Scaling range sizes to threats for robust predictions of risks to biodiversity

Assessments of risk to biodiversity often rely on spatial distributions of species and ecosystems. Range-size metrics used extensively in these assessments, such as area of occupancy (AOO), are sensitive to measurement scale, prompting proposals to measure them at finer scales or at different scales...

Full description

Saved in:
Bibliographic Details
Published inConservation biology Vol. 32; no. 2; pp. 322 - 332
Main Authors Keith, David A., Akçakaya, H. Resit, Murray, Nicholas J.
Format Journal Article
LanguageEnglish
Published United States Wiley Blackwell, Inc 01.04.2018
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Assessments of risk to biodiversity often rely on spatial distributions of species and ecosystems. Range-size metrics used extensively in these assessments, such as area of occupancy (AOO), are sensitive to measurement scale, prompting proposals to measure them at finer scales or at different scales based on the shape of the distribution or ecological characteristics of the biota. Despite its dominant role in redlist assessments for decades, appropriate spatial scales of AOO for predicting risks of species' extinction or ecosystem collapse remain untested and contentious. There are no quantitative evaluations of the scalesensitivity of AOO as a predictor of risks, the relationship between optimal AOO scale and threat scale, or the effect of grid uncertainty. We used stochastic simulation models to explore risks to ecosystems and species with clustered, dispersed, and linear distribution patterns subject to regimes of threat events with different frequency and spatial extent. Area of occupancy was an accurate predictor of risk (0.81<|r|<0.98) and performed optimally when measured with grid cells 0.1-1.0 times the largest plausible area threatened by an event. Contrary to previous assertions, estimates of AOO at these relatively coarse scales were better predictors of risk than finer-scale estimates of AOO (e.g., when measurement cells are <1% of the area of the largest threat). The optimal scale depended on the spatial scales of threats more than the shape or size of biotic distributions. Although we found appreciable potential for grid-measurement errors, current IUCN guidelines for estimating AOO neutralize geometric uncertainty and incorporate effective scalingprocedures for assessing risks posed by landscape-scale threats to species and ecosystems. La evaluación de los riesgos para la biodiversidad generalmente depende de la distribución espacial de las especies y los ecosistemas. Las medidas del rango de extensión, como el área de ocupación (ADO), que se utilizan ampliamente en estas valoraciones son sensibles a la escala de medición, lo que genera propuestas para medirlas a escalas más finas o a diferentes escalas con base en la forma de distribución o en las características ecológicas de la biota. A pesar de su papel dominante en las valoraciones de listas rojas durante décadas, las escalas espaciales apropiadas del ADO para predecir el riesgo de extinción de las especies o el colapso de un ecosistema sigue siendo polémico y sin ser probado. No hay evaluaciones cuantitativas de la sensibilidad de escala del ADO como pronóstico de los riesgos, la relación entre la escala óptima del ADO y la escala de la amenaza, o el efecto de incertidumbre de cuadrícula. Utilizamos modelos de simulación estocástica para explorar los riesgos para los ecosistemas y las especies con patrones de distribución agrupada, dispersa y linear sujetos a regímenes de eventos amenazantes con frecuencias y extensiones espaciales diferentes. El área de ocupación fue un pronosticador preciso del riesgo (0.81<|r|<0.98) y actuó óptimamente cuando se midió con celdas de cuadrícula de 0.1 -1.0 veces la mayor área plausible amenazada por un evento. Contrario a aseveraciones previas, los estimados del ADO a estas escalas relativamente burdasfueron mejore pronosticadores del riesgo que los estimados del ADO a escalas más finas (p. ej. cuando las celdas de medición son <1% del área de la mayor amenaza). La escala óptima dependió de las escalas espaciales de las amenazas más que de la forma o el tamaño de las distribuciones bióticas. Aunque encontramos un potencial apreciable para los errores de medida de celda, las pautas actuales de la UICNpara la estimación del ADO neutralizan la incertidumbre geométrica e incorporan procedimientos efectivos de modificación de escala para la valoración de los riesgos presentados por las amenazas a escala de paisaje para las especies y los ecosistemas. 对生物多祥性面临风险的评估通常依赖于物种和生态系统的空间分布。在这类评估中广泛使用的分布范围大 小的度量,例如占有面积 (AOO), 对测量尺度很敏感,这提示我们应基于分布区形状或生物区生态特性在更精细 的尺度或不同尺度上进行测量。尽管几十年来 AOO 在红色名录评估中占有关键地位,然而用于预测物种灭绝 风险或生态系统崩溃的AOO合适的空间尺度还未得到检验且尚存在争议。AOO 作为风险预测指标的尺度敏 感性、最适 AOO 尺度和胁迫尺度的关系,以及网格不确定性的影响,目前都没有进行定量评估。我们用随机模 拟模型来探究生态系统和聚群分布、分散分布和线性分布的物种面临的风险,同时考虑它们受到的不同频率和 空间尺度的胁迫事件。占有面积是准确的风险预测指标(0.81<|r|<0.98),当在测量的网格单元大小为受胁迫 影响的最大可能面积的 0.1-1.0 倍时,预测效果最好。与之前的认识相反,AOO 估计值在相对粗糙的尺度上比在 精细尺度上(如测量单元大小<1%最大胁迫面积时) 可以更好地预测风险。最优尺度更多地依赖于胁迫的空间尺 度,而不是生物分布区的形状或大小。尽管我们发现网格测量有很大潜在的误差,但当前 IUCN 估计 AOO 的指 导原则抵消了几何不确定性,且整合了确定尺度的有效程序,来评估景观尺度的胁迫对物种和生态系统产生的风 险
AbstractList Assessments of risk to biodiversity often rely on spatial distributions of species and ecosystems. Range‐size metrics used extensively in these assessments, such as area of occupancy (AOO), are sensitive to measurement scale, prompting proposals to measure them at finer scales or at different scales based on the shape of the distribution or ecological characteristics of the biota. Despite its dominant role in red‐list assessments for decades, appropriate spatial scales of AOO for predicting risks of species’ extinction or ecosystem collapse remain untested and contentious. There are no quantitative evaluations of the scale‐sensitivity of AOO as a predictor of risks, the relationship between optimal AOO scale and threat scale, or the effect of grid uncertainty. We used stochastic simulation models to explore risks to ecosystems and species with clustered, dispersed, and linear distribution patterns subject to regimes of threat events with different frequency and spatial extent. Area of occupancy was an accurate predictor of risk (0.81<|r|<0.98) and performed optimally when measured with grid cells 0.1–1.0 times the largest plausible area threatened by an event. Contrary to previous assertions, estimates of AOO at these relatively coarse scales were better predictors of risk than finer‐scale estimates of AOO (e.g., when measurement cells are <1% of the area of the largest threat). The optimal scale depended on the spatial scales of threats more than the shape or size of biotic distributions. Although we found appreciable potential for grid‐measurement errors, current IUCN guidelines for estimating AOO neutralize geometric uncertainty and incorporate effective scaling procedures for assessing risks posed by landscape‐scale threats to species and ecosystems.
Assessments of risk to biodiversity often rely on spatial distributions of species and ecosystems. Range-size metrics used extensively in these assessments, such as area of occupancy (AOO), are sensitive to measurement scale, prompting proposals to measure them at finer scales or at different scales based on the shape of the distribution or ecological characteristics of the biota. Despite its dominant role in redlist assessments for decades, appropriate spatial scales of AOO for predicting risks of species' extinction or ecosystem collapse remain untested and contentious. There are no quantitative evaluations of the scalesensitivity of AOO as a predictor of risks, the relationship between optimal AOO scale and threat scale, or the effect of grid uncertainty. We used stochastic simulation models to explore risks to ecosystems and species with clustered, dispersed, and linear distribution patterns subject to regimes of threat events with different frequency and spatial extent. Area of occupancy was an accurate predictor of risk (0.81<|r|<0.98) and performed optimally when measured with grid cells 0.1-1.0 times the largest plausible area threatened by an event. Contrary to previous assertions, estimates of AOO at these relatively coarse scales were better predictors of risk than finer-scale estimates of AOO (e.g., when measurement cells are <1% of the area of the largest threat). The optimal scale depended on the spatial scales of threats more than the shape or size of biotic distributions. Although we found appreciable potential for grid-measurement errors, current IUCN guidelines for estimating AOO neutralize geometric uncertainty and incorporate effective scalingprocedures for assessing risks posed by landscape-scale threats to species and ecosystems. La evaluación de los riesgos para la biodiversidad generalmente depende de la distribución espacial de las especies y los ecosistemas. Las medidas del rango de extensión, como el área de ocupación (ADO), que se utilizan ampliamente en estas valoraciones son sensibles a la escala de medición, lo que genera propuestas para medirlas a escalas más finas o a diferentes escalas con base en la forma de distribución o en las características ecológicas de la biota. A pesar de su papel dominante en las valoraciones de listas rojas durante décadas, las escalas espaciales apropiadas del ADO para predecir el riesgo de extinción de las especies o el colapso de un ecosistema sigue siendo polémico y sin ser probado. No hay evaluaciones cuantitativas de la sensibilidad de escala del ADO como pronóstico de los riesgos, la relación entre la escala óptima del ADO y la escala de la amenaza, o el efecto de incertidumbre de cuadrícula. Utilizamos modelos de simulación estocástica para explorar los riesgos para los ecosistemas y las especies con patrones de distribución agrupada, dispersa y linear sujetos a regímenes de eventos amenazantes con frecuencias y extensiones espaciales diferentes. El área de ocupación fue un pronosticador preciso del riesgo (0.81<|r|<0.98) y actuó óptimamente cuando se midió con celdas de cuadrícula de 0.1 -1.0 veces la mayor área plausible amenazada por un evento. Contrario a aseveraciones previas, los estimados del ADO a estas escalas relativamente burdasfueron mejore pronosticadores del riesgo que los estimados del ADO a escalas más finas (p. ej. cuando las celdas de medición son <1% del área de la mayor amenaza). La escala óptima dependió de las escalas espaciales de las amenazas más que de la forma o el tamaño de las distribuciones bióticas. Aunque encontramos un potencial apreciable para los errores de medida de celda, las pautas actuales de la UICNpara la estimación del ADO neutralizan la incertidumbre geométrica e incorporan procedimientos efectivos de modificación de escala para la valoración de los riesgos presentados por las amenazas a escala de paisaje para las especies y los ecosistemas. 对生物多祥性面临风险的评估通常依赖于物种和生态系统的空间分布。在这类评估中广泛使用的分布范围大 小的度量,例如占有面积 (AOO), 对测量尺度很敏感,这提示我们应基于分布区形状或生物区生态特性在更精细 的尺度或不同尺度上进行测量。尽管几十年来 AOO 在红色名录评估中占有关键地位,然而用于预测物种灭绝 风险或生态系统崩溃的AOO合适的空间尺度还未得到检验且尚存在争议。AOO 作为风险预测指标的尺度敏 感性、最适 AOO 尺度和胁迫尺度的关系,以及网格不确定性的影响,目前都没有进行定量评估。我们用随机模 拟模型来探究生态系统和聚群分布、分散分布和线性分布的物种面临的风险,同时考虑它们受到的不同频率和 空间尺度的胁迫事件。占有面积是准确的风险预测指标(0.81<|r|<0.98),当在测量的网格单元大小为受胁迫 影响的最大可能面积的 0.1-1.0 倍时,预测效果最好。与之前的认识相反,AOO 估计值在相对粗糙的尺度上比在 精细尺度上(如测量单元大小<1%最大胁迫面积时) 可以更好地预测风险。最优尺度更多地依赖于胁迫的空间尺 度,而不是生物分布区的形状或大小。尽管我们发现网格测量有很大潜在的误差,但当前 IUCN 估计 AOO 的指 导原则抵消了几何不确定性,且整合了确定尺度的有效程序,来评估景观尺度的胁迫对物种和生态系统产生的风 险
Assessments of risk to biodiversity often rely on spatial distributions of species and ecosystems. Range-size metrics used extensively in these assessments, such as area of occupancy (AOO), are sensitive to measurement scale, prompting proposals to measure them at finer scales or at different scales based on the shape of the distribution or ecological characteristics of the biota. Despite its dominant role in red-list assessments for decades, appropriate spatial scales of AOO for predicting risks of species' extinction or ecosystem collapse remain untested and contentious. There are no quantitative evaluations of the scale-sensitivity of AOO as a predictor of risks, the relationship between optimal AOO scale and threat scale, or the effect of grid uncertainty. We used stochastic simulation models to explore risks to ecosystems and species with clustered, dispersed, and linear distribution patterns subject to regimes of threat events with different frequency and spatial extent. Area of occupancy was an accurate predictor of risk (0.81<|r|<0.98) and performed optimally when measured with grid cells 0.1-1.0 times the largest plausible area threatened by an event. Contrary to previous assertions, estimates of AOO at these relatively coarse scales were better predictors of risk than finer-scale estimates of AOO (e.g., when measurement cells are <1% of the area of the largest threat). The optimal scale depended on the spatial scales of threats more than the shape or size of biotic distributions. Although we found appreciable potential for grid-measurement errors, current IUCN guidelines for estimating AOO neutralize geometric uncertainty and incorporate effective scaling procedures for assessing risks posed by landscape-scale threats to species and ecosystems.Assessments of risk to biodiversity often rely on spatial distributions of species and ecosystems. Range-size metrics used extensively in these assessments, such as area of occupancy (AOO), are sensitive to measurement scale, prompting proposals to measure them at finer scales or at different scales based on the shape of the distribution or ecological characteristics of the biota. Despite its dominant role in red-list assessments for decades, appropriate spatial scales of AOO for predicting risks of species' extinction or ecosystem collapse remain untested and contentious. There are no quantitative evaluations of the scale-sensitivity of AOO as a predictor of risks, the relationship between optimal AOO scale and threat scale, or the effect of grid uncertainty. We used stochastic simulation models to explore risks to ecosystems and species with clustered, dispersed, and linear distribution patterns subject to regimes of threat events with different frequency and spatial extent. Area of occupancy was an accurate predictor of risk (0.81<|r|<0.98) and performed optimally when measured with grid cells 0.1-1.0 times the largest plausible area threatened by an event. Contrary to previous assertions, estimates of AOO at these relatively coarse scales were better predictors of risk than finer-scale estimates of AOO (e.g., when measurement cells are <1% of the area of the largest threat). The optimal scale depended on the spatial scales of threats more than the shape or size of biotic distributions. Although we found appreciable potential for grid-measurement errors, current IUCN guidelines for estimating AOO neutralize geometric uncertainty and incorporate effective scaling procedures for assessing risks posed by landscape-scale threats to species and ecosystems.
Assessments of risk to biodiversity often rely on spatial distributions of species and ecosystems. Range‐size metrics used extensively in these assessments, such as area of occupancy (AOO), are sensitive to measurement scale, prompting proposals to measure them at finer scales or at different scales based on the shape of the distribution or ecological characteristics of the biota. Despite its dominant role in red‐list assessments for decades, appropriate spatial scales of AOO for predicting risks of species’ extinction or ecosystem collapse remain untested and contentious. There are no quantitative evaluations of the scale‐sensitivity of AOO as a predictor of risks, the relationship between optimal AOO scale and threat scale, or the effect of grid uncertainty. We used stochastic simulation models to explore risks to ecosystems and species with clustered, dispersed, and linear distribution patterns subject to regimes of threat events with different frequency and spatial extent. Area of occupancy was an accurate predictor of risk (0.81<| r |<0.98) and performed optimally when measured with grid cells 0.1–1.0 times the largest plausible area threatened by an event. Contrary to previous assertions, estimates of AOO at these relatively coarse scales were better predictors of risk than finer‐scale estimates of AOO (e.g., when measurement cells are <1% of the area of the largest threat). The optimal scale depended on the spatial scales of threats more than the shape or size of biotic distributions. Although we found appreciable potential for grid‐measurement errors, current IUCN guidelines for estimating AOO neutralize geometric uncertainty and incorporate effective scaling procedures for assessing risks posed by landscape‐scale threats to species and ecosystems. 确定分布区大小受到胁迫的尺度以用于稳健的生物多样性风险预测 对生物多样性面临风险的评估通常依赖于物种和生态系统的空间分布。在这类评估中广泛使用的分布范围大小的度量, 例如占有面积 (AOO), 对测量尺度很敏感, 这提示我们应基于分布区形状或生物区生态特性在更精细的尺度或不同尺度上进行测量。尽管几十年来 AOO 在红色名录评估中占有关键地位, 然而用于预测物种灭绝风险或生态系统崩溃的 AOO 合适的空间尺度还未得到检验且尚存在争议。 AOO 作为风险预测指标的尺度敏感性、最适 AOO 尺度和胁迫尺度的关系, 以及网格不确定性的影响, 目前都没有进行定量评估。我们用随机模拟模型来探究生态系统和聚群分布、分散分布和线性分布的物种面临的风险, 同时考虑它们受到的不同频率和空间尺度的胁迫事件。占有面积是准确的风险预测指标 (0.81<| r |<0.98), 当在测量的网格单元大小为受胁迫影响的最大可能面积的 0.1‐1.0 倍时, 预测效果最好。与之前的认识相反, AOO 估计值在相对粗糙的尺度上比在精细尺度上(如测量单元大小<1%最大胁迫面积时)可以更好地预测风险。最优尺度更多地依赖于胁迫的空间尺度, 而不是生物分布区的形状或大小。尽管我们发现网格测量有很大潜在的误差, 但当前 IUCN 估计 AOO 的指导原则抵消了几何不确定性, 且整合了确定尺度的有效程序, 来评估景观尺度的胁迫对物种和生态系统产生的风险。 【翻译: 胡怡思; 审校: 胡义波】 Article impact statement : Scaled area of occupancy is a good predictor of species extinction and ecosystem collapse, helping resolve misinterpretation of red‐list criteria.
Assessments of risk to biodiversity often rely on spatial distributions of species and ecosystems. Range‐size metrics used extensively in these assessments, such as area of occupancy (AOO), are sensitive to measurement scale, prompting proposals to measure them at finer scales or at different scales based on the shape of the distribution or ecological characteristics of the biota. Despite its dominant role in red‐list assessments for decades, appropriate spatial scales of AOO for predicting risks of species’ extinction or ecosystem collapse remain untested and contentious. There are no quantitative evaluations of the scale‐sensitivity of AOO as a predictor of risks, the relationship between optimal AOO scale and threat scale, or the effect of grid uncertainty. We used stochastic simulation models to explore risks to ecosystems and species with clustered, dispersed, and linear distribution patterns subject to regimes of threat events with different frequency and spatial extent. Area of occupancy was an accurate predictor of risk (0.81<|r|<0.98) and performed optimally when measured with grid cells 0.1–1.0 times the largest plausible area threatened by an event. Contrary to previous assertions, estimates of AOO at these relatively coarse scales were better predictors of risk than finer‐scale estimates of AOO (e.g., when measurement cells are <1% of the area of the largest threat). The optimal scale depended on the spatial scales of threats more than the shape or size of biotic distributions. Although we found appreciable potential for grid‐measurement errors, current IUCN guidelines for estimating AOO neutralize geometric uncertainty and incorporate effective scaling procedures for assessing risks posed by landscape‐scale threats to species and ecosystems. Ampliación de Rangos de Distribución ante Amenazas para Predicciones Robustas de los Riesgos para la Biodiversidad Resumen La evaluación de los riesgos para la biodiversidad generalmente depende de la distribución espacial de las especies y los ecosistemas. Las medidas del rango de extensión, como el área de ocupación (ADO), que se utilizan ampliamente en estas valoraciones son sensibles a la escala de medición, lo que genera propuestas para medirlas a escalas más finas o a diferentes escalas con base en la forma de distribución o en las características ecológicas de la biota. A pesar de su papel dominante en las valoraciones de listas rojas durante décadas, las escalas espaciales apropiadas del ADO para predecir el riesgo de extinción de las especies o el colapso de un ecosistema sigue siendo polémico y sin ser probado. No hay evaluaciones cuantitativas de la sensibilidad de escala del ADO como pronóstico de los riesgos, la relación entre la escala óptima del ADO y la escala de la amenaza, o el efecto de incertidumbre de cuadrícula. Utilizamos modelos de simulación estocástica para explorar los riesgos para los ecosistemas y las especies con patrones de distribución agrupada, dispersa y linear sujetos a regímenes de eventos amenazantes con frecuencias y extensiones espaciales diferentes. El área de ocupación fue un pronosticador preciso del riesgo (0.81<|r|<0.98) y actuó óptimamente cuando se midió con celdas de cuadrícula de 0.1 –1.0 veces la mayor área plausible amenazada por un evento. Contrario a aseveraciones previas, los estimados del ADO a estas escalas relativamente burdas fueron mejores pronosticadores del riesgo que los estimados del ADO a escalas más finas (p. ej. cuando las celdas de medición son <1% del área de la mayor amenaza). La escala óptima dependió de las escalas espaciales de las amenazas más que de la forma o el tamaño de las distribuciones bióticas. Aunque encontramos un potencial apreciable para los errores de medida de celda, las pautas actuales de la UICN para la estimación del ADO neutralizan la incertidumbre geométrica e incorporan procedimientos efectivos de modificación de escala para la valoración de los riesgos presentados por las amenazas a escala de paisaje para las especies y los ecosistemas. 摘要 确定分布区大小受到胁迫的尺度以用于稳健的生物多样性风险预测 对生物多样性面临风险的评估通常依赖于物种和生态系统的空间分布。在这类评估中广泛使用的分布范围大小的度量, 例如占有面积 (AOO), 对测量尺度很敏感, 这提示我们应基于分布区形状或生物区生态特性在更精细的尺度或不同尺度上进行测量。尽管几十年来 AOO 在红色名录评估中占有关键地位, 然而用于预测物种灭绝风险或生态系统崩溃的 AOO 合适的空间尺度还未得到检验且尚存在争议。 AOO 作为风险预测指标的尺度敏感性、最适 AOO 尺度和胁迫尺度的关系, 以及网格不确定性的影响, 目前都没有进行定量评估。我们用随机模拟模型来探究生态系统和聚群分布、分散分布和线性分布的物种面临的风险, 同时考虑它们受到的不同频率和空间尺度的胁迫事件。占有面积是准确的风险预测指标 (0.81<|r|<0.98), 当在测量的网格单元大小为受胁迫影响的最大可能面积的 0.1‐1.0 倍时, 预测效果最好。与之前的认识相反, AOO 估计值在相对粗糙的尺度上比在精细尺度上(如测量单元大小<1%最大胁迫面积时)可以更好地预测风险。最优尺度更多地依赖于胁迫的空间尺度, 而不是生物分布区的形状或大小。尽管我们发现网格测量有很大潜在的误差, 但当前 IUCN 估计 AOO 的指导原则抵消了几何不确定性, 且整合了确定尺度的有效程序, 来评估景观尺度的胁迫对物种和生态系统产生的风险。【翻译: 胡怡思; 审校: 胡义波】 Article impact statement: Scaled area of occupancy is a good predictor of species extinction and ecosystem collapse, helping resolve misinterpretation of red‐list criteria.
Author Akçakaya, H. Resit
Murray, Nicholas J.
Keith, David A.
Author_xml – sequence: 1
  givenname: David A.
  surname: Keith
  fullname: Keith, David A.
– sequence: 2
  givenname: H. Resit
  surname: Akçakaya
  fullname: Akçakaya, H. Resit
– sequence: 3
  givenname: Nicholas J.
  surname: Murray
  fullname: Murray, Nicholas J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28703324$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1PGzEQxa0KVALtpXcqS72gSqH-Wq99pBFQpKgcmrvl9drBYbNObW-r8NfjkIQDQjCXufze08x7x-CgD70F4AtG57jMDxMaf46JFOIDGOGK0DGuqTwAIySEGAshyRE4TmmBEJIVZh_BERE1opSwEfj9x-jO93MYdT-3MPkHm2AOMN9Fq3OCLkQYQzOkDFfRtt5kH_oEg4PRp_sntPGh9f9sTD6vP4FDp7tkP-_2CZhdXc4mv8bT2-ubycV0bBgrN7mas4pXiFmNBLGMON0irjlpDXWy5qh1lODGMM2YsY0jGteYSclcYyrC6Ak429quYvg72JTV0idju073NgxJEVRRIYgs6z0USywEqxDfoN9eoIswxL78UQxxzbnkiBTq644amqVt1Sr6pY5rtc-0AGgLmBhSitYp47Pe5Jaj9p3CSG1qU5va1FNtRfL9hWTv-iqMt_B_39n1G6Sa3P682WtOt5pFyiE-axiTdQmqoo_887BF
CitedBy_id crossref_primary_10_1007_s10531_019_01697_9
crossref_primary_10_1016_j_pecon_2023_02_002
crossref_primary_10_1590_1676_0611_bn_2024_1648
crossref_primary_10_1016_j_biocon_2022_109561
crossref_primary_10_1071_BT22009
crossref_primary_10_1111_jbi_14679
crossref_primary_10_1111_geb_13091
crossref_primary_10_1016_j_pecon_2019_11_002
crossref_primary_10_1111_ecog_04143
crossref_primary_10_1111_1365_2664_14601
crossref_primary_10_1007_s12224_024_09449_6
crossref_primary_10_1073_pnas_1919580117
crossref_primary_10_1016_j_tree_2019_06_009
crossref_primary_10_1016_j_ocecoaman_2020_105416
crossref_primary_10_1111_njb_04202
crossref_primary_10_1111_cobi_13197
crossref_primary_10_1111_cobi_14069
crossref_primary_10_1111_aec_13037
crossref_primary_10_1002_ajb2_16437
crossref_primary_10_1016_j_tree_2021_12_002
crossref_primary_10_1016_j_biocon_2023_109937
crossref_primary_10_1111_ecog_03865
crossref_primary_10_3390_biology10010063
crossref_primary_10_1016_j_jnc_2022_126286
crossref_primary_10_1016_j_gecco_2023_e02541
crossref_primary_10_3390_f14112234
crossref_primary_10_1111_cobi_13139
crossref_primary_10_1111_cobi_13854
crossref_primary_10_1007_s10531_018_1555_5
crossref_primary_10_1007_s10531_023_02543_9
crossref_primary_10_3389_fmars_2020_614852
crossref_primary_10_1016_j_ecolmodel_2022_110013
Cites_doi 10.1016/j.biocon.2009.10.012
10.1126/science.aaf3565
10.1073/pnas.2235465100
10.1525/bio.2011.61.4.8
10.1111/1365-2435.12528
10.1111/j.1523-1739.2008.01158.x
10.1038/nature09440
10.1111/j.1523-1739.2008.01044.x
10.1016/j.jnc.2016.03.007
10.1371/journal.pone.0062111
10.1111/ddi.12533
10.1111/j.1523-1739.2003.00015.x
10.1641/0006-3568(2002)052[0891:THFATL]2.0.CO;2
10.1111/ddi.12452
10.1111/conl.12167
10.1126/sciadv.1601367
10.1016/j.biocon.2011.06.020
10.1073/pnas.0907321106
10.1890/1051-0761(2002)012[0618:ATATOU]2.0.CO;2
10.2305/IUCN.CH.2016.RLE.1.es
10.1126/science.1149345
10.1111/j.1523-1739.2008.00937.x
10.1111/j.1365-2664.2008.01596.x
10.1016/j.tpb.2006.11.001
10.1016/j.biocon.2011.02.004
10.1111/j.0014-3820.2004.tb01713.x
10.1111/j.1466-8238.2011.00716.x
10.1016/S0006-3207(99)00194-9
ContentType Journal Article
Copyright 2018 Society for Conservation Biology
2017 The Authors. published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
2017 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
2018, Society for Conservation Biology
Copyright_xml – notice: 2018 Society for Conservation Biology
– notice: 2017 The Authors. published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
– notice: 2017 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
– notice: 2018, Society for Conservation Biology
DBID 24P
AAYXX
CITATION
NPM
7QG
7SN
7SS
7ST
7U6
8FD
C1K
F1W
FR3
H95
L.G
P64
RC3
SOI
7X8
7S9
L.6
DOI 10.1111/cobi.12988
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Sustainability Science Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Sustainability Science Abstracts
Animal Behavior Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

PubMed
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1523-1739
EndPage 332
ExternalDocumentID 28703324
10_1111_cobi_12988
COBI12988
44973885
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Australian Research Council
  funderid: LP130100435
– fundername: MAVA Foundation
– fundername: National Science Foundation
  funderid: DEB‐1146198
GroupedDBID ---
-DZ
.3N
.GA
05W
0R~
10A
1OC
29F
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABJNI
ABLJU
ABPLY
ABPPZ
ABPVW
ABTLG
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADUKH
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ANHSF
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CBGCD
CS3
CUYZI
D-E
D-F
D0L
DCZOG
DEVKO
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LMP
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OES
OIG
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RSU
RX1
SA0
SUPJJ
TEORI
TN5
UB1
UKR
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XSW
YFH
YUY
YV5
YZZ
ZCA
ZO4
ZZTAW
~02
~IA
~KM
~WT
.-4
.Y3
1OB
24P
31~
42X
AAHHS
AAISJ
AANHP
AAUTI
ABEFU
ABEML
ACBWZ
ACCFJ
ACHIC
ACPVT
ACRPL
ACSCC
ACYXJ
ADNMO
ADULT
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AHXOZ
AI.
AILXY
AIWBW
AJBDE
AQVQM
ASPBG
AVWKF
AZFZN
CAG
COF
DOOOF
ESX
FEDTE
GTFYD
HF~
HGD
HQ2
HTVGU
HVGLF
JSODD
MVM
NEJ
QN7
SAMSI
UQL
VH1
VOH
WHG
WRC
XIH
ZCG
AAYXX
ABSQW
ADXHL
AGQPQ
AGUYK
CITATION
NPM
PKN
7QG
7SN
7SS
7ST
7U6
8FD
C1K
F1W
FR3
H95
L.G
P64
RC3
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-c4488-f76456504ea082e42fad06a62dc3f9760df321bc4a44cebf2a1714994fbc5243
IEDL.DBID DR2
ISSN 0888-8892
1523-1739
IngestDate Fri Jul 11 18:33:17 EDT 2025
Fri Jul 11 00:48:18 EDT 2025
Fri Jul 25 19:32:44 EDT 2025
Wed Feb 19 02:33:18 EST 2025
Tue Jul 01 02:25:28 EDT 2025
Thu Apr 24 23:04:18 EDT 2025
Wed Jan 22 16:28:59 EST 2025
Thu Jul 03 21:54:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords risk assessment
species distribution
threatening process
landscape modeling
IUCN Red List of Ecosystems
Lista Roja de la UICN de Ecosistemas
spatial scale
valoración de riesgo
IUCN Red List of Threatened Species
proceso amenazante
Lista Roja de la UICN de Especies Amenazadas
distribución de especies
风险评估 ,IUCN 濒危物种红色名录, IUCN 生态系统红色名录,物种分布,胁迫过程,景观建模,空间尺度
escala espacial
modelado de paisajes
Language English
License Attribution
2017 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4488-f76456504ea082e42fad06a62dc3f9760df321bc4a44cebf2a1714994fbc5243
Notes Scaled area of occupancy is a good predictor of species extinction and ecosystem collapse, helping resolve misinterpretation of red‐list criteria.
Article impact statement
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7627-4150
0000-0002-8679-5929
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcobi.12988
PMID 28703324
PQID 2017669602
PQPubID 36794
PageCount 11
ParticipantIDs proquest_miscellaneous_2053882905
proquest_miscellaneous_1918845065
proquest_journals_2017669602
pubmed_primary_28703324
crossref_citationtrail_10_1111_cobi_12988
crossref_primary_10_1111_cobi_12988
wiley_primary_10_1111_cobi_12988_COBI12988
jstor_primary_44973885
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180401
April 2018
2018-04-00
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 4
  year: 2018
  text: 20180401
  day: 1
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Conservation biology
PublicationTitleAlternate Conserv Biol
PublicationYear 2018
Publisher Wiley Blackwell, Inc
Blackwell Publishing Ltd
Publisher_xml – name: Wiley Blackwell, Inc
– name: Blackwell Publishing Ltd
References 2009; 23
2009; 46
2002; 52
2002; 12
2010; 467
2011; 61
2017; 23
2016; 32
2000; 94
2010; 143
2007
2016; 30
1994
2003; 17
1993
2007; 72
2003
2013; 8
2015; 8
2016; 2
2001
2008; 319
2016; 352
2011; 21
2016
2008; 22
2003; 100
2011; 144
2016; 22
2009; 106
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
IUCN (International Union for Conservation of Nature) (e_1_2_6_15_1) 2016
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
IUCN (International Union for Conservation of Nature) Standards and Petitions Subcommittee (e_1_2_6_16_1) 2003
e_1_2_6_21_1
Burgman MA (e_1_2_6_5_1) 1993
e_1_2_6_20_1
IUCN (International Union for Conservation of Nature) Standards and Petitions Subcommittee (e_1_2_6_17_1) 2016
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
IUCN (International Union for Conservation of Nature) (e_1_2_6_14_1) 2001
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 352
  start-page: 416
  year: 2016
  end-page: 418
  article-title: Filling in biodiversity threat gaps
  publication-title: Science
– volume: 144
  start-page: 2432
  year: 2011
  end-page: 2440
  article-title: Adapting the IUCN Red List criteria for invertebrates
  publication-title: Biological Conservation
– volume: 32
  start-page: 1
  year: 2016
  end-page: 9
  article-title: Habitats on the grid: the spatial dimension does matter for red‐listing
  publication-title: Journal for Nature Conservation
– volume: 143
  start-page: 311
  year: 2010
  end-page: 320
  article-title: Large‐scale estimators of threatened freshwater catchment species relative to practical conservation management
  publication-title: Biological Conservation
– volume: 17
  start-page: 1559
  year: 2003
  end-page: 1570
  article-title: Scale dependency of rarity, extinction risk, and conservation priority
  publication-title: Conservation Biology
– year: 2007
– year: 2001
– volume: 8
  start-page: e62111
  year: 2013
  article-title: Scientific foundations for an IUCN Red List of ecosystems
  publication-title: PLOS ONE
– volume: 21
  start-page: 732
  year: 2011
  end-page: 742
  article-title: Understanding bias in geographic range size estimates
  publication-title: Global Ecology and Biogeography
– volume: 52
  start-page: 891
  year: 2002
  end-page: 904
  article-title: The human footprint and the last of the wild
  publication-title: BioScience
– year: 2003
– volume: 22
  start-page: 881
  year: 2016
  end-page: 892
  article-title: Putting susceptibility on the map to improve conservation planning, an example with terrestrial mammals
  publication-title: Diversity and Distributions
– volume: 30
  start-page: 70
  year: 2016
  end-page: 78
  article-title: Facilitation and the niche: implications for coexistence, range shifts and ecosystem functioning
  publication-title: Functional Ecology
– year: 2016
– volume: 8
  start-page: 214
  year: 2015
  end-page: 226
  article-title: The IUCN red list of ecosystems: motivations, challenges, and applications
  publication-title: Conservation Letters
– year: 1994
– volume: 106
  start-page: 19666
  year: 2009
  end-page: 19672
  article-title: Size, shape, and the thermal niche of endotherms
  publication-title: Proceedings of the National Academy of Sciences
– volume: 467
  start-page: 555
  year: 2010
  end-page: 561
  article-title: Global threats to human water security and river biodiversity
  publication-title: Nature
– volume: 12
  start-page: 618
  year: 2002
  end-page: 628
  article-title: A taxonomy and treatment of uncertainty for ecology and conservation biology
  publication-title: Ecological Applications
– volume: 61
  start-page: 281
  year: 2011
  end-page: 289
  article-title: The spatial distribution of threats to species in Australia
  publication-title: BioScience
– volume: 72
  start-page: 77
  year: 2007
  end-page: 85
  article-title: How patch configuration affects the impact of disturbances on metapopulation persistence
  publication-title: Theoretical Population Biology
– volume: 100
  start-page: 12765
  year: 2003
  end-page: 12770
  article-title: Biodiversity as spatial insurance in heterogeneous landscapes
  publication-title: Proceedings of the National Academy of Sciences
– volume: 319
  start-page: 948
  year: 2008
  end-page: 952
  article-title: A global map of human impact on marine ecosystems
  publication-title: Science
– volume: 22
  start-page: 1424
  year: 2008
  end-page: 1442
  article-title: Quantification of extinction risk: IUCN's system for classifying threatened species
  publication-title: Conservation Biology
– volume: 2
  start-page: e1601367
  issue: 11
  year: 2016
  article-title: Incorporating explicit geospatial data shows more species at risk of extinction than the current red list
  publication-title: Science Advances
– volume: 22
  start-page: 897
  year: 2008
  end-page: 911
  article-title: A standard lexicon for biodiversity conservation: Unified classifications of threats and actions
  publication-title: Conservation Biology
– volume: 94
  start-page: 311
  year: 2000
  end-page: 319
  article-title: Sensitivity analyses of decision rules in world conservation union (IUCN) Red List criteria using Australian plants
  publication-title: Biological Conservation
– volume: 23
  start-page: 474
  year: 2017
  end-page: 483
  article-title: The use of range size to assess risks to biodiversity from stochastic threats
  publication-title: Diversity and Distributions
– year: 1993
– volume: 23
  start-page: 259
  year: 2009
  end-page: 274
  article-title: Assessing the threat status of ecological communities
  publication-title: Conservation Biology
– volume: 144
  start-page: 1585
  year: 2011
  end-page: 1594
  article-title: Incorporating temporality and biophysical vulnerability to quantify the human spatial footprint on ecosystems
  publication-title: Biological Conservation
– volume: 46
  start-page: 1
  year: 2009
  end-page: 9
  article-title: The sizes of species’ geographic ranges
  publication-title: Journal of Applied Ecology
– ident: e_1_2_6_33_1
  doi: 10.1016/j.biocon.2009.10.012
– volume-title: IUCN red list categories and criteria
  year: 2001
  ident: e_1_2_6_14_1
– ident: e_1_2_6_18_1
  doi: 10.1126/science.aaf3565
– ident: e_1_2_6_22_1
  doi: 10.1073/pnas.2235465100
– ident: e_1_2_6_8_1
  doi: 10.1525/bio.2011.61.4.8
– volume-title: An introduction to the IUCN Red List of ecosystems: the categories and criteria for assessing risks to ecosystems
  year: 2016
  ident: e_1_2_6_15_1
– ident: e_1_2_6_4_1
  doi: 10.1111/1365-2435.12528
– ident: e_1_2_6_25_1
  doi: 10.1111/j.1523-1739.2008.01158.x
– ident: e_1_2_6_34_1
  doi: 10.1038/nature09440
– ident: e_1_2_6_23_1
  doi: 10.1111/j.1523-1739.2008.01044.x
– ident: e_1_2_6_11_1
  doi: 10.1016/j.jnc.2016.03.007
– ident: e_1_2_6_21_1
  doi: 10.1371/journal.pone.0062111
– ident: e_1_2_6_24_1
  doi: 10.1111/ddi.12533
– volume-title: Risk assessment in conservation biology
  year: 1993
  ident: e_1_2_6_5_1
– ident: e_1_2_6_13_1
  doi: 10.1111/j.1523-1739.2003.00015.x
– ident: e_1_2_6_31_1
  doi: 10.1641/0006-3568(2002)052[0891:THFATL]2.0.CO;2
– ident: e_1_2_6_27_1
  doi: 10.1111/ddi.12452
– ident: e_1_2_6_20_1
  doi: 10.1111/conl.12167
– ident: e_1_2_6_26_1
  doi: 10.1126/sciadv.1601367
– ident: e_1_2_6_2_1
– ident: e_1_2_6_6_1
  doi: 10.1016/j.biocon.2011.06.020
– volume-title: Guidelines for using the IUCN red list categories and criteria
  year: 2016
  ident: e_1_2_6_17_1
– ident: e_1_2_6_28_1
  doi: 10.1073/pnas.0907321106
– ident: e_1_2_6_29_1
  doi: 10.1890/1051-0761(2002)012[0618:ATATOU]2.0.CO;2
– ident: e_1_2_6_3_1
  doi: 10.2305/IUCN.CH.2016.RLE.1.es
– ident: e_1_2_6_12_1
  doi: 10.1126/science.1149345
– volume-title: Guidelines for using the IUCN red list categories and criteria
  year: 2003
  ident: e_1_2_6_16_1
– ident: e_1_2_6_30_1
  doi: 10.1111/j.1523-1739.2008.00937.x
– ident: e_1_2_6_10_1
  doi: 10.1111/j.1365-2664.2008.01596.x
– ident: e_1_2_6_35_1
  doi: 10.1016/j.tpb.2006.11.001
– ident: e_1_2_6_7_1
  doi: 10.1016/j.biocon.2011.02.004
– ident: e_1_2_6_9_1
  doi: 10.1111/j.0014-3820.2004.tb01713.x
– ident: e_1_2_6_32_1
  doi: 10.1111/j.1466-8238.2011.00716.x
– ident: e_1_2_6_19_1
  doi: 10.1016/S0006-3207(99)00194-9
SSID ssj0009514
Score 2.427661
Snippet Assessments of risk to biodiversity often rely on spatial distributions of species and ecosystems. Range-size metrics used extensively in these assessments,...
Assessments of risk to biodiversity often rely on spatial distributions of species and ecosystems. Range‐size metrics used extensively in these assessments,...
SourceID proquest
pubmed
crossref
wiley
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 322
SubjectTerms Area
Assessments
Balances (scales)
Biodiversity
Biota
Cells
Computer simulation
Dispersion
distribución de especies
Distribution
Distribution patterns
Ecosystems
Environment models
escala espacial
extinction
Frequency dependence
geometry
guidelines
IUCN Red List of Ecosystems
IUCN Red List of Threatened Species
landscape modeling
Lista Roja de la UICN de Ecosistemas
Lista Roja de la UICN de Especies Amenazadas
Mathematical models
Measurement
modelado de paisajes
neutralization
Optimization
prediction
Predictions
Procedures
proceso amenazante
quantitative analysis
Risk
Risk assessment
Scaling
Sensitivity analysis
Shape
simulation models
Spatial analysis
Spatial distribution
spatial scale
species distribution
Species extinction
Threatened species
threatening process
Threats
Uncertainty
valoración de riesgo
风险评估 ,IUCN 濒危物种红色名录, IUCN 生态系统红色名录,物种分布,胁迫过程,景观建模,空间尺度
Title Scaling range sizes to threats for robust predictions of risks to biodiversity
URI https://www.jstor.org/stable/44973885
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcobi.12988
https://www.ncbi.nlm.nih.gov/pubmed/28703324
https://www.proquest.com/docview/2017669602
https://www.proquest.com/docview/1918845065
https://www.proquest.com/docview/2053882905
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB9UKPTFaq2a-sEW-9JCjrvdTbIHfWlFsQW1tBZ8KSG72cVDucgl96B_fWd2k1SLCvUtkAnM7szs_CYzOwPwXuO5qEs7jGnmdiy1KGPFiyS26D0t4ltt_Dif45P06Jf8dp6cL8Cn7i5M6A_R_3Ajy_DnNRl4oes7Rm4qPRmgt1J005eKtQgR_eB3Ou6Gxt4Y4sVKjXnbm5TKeP5-es8bhYLEh6DmfeTqXc_hK_jdMR0qTi4H80YPzO0__Ryfu6oVWG4xKfsclGgVFuz0NbwIUypv8OnAd7a-WYOTnyhR9HVsRlcSWD25tTVrKtZcEPSsGQJgNqv0vG7Y9YwyQF6pWeUYVbB7Uj2pyq4U5A2cHR6c7R_F7UCG2GAUp2KXpQQAh9IWiBys5K4oh2mR8tIIh7hmWDrBR9rIQkpjteMFjVcfj6XTJuFSrMPStJraTWC4PqesyVypMMIUXJca3WKmjEisGOk0gg-dXHLTNiunmRlXeRe00EblfqMi2Otpr0OLjgep1r14exIpx5lQKolgu5N33tpvnSMsytIUozsewbv-NVoepVOKqa3mdY6RLjKfIIZ7nIbjGacoV400G0GXegYoxSwQz0bw0WvEE8zn-6dfvvqnt_9DvAUvcSEqFBptw1Izm9sdxFCN3oVFLr_veov5AwsWFjk
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIkQvPAql6QNcwQWkrLa2k3iP0Ie2r0WCReotih1brFptqk320P56ZuxsaFGpBDdLmUi2x-P5xh5_A_BB476oS9uPqeZ2LLUoY8WLJLboPS3iW218OZ-zUTr8IY_Pk_M2N4fewgR-iO7AjSzD79dk4HQgfcvKTaUnPXRXSj2Cx1TSm6jz97_xW5y7gdobg7xYqQFv2Ukpkef3v3f8UUhJvA9s3sWu3vkcPg8VVmvPWUg5Jxe9eaN75uYPRsf_HtcLeNbCUvY5rKOXsGSnq_AkFKq8xtaBJ7e-fgWj76hUdHdsRq8SWD25sTVrKtb8JPRZM8TAbFbped2wqxldAvl1zSrHKIndi-pJVS6yQV7D-PBgvDeM25oMscFATsUuSwkD9qUtEDxYyV1R9tMi5aURDqFNv3SC72ojCymN1Y4XVGF9MJBOm4RLsQbL02pq14Hh-JyyJnOlwiBTcF1q9IyZMiKxYlenEXxcKCY3LV85lc24zBdxC01U7icqgved7FVg6bhXas3rtxORcpAJpZIIthYKz1sTrnNERlmaYoDHI9jpPqPx0Y1KMbXVvM4x2MXOJwjj_i7DcZtTdF2NMm_CYuo6QLfMAiFtBJ_8knig8_ne1y9HvrXxL8Lv4OlwfHaanx6NTjZhBQelQt7RFiw3s7ndRkjV6LfecH4B0zMZfg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB_aSosvorbV6Kkr9aVCyt3uJtkDX_Ts0fpxFlqhbyH7hQdyOS65h_rXO7P5aAut4NtCJrCZ2Zn5TWZ2BuCdRruorRvGNHM7llrYWPEiiR16T4f4Vpswzuf7LD35Kb9cJpcb8KG7C9P0h-h_uJFmBHtNCr60_oaSm1LPj9BbKbUJDyjbRwVdXJ7daLnbdPbGGC9Waszb5qRUx3P97i131FQk3oU1b0PX4Humj-FRCxrZx0bKT2DDLZ7CdjNG8gpXx6H19NUuzM6R5eiM2IruDLBq_sdVrC5Z_YuwYcUQobJVqddVzZYrStGEU8dKz6jEPJDqeWm7Wo09uJgeX0xO4nZiQmwwzFKxz1JCaEPpCnTtTnJf2GFapNwa4RF4DK0XfKSNLKQ0Tnte0Pzz8Vh6bRIuxT5sLcqFew4MWeOVM5m3CkNAwbXV6LcyZUTixEinERx2fMtN202chlr8zruognicBx5HcNDTLpseGndS7Qf29yRSjjOhVBLBoJNH3ipYlSNuydIUwy8ewdv-MaoG5TuKhSvXVY6hKG4-QZB1Pw1HI6QomYw0zxpZ9xugHLBAwBnB-yD8f2w-n_z4dBpWL_6H-A3snH2e5t9OZ19fwkP8JtUUBQ1gq16t3SvEO7V-HY71Xxg194I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scaling+range+sizes+to+threats+for+robust+predictions+of+risks+to+biodiversity&rft.jtitle=Conservation+biology&rft.au=Keith%2C+David+A.&rft.au=Ak%C3%A7akaya%2C+H.+Resit&rft.au=Murray%2C+Nicholas+J.&rft.date=2018-04-01&rft.issn=0888-8892&rft.eissn=1523-1739&rft.volume=32&rft.issue=2&rft.spage=322&rft.epage=332&rft_id=info:doi/10.1111%2Fcobi.12988&rft.externalDBID=10.1111%252Fcobi.12988&rft.externalDocID=COBI12988
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-8892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-8892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-8892&client=summon