossref_primary_10_1038_srep25029
crossref_primary_10_1097_IAE_0000000000002197
crossref_primary_10_1146_annurev_biochem_013118_111730
crossref_primary_10_3390_molecules24122297
crossref_primary_10_1016_j_tig_2021_11_006
crossref_primary_10_1128_JB_00580_17
crossref_primary_10_2174_0929867329666221006112615
crossref_primary_10_1007_s11816_022_00749_x
crossref_primary_10_1111_pbi_13012
crossref_primary_10_1007_s00204_015_1504_y
crossref_primary_10_1371_journal_ppat_1007193
crossref_primary_10_1038_s41570_017_0078
crossref_primary_10_2174_1570162X17666191025112918
crossref_primary_10_31083_j_fbl2708241
crossref_primary_10_1016_j_preteyeres_2016_05_001
crossref_primary_10_1007_s00294_019_01040_3
crossref_primary_10_1016_j_ocsci_2021_03_005
crossref_primary_10_1016_j_tibtech_2014_12_001
crossref_primary_10_1038_mtna_2015_37
crossref_primary_10_1089_hum_2016_071
crossref_primary_10_1111_xen_12551
crossref_primary_10_1186_s13578_015_0027_9
crossref_primary_10_3389_fonc_2024_1388475
crossref_primary_10_1038_s41587_024_02388_9
crossref_primary_10_1093_nar_gkw138
crossref_primary_10_1371_journal_pone_0100448
crossref_primary_10_1016_j_jhep_2017_05_012
crossref_primary_10_1007_s00439_019_02028_2
crossref_primary_10_3389_fpls_2024_1370675
crossref_primary_10_1016_j_jmb_2015_10_014
crossref_primary_10_1016_j_omtn_2017_05_009
crossref_primary_10_1186_s12964_024_01713_8
crossref_primary_10_3390_ijms231911919
crossref_primary_10_1172_JCI72992
Cites_doi 10.1016/j.cell.2013.08.021
10.1093/nar/gkt716
10.1073/pnas.1208507109
10.1006/jmbi.2001.4635
10.1038/nmeth.2521
10.1038/nmeth.2845
10.1038/nmeth.2089
10.1038/nbt.2675
10.1007/978-1-60761-753-2_15
10.1038/nmeth.1670
10.1038/nbt.1588
10.1038/nmeth.1539
10.1101/gr.162339.113
10.1038/nbt.2808
10.1126/science.1225829
10.1038/nmeth.2681
10.1038/nbt.2623
10.1126/science.1231143
10.1126/science.1232033
10.1038/nbt.2673
10.1038/nmeth.2364
10.1126/science.1247005
10.1101/gr.122879.111
10.1093/nar/gks179
10.1038/nbt1410
10.1038/nbt.2647
10.1016/j.cell.2014.02.001
10.1016/j.cell.2013.02.022
10.7554/eLife.00471
10.1093/nar/gkt714
10.1038/nbt.2889
ContentType Journal Article
Copyright Springer Nature America, Inc. 2014
Copyright Nature Publishing Group Jun 2014
Copyright_xml – notice: Springer Nature America, Inc. 2014
– notice: Copyright Nature Publishing Group Jun 2014
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7QP
7QR
7T7
7TK
7TM
7X7
7XB
88A
88E
88I
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
L6V
LK8
M0S
M1P
M2O
M2P
M7P
M7S
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
RC3
7X8
5PM
DOI 10.1038/nbt.2909
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
ProQuest Research Library
Science Database
Biological Science Database
Engineering Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

Genetics Abstracts
Research Library Prep
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Agriculture
Biology
EISSN 1546-1696
EndPage 582
ExternalDocumentID PMC4263420
3329498551
24770324
10_1038_nbt_2909
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM095501
– fundername: Howard Hughes Medical Institute
GroupedDBID ---
-~X
.55
.GJ
0R~
123
29M
2FS
2XV
36B
39C
3V.
4.4
4R4
53G
5BI
5M7
5RE
5S5
70F
7X7
88A
88E
88I
8AO
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
A8Z
AAEEF
AAHBH
AAIKC
AAMNW
AARCD
AAYOK
AAYZH
AAZLF
ABAWZ
ABDBF
ABDPE
ABEFU
ABJCF
ABJNI
ABLJU
ABOCM
ABUWG
ACBTR
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACPRK
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFANA
AFBBN
AFFNX
AFKRA
AFRAH
AFSHS
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BAAKF
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BKOMP
BPHCQ
BVXVI
C0K
CCPQU
D1J
DB5
DU5
DWQXO
EAD
EAP
EAS
EBC
EBS
EE.
EJD
EMB
EMK
EMOBN
ESX
EXGXG
F5P
FA8
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
GX1
HCIFZ
HMCUK
HVGLF
HZ~
IAG
IAO
IEA
IEP
IH2
IHR
INH
INR
IOV
ISR
ITC
KOO
L6V
LGEZI
LK8
LOTEE
M0L
M1P
M2O
M2P
M7P
M7S
ML0
MVM
N95
NADUK
NEJ
NNMJJ
NXXTH
O9-
ODYON
P2P
PKN
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
QF4
QM4
QN7
QO4
RNS
RNT
RNTTT
RVV
RXW
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TN5
TSG
TUS
U5U
UKHRP
X7M
XI7
XOL
Y6R
YZZ
ZGI
ZHY
ZXP
~KM
AAYXX
ABFSG
ACMFV
ACSTC
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
AEZWR
AFHIU
AHWEU
AIXLP
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
PJZUB
PPXIY
PQGLB
7QO
7QP
7QR
7T7
7TK
7TM
7XB
8FD
8FK
C1K
FR3
K9.
MBDVC
P64
PKEHL
PQEST
PQUKI
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c4489-ffab7d330f7ec550cefb6073f589618b599569ac710b80e2db74d8196f0a2a293
IEDL.DBID 7X7
ISSN 1087-0156
1546-1696
IngestDate Thu Aug 21 18:30:35 EDT 2025
Fri Jul 11 03:00:24 EDT 2025
Thu Jul 10 20:33:10 EDT 2025
Fri Jul 25 08:58:00 EDT 2025
Mon Jul 21 06:05:47 EDT 2025
Tue Jul 01 04:29:35 EDT 2025
Thu Apr 24 22:59:12 EDT 2025
Fri Feb 21 02:38:16 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4489-ffab7d330f7ec550cefb6073f589618b599569ac710b80e2db74d8196f0a2a293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4263420
PMID 24770324
PQID 1534303457
PQPubID 47191
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4263420
proquest_miscellaneous_1554950057
proquest_miscellaneous_1534792320
proquest_journals_1534303457
pubmed_primary_24770324
crossref_citationtrail_10_1038_nbt_2909
crossref_primary_10_1038_nbt_2909
springer_journals_10_1038_nbt_2909
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20140600
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 6
  year: 2014
  text: 20140600
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle The Science and Business of Biotechnology
PublicationTitle Nature biotechnology
PublicationTitleAbbrev Nat Biotechnol
PublicationTitleAlternate Nat Biotechnol
PublicationYear 2014
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Perez (CR2) 2008; 26
Ramirez (CR16) 2012; 40
Nishimasu (CR21) 2014; 156
Wang (CR17) 2012; 22
Vanamee, Santagata, Aggarwal (CR18) 2001; 309
Cradick, Fine, Antico, Bao (CR11) 2013; 41
Fu, Sander, Reyon, Cascio, Joung (CR4) 2014; 32
Sander (CR32) 2013; 41
Schneider, Rasband, Eliceiri (CR30) 2012; 9
Ran (CR14) 2013; 154
Pattanayak, Ramirez, Joung, Liu (CR19) 2011; 8
Schellenberger (CR23) 2009; 27
Doyon (CR28) 2011; 8
Shalem (CR1) 2014; 343
Guilinger (CR20) 2014; 11
Mali (CR3) 2013; 339
Fu (CR9) 2013; 31
Kim, Kweon, Kim (CR26) 2013; 10
Cho (CR12) 2014; 24
Shcherbakova, Verkhusha (CR29) 2013; 10
Hsu (CR10) 2013; 31
Guschin (CR31) 2010
Gasiunas, Barrangou, Horvath, Siksnys (CR15) 2012; 109
Jinek (CR22) 2014; 31
CR27
Mali (CR13) 2013; 31
Jinek (CR5) 2012; 337
Esvelt (CR25) 2013; 10
Cong (CR6) 2013; 339
Qi (CR24) 2013; 152
Pattanayak (CR8) 2013; 31
Jinek (CR7) 2013; 2
LS Qi (BFnbt2909_CR24) 2013; 152
G Gasiunas (BFnbt2909_CR15) 2012; 109
L Cong (BFnbt2909_CR6) 2013; 339
ÉS Vanamee (BFnbt2909_CR18) 2001; 309
JP Guilinger (BFnbt2909_CR20) 2014; 11
M Jinek (BFnbt2909_CR22) 2014; 31
DM Shcherbakova (BFnbt2909_CR29) 2013; 10
M Jinek (BFnbt2909_CR7) 2013; 2
M Jinek (BFnbt2909_CR5) 2012; 337
CL Ramirez (BFnbt2909_CR16) 2012; 40
PD Hsu (BFnbt2909_CR10) 2013; 31
Y Doyon (BFnbt2909_CR28) 2011; 8
P Mali (BFnbt2909_CR3) 2013; 339
KM Esvelt (BFnbt2909_CR25) 2013; 10
Y Fu (BFnbt2909_CR4) 2014; 32
TJ Cradick (BFnbt2909_CR11) 2013; 41
CA Schneider (BFnbt2909_CR30) 2012; 9
O Shalem (BFnbt2909_CR1) 2014; 343
V Pattanayak (BFnbt2909_CR8) 2013; 31
FA Ran (BFnbt2909_CR14) 2013; 154
JD Sander (BFnbt2909_CR32) 2013; 41
Y Fu (BFnbt2909_CR9) 2013; 31
DY Guschin (BFnbt2909_CR31) 2010
H Nishimasu (BFnbt2909_CR21) 2014; 156
J Wang (BFnbt2909_CR17) 2012; 22
P Mali (BFnbt2909_CR13) 2013; 31
SW Cho (BFnbt2909_CR12) 2014; 24
BFnbt2909_CR27
V Schellenberger (BFnbt2909_CR23) 2009; 27
Y Kim (BFnbt2909_CR26) 2013; 10
EE Perez (BFnbt2909_CR2) 2008; 26
V Pattanayak (BFnbt2909_CR19) 2011; 8
25110782 - Nat Methods. 2014 Jul;11(7):712. doi: 10.1038/nmeth.3020.
References_xml – volume: 154
  start-page: 1380
  year: 2013
  end-page: 1389
  ident: CR14
  article-title: Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity
  publication-title: Cell
  doi: 10.1016/j.cell.2013.08.021
– volume: 31
  start-page: 6176
  year: 2014
  ident: CR22
  article-title: Structures of Cas9 endonucleases reveal RNA-mediated conformational activation
  publication-title: Science
– volume: 41
  start-page: e181
  year: 2013
  ident: CR32
  article-title: abstraction of zinc finger nuclease cleavage profiles reveals an expanded landscape of off-target sites
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt716
– volume: 109
  start-page: E2579
  year: 2012
  end-page: E2586
  ident: CR15
  article-title: Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1208507109
– volume: 309
  start-page: 69
  year: 2001
  end-page: 78
  ident: CR18
  article-title: FokI requires two specific DNA sites for cleavage
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.2001.4635
– volume: 10
  start-page: 751
  year: 2013
  end-page: 754
  ident: CR29
  article-title: Near-infrared fluorescent proteins for multicolor imaging
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2521
– volume: 11
  start-page: 429
  year: 2014
  end-page: 435
  ident: CR20
  article-title: Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2845
– volume: 9
  start-page: 671
  year: 2012
  end-page: 675
  ident: CR30
  article-title: NIH Image to ImageJ: 25 years of image analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2089
– volume: 31
  start-page: 833
  year: 2013
  end-page: 838
  ident: CR13
  article-title: CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2675
– start-page: 247
  year: 2010
  end-page: 256
  ident: CR31
  publication-title: Engineering Zinc Finger Proteins
  doi: 10.1007/978-1-60761-753-2_15
– volume: 8
  start-page: 765
  year: 2011
  end-page: 770
  ident: CR19
  article-title: Revealing off-target cleavage specificities of zinc-finger nucleases by selection
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1670
– volume: 27
  start-page: 1186
  year: 2009
  end-page: 1190
  ident: CR23
  article-title: A recombinant polypeptide extends the half-life of peptides and proteins in a tunable manner
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1588
– volume: 8
  start-page: 74
  year: 2011
  end-page: 79
  ident: CR28
  article-title: Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1539
– volume: 24
  start-page: 132
  year: 2014
  end-page: 141
  ident: CR12
  article-title: Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases
  publication-title: Genome Res.
  doi: 10.1101/gr.162339.113
– ident: CR27
– volume: 32
  start-page: 279
  year: 2014
  end-page: 284
  ident: CR4
  article-title: Improving CRISPR-Cas nuclease specificity using truncated guide RNAs
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2808
– volume: 337
  start-page: 816
  year: 2012
  end-page: 821
  ident: CR5
  article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
  publication-title: Science
  doi: 10.1126/science.1225829
– volume: 10
  start-page: 1116
  year: 2013
  end-page: 1121
  ident: CR25
  article-title: Orthogonal Cas9 proteins for RNA-guided gene regulation and editing
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2681
– volume: 31
  start-page: 822
  year: 2013
  end-page: 826
  ident: CR9
  article-title: High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2623
– volume: 339
  start-page: 819
  year: 2013
  end-page: 823
  ident: CR6
  article-title: Multiplex genome engineering using CRISPR/Cas systems
  publication-title: Science
  doi: 10.1126/science.1231143
– volume: 339
  start-page: 823
  year: 2013
  end-page: 826
  ident: CR3
  article-title: RNA-guided human genome engineering via Cas9
  publication-title: Science
  doi: 10.1126/science.1232033
– volume: 31
  start-page: 839
  year: 2013
  end-page: 843
  ident: CR8
  article-title: High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2673
– volume: 10
  start-page: 185
  year: 2013
  end-page: 185
  ident: CR26
  article-title: TALENs and ZFNs are associated with different mutation signatures
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2364
– volume: 343
  start-page: 84
  year: 2014
  end-page: 87
  ident: CR1
  article-title: Genome-scale CRISPR-Cas9 knockout screening in human cells
  publication-title: Science
  doi: 10.1126/science.1247005
– volume: 22
  start-page: 1316
  year: 2012
  end-page: 1326
  ident: CR17
  article-title: Targeted gene addition to a predetermined site in the human genome using a ZFN-based nicking enzyme
  publication-title: Genome Res.
  doi: 10.1101/gr.122879.111
– volume: 40
  start-page: 5560
  year: 2012
  end-page: 5568
  ident: CR16
  article-title: Engineered zinc finger nickases induce homology-directed repair with reduced mutagenic effects
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks179
– volume: 26
  start-page: 808
  year: 2008
  end-page: 816
  ident: CR2
  article-title: Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1410
– volume: 31
  start-page: 827
  year: 2013
  end-page: 832
  ident: CR10
  article-title: DNA targeting specificity of RNA-guided Cas9 nucleases
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2647
– volume: 156
  start-page: 935
  year: 2014
  end-page: 949
  ident: CR21
  article-title: Crystal structure of Cas9 in complex with guide RNA and target DNA
  publication-title: Cell
  doi: 10.1016/j.cell.2014.02.001
– volume: 152
  start-page: 1173
  year: 2013
  end-page: 1183
  ident: CR24
  article-title: Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression
  publication-title: Cell
  doi: 10.1016/j.cell.2013.02.022
– volume: 2
  start-page: e00471
  year: 2013
  ident: CR7
  article-title: RNA-programmed genome editing in human cells
  publication-title: eLife
  doi: 10.7554/eLife.00471
– volume: 41
  start-page: 9584
  year: 2013
  end-page: 9592
  ident: CR11
  article-title: CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt714
– volume: 31
  start-page: 822
  year: 2013
  ident: BFnbt2909_CR9
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2623
– volume: 152
  start-page: 1173
  year: 2013
  ident: BFnbt2909_CR24
  publication-title: Cell
  doi: 10.1016/j.cell.2013.02.022
– volume: 26
  start-page: 808
  year: 2008
  ident: BFnbt2909_CR2
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1410
– volume: 154
  start-page: 1380
  year: 2013
  ident: BFnbt2909_CR14
  publication-title: Cell
  doi: 10.1016/j.cell.2013.08.021
– volume: 10
  start-page: 185
  year: 2013
  ident: BFnbt2909_CR26
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2364
– volume: 339
  start-page: 819
  year: 2013
  ident: BFnbt2909_CR6
  publication-title: Science
  doi: 10.1126/science.1231143
– volume: 343
  start-page: 84
  year: 2014
  ident: BFnbt2909_CR1
  publication-title: Science
  doi: 10.1126/science.1247005
– start-page: 247
  volume-title: Engineering Zinc Finger Proteins
  year: 2010
  ident: BFnbt2909_CR31
  doi: 10.1007/978-1-60761-753-2_15
– volume: 10
  start-page: 751
  year: 2013
  ident: BFnbt2909_CR29
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2521
– volume: 109
  start-page: E2579
  year: 2012
  ident: BFnbt2909_CR15
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1208507109
– volume: 32
  start-page: 279
  year: 2014
  ident: BFnbt2909_CR4
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2808
– volume: 31
  start-page: 6176
  year: 2014
  ident: BFnbt2909_CR22
  publication-title: Science
– volume: 156
  start-page: 935
  year: 2014
  ident: BFnbt2909_CR21
  publication-title: Cell
  doi: 10.1016/j.cell.2014.02.001
– volume: 41
  start-page: 9584
  year: 2013
  ident: BFnbt2909_CR11
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt714
– volume: 22
  start-page: 1316
  year: 2012
  ident: BFnbt2909_CR17
  publication-title: Genome Res.
  doi: 10.1101/gr.122879.111
– volume: 2
  start-page: e00471
  year: 2013
  ident: BFnbt2909_CR7
  publication-title: eLife
  doi: 10.7554/eLife.00471
– volume: 11
  start-page: 429
  year: 2014
  ident: BFnbt2909_CR20
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2845
– volume: 27
  start-page: 1186
  year: 2009
  ident: BFnbt2909_CR23
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1588
– volume: 8
  start-page: 765
  year: 2011
  ident: BFnbt2909_CR19
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1670
– volume: 339
  start-page: 823
  year: 2013
  ident: BFnbt2909_CR3
  publication-title: Science
  doi: 10.1126/science.1232033
– volume: 337
  start-page: 816
  year: 2012
  ident: BFnbt2909_CR5
  publication-title: Science
  doi: 10.1126/science.1225829
– ident: BFnbt2909_CR27
  doi: 10.1038/nbt.2889
– volume: 9
  start-page: 671
  year: 2012
  ident: BFnbt2909_CR30
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2089
– volume: 31
  start-page: 827
  year: 2013
  ident: BFnbt2909_CR10
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2647
– volume: 24
  start-page: 132
  year: 2014
  ident: BFnbt2909_CR12
  publication-title: Genome Res.
  doi: 10.1101/gr.162339.113
– volume: 31
  start-page: 833
  year: 2013
  ident: BFnbt2909_CR13
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2675
– volume: 309
  start-page: 69
  year: 2001
  ident: BFnbt2909_CR18
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.2001.4635
– volume: 40
  start-page: 5560
  year: 2012
  ident: BFnbt2909_CR16
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks179
– volume: 10
  start-page: 1116
  year: 2013
  ident: BFnbt2909_CR25
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2681
– volume: 41
  start-page: e181
  year: 2013
  ident: BFnbt2909_CR32
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt716
– volume: 31
  start-page: 839
  year: 2013
  ident: BFnbt2909_CR8
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2673
– volume: 8
  start-page: 74
  year: 2011
  ident: BFnbt2909_CR28
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1539
– reference: 25110782 - Nat Methods. 2014 Jul;11(7):712. doi: 10.1038/nmeth.3020.
SSID ssj0006466
Score 2.629057
Snippet A fusion of the FokI nuclease and a catalytically inactive Cas9 is a highly specific genome editing tool. Genome editing by Cas9, which cleaves double-stranded...
Genome editing by Cas9, which cleaves double-stranded DNA at a sequence programmed by a short single-guide RNA (sgRNA), can result in off-target DNA...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 577
SubjectTerms 631/1647/1511
Agriculture
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bioinformatics
Biomedical Engineering/Biotechnology
Biomedicine
Biotechnology
Clustered Regularly Interspaced Short Palindromic Repeats
CRISPR-Associated Protein 9
CRISPR-Cas Systems
Deoxyribonucleases, Type II Site-Specific - chemistry
Deoxyribonucleases, Type II Site-Specific - genetics
Deoxyribonucleic acid
DNA
Endonucleases - chemistry
Endonucleases - genetics
Gene Editing - methods
Genetic engineering
Genome, Human
Genomics
Humans
Life Sciences
Protein Multimerization
Recombinant Fusion Proteins - chemistry
Recombinant Fusion Proteins - genetics
RNA - genetics
Title Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification
URI https://link.springer.com/article/10.1038/nbt.2909
https://www.ncbi.nlm.nih.gov/pubmed/24770324
https://www.proquest.com/docview/1534303457
https://www.proquest.com/docview/1534792320
https://www.proquest.com/docview/1554950057
https://pubmed.ncbi.nlm.nih.gov/PMC4263420
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB61oFZwQDQtEF5aqko9uTjetXdzQhTh0kpFVVWk3Kxde1dEgA0kOeTfM7N-EKDikkM82tiZx347M_4G4IvWYay0soGKZBgI6VxguIgDwaVO0NGN0b7b4jw5uxC_RvGoSbhNmrbKNib6QF1UOeXID9EzBYZbEcuj27uApkZRdbUZofEWlom6jKxajroDF-62vlY5CBW1V8ZJSz7L1WFppt-iIbUhLm5HLzDmy1bJZ_VSvw2l67DW4Ed2XCv8A7yxZQ_e1RMl5z1YXeAX7MH7303l_CO4dEZ5MVY55jM2c5_Dvp6zcal9yGMnejJk04ql1dVPVhLNMW5wbOyTDnbCECgyei2TWosQudNCxO96Y9lNVdCXXsWf4CI9_XdyFjQzFoIcD2bDwDltZMF56KTN8bSSW2cSdHsXK5oFY4iPLBnqHIGIUaGNCiNFgSgicaGONGKFDVgqq9JuAUPVOj3gccEHuVC6MDbSOUcApCSuacM-fG3_6ixvCMhpDsZ15gvhXGWolIyU0oeDTvK2Jt34j8xuq62scbtJ9mgkuER3GR2GqiC6tNWsliHSxCh8TQaPzTG9qNuHzdoAuhuJhMQoGYk-yCem0QkQYffTK-X40hN3Ezm-oN_93BrRwq0_e77t159vB1YQuom6aW0Xlqb3M7uH8Ghq9r0P4KdKf-zD8vfT8z9_HwDCmhQj
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH6qitgOCIalAwUMAnEKzThO7BwQQoUwQ5dTK_UW7MQWo7ZJYWaE5k_xG3nPWZi2qLdeE8tZ3r74ewBvtA5jpZUNFJdhIKRzgYlEHIhI6gQF3Rjtuy32k_Gh-HYUH63Bn-4sDLVVdjrRK-qyLihHvoWSKVDdilh-PPsZ0NQoqq52IzQattixy98Yss0-TD4jfd9ynn052B4H7VSBoMBQJA2c00aWGMY7aQv0zwvrTIKM7mJF008MIXAlqS7Q9BoVWl4aKUq0m4kLNdecwJdQ5d8QEVpyOpmefe01f9LURkehonbOOOnAbiO1VZn5e55S2-Oq-bvk015uzbxQn_VmL7sP91p_lX1qGOwBrNlqADebCZbLAdxdwTMcwK29tlL_EFy2oDwcqx3zGaKlz5mfLNm00l7Fsm09S9m8Zll9PGEVwSqjQWVTn-SwM4aOKaNjoNTKhJECbUR4sqeWndYlXfQs9QgOr-XvP4b1qq7sBjBkJadHUVxGo0IoXRrLdYFUSZXEPW04hHfdr86LFvCc5m6c5L7wHqkciZITUYbwql951oB8_GfNZketvBXzWf6PKXGL_jYKKFVddGXrRbOGQBp5eNUaDNNjOhg8hCcNA_QvwoVErczFEOQ51ugXEED4-TvV9IcHCicwfkHPfd0x0cqrX_i-p1d_30u4PT7Y2813J_s7z-AOuo2iaZjbhPX5r4V9jq7Z3Lzw8sDg-3UL4F8Pt03_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VW1HBAcHyWihgEIhTaNZxYu8BIWgbdSmsKkSl3lI7scWKNinsrtD-NX4dM86DbYt66zUZOQ_Pe8bfALzSOoyVVjZQXIaBkM4FJhJxICKpExR0Y7Tvtpgke4fi01F8tAZ_2rMw1FbZ6kSvqIsqpxz5FkqmQHUrMIB3TVvEwU76_uxnQBOkqNLajtOoWWTfLn9j-DZ7N97BvX7Nebr7bXsvaCYMBDmGJaPAOW1kgSG9kzZHXz23ziTI9C5WNAnFEBpXMtI5mmGjQssLI0WBNjRxoeaaExATqv91SVFRD9Y_7k4OvnZ2IKkrpcNQUXNnnLTQt5HaKs38LR9RE-SqMbzk4V5u1LxQrfVGML0DtxvvlX2o2e0urNmyDzfqeZbLPtxaQTfsw8aXpm5_D1y6oKwcqxzz-aKlz6CfLNm01F7hsm09G7F5xdLqx5iVBLKM5pVNfcrDzhi6qYwOhVJjE8YNtBChy55adloVdNEz2H04vJb__wB6ZVXaR8CQsZweRnERDXOhdGEs13mE7peSuKYNB_Cm_dVZ3sCf0xSOk8yX4SOV4aZktCkDeNFRntWQH_-h2Wx3K2uEfpb9Y1FcoruN4ko1GF3aalHTEGQjD6-iwaA9pmPCA3hYM0D3IlxI1NFcDECeY42OgODCz98pp989bDhB8wt67suWiVZe_cL3Pb76-57DBgpf9nk82X8CN9GHFHX33Cb05r8W9in6aXPzrBEIBsfXLYN_AQgXU5E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fusion+of+catalytically+inactive+Cas9+to+FokI+nuclease+improves+the+specificity+of+genome+modification&rft.jtitle=Nature+biotechnology&rft.au=Guilinger%2C+John+P&rft.au=Thompson%2C+David+B&rft.au=Liu%2C+David+R&rft.date=2014-06-01&rft.pub=Nature+Publishing+Group&rft.issn=1087-0156&rft.eissn=1546-1696&rft.volume=32&rft.issue=6&rft.spage=577&rft_id=info:doi/10.1038%2Fnbt.2909&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3329498551
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1087-0156&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1087-0156&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1087-0156&client=summon