Automated, high‐throughput, in vivo analysis of visual function using the zebrafish

Background: Modern genomics has enabled the identification of an unprecedented number of genetic variants, which in many cases are extremely rare, associated with blinding disorders. A significant challenge will be determining the pathophysiology of each new variant. The Zebrafish is an excellent mo...

Full description

Saved in:
Bibliographic Details
Published inDevelopmental dynamics Vol. 245; no. 5; pp. 605 - 613
Main Authors Scott, C. Anthony, Marsden, Autumn N., Slusarski, Diane C.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.05.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background: Modern genomics has enabled the identification of an unprecedented number of genetic variants, which in many cases are extremely rare, associated with blinding disorders. A significant challenge will be determining the pathophysiology of each new variant. The Zebrafish is an excellent model for the study of inherited diseases of the eye. By 5 days post‐fertilization (dpf), they have quantifiable behavioral responses to visual stimuli. However, visual behavior assays can take several hours to perform or can only be assessed one fish at a time. Results: To increase the throughput for vision assays, we used the Viewpoint Zebrabox to automate the visual startle response and created software, Visual Interrogation of Zebrafish Manipulations (VIZN), to automate data analysis. This process allows 96 Zebrafish larvae to be tested and resultant data to be analyzed in less than 35 minutes. We validated this system by disrupting function of a gene necessary for photoreceptor differentiation and observing decreased response to visual stimuli. Conclusions: This automated method along with VIZN allows rapid, high‐throughput, in vivo testing of Zebrafish's ability to respond to light/dark stimuli. This allows the rapid analysis of novel genes involved in visual function by morpholino, CRISPRS, or small‐molecule drug screens. Developmental Dynamics 245:605–613, 2016. © 2016 Wiley Periodicals, Inc. Key findings Automated the visual startle response in zebrafish. Created free software to instantaneously analyze the large spreadsheet of generated data. Creates opportunity for rapid, high‐throughput testing of novel genes which may be implicated in blinding disorders.
AbstractList Background: Modern genomics has enabled the identification of an unprecedented number of genetic variants, which in many cases are extremely rare, associated with blinding disorders. A significant challenge will be determining the pathophysiology of each new variant. The Zebrafish is an excellent model for the study of inherited diseases of the eye. By 5 days post‐fertilization (dpf), they have quantifiable behavioral responses to visual stimuli. However, visual behavior assays can take several hours to perform or can only be assessed one fish at a time. Results: To increase the throughput for vision assays, we used the Viewpoint Zebrabox to automate the visual startle response and created software, Visual Interrogation of Zebrafish Manipulations (VIZN), to automate data analysis. This process allows 96 Zebrafish larvae to be tested and resultant data to be analyzed in less than 35 minutes. We validated this system by disrupting function of a gene necessary for photoreceptor differentiation and observing decreased response to visual stimuli. Conclusions: This automated method along with VIZN allows rapid, high‐throughput, in vivo testing of Zebrafish's ability to respond to light/dark stimuli. This allows the rapid analysis of novel genes involved in visual function by morpholino, CRISPRS, or small‐molecule drug screens. Developmental Dynamics 245:605–613, 2016. © 2016 Wiley Periodicals, Inc. Key findings Automated the visual startle response in zebrafish. Created free software to instantaneously analyze the large spreadsheet of generated data. Creates opportunity for rapid, high‐throughput testing of novel genes which may be implicated in blinding disorders.
BACKGROUNDModern genomics has enabled the identification of an unprecedented number of genetic variants, which in many cases are extremely rare, associated with blinding disorders. A significant challenge will be determining the pathophysiology of each new variant. The Zebrafish is an excellent model for the study of inherited diseases of the eye. By 5 days post-fertilization (dpf), they have quantifiable behavioral responses to visual stimuli. However, visual behavior assays can take several hours to perform or can only be assessed one fish at a time.RESULTSTo increase the throughput for vision assays, we used the Viewpoint Zebrabox to automate the visual startle response and created software, Visual Interrogation of Zebrafish Manipulations (VIZN), to automate data analysis. This process allows 96 Zebrafish larvae to be tested and resultant data to be analyzed in less than 35 minutes. We validated this system by disrupting function of a gene necessary for photoreceptor differentiation and observing decreased response to visual stimuli.CONCLUSIONSThis automated method along with VIZN allows rapid, high-throughput, in vivo testing of Zebrafish's ability to respond to light/dark stimuli. This allows the rapid analysis of novel genes involved in visual function by morpholino, CRISPRS, or small-molecule drug screens. Developmental Dynamics 245:605-613, 2016. © 2016 Wiley Periodicals, Inc.
Background: Modern genomics has enabled the identification of an unprecedented number of genetic variants, which in many cases are extremely rare, associated with blinding disorders. A significant challenge will be determining the pathophysiology of each new variant. The Zebrafish is an excellent model for the study of inherited diseases of the eye. By 5 days post-fertilization (dpf), they have quantifiable behavioral responses to visual stimuli. However, visual behavior assays can take several hours to perform or can only be assessed one fish at a time. Results: To increase the throughput for vision assays, we used the Viewpoint Zebrabox to automate the visual startle response and created software, Visual Interrogation of Zebrafish Manipulations (VIZN), to automate data analysis. This process allows 96 Zebrafish larvae to be tested and resultant data to be analyzed in less than 35 minutes. We validated this system by disrupting function of a gene necessary for photoreceptor differentiation and observing decreased response to visual stimuli. Conclusions: This automated method along with VIZN allows rapid, high-throughput, in vivo testing of Zebrafish's ability to respond to light/dark stimuli. This allows the rapid analysis of novel genes involved in visual function by morpholino, CRISPRS, or small-molecule drug screens. Developmental Dynamics 245:605-613, 2016. © 2016 Wiley Periodicals, Inc. Key findings Automated the visual startle response in zebrafish. Created free software to instantaneously analyze the large spreadsheet of generated data. Creates opportunity for rapid, high-throughput testing of novel genes which may be implicated in blinding disorders.
Background: Modern genomics has enabled the identification of an unprecedented number of genetic variants, which in many cases are extremely rare, associated with blinding disorders. A significant challenge will be determining the pathophysiology of each new variant. The Zebrafish is an excellent model for the study of inherited diseases of the eye. By 5 days post‐fertilization (dpf), they have quantifiable behavioral responses to visual stimuli. However, visual behavior assays can take several hours to perform or can only be assessed one fish at a time. Results: To increase the throughput for vision assays, we used the Viewpoint Zebrabox to automate the visual startle response and created software, Visual Interrogation of Zebrafish Manipulations (VIZN), to automate data analysis. This process allows 96 Zebrafish larvae to be tested and resultant data to be analyzed in less than 35 minutes. We validated this system by disrupting function of a gene necessary for photoreceptor differentiation and observing decreased response to visual stimuli. Conclusions: This automated method along with VIZN allows rapid, high‐throughput, in vivo testing of Zebrafish's ability to respond to light/dark stimuli. This allows the rapid analysis of novel genes involved in visual function by morpholino, CRISPRS, or small‐molecule drug screens. Developmental Dynamics 245:605–613, 2016 . © 2016 Wiley Periodicals, Inc. Key findings Automated the visual startle response in zebrafish. Created free software to instantaneously analyze the large spreadsheet of generated data. Creates opportunity for rapid, high‐throughput testing of novel genes which may be implicated in blinding disorders.
We automated a visual behavioral assay and created software to automate the data analysis.
Modern genomics has enabled the identification of an unprecedented number of genetic variants, which in many cases are extremely rare, associated with blinding disorders. A significant challenge will be determining the pathophysiology of each new variant. The Zebrafish is an excellent model for the study of inherited diseases of the eye. By 5 days post-fertilization (dpf), they have quantifiable behavioral responses to visual stimuli. However, visual behavior assays can take several hours to perform or can only be assessed one fish at a time. To increase the throughput for vision assays, we used the Viewpoint Zebrabox to automate the visual startle response and created software, Visual Interrogation of Zebrafish Manipulations (VIZN), to automate data analysis. This process allows 96 Zebrafish larvae to be tested and resultant data to be analyzed in less than 35 minutes. We validated this system by disrupting function of a gene necessary for photoreceptor differentiation and observing decreased response to visual stimuli. This automated method along with VIZN allows rapid, high-throughput, in vivo testing of Zebrafish's ability to respond to light/dark stimuli. This allows the rapid analysis of novel genes involved in visual function by morpholino, CRISPRS, or small-molecule drug screens. Developmental Dynamics 245:605-613, 2016. © 2016 Wiley Periodicals, Inc.
Author Scott, C. Anthony
Marsden, Autumn N.
Slusarski, Diane C.
AuthorAffiliation 1 Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
2 Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
AuthorAffiliation_xml – name: 1 Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
– name: 2 Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
Author_xml – sequence: 1
  givenname: C. Anthony
  surname: Scott
  fullname: Scott, C. Anthony
  organization: University of Iowa
– sequence: 2
  givenname: Autumn N.
  surname: Marsden
  fullname: Marsden, Autumn N.
  organization: University of Iowa
– sequence: 3
  givenname: Diane C.
  surname: Slusarski
  fullname: Slusarski, Diane C.
  organization: University of Iowa
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26890697$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1qHSEYhqWkNH_d9AKK0E0pmfRzxlFnEwhJ_yCQTRPoSjyOnjHM0VMdTzld5RJyjb2SenLSkHbRlaIPz_fyvftoxwdvEHpF4JgA1O_7Vb8-rmnTiWdoj0DHKyCc72zurahEI8Qu2k_pBgAEo-QF2q2Z6IB1fA9dneYpLNRk-iM8uPnw6_ZuGmLI82GZpyPsPF65VcDKq3GdXMLBloeU1Yht9npyweOcnJ_jaTD4p5lFZV0aDtFzq8ZkXj6cB-jq44evZ5-ri8tPX85OLypNqRCVbbkQtqGdYqTXtTLAlaAUeFsbXQMH0I02lsGMq5aV-KbVPTXAQBtRW94coJOtd5lnC9Nr46eoRrmMbqHiWgbl5N8_3g1yHlaSljGcNUXw9kEQw_ds0iQXLmkzjsqbkJMkvICMtEQU9M0_6E3IsezlnmpE01JCCvVuS-kYUorGPoYhIDdtyU1b8r6tAr9-Gv8R_VNPAcgW-OFGs_6PSp5fn3_bSn8Djrejkg
CitedBy_id crossref_primary_10_1093_toxsci_kfx212
crossref_primary_10_1371_journal_pone_0164645
crossref_primary_10_1002_jimd_12319
crossref_primary_10_1371_journal_pone_0212234
crossref_primary_10_3390_cells11091457
crossref_primary_10_1038_s41434_021_00291_5
crossref_primary_10_3390_ijms23126647
crossref_primary_10_1038_s41598_017_02822_w
crossref_primary_10_1177_1087057116667894
crossref_primary_10_3390_biomedicines9020100
crossref_primary_10_1016_j_celrep_2023_112243
crossref_primary_10_1016_j_celrep_2019_02_006
crossref_primary_10_1016_j_foodres_2018_06_013
crossref_primary_10_1093_brain_awad380
crossref_primary_10_1371_journal_pone_0183414
crossref_primary_10_1172_jci_insight_130516
crossref_primary_10_3390_ijms18061185
crossref_primary_10_1038_s41598_019_54186_y
crossref_primary_10_1186_s13073_023_01258_4
crossref_primary_10_3390_biomedicines7020028
crossref_primary_10_1177_0192623320964748
crossref_primary_10_2139_ssrn_3245222
crossref_primary_10_1016_j_jenvman_2021_114072
crossref_primary_10_1016_j_appet_2021_105158
crossref_primary_10_30895_2312_7821_2023_11_3_303_321
crossref_primary_10_1089_zeb_2016_1412
Cites_doi 10.1006/dbio.1997.8566
10.1089/zeb.2006.3.191
10.1515/rns.2011.003
10.1017/S0952523805222083
10.1006/dbio.1996.0335
10.1038/nrg2091
10.1109/TCBB.2014.2306829
10.1371/journal.pone.0094227
10.1016/S0959-437X(00)00074-5
10.1038/sj.clpt.6100223
10.1242/jeb.003939
10.1523/JNEUROSCI.10-10-03390.1990
10.1002/jez.1401250202
10.1016/j.ajhg.2010.03.005
10.1523/JNEUROSCI.19-19-08603.1999
10.3791/923
10.1016/j.tins.2012.05.004
10.1097/APO.0b013e31827a9969
10.1016/j.ydbio.2004.01.037
10.1093/hmg/ddv446
10.1371/journal.pgen.1000884
10.1242/dev.121.6.1787
10.1093/hmg/ddr039
10.1093/hmg/ddr025
10.1242/dmm.010793
10.1002/ar.1092120215
10.1016/S0166-4328(00)00264-3
10.1038/eye.2014.19
10.1038/nrd1606
10.1523/JNEUROSCI.2848-10.2010
ContentType Journal Article
Copyright 2016 Wiley Periodicals, Inc.
Copyright_xml – notice: 2016 Wiley Periodicals, Inc.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SS
7TK
8FD
FR3
JQ2
K9.
P64
RC3
7X8
5PM
DOI 10.1002/dvdy.24398
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Entomology Abstracts
CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Zoology
Biology
EISSN 1097-0177
EndPage 613
ExternalDocumentID 4033223011
10_1002_dvdy_24398
26890697
DVDY24398
Genre article
Validation Studies
Journal Article
GrantInformation_xml – fundername: National Institutes of Health
  funderid: R01 EY011298; R01 EY07168
– fundername: NEI NIH HHS
  grantid: R01 EY011298
– fundername: NEI NIH HHS
  grantid: R01 EY017168
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
186
1L6
1OB
1OC
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AETEA
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
E3Z
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
G8K
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OHT
OIG
OK1
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWR
RX1
SAMSI
SUPJJ
SV3
UB1
UKR
V2E
VH1
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
X7M
XG1
XJT
XPP
XV2
YCJ
ZGI
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SS
7TK
8FD
FR3
JQ2
K9.
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c4488-f5788f349a61dc2ae07a8440752ec20700c3cef60b7a56000e5cd4e060ce82f73
IEDL.DBID DR2
ISSN 1058-8388
IngestDate Tue Sep 17 21:11:42 EDT 2024
Fri Aug 16 09:30:39 EDT 2024
Thu Oct 10 16:22:53 EDT 2024
Thu Sep 26 18:18:01 EDT 2024
Wed Oct 16 00:59:29 EDT 2024
Sat Aug 24 00:54:29 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords blinding disorders
vision
behavior tracking
visual assay
Language English
License 2016 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4488-f5788f349a61dc2ae07a8440752ec20700c3cef60b7a56000e5cd4e060ce82f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://anatomypubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/dvdy.24398
PMID 26890697
PQID 1783835411
PQPubID 946357
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4844763
proquest_miscellaneous_1784461518
proquest_journals_1783835411
crossref_primary_10_1002_dvdy_24398
pubmed_primary_26890697
wiley_primary_10_1002_dvdy_24398_DVDY24398
PublicationCentury 2000
PublicationDate May 2016
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: May 2016
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Salt Lake City
PublicationTitle Developmental dynamics
PublicationTitleAlternate Dev Dyn
PublicationYear 2016
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1990; 10
2004; 269
2000; 116
2006; 3
2014; 28
2012; 35
1954; 125
2013; 6
2005; 22
2001; 42
2008; e923
2010; 86
2012; 1
1999; 19
2000; 10
1996; 180
1997; 186
2007; 210
2011; 20
2007; 8
1985; 212
2005; 4
2011; 22
2007; 82
2014; 9
1995; 121
2016; 25
2010; 30
2014; 11
2011; 100
2010; 6
26356340 - IEEE/ACM Trans Comput Biol Bioinform. 2014 Jul-Aug;11(4):693-701
23324328 - Dis Model Mech. 2013 May;6(3):679-88
11090887 - Behav Brain Res. 2000 Nov 15;116(1):81-7
26494905 - Hum Mol Genet. 2016 Jan 1;25(1):44-56
20826660 - J Neurosci. 2010 Sep 8;30(36):11962-72
24740186 - PLoS One. 2014;9(4):e94227
22704732 - Trends Neurosci. 2012 Sep;35(9):565-73
2145402 - J Neurosci. 1990 Oct;10(10):3390-401
17495877 - Clin Pharmacol Ther. 2007 Jul;82(1):70-80
3842042 - Anat Rec. 1985 Jun;212(2):199-205
21282186 - Hum Mol Genet. 2011 Apr 15;20(8):1625-32
11157887 - Invest Ophthalmol Vis Sci. 2001 Feb;42(2):481-7
18248260 - Zebrafish. 2006;3(2):191-201
21615257 - Rev Neurosci. 2011;22(1):5-16
15688071 - Nat Rev Drug Discov. 2005 Jan;4(1):35-44
9188756 - Dev Biol. 1997 Jun 1;186(1):100-14
20398886 - Am J Hum Genet. 2010 May 14;86(5):686-95
10826982 - Curr Opin Genet Dev. 2000 Jun;10(3):252-6
17601957 - J Exp Biol. 2007 Jul;210(Pt 14):2526-39
10493760 - J Neurosci. 1999 Oct 1;19(19):8603-15
8954734 - Dev Biol. 1996 Dec 15;180(2):646-63
20333246 - PLoS Genet. 2010 Mar;6(3):e1000884
21257638 - Hum Mol Genet. 2011 Apr 15;20(8):1467-77
7600994 - Development. 1995 Jun;121(6):1787-99
24503724 - Eye (Lond). 2014 Apr;28(4):367-80
15081370 - Dev Biol. 2004 May 1;269(1):237-51
19078942 - J Vis Exp. 2008;(20). pii: 923. doi: 10.3791/923
26107731 - Asia Pac J Ophthalmol (Phila). 2012 Nov-Dec;1(6):374-83
17440532 - Nat Rev Genet. 2007 May;8(5):353-67
15935112 - Vis Neurosci. 2005 Mar-Apr;22(2):203-9
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
Kelly GM (e_1_2_5_15_1) 1995; 121
e_1_2_5_29_1
Liu Y (e_1_2_5_18_1) 2001; 42
Kitambi SS (e_1_2_5_16_1) 2011; 100
e_1_2_5_20_1
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_9_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_19_1
e_1_2_5_30_1
e_1_2_5_31_1
References_xml – volume: 100
  start-page: 1815
  year: 2011
  article-title: Teleost fish—a powerful models for studying development, function and diseases of the human eye
  publication-title: Curr Sci
– volume: 9
  start-page: e94227
  year: 2014
  article-title: PFOS induces behavioral alterations, including spontaneous hyperactivity that is corrected by dexamfetamine in zebrafish larvae
  publication-title: PloS One
– volume: 6
  start-page: e1000884
  year: 2010
  article-title: Identification and functional analysis of the vision‐specific BBS3 (ARL6) long isoform
  publication-title: PLoS Genet
– volume: 125
  start-page: 171
  year: 1954
  end-page: 197
  article-title: Retinal dystrophy in the mouse: histological and genetic aspects
  publication-title: J Exp Zool
– volume: 186
  start-page: 100
  year: 1997
  end-page: 114
  article-title: Xwnt‐8 and lithium can act upon either dorsal mesodermal or neurectodermal cells to cause a loss of forebrain in Xenopus embryos
  publication-title: Dev Biol
– volume: 180
  start-page: 646
  year: 1996
  end-page: 663
  article-title: The development of vision in the zebrafish (Danio rerio)
  publication-title: Dev Biol
– volume: 19
  start-page: 8603
  year: 1999
  end-page: 8615
  article-title: Genetic disorders of vision revealed by a behavioral screen of 400 essential loci in zebrafish
  publication-title: J Neurosci
– volume: e923
  year: 2008
  article-title: A behavioral assay to measure responsiveness of zebrafish to changes in light intensities
  publication-title: J Vis Exp.
– volume: 269
  start-page: 237
  year: 2004
  end-page: 251
  article-title: Zebrafish cone‐rod (crx) homeobox gene promotes retinogenesis
  publication-title: Dev Biol
– volume: 6
  start-page: 679
  year: 2013
  end-page: 688
  article-title: Mechanisms of prickle1a function in zebrafish epilepsy and retinal neurogenesis
  publication-title: Dis Model Mech
– volume: 20
  start-page: 1625
  year: 2011
  end-page: 1632
  article-title: Functional analysis of BBS3 A89V that results in non‐syndromic retinal degeneration
  publication-title: Hum Mol Genet
– volume: 25
  start-page: 44
  year: 2016
  end-page: 56
  article-title: Hypomorphic mutations in TRNT1 cause retinitis pigmentosa with erythrocytic microcytosis
  publication-title: Hum Mol Genet
– volume: 10
  start-page: 252
  year: 2000
  end-page: 256
  article-title: Zebrafish: a model system for the study of human disease
  publication-title: Curr Opin Genet Dev
– volume: 10
  start-page: 3390
  year: 1990
  end-page: 3401
  article-title: Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates
  publication-title: J Neurosci
– volume: 1
  start-page: 374
  year: 2012
  end-page: 383
  article-title: Drug Screening to Treat Early‐Onset Eye Diseases: Can Zebrafish Expedite the Discovery?
  publication-title: Asia Pac J Ophthalmol
– volume: 35
  start-page: 565
  year: 2012
  end-page: 573
  article-title: Cell fate determination in the vertebrate retina
  publication-title: Trends Neurosci
– volume: 42
  start-page: 481
  year: 2001
  end-page: 487
  article-title: Isolation and characterization of a zebrafish homologue of the cone rod homeobox gene
  publication-title: Invest Ophthalmol Vis Sci
– volume: 20
  start-page: 1467
  year: 2011
  end-page: 1477
  article-title: The N‐terminal region of centrosomal protein 290 (CEP290) restores vision in a zebrafish model of human blindness
  publication-title: Hum Mol Genet
– volume: 30
  start-page: 11962
  year: 2010
  end-page: 11972
  article-title: Distinct retinal deficits in a zebrafish pyruvate dehydrogenase‐deficient mutant
  publication-title: J Neurosci
– volume: 3
  start-page: 191
  year: 2006
  end-page: 201
  article-title: Visual behavior in zebrafish
  publication-title: Zebrafish
– volume: 8
  start-page: 353
  year: 2007
  end-page: 367
  article-title: Animal models of human disease: zebrafish swim into view
  publication-title: Nat Rev Genet
– volume: 11
  start-page: 693
  year: 2014
  end-page: 701
  article-title: A high‐throughput zebrafish screening method for visual mutants by light‐induced locomotor response
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
– volume: 210
  start-page: 2526
  year: 2007
  end-page: 2539
  article-title: Modulation of locomotor activity in larval zebrafish during light adaptation
  publication-title: J Exp Biol
– volume: 121
  start-page: 1787
  year: 1995
  end-page: 1799
  article-title: Zebrafish wnt8 and wnt8b share a common activity but are involved in distinct developmental pathways
  publication-title: Development
– volume: 86
  start-page: 686
  year: 2010
  end-page: 695
  article-title: Discovery and functional analysis of a retinitis pigmentosa gene, C2ORF71
  publication-title: Am J Hum Genet
– volume: 22
  start-page: 5
  year: 2011
  end-page: 16
  article-title: Application of zebrafish oculomotor behavior to model human disorders
  publication-title: Rev Neurosci
– volume: 116
  start-page: 81
  year: 2000
  end-page: 87
  article-title: Effects of abnormal lighting on the development of zebrafish visual behavior
  publication-title: Behav Brain Res
– volume: 28
  start-page: 367
  year: 2014
  end-page: 380
  article-title: Zebrafish—on the move towards ophthalmological research
  publication-title: Eye
– volume: 82
  start-page: 70
  year: 2007
  end-page: 80
  article-title: Zebrafish: an emerging model system for human disease and drug discovery
  publication-title: Clin Pharmacol Ther
– volume: 4
  start-page: 35
  year: 2005
  end-page: 44
  article-title: In vivo drug discovery in the zebrafish
  publication-title: Nat Rev Drug Discov
– volume: 22
  start-page: 203
  year: 2005
  end-page: 209
  article-title: Diurnal and circadian retinomotor movements in zebrafish
  publication-title: Vis Neurosci
– volume: 212
  start-page: 199
  year: 1985
  end-page: 205
  article-title: Cell differentiation in the retina of the mouse
  publication-title: Anat Rec
– ident: e_1_2_5_12_1
  doi: 10.1006/dbio.1997.8566
– ident: e_1_2_5_11_1
  doi: 10.1089/zeb.2006.3.191
– ident: e_1_2_5_19_1
  doi: 10.1515/rns.2011.003
– ident: e_1_2_5_22_1
  doi: 10.1017/S0952523805222083
– ident: e_1_2_5_9_1
  doi: 10.1006/dbio.1996.0335
– ident: e_1_2_5_17_1
  doi: 10.1038/nrg2091
– ident: e_1_2_5_13_1
  doi: 10.1109/TCBB.2014.2306829
– ident: e_1_2_5_29_1
  doi: 10.1371/journal.pone.0094227
– ident: e_1_2_5_8_1
  doi: 10.1016/S0959-437X(00)00074-5
– ident: e_1_2_5_14_1
  doi: 10.1038/sj.clpt.6100223
– ident: e_1_2_5_5_1
  doi: 10.1242/jeb.003939
– ident: e_1_2_5_30_1
  doi: 10.1523/JNEUROSCI.10-10-03390.1990
– ident: e_1_2_5_28_1
  doi: 10.1002/jez.1401250202
– volume: 100
  start-page: 1815
  year: 2011
  ident: e_1_2_5_16_1
  article-title: Teleost fish—a powerful models for studying development, function and diseases of the human eye
  publication-title: Curr Sci
  contributor:
    fullname: Kitambi SS
– ident: e_1_2_5_24_1
  doi: 10.1016/j.ajhg.2010.03.005
– ident: e_1_2_5_23_1
  doi: 10.1523/JNEUROSCI.19-19-08603.1999
– ident: e_1_2_5_10_1
  doi: 10.3791/923
– ident: e_1_2_5_2_1
  doi: 10.1016/j.tins.2012.05.004
– ident: e_1_2_5_32_1
  doi: 10.1097/APO.0b013e31827a9969
– ident: e_1_2_5_27_1
  doi: 10.1016/j.ydbio.2004.01.037
– ident: e_1_2_5_7_1
  doi: 10.1093/hmg/ddv446
– ident: e_1_2_5_26_1
  doi: 10.1371/journal.pgen.1000884
– volume: 42
  start-page: 481
  year: 2001
  ident: e_1_2_5_18_1
  article-title: Isolation and characterization of a zebrafish homologue of the cone rod homeobox gene
  publication-title: Invest Ophthalmol Vis Sci
  contributor:
    fullname: Liu Y
– volume: 121
  start-page: 1787
  year: 1995
  ident: e_1_2_5_15_1
  article-title: Zebrafish wnt8 and wnt8b share a common activity but are involved in distinct developmental pathways
  publication-title: Development
  doi: 10.1242/dev.121.6.1787
  contributor:
    fullname: Kelly GM
– ident: e_1_2_5_25_1
  doi: 10.1093/hmg/ddr039
– ident: e_1_2_5_3_1
  doi: 10.1093/hmg/ddr025
– ident: e_1_2_5_21_1
  doi: 10.1242/dmm.010793
– ident: e_1_2_5_31_1
  doi: 10.1002/ar.1092120215
– ident: e_1_2_5_4_1
  doi: 10.1016/S0166-4328(00)00264-3
– ident: e_1_2_5_6_1
  doi: 10.1038/eye.2014.19
– ident: e_1_2_5_33_1
  doi: 10.1038/nrd1606
– ident: e_1_2_5_20_1
  doi: 10.1523/JNEUROSCI.2848-10.2010
SSID ssj0008641
Score 2.3558905
Snippet Background: Modern genomics has enabled the identification of an unprecedented number of genetic variants, which in many cases are extremely rare, associated...
Modern genomics has enabled the identification of an unprecedented number of genetic variants, which in many cases are extremely rare, associated with blinding...
Background: Modern genomics has enabled the identification of an unprecedented number of genetic variants, which in many cases are extremely rare, associated...
BACKGROUNDModern genomics has enabled the identification of an unprecedented number of genetic variants, which in many cases are extremely rare, associated...
We automated a visual behavioral assay and created software to automate the data analysis.
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 605
SubjectTerms Animals
Automation
behavior tracking
blinding disorders
High-Throughput Screening Assays - methods
Larva - genetics
Larva - physiology
Models, Animal
Software
vision
Vision Disorders - diagnosis
Vision Disorders - genetics
Vision, Ocular - genetics
visual assay
Zebrafish
Title Automated, high‐throughput, in vivo analysis of visual function using the zebrafish
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fdvdy.24398
https://www.ncbi.nlm.nih.gov/pubmed/26890697
https://www.proquest.com/docview/1783835411
https://search.proquest.com/docview/1784461518
https://pubmed.ncbi.nlm.nih.gov/PMC4844763
Volume 245
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFD4sC4ovXtZbdZWIPsl2Nk3TNAVfFsdlEdYHcWQVpKS57A5CuzjtwO6TP8Hf6C_xJO10HBcEfSu5NU3OyfnSnHwH4IV2Vaql4jF1qY15ZlysnEpippgxxge4qPzl5ON34mjG355kJ1vwanUXpueHGH-4ec0I67VXcFUt9tekoWZpLiYM7am_6Zukuffnmr5fc0dJEcJWIn6QsUylHLlJ2f666qY1ugIxr3pK_o5ggwk6vAVfVp3vPU--Trq2mujLP3gd__frbsPNAZuSg16Y7sCWrXfgWh-t8mIHrh8P5_CY-LkJiXdhdtC1DaJea_aIpz7--f3HEPrnvGv3yLwmy_myIWrgPiGNw4RFh6_xFtVLBfGu96cEgSi59KfYbr44uwezwzcfXh_FQ6iGWOP-TsYOFV-6lBdKJEYzZWmuJMfNYsasZrisUJ1q6wStcuUxFrWZNtxSQbWVzOXpfdium9o-BOKwlqaFZboQHHMkAppKGY77HqEYVxE8X01Zed4zcpQ99zIr_aiVYdQi2F3NZjlo5aJMchSENONJEsGzMRv1yR-SqNo2XSiDO2TEQdjEg37yx9cwIQsqijyCfEMsxgKeq3szp56fBc5ujq3iUh7ByzDrf-l5Of04_RSeHv1L4cdwA7Gc6H0xd2G7_dbZJ4iX2upp0ItfdMUUJQ
link.rule.ids 230,315,783,787,888,1378,27938,27939,46308,46732
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BEY8Lj_IKFDCCE2q2ieM4zrFiqRbo9oC6qHCJHD_oCimp2GSl9sRP4DfySxg7aZalEhLcIr-S2DOez_b4G4CXypaJEpKFkU1MyFJtQ2llHFJJtdYuwEXpLidPD_hkxt4dpUe9b467C9PxQwwbbk4z_HztFNxtSO-sWEP1Up-OKBpUcRmuoL4nLoDB-MOKPUpwH7gSEYQIRSLEwE5Kd1Z11-3RBZB50VfydwzrjdDerS7S6sJzFzrfk6-jtilH6uwPZsf__r_bcLOHp2S3k6c7cMlUm3C1C1h5ugnXpv1RPCZ-rn3iXZjttk2NwNfobeLYj39-_9FH_zlpm20yr8hyvqyJ7OlPSG0xYdHia5xRdYJBnPf9F4JYlJy5g2w7Xxzfg9nem8PXk7CP1hAqXOKJ0KLuC5uwXPJYKypNlEnBcL2YUqMoziyRSpSxPCoz6WBWZFKlmYl4pIygNkvuw0ZVV-YhEIu1VJQbqnLOMEcgpimlZrj04ZIyGcCL8zErTjpSjqKjX6aF67XC91oAW-fDWfSKuSjiDCUhSVkcB_B8yEaVcucksjJ168vgIhmhEDbxoBv94TWUizzieRZAtiYXQwFH172eU82PPW03w1ZxNg_glR_2v3x5Mf44_uSfHv1L4WdwfXI43S_23x68fww3ENrxzjVzCzaab615gvCpKZ96JfkFlVsYPw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB2VIipeuJRboEAQPKFm6zhex5F4qVhW5dIKIRYVJBQ5vtAVUrJik5XaJz6Bb-RLGDvZLEslJHiLfItjz3iO4_EZgCfKFokSkkXEJiZiQ20jaWUcUUm11i7AReEuJx8e8YMJe3U8PN6AZ8u7MC0_RP_DzWmGX6-dgs-03VuRhuqFPh1QtKfiAlxkPCHOoWv0bkUeJbiPW4kAQkQiEaInJ6V7q7rr5ugcxjzvKvk7hPU2aHwVPi9737qefB00dTFQZ38QO_7v512DKx04DfdbaboOG6bchkttuMrTbdg67A7iMfFT5RNvwGS_qSuEvUbvho77-Of3H13sn1lT74bTMlxMF1UoO_KTsLKYMG_wNc6kOrEIne_9lxCRaHjmjrHtdH5yEybjF--fH0RdrIZI4QZPRBY1X9iEZZLHWlFpSCoFw93ikBpFcV0hKlHGclKk0oEsYoZKM0M4UUZQmya3YLOsSnMHQou1FMkMVRlnmCMQ0RRSM9z4cEmZDODxcsryWUvJkbfkyzR3o5b7UQtgZzmbeaeW8zxOURCSIYvjAB712ahQ7pRElqZqfBncIiMQwiZut5Pfv4ZykRGepQGka2LRF3Bk3es55fTEk3YzbBXX8gCe-ln_S8_z0YfRR_90918KP4Stt6Nx_ubl0et7cBlxHW_9Mndgs_7WmPuInerigVeRX0a1Fu4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated%2C+high-throughput%2C+in+vivo+analysis+of+visual+function+using+the+zebrafish&rft.jtitle=Developmental+dynamics&rft.au=Scott%2C+C+Anthony&rft.au=Marsden%2C+Autumn+N&rft.au=Slusarski%2C+Diane+C&rft.date=2016-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1058-8388&rft.eissn=1097-0177&rft.volume=245&rft.issue=5&rft.spage=605&rft_id=info:doi/10.1002%2Fdvdy.24398&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4033223011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1058-8388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1058-8388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1058-8388&client=summon