Automated, high‐throughput, in vivo analysis of visual function using the zebrafish
Background: Modern genomics has enabled the identification of an unprecedented number of genetic variants, which in many cases are extremely rare, associated with blinding disorders. A significant challenge will be determining the pathophysiology of each new variant. The Zebrafish is an excellent mo...
Saved in:
Published in | Developmental dynamics Vol. 245; no. 5; pp. 605 - 613 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.05.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background: Modern genomics has enabled the identification of an unprecedented number of genetic variants, which in many cases are extremely rare, associated with blinding disorders. A significant challenge will be determining the pathophysiology of each new variant. The Zebrafish is an excellent model for the study of inherited diseases of the eye. By 5 days post‐fertilization (dpf), they have quantifiable behavioral responses to visual stimuli. However, visual behavior assays can take several hours to perform or can only be assessed one fish at a time. Results: To increase the throughput for vision assays, we used the Viewpoint Zebrabox to automate the visual startle response and created software, Visual Interrogation of Zebrafish Manipulations (VIZN), to automate data analysis. This process allows 96 Zebrafish larvae to be tested and resultant data to be analyzed in less than 35 minutes. We validated this system by disrupting function of a gene necessary for photoreceptor differentiation and observing decreased response to visual stimuli. Conclusions: This automated method along with VIZN allows rapid, high‐throughput, in vivo testing of Zebrafish's ability to respond to light/dark stimuli. This allows the rapid analysis of novel genes involved in visual function by morpholino, CRISPRS, or small‐molecule drug screens. Developmental Dynamics 245:605–613, 2016. © 2016 Wiley Periodicals, Inc.
Key findings
Automated the visual startle response in zebrafish.
Created free software to instantaneously analyze the large spreadsheet of generated data.
Creates opportunity for rapid, high‐throughput testing of novel genes which may be implicated in blinding disorders. |
---|---|
AbstractList | Background: Modern genomics has enabled the identification of an unprecedented number of genetic variants, which in many cases are extremely rare, associated with blinding disorders. A significant challenge will be determining the pathophysiology of each new variant. The Zebrafish is an excellent model for the study of inherited diseases of the eye. By 5 days post‐fertilization (dpf), they have quantifiable behavioral responses to visual stimuli. However, visual behavior assays can take several hours to perform or can only be assessed one fish at a time. Results: To increase the throughput for vision assays, we used the Viewpoint Zebrabox to automate the visual startle response and created software, Visual Interrogation of Zebrafish Manipulations (VIZN), to automate data analysis. This process allows 96 Zebrafish larvae to be tested and resultant data to be analyzed in less than 35 minutes. We validated this system by disrupting function of a gene necessary for photoreceptor differentiation and observing decreased response to visual stimuli. Conclusions: This automated method along with VIZN allows rapid, high‐throughput, in vivo testing of Zebrafish's ability to respond to light/dark stimuli. This allows the rapid analysis of novel genes involved in visual function by morpholino, CRISPRS, or small‐molecule drug screens. Developmental Dynamics 245:605–613, 2016. © 2016 Wiley Periodicals, Inc.
Key findings
Automated the visual startle response in zebrafish.
Created free software to instantaneously analyze the large spreadsheet of generated data.
Creates opportunity for rapid, high‐throughput testing of novel genes which may be implicated in blinding disorders. BACKGROUNDModern genomics has enabled the identification of an unprecedented number of genetic variants, which in many cases are extremely rare, associated with blinding disorders. A significant challenge will be determining the pathophysiology of each new variant. The Zebrafish is an excellent model for the study of inherited diseases of the eye. By 5 days post-fertilization (dpf), they have quantifiable behavioral responses to visual stimuli. However, visual behavior assays can take several hours to perform or can only be assessed one fish at a time.RESULTSTo increase the throughput for vision assays, we used the Viewpoint Zebrabox to automate the visual startle response and created software, Visual Interrogation of Zebrafish Manipulations (VIZN), to automate data analysis. This process allows 96 Zebrafish larvae to be tested and resultant data to be analyzed in less than 35 minutes. We validated this system by disrupting function of a gene necessary for photoreceptor differentiation and observing decreased response to visual stimuli.CONCLUSIONSThis automated method along with VIZN allows rapid, high-throughput, in vivo testing of Zebrafish's ability to respond to light/dark stimuli. This allows the rapid analysis of novel genes involved in visual function by morpholino, CRISPRS, or small-molecule drug screens. Developmental Dynamics 245:605-613, 2016. © 2016 Wiley Periodicals, Inc. Background: Modern genomics has enabled the identification of an unprecedented number of genetic variants, which in many cases are extremely rare, associated with blinding disorders. A significant challenge will be determining the pathophysiology of each new variant. The Zebrafish is an excellent model for the study of inherited diseases of the eye. By 5 days post-fertilization (dpf), they have quantifiable behavioral responses to visual stimuli. However, visual behavior assays can take several hours to perform or can only be assessed one fish at a time. Results: To increase the throughput for vision assays, we used the Viewpoint Zebrabox to automate the visual startle response and created software, Visual Interrogation of Zebrafish Manipulations (VIZN), to automate data analysis. This process allows 96 Zebrafish larvae to be tested and resultant data to be analyzed in less than 35 minutes. We validated this system by disrupting function of a gene necessary for photoreceptor differentiation and observing decreased response to visual stimuli. Conclusions: This automated method along with VIZN allows rapid, high-throughput, in vivo testing of Zebrafish's ability to respond to light/dark stimuli. This allows the rapid analysis of novel genes involved in visual function by morpholino, CRISPRS, or small-molecule drug screens. Developmental Dynamics 245:605-613, 2016. © 2016 Wiley Periodicals, Inc. Key findings Automated the visual startle response in zebrafish. Created free software to instantaneously analyze the large spreadsheet of generated data. Creates opportunity for rapid, high-throughput testing of novel genes which may be implicated in blinding disorders. Background: Modern genomics has enabled the identification of an unprecedented number of genetic variants, which in many cases are extremely rare, associated with blinding disorders. A significant challenge will be determining the pathophysiology of each new variant. The Zebrafish is an excellent model for the study of inherited diseases of the eye. By 5 days post‐fertilization (dpf), they have quantifiable behavioral responses to visual stimuli. However, visual behavior assays can take several hours to perform or can only be assessed one fish at a time. Results: To increase the throughput for vision assays, we used the Viewpoint Zebrabox to automate the visual startle response and created software, Visual Interrogation of Zebrafish Manipulations (VIZN), to automate data analysis. This process allows 96 Zebrafish larvae to be tested and resultant data to be analyzed in less than 35 minutes. We validated this system by disrupting function of a gene necessary for photoreceptor differentiation and observing decreased response to visual stimuli. Conclusions: This automated method along with VIZN allows rapid, high‐throughput, in vivo testing of Zebrafish's ability to respond to light/dark stimuli. This allows the rapid analysis of novel genes involved in visual function by morpholino, CRISPRS, or small‐molecule drug screens. Developmental Dynamics 245:605–613, 2016 . © 2016 Wiley Periodicals, Inc. Key findings Automated the visual startle response in zebrafish. Created free software to instantaneously analyze the large spreadsheet of generated data. Creates opportunity for rapid, high‐throughput testing of novel genes which may be implicated in blinding disorders. We automated a visual behavioral assay and created software to automate the data analysis. Modern genomics has enabled the identification of an unprecedented number of genetic variants, which in many cases are extremely rare, associated with blinding disorders. A significant challenge will be determining the pathophysiology of each new variant. The Zebrafish is an excellent model for the study of inherited diseases of the eye. By 5 days post-fertilization (dpf), they have quantifiable behavioral responses to visual stimuli. However, visual behavior assays can take several hours to perform or can only be assessed one fish at a time. To increase the throughput for vision assays, we used the Viewpoint Zebrabox to automate the visual startle response and created software, Visual Interrogation of Zebrafish Manipulations (VIZN), to automate data analysis. This process allows 96 Zebrafish larvae to be tested and resultant data to be analyzed in less than 35 minutes. We validated this system by disrupting function of a gene necessary for photoreceptor differentiation and observing decreased response to visual stimuli. This automated method along with VIZN allows rapid, high-throughput, in vivo testing of Zebrafish's ability to respond to light/dark stimuli. This allows the rapid analysis of novel genes involved in visual function by morpholino, CRISPRS, or small-molecule drug screens. Developmental Dynamics 245:605-613, 2016. © 2016 Wiley Periodicals, Inc. |
Author | Scott, C. Anthony Marsden, Autumn N. Slusarski, Diane C. |
AuthorAffiliation | 1 Department of Biology, University of Iowa, Iowa City, Iowa, United States of America 2 Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America |
AuthorAffiliation_xml | – name: 1 Department of Biology, University of Iowa, Iowa City, Iowa, United States of America – name: 2 Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America |
Author_xml | – sequence: 1 givenname: C. Anthony surname: Scott fullname: Scott, C. Anthony organization: University of Iowa – sequence: 2 givenname: Autumn N. surname: Marsden fullname: Marsden, Autumn N. organization: University of Iowa – sequence: 3 givenname: Diane C. surname: Slusarski fullname: Slusarski, Diane C. organization: University of Iowa |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26890697$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1qHSEYhqWkNH_d9AKK0E0pmfRzxlFnEwhJ_yCQTRPoSjyOnjHM0VMdTzld5RJyjb2SenLSkHbRlaIPz_fyvftoxwdvEHpF4JgA1O_7Vb8-rmnTiWdoj0DHKyCc72zurahEI8Qu2k_pBgAEo-QF2q2Z6IB1fA9dneYpLNRk-iM8uPnw6_ZuGmLI82GZpyPsPF65VcDKq3GdXMLBloeU1Yht9npyweOcnJ_jaTD4p5lFZV0aDtFzq8ZkXj6cB-jq44evZ5-ri8tPX85OLypNqRCVbbkQtqGdYqTXtTLAlaAUeFsbXQMH0I02lsGMq5aV-KbVPTXAQBtRW94coJOtd5lnC9Nr46eoRrmMbqHiWgbl5N8_3g1yHlaSljGcNUXw9kEQw_ds0iQXLmkzjsqbkJMkvICMtEQU9M0_6E3IsezlnmpE01JCCvVuS-kYUorGPoYhIDdtyU1b8r6tAr9-Gv8R_VNPAcgW-OFGs_6PSp5fn3_bSn8Djrejkg |
CitedBy_id | crossref_primary_10_1093_toxsci_kfx212 crossref_primary_10_1371_journal_pone_0164645 crossref_primary_10_1002_jimd_12319 crossref_primary_10_1371_journal_pone_0212234 crossref_primary_10_3390_cells11091457 crossref_primary_10_1038_s41434_021_00291_5 crossref_primary_10_3390_ijms23126647 crossref_primary_10_1038_s41598_017_02822_w crossref_primary_10_1177_1087057116667894 crossref_primary_10_3390_biomedicines9020100 crossref_primary_10_1016_j_celrep_2023_112243 crossref_primary_10_1016_j_celrep_2019_02_006 crossref_primary_10_1016_j_foodres_2018_06_013 crossref_primary_10_1093_brain_awad380 crossref_primary_10_1371_journal_pone_0183414 crossref_primary_10_1172_jci_insight_130516 crossref_primary_10_3390_ijms18061185 crossref_primary_10_1038_s41598_019_54186_y crossref_primary_10_1186_s13073_023_01258_4 crossref_primary_10_3390_biomedicines7020028 crossref_primary_10_1177_0192623320964748 crossref_primary_10_2139_ssrn_3245222 crossref_primary_10_1016_j_jenvman_2021_114072 crossref_primary_10_1016_j_appet_2021_105158 crossref_primary_10_30895_2312_7821_2023_11_3_303_321 crossref_primary_10_1089_zeb_2016_1412 |
Cites_doi | 10.1006/dbio.1997.8566 10.1089/zeb.2006.3.191 10.1515/rns.2011.003 10.1017/S0952523805222083 10.1006/dbio.1996.0335 10.1038/nrg2091 10.1109/TCBB.2014.2306829 10.1371/journal.pone.0094227 10.1016/S0959-437X(00)00074-5 10.1038/sj.clpt.6100223 10.1242/jeb.003939 10.1523/JNEUROSCI.10-10-03390.1990 10.1002/jez.1401250202 10.1016/j.ajhg.2010.03.005 10.1523/JNEUROSCI.19-19-08603.1999 10.3791/923 10.1016/j.tins.2012.05.004 10.1097/APO.0b013e31827a9969 10.1016/j.ydbio.2004.01.037 10.1093/hmg/ddv446 10.1371/journal.pgen.1000884 10.1242/dev.121.6.1787 10.1093/hmg/ddr039 10.1093/hmg/ddr025 10.1242/dmm.010793 10.1002/ar.1092120215 10.1016/S0166-4328(00)00264-3 10.1038/eye.2014.19 10.1038/nrd1606 10.1523/JNEUROSCI.2848-10.2010 |
ContentType | Journal Article |
Copyright | 2016 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2016 Wiley Periodicals, Inc. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7SS 7TK 8FD FR3 JQ2 K9. P64 RC3 7X8 5PM |
DOI | 10.1002/dvdy.24398 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Entomology Abstracts (Full archive) Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Entomology Abstracts CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Zoology Biology |
EISSN | 1097-0177 |
EndPage | 613 |
ExternalDocumentID | 4033223011 10_1002_dvdy_24398 26890697 DVDY24398 |
Genre | article Validation Studies Journal Article |
GrantInformation_xml | – fundername: National Institutes of Health funderid: R01 EY011298; R01 EY07168 – fundername: NEI NIH HHS grantid: R01 EY011298 – fundername: NEI NIH HHS grantid: R01 EY017168 |
GroupedDBID | --- -DZ -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 186 1L6 1OB 1OC 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AETEA AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BQCPF BROTX BRXPI BY8 CS3 D-E D-F DCZOG DIK DPXWK DR1 DR2 DRFUL DRSTM DU5 E3Z EBD EBS EJD EMOBN F00 F01 F04 F5P G-S G.N G8K GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M56 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OHT OIG OK1 P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RWR RX1 SAMSI SUPJJ SV3 UB1 UKR V2E VH1 W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WXSBR WYISQ X7M XG1 XJT XPP XV2 YCJ ZGI ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAYXX CITATION 7SS 7TK 8FD FR3 JQ2 K9. P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c4488-f5788f349a61dc2ae07a8440752ec20700c3cef60b7a56000e5cd4e060ce82f73 |
IEDL.DBID | DR2 |
ISSN | 1058-8388 |
IngestDate | Tue Sep 17 21:11:42 EDT 2024 Fri Aug 16 09:30:39 EDT 2024 Thu Oct 10 16:22:53 EDT 2024 Thu Sep 26 18:18:01 EDT 2024 Wed Oct 16 00:59:29 EDT 2024 Sat Aug 24 00:54:29 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | blinding disorders vision behavior tracking visual assay |
Language | English |
License | 2016 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4488-f5788f349a61dc2ae07a8440752ec20700c3cef60b7a56000e5cd4e060ce82f73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://anatomypubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/dvdy.24398 |
PMID | 26890697 |
PQID | 1783835411 |
PQPubID | 946357 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4844763 proquest_miscellaneous_1784461518 proquest_journals_1783835411 crossref_primary_10_1002_dvdy_24398 pubmed_primary_26890697 wiley_primary_10_1002_dvdy_24398_DVDY24398 |
PublicationCentury | 2000 |
PublicationDate | May 2016 |
PublicationDateYYYYMMDD | 2016-05-01 |
PublicationDate_xml | – month: 05 year: 2016 text: May 2016 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Salt Lake City |
PublicationTitle | Developmental dynamics |
PublicationTitleAlternate | Dev Dyn |
PublicationYear | 2016 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1990; 10 2004; 269 2000; 116 2006; 3 2014; 28 2012; 35 1954; 125 2013; 6 2005; 22 2001; 42 2008; e923 2010; 86 2012; 1 1999; 19 2000; 10 1996; 180 1997; 186 2007; 210 2011; 20 2007; 8 1985; 212 2005; 4 2011; 22 2007; 82 2014; 9 1995; 121 2016; 25 2010; 30 2014; 11 2011; 100 2010; 6 26356340 - IEEE/ACM Trans Comput Biol Bioinform. 2014 Jul-Aug;11(4):693-701 23324328 - Dis Model Mech. 2013 May;6(3):679-88 11090887 - Behav Brain Res. 2000 Nov 15;116(1):81-7 26494905 - Hum Mol Genet. 2016 Jan 1;25(1):44-56 20826660 - J Neurosci. 2010 Sep 8;30(36):11962-72 24740186 - PLoS One. 2014;9(4):e94227 22704732 - Trends Neurosci. 2012 Sep;35(9):565-73 2145402 - J Neurosci. 1990 Oct;10(10):3390-401 17495877 - Clin Pharmacol Ther. 2007 Jul;82(1):70-80 3842042 - Anat Rec. 1985 Jun;212(2):199-205 21282186 - Hum Mol Genet. 2011 Apr 15;20(8):1625-32 11157887 - Invest Ophthalmol Vis Sci. 2001 Feb;42(2):481-7 18248260 - Zebrafish. 2006;3(2):191-201 21615257 - Rev Neurosci. 2011;22(1):5-16 15688071 - Nat Rev Drug Discov. 2005 Jan;4(1):35-44 9188756 - Dev Biol. 1997 Jun 1;186(1):100-14 20398886 - Am J Hum Genet. 2010 May 14;86(5):686-95 10826982 - Curr Opin Genet Dev. 2000 Jun;10(3):252-6 17601957 - J Exp Biol. 2007 Jul;210(Pt 14):2526-39 10493760 - J Neurosci. 1999 Oct 1;19(19):8603-15 8954734 - Dev Biol. 1996 Dec 15;180(2):646-63 20333246 - PLoS Genet. 2010 Mar;6(3):e1000884 21257638 - Hum Mol Genet. 2011 Apr 15;20(8):1467-77 7600994 - Development. 1995 Jun;121(6):1787-99 24503724 - Eye (Lond). 2014 Apr;28(4):367-80 15081370 - Dev Biol. 2004 May 1;269(1):237-51 19078942 - J Vis Exp. 2008;(20). pii: 923. doi: 10.3791/923 26107731 - Asia Pac J Ophthalmol (Phila). 2012 Nov-Dec;1(6):374-83 17440532 - Nat Rev Genet. 2007 May;8(5):353-67 15935112 - Vis Neurosci. 2005 Mar-Apr;22(2):203-9 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 Kelly GM (e_1_2_5_15_1) 1995; 121 e_1_2_5_29_1 Liu Y (e_1_2_5_18_1) 2001; 42 Kitambi SS (e_1_2_5_16_1) 2011; 100 e_1_2_5_20_1 e_1_2_5_14_1 e_1_2_5_17_1 e_1_2_5_9_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_19_1 e_1_2_5_30_1 e_1_2_5_31_1 |
References_xml | – volume: 100 start-page: 1815 year: 2011 article-title: Teleost fish—a powerful models for studying development, function and diseases of the human eye publication-title: Curr Sci – volume: 9 start-page: e94227 year: 2014 article-title: PFOS induces behavioral alterations, including spontaneous hyperactivity that is corrected by dexamfetamine in zebrafish larvae publication-title: PloS One – volume: 6 start-page: e1000884 year: 2010 article-title: Identification and functional analysis of the vision‐specific BBS3 (ARL6) long isoform publication-title: PLoS Genet – volume: 125 start-page: 171 year: 1954 end-page: 197 article-title: Retinal dystrophy in the mouse: histological and genetic aspects publication-title: J Exp Zool – volume: 186 start-page: 100 year: 1997 end-page: 114 article-title: Xwnt‐8 and lithium can act upon either dorsal mesodermal or neurectodermal cells to cause a loss of forebrain in Xenopus embryos publication-title: Dev Biol – volume: 180 start-page: 646 year: 1996 end-page: 663 article-title: The development of vision in the zebrafish (Danio rerio) publication-title: Dev Biol – volume: 19 start-page: 8603 year: 1999 end-page: 8615 article-title: Genetic disorders of vision revealed by a behavioral screen of 400 essential loci in zebrafish publication-title: J Neurosci – volume: e923 year: 2008 article-title: A behavioral assay to measure responsiveness of zebrafish to changes in light intensities publication-title: J Vis Exp. – volume: 269 start-page: 237 year: 2004 end-page: 251 article-title: Zebrafish cone‐rod (crx) homeobox gene promotes retinogenesis publication-title: Dev Biol – volume: 6 start-page: 679 year: 2013 end-page: 688 article-title: Mechanisms of prickle1a function in zebrafish epilepsy and retinal neurogenesis publication-title: Dis Model Mech – volume: 20 start-page: 1625 year: 2011 end-page: 1632 article-title: Functional analysis of BBS3 A89V that results in non‐syndromic retinal degeneration publication-title: Hum Mol Genet – volume: 25 start-page: 44 year: 2016 end-page: 56 article-title: Hypomorphic mutations in TRNT1 cause retinitis pigmentosa with erythrocytic microcytosis publication-title: Hum Mol Genet – volume: 10 start-page: 252 year: 2000 end-page: 256 article-title: Zebrafish: a model system for the study of human disease publication-title: Curr Opin Genet Dev – volume: 10 start-page: 3390 year: 1990 end-page: 3401 article-title: Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates publication-title: J Neurosci – volume: 1 start-page: 374 year: 2012 end-page: 383 article-title: Drug Screening to Treat Early‐Onset Eye Diseases: Can Zebrafish Expedite the Discovery? publication-title: Asia Pac J Ophthalmol – volume: 35 start-page: 565 year: 2012 end-page: 573 article-title: Cell fate determination in the vertebrate retina publication-title: Trends Neurosci – volume: 42 start-page: 481 year: 2001 end-page: 487 article-title: Isolation and characterization of a zebrafish homologue of the cone rod homeobox gene publication-title: Invest Ophthalmol Vis Sci – volume: 20 start-page: 1467 year: 2011 end-page: 1477 article-title: The N‐terminal region of centrosomal protein 290 (CEP290) restores vision in a zebrafish model of human blindness publication-title: Hum Mol Genet – volume: 30 start-page: 11962 year: 2010 end-page: 11972 article-title: Distinct retinal deficits in a zebrafish pyruvate dehydrogenase‐deficient mutant publication-title: J Neurosci – volume: 3 start-page: 191 year: 2006 end-page: 201 article-title: Visual behavior in zebrafish publication-title: Zebrafish – volume: 8 start-page: 353 year: 2007 end-page: 367 article-title: Animal models of human disease: zebrafish swim into view publication-title: Nat Rev Genet – volume: 11 start-page: 693 year: 2014 end-page: 701 article-title: A high‐throughput zebrafish screening method for visual mutants by light‐induced locomotor response publication-title: IEEE/ACM Trans Comput Biol Bioinform – volume: 210 start-page: 2526 year: 2007 end-page: 2539 article-title: Modulation of locomotor activity in larval zebrafish during light adaptation publication-title: J Exp Biol – volume: 121 start-page: 1787 year: 1995 end-page: 1799 article-title: Zebrafish wnt8 and wnt8b share a common activity but are involved in distinct developmental pathways publication-title: Development – volume: 86 start-page: 686 year: 2010 end-page: 695 article-title: Discovery and functional analysis of a retinitis pigmentosa gene, C2ORF71 publication-title: Am J Hum Genet – volume: 22 start-page: 5 year: 2011 end-page: 16 article-title: Application of zebrafish oculomotor behavior to model human disorders publication-title: Rev Neurosci – volume: 116 start-page: 81 year: 2000 end-page: 87 article-title: Effects of abnormal lighting on the development of zebrafish visual behavior publication-title: Behav Brain Res – volume: 28 start-page: 367 year: 2014 end-page: 380 article-title: Zebrafish—on the move towards ophthalmological research publication-title: Eye – volume: 82 start-page: 70 year: 2007 end-page: 80 article-title: Zebrafish: an emerging model system for human disease and drug discovery publication-title: Clin Pharmacol Ther – volume: 4 start-page: 35 year: 2005 end-page: 44 article-title: In vivo drug discovery in the zebrafish publication-title: Nat Rev Drug Discov – volume: 22 start-page: 203 year: 2005 end-page: 209 article-title: Diurnal and circadian retinomotor movements in zebrafish publication-title: Vis Neurosci – volume: 212 start-page: 199 year: 1985 end-page: 205 article-title: Cell differentiation in the retina of the mouse publication-title: Anat Rec – ident: e_1_2_5_12_1 doi: 10.1006/dbio.1997.8566 – ident: e_1_2_5_11_1 doi: 10.1089/zeb.2006.3.191 – ident: e_1_2_5_19_1 doi: 10.1515/rns.2011.003 – ident: e_1_2_5_22_1 doi: 10.1017/S0952523805222083 – ident: e_1_2_5_9_1 doi: 10.1006/dbio.1996.0335 – ident: e_1_2_5_17_1 doi: 10.1038/nrg2091 – ident: e_1_2_5_13_1 doi: 10.1109/TCBB.2014.2306829 – ident: e_1_2_5_29_1 doi: 10.1371/journal.pone.0094227 – ident: e_1_2_5_8_1 doi: 10.1016/S0959-437X(00)00074-5 – ident: e_1_2_5_14_1 doi: 10.1038/sj.clpt.6100223 – ident: e_1_2_5_5_1 doi: 10.1242/jeb.003939 – ident: e_1_2_5_30_1 doi: 10.1523/JNEUROSCI.10-10-03390.1990 – ident: e_1_2_5_28_1 doi: 10.1002/jez.1401250202 – volume: 100 start-page: 1815 year: 2011 ident: e_1_2_5_16_1 article-title: Teleost fish—a powerful models for studying development, function and diseases of the human eye publication-title: Curr Sci contributor: fullname: Kitambi SS – ident: e_1_2_5_24_1 doi: 10.1016/j.ajhg.2010.03.005 – ident: e_1_2_5_23_1 doi: 10.1523/JNEUROSCI.19-19-08603.1999 – ident: e_1_2_5_10_1 doi: 10.3791/923 – ident: e_1_2_5_2_1 doi: 10.1016/j.tins.2012.05.004 – ident: e_1_2_5_32_1 doi: 10.1097/APO.0b013e31827a9969 – ident: e_1_2_5_27_1 doi: 10.1016/j.ydbio.2004.01.037 – ident: e_1_2_5_7_1 doi: 10.1093/hmg/ddv446 – ident: e_1_2_5_26_1 doi: 10.1371/journal.pgen.1000884 – volume: 42 start-page: 481 year: 2001 ident: e_1_2_5_18_1 article-title: Isolation and characterization of a zebrafish homologue of the cone rod homeobox gene publication-title: Invest Ophthalmol Vis Sci contributor: fullname: Liu Y – volume: 121 start-page: 1787 year: 1995 ident: e_1_2_5_15_1 article-title: Zebrafish wnt8 and wnt8b share a common activity but are involved in distinct developmental pathways publication-title: Development doi: 10.1242/dev.121.6.1787 contributor: fullname: Kelly GM – ident: e_1_2_5_25_1 doi: 10.1093/hmg/ddr039 – ident: e_1_2_5_3_1 doi: 10.1093/hmg/ddr025 – ident: e_1_2_5_21_1 doi: 10.1242/dmm.010793 – ident: e_1_2_5_31_1 doi: 10.1002/ar.1092120215 – ident: e_1_2_5_4_1 doi: 10.1016/S0166-4328(00)00264-3 – ident: e_1_2_5_6_1 doi: 10.1038/eye.2014.19 – ident: e_1_2_5_33_1 doi: 10.1038/nrd1606 – ident: e_1_2_5_20_1 doi: 10.1523/JNEUROSCI.2848-10.2010 |
SSID | ssj0008641 |
Score | 2.3558905 |
Snippet | Background: Modern genomics has enabled the identification of an unprecedented number of genetic variants, which in many cases are extremely rare, associated... Modern genomics has enabled the identification of an unprecedented number of genetic variants, which in many cases are extremely rare, associated with blinding... Background: Modern genomics has enabled the identification of an unprecedented number of genetic variants, which in many cases are extremely rare, associated... BACKGROUNDModern genomics has enabled the identification of an unprecedented number of genetic variants, which in many cases are extremely rare, associated... We automated a visual behavioral assay and created software to automate the data analysis. |
SourceID | pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 605 |
SubjectTerms | Animals Automation behavior tracking blinding disorders High-Throughput Screening Assays - methods Larva - genetics Larva - physiology Models, Animal Software vision Vision Disorders - diagnosis Vision Disorders - genetics Vision, Ocular - genetics visual assay Zebrafish |
Title | Automated, high‐throughput, in vivo analysis of visual function using the zebrafish |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fdvdy.24398 https://www.ncbi.nlm.nih.gov/pubmed/26890697 https://www.proquest.com/docview/1783835411 https://search.proquest.com/docview/1784461518 https://pubmed.ncbi.nlm.nih.gov/PMC4844763 |
Volume | 245 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFD4sC4ovXtZbdZWIPsl2Nk3TNAVfFsdlEdYHcWQVpKS57A5CuzjtwO6TP8Hf6C_xJO10HBcEfSu5NU3OyfnSnHwH4IV2Vaql4jF1qY15ZlysnEpippgxxge4qPzl5ON34mjG355kJ1vwanUXpueHGH-4ec0I67VXcFUt9tekoWZpLiYM7am_6Zukuffnmr5fc0dJEcJWIn6QsUylHLlJ2f666qY1ugIxr3pK_o5ggwk6vAVfVp3vPU--Trq2mujLP3gd__frbsPNAZuSg16Y7sCWrXfgWh-t8mIHrh8P5_CY-LkJiXdhdtC1DaJea_aIpz7--f3HEPrnvGv3yLwmy_myIWrgPiGNw4RFh6_xFtVLBfGu96cEgSi59KfYbr44uwezwzcfXh_FQ6iGWOP-TsYOFV-6lBdKJEYzZWmuJMfNYsasZrisUJ1q6wStcuUxFrWZNtxSQbWVzOXpfdium9o-BOKwlqaFZboQHHMkAppKGY77HqEYVxE8X01Zed4zcpQ99zIr_aiVYdQi2F3NZjlo5aJMchSENONJEsGzMRv1yR-SqNo2XSiDO2TEQdjEg37yx9cwIQsqijyCfEMsxgKeq3szp56fBc5ujq3iUh7ByzDrf-l5Of04_RSeHv1L4cdwA7Gc6H0xd2G7_dbZJ4iX2upp0ItfdMUUJQ |
link.rule.ids | 230,315,783,787,888,1378,27938,27939,46308,46732 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BEY8Lj_IKFDCCE2q2ieM4zrFiqRbo9oC6qHCJHD_oCimp2GSl9sRP4DfySxg7aZalEhLcIr-S2DOez_b4G4CXypaJEpKFkU1MyFJtQ2llHFJJtdYuwEXpLidPD_hkxt4dpUe9b467C9PxQwwbbk4z_HztFNxtSO-sWEP1Up-OKBpUcRmuoL4nLoDB-MOKPUpwH7gSEYQIRSLEwE5Kd1Z11-3RBZB50VfydwzrjdDerS7S6sJzFzrfk6-jtilH6uwPZsf__r_bcLOHp2S3k6c7cMlUm3C1C1h5ugnXpv1RPCZ-rn3iXZjttk2NwNfobeLYj39-_9FH_zlpm20yr8hyvqyJ7OlPSG0xYdHia5xRdYJBnPf9F4JYlJy5g2w7Xxzfg9nem8PXk7CP1hAqXOKJ0KLuC5uwXPJYKypNlEnBcL2YUqMoziyRSpSxPCoz6WBWZFKlmYl4pIygNkvuw0ZVV-YhEIu1VJQbqnLOMEcgpimlZrj04ZIyGcCL8zErTjpSjqKjX6aF67XC91oAW-fDWfSKuSjiDCUhSVkcB_B8yEaVcucksjJ168vgIhmhEDbxoBv94TWUizzieRZAtiYXQwFH172eU82PPW03w1ZxNg_glR_2v3x5Mf44_uSfHv1L4WdwfXI43S_23x68fww3ENrxzjVzCzaab615gvCpKZ96JfkFlVsYPw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB2VIipeuJRboEAQPKFm6zhex5F4qVhW5dIKIRYVJBQ5vtAVUrJik5XaJz6Bb-RLGDvZLEslJHiLfItjz3iO4_EZgCfKFokSkkXEJiZiQ20jaWUcUUm11i7AReEuJx8e8YMJe3U8PN6AZ8u7MC0_RP_DzWmGX6-dgs-03VuRhuqFPh1QtKfiAlxkPCHOoWv0bkUeJbiPW4kAQkQiEaInJ6V7q7rr5ugcxjzvKvk7hPU2aHwVPi9737qefB00dTFQZ38QO_7v512DKx04DfdbaboOG6bchkttuMrTbdg67A7iMfFT5RNvwGS_qSuEvUbvho77-Of3H13sn1lT74bTMlxMF1UoO_KTsLKYMG_wNc6kOrEIne_9lxCRaHjmjrHtdH5yEybjF--fH0RdrIZI4QZPRBY1X9iEZZLHWlFpSCoFw93ikBpFcV0hKlHGclKk0oEsYoZKM0M4UUZQmya3YLOsSnMHQou1FMkMVRlnmCMQ0RRSM9z4cEmZDODxcsryWUvJkbfkyzR3o5b7UQtgZzmbeaeW8zxOURCSIYvjAB712ahQ7pRElqZqfBncIiMQwiZut5Pfv4ZykRGepQGka2LRF3Bk3es55fTEk3YzbBXX8gCe-ln_S8_z0YfRR_90918KP4Stt6Nx_ubl0et7cBlxHW_9Mndgs_7WmPuInerigVeRX0a1Fu4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated%2C+high-throughput%2C+in+vivo+analysis+of+visual+function+using+the+zebrafish&rft.jtitle=Developmental+dynamics&rft.au=Scott%2C+C+Anthony&rft.au=Marsden%2C+Autumn+N&rft.au=Slusarski%2C+Diane+C&rft.date=2016-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1058-8388&rft.eissn=1097-0177&rft.volume=245&rft.issue=5&rft.spage=605&rft_id=info:doi/10.1002%2Fdvdy.24398&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4033223011 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1058-8388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1058-8388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1058-8388&client=summon |