Anion Exchange of Ni–Co Layered Double Hydroxide (LDH) Nanoarrays for a High‐Capacitance Supercapacitor Electrode: A Comparison of Alkali Anion Exchange and Sulfuration
A facile and new anion exchange process is presented, which involves the conversion of NiCo‐CO3 layered double hydroxide (LDH) nanosheet arrays in an alkaline solution. The anion exchange between CO32− and OH− results in the construction of a reservoir for OH− anions, and the decoration of thin nano...
Saved in:
Published in | Chemistry : a European journal Vol. 24; no. 72; pp. 19309 - 19316 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
20.12.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A facile and new anion exchange process is presented, which involves the conversion of NiCo‐CO3 layered double hydroxide (LDH) nanosheet arrays in an alkaline solution. The anion exchange between CO32− and OH− results in the construction of a reservoir for OH− anions, and the decoration of thin nanoflakes on the surface of nanosheets effectively enlarges the surface area of NiCo LDH nanoarrays. The capacitance of the as‐soaked NiCo LDH nanoarrays electrode increases from 1.78 F cm−2 (684 F g−1) to 6.22 F cm−2 (2391 F g−1) at 2 mA cm−2 after soaking for 12 h. Moreover, the soaked NiCo‐OH LDH electrode exhibits an enhanced rate capacity, high coulombic efficiency, and good cycling stability compared with the Ni–Co‐S nanosheet electrode synthesized through a hydrothermal sulfuration process. The as‐assembled all‐solid‐state NiCo LDH//active carbon asymmetric supercapacitor shows a maximum energy density of 83.4 W h kg−1 at a power density of 1066 W kg−1.
Supercapacitor electrodes: Anion exchange is used to enhance the diffusion of OH− of layered double hydroxide (LDH) nanoarrays to achieve promising capacitive performance for supercapacitors (see figure). |
---|---|
AbstractList | A facile and new anion exchange process is presented, which involves the conversion of NiCo-CO
layered double hydroxide (LDH) nanosheet arrays in an alkaline solution. The anion exchange between CO
and OH
results in the construction of a reservoir for OH
anions, and the decoration of thin nanoflakes on the surface of nanosheets effectively enlarges the surface area of NiCo LDH nanoarrays. The capacitance of the as-soaked NiCo LDH nanoarrays electrode increases from 1.78 F cm
(684 F g
) to 6.22 F cm
(2391 F g
) at 2 mA cm
after soaking for 12 h. Moreover, the soaked NiCo-OH LDH electrode exhibits an enhanced rate capacity, high coulombic efficiency, and good cycling stability compared with the Ni-Co-S nanosheet electrode synthesized through a hydrothermal sulfuration process. The as-assembled all-solid-state NiCo LDH//active carbon asymmetric supercapacitor shows a maximum energy density of 83.4 W h kg
at a power density of 1066 W kg
. A facile and new anion exchange process is presented, which involves the conversion of NiCo‐CO 3 layered double hydroxide (LDH) nanosheet arrays in an alkaline solution. The anion exchange between CO 3 2− and OH − results in the construction of a reservoir for OH − anions, and the decoration of thin nanoflakes on the surface of nanosheets effectively enlarges the surface area of NiCo LDH nanoarrays. The capacitance of the as‐soaked NiCo LDH nanoarrays electrode increases from 1.78 F cm −2 (684 F g −1 ) to 6.22 F cm −2 (2391 F g −1 ) at 2 mA cm −2 after soaking for 12 h. Moreover, the soaked NiCo‐OH LDH electrode exhibits an enhanced rate capacity, high coulombic efficiency, and good cycling stability compared with the Ni–Co‐S nanosheet electrode synthesized through a hydrothermal sulfuration process. The as‐assembled all‐solid‐state NiCo LDH//active carbon asymmetric supercapacitor shows a maximum energy density of 83.4 W h kg −1 at a power density of 1066 W kg −1 . A facile and new anion exchange process is presented, which involves the conversion of NiCo‐CO3 layered double hydroxide (LDH) nanosheet arrays in an alkaline solution. The anion exchange between CO32− and OH− results in the construction of a reservoir for OH− anions, and the decoration of thin nanoflakes on the surface of nanosheets effectively enlarges the surface area of NiCo LDH nanoarrays. The capacitance of the as‐soaked NiCo LDH nanoarrays electrode increases from 1.78 F cm−2 (684 F g−1) to 6.22 F cm−2 (2391 F g−1) at 2 mA cm−2 after soaking for 12 h. Moreover, the soaked NiCo‐OH LDH electrode exhibits an enhanced rate capacity, high coulombic efficiency, and good cycling stability compared with the Ni–Co‐S nanosheet electrode synthesized through a hydrothermal sulfuration process. The as‐assembled all‐solid‐state NiCo LDH//active carbon asymmetric supercapacitor shows a maximum energy density of 83.4 W h kg−1 at a power density of 1066 W kg−1. Supercapacitor electrodes: Anion exchange is used to enhance the diffusion of OH− of layered double hydroxide (LDH) nanoarrays to achieve promising capacitive performance for supercapacitors (see figure). A facile and new anion exchange process is presented, which involves the conversion of NiCo-CO3 layered double hydroxide (LDH) nanosheet arrays in an alkaline solution. The anion exchange between CO3 2- and OH- results in the construction of a reservoir for OH- anions, and the decoration of thin nanoflakes on the surface of nanosheets effectively enlarges the surface area of NiCo LDH nanoarrays. The capacitance of the as-soaked NiCo LDH nanoarrays electrode increases from 1.78 F cm-2 (684 F g-1 ) to 6.22 F cm-2 (2391 F g-1 ) at 2 mA cm-2 after soaking for 12 h. Moreover, the soaked NiCo-OH LDH electrode exhibits an enhanced rate capacity, high coulombic efficiency, and good cycling stability compared with the Ni-Co-S nanosheet electrode synthesized through a hydrothermal sulfuration process. The as-assembled all-solid-state NiCo LDH//active carbon asymmetric supercapacitor shows a maximum energy density of 83.4 W h kg-1 at a power density of 1066 W kg-1 .A facile and new anion exchange process is presented, which involves the conversion of NiCo-CO3 layered double hydroxide (LDH) nanosheet arrays in an alkaline solution. The anion exchange between CO3 2- and OH- results in the construction of a reservoir for OH- anions, and the decoration of thin nanoflakes on the surface of nanosheets effectively enlarges the surface area of NiCo LDH nanoarrays. The capacitance of the as-soaked NiCo LDH nanoarrays electrode increases from 1.78 F cm-2 (684 F g-1 ) to 6.22 F cm-2 (2391 F g-1 ) at 2 mA cm-2 after soaking for 12 h. Moreover, the soaked NiCo-OH LDH electrode exhibits an enhanced rate capacity, high coulombic efficiency, and good cycling stability compared with the Ni-Co-S nanosheet electrode synthesized through a hydrothermal sulfuration process. The as-assembled all-solid-state NiCo LDH//active carbon asymmetric supercapacitor shows a maximum energy density of 83.4 W h kg-1 at a power density of 1066 W kg-1 . |
Author | Ye, Qinglan Zou, Wenru Luo, Yunli Xu, Xuetang Guo, Wenxin Wang, Fan Liu, Xinyi |
Author_xml | – sequence: 1 givenname: Wenru surname: Zou fullname: Zou, Wenru organization: Guangxi University – sequence: 2 givenname: Wenxin surname: Guo fullname: Guo, Wenxin organization: Guangxi University – sequence: 3 givenname: Xinyi surname: Liu fullname: Liu, Xinyi organization: Guangxi University – sequence: 4 givenname: Yunli surname: Luo fullname: Luo, Yunli organization: Guangxi University – sequence: 5 givenname: Qinglan surname: Ye fullname: Ye, Qinglan organization: Guangxi University – sequence: 6 givenname: Xuetang surname: Xu fullname: Xu, Xuetang email: xxtang@gxu.edu.cn organization: Guangxi University – sequence: 7 givenname: Fan orcidid: 0000-0002-6106-4724 surname: Wang fullname: Wang, Fan email: fanwang@gxu.edu.cn organization: Guangxi University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30326158$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUctu1DAUtVARnQ5sWSIv20UGO3Ze7EbpQJCGdgGsI9e-6RicONiJaHazZYfEf_Sj5kvq0bRFqoRYXcn3PK7POUFHne0AodeULCgh8Vu5gXYRE5oTHtP8GZrRJKYRy9LkCM1IwbMoTVhxjE68_0YIKVLGXqBjRlic0iSfodtlp22HVzdyI7prwLbBF3q3_VNavBYTOFD43I5XBnA1KWdvtAJ8uj6vzvCF6KxwTkweN9ZhgSt9vdltf5eiF1IPopOAP489OHl4CJiVATk4q-AdXu62v0rb9sJpH_yD7dJ8F0bjJ_eITgUV04xODGHxEj1vhPHw6n7O0df3qy9lFa0vP3wsl-tIcp7nkcpZwZqCN7TJOKEF45lqIJUhEEJ5LkgBKpYZEKqylHHOsyxJgLIiZ4qKRLI5Oj3o9s7-GMEPdau9BGNEB3b0dUzjoJOTEOQcvbmHjlctqLp3uhVuqh8yDoDFASCd9d5B8wihpN6XWO9LrB9LDAT-hLDPc__9wQlt_k0rDrSf2sD0H5O6rFaf_nLvAHy2s_A |
CitedBy_id | crossref_primary_10_1016_j_ccr_2021_214253 crossref_primary_10_1007_s10854_022_09269_4 crossref_primary_10_1016_j_jallcom_2021_161453 crossref_primary_10_1021_acsomega_3c01211 crossref_primary_10_1002_smll_202401315 crossref_primary_10_1016_j_jpowsour_2019_227590 crossref_primary_10_1021_acs_energyfuels_3c00315 crossref_primary_10_1016_j_electacta_2020_137081 crossref_primary_10_1016_j_jece_2022_108030 crossref_primary_10_1016_j_jcis_2021_08_094 crossref_primary_10_1016_j_est_2024_111467 crossref_primary_10_3390_catal14010028 crossref_primary_10_1021_acs_jpcc_9b09018 crossref_primary_10_1016_j_surfin_2021_101263 crossref_primary_10_1016_j_jpowsour_2021_230657 crossref_primary_10_1021_acsami_2c12823 crossref_primary_10_1039_D2NR07096K crossref_primary_10_1016_j_jcis_2020_03_084 crossref_primary_10_1021_acs_inorgchem_3c04568 crossref_primary_10_1016_j_est_2022_104300 crossref_primary_10_1021_acs_inorgchem_9b00905 crossref_primary_10_1039_D0DT03237A crossref_primary_10_1039_C9QI00681H crossref_primary_10_1016_j_jallcom_2023_171034 crossref_primary_10_1021_acsami_1c19320 crossref_primary_10_1016_j_cej_2021_133233 crossref_primary_10_1016_j_jclepro_2021_127384 crossref_primary_10_1088_1361_6528_ac7fa4 crossref_primary_10_1039_C9NJ05866D crossref_primary_10_1002_batt_202200026 crossref_primary_10_1007_s10311_021_01200_3 crossref_primary_10_1016_j_jpcs_2023_111772 crossref_primary_10_1002_ece2_21 crossref_primary_10_1134_S0036024424701541 crossref_primary_10_1016_j_jallcom_2023_172364 crossref_primary_10_1021_acsaem_2c03468 crossref_primary_10_1016_j_est_2021_102330 crossref_primary_10_1016_j_chemosphere_2024_142652 crossref_primary_10_1002_adfm_201903879 crossref_primary_10_1002_ente_201900680 crossref_primary_10_3390_molecules29112546 crossref_primary_10_1016_j_est_2023_110117 crossref_primary_10_1016_j_jallcom_2022_165391 crossref_primary_10_1039_D0SE00909A crossref_primary_10_1016_j_est_2021_102858 crossref_primary_10_1016_j_apmt_2021_101297 crossref_primary_10_1016_j_electacta_2020_137098 crossref_primary_10_1016_j_electacta_2021_137932 crossref_primary_10_52676_1729_7885_2022_4_63_73 crossref_primary_10_1016_j_colsurfa_2022_129785 crossref_primary_10_1016_j_jpowsour_2025_236474 crossref_primary_10_1016_j_cej_2021_128479 crossref_primary_10_1016_j_jallcom_2021_161502 crossref_primary_10_1002_smll_202002806 crossref_primary_10_1039_D1SE00243K crossref_primary_10_1016_j_jallcom_2022_167226 crossref_primary_10_1039_D1RA00424G crossref_primary_10_1021_acsaem_0c02058 crossref_primary_10_1063_5_0217518 crossref_primary_10_1021_acs_energyfuels_4c05376 crossref_primary_10_1039_C9NR03790J crossref_primary_10_1016_j_cej_2021_133936 crossref_primary_10_1016_j_compositesb_2022_109915 crossref_primary_10_1039_D4TA00299G |
Cites_doi | 10.1039/C7TA00932A 10.1002/advs.201700059 10.1016/j.nanoen.2016.05.042 10.1021/am5053784 10.1016/j.electacta.2017.07.158 10.1116/1.1247753 10.1021/acsami.5b07607 10.1002/chem.201700017 10.1016/j.electacta.2014.07.076 10.1002/adfm.201605307 10.1038/srep01718 10.1016/j.ceramint.2017.08.006 10.1016/j.electacta.2017.07.133 10.1039/C7TA01326D 10.1016/j.electacta.2017.11.009 10.1021/nl2023433 10.1021/ja102267j 10.1016/j.apsusc.2016.12.206 10.1021/acssuschemeng.7b01879 10.1021/acsami.6b02962 10.1002/advs.201700188 10.1039/C7TA07795E 10.1016/j.nanoen.2015.06.018 10.1016/j.electacta.2018.04.086 10.1039/C6NR04578B 10.1002/anie.201303971 10.1039/C7TA04001F 10.1016/j.jpowsour.2017.12.020 10.1016/j.cej.2017.01.010 10.1039/C7NR04752E 10.1021/acsami.7b03254 10.1039/C6TA08517B 10.1016/j.electacta.2014.11.040 10.1016/j.electacta.2016.02.053 10.1039/C7TA06437C 10.1002/smtd.201700230 10.1039/C6TA02164F 10.1016/j.jpowsour.2016.02.047 10.1002/ange.201303971 10.1016/j.nanoen.2015.04.015 10.2478/BF02475578 10.1021/acsami.5b07599 10.1016/j.jpowsour.2013.12.092 10.1016/j.nanoen.2015.10.036 10.1021/acsami.6b12518 10.1016/j.cej.2017.03.095 10.1002/advs.201600539 10.1021/acsami.5b10158 10.1002/celc.201700525 |
ContentType | Journal Article |
Copyright | 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1002/chem.201804218 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | 19316 |
ExternalDocumentID | 30326158 10_1002_chem_201804218 CHEM201804218 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of Guangxi Province funderid: 2015GXNSFAA139028 – fundername: National Natural Science Foundation of China funderid: 51862002 – fundername: National Natural Science Foundation of China grantid: 51862002 – fundername: Natural Science Foundation of Guangxi Province grantid: 2015GXNSFAA139028 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION NPM 7X8 |
ID | FETCH-LOGICAL-c4488-d8393f94f1f74019347dfe6c0940148a09ed2c7e01d7634447755e13983d1a5c3 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 1521-3765 |
IngestDate | Fri Jul 11 01:40:40 EDT 2025 Mon Jul 21 05:57:31 EDT 2025 Thu Apr 24 22:57:42 EDT 2025 Tue Jul 01 01:29:44 EDT 2025 Wed Jan 22 17:09:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 72 |
Keywords | electrochemistry anions supercapacitors coulombic efficiency sulfuration ion exchange |
Language | English |
License | 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4488-d8393f94f1f74019347dfe6c0940148a09ed2c7e01d7634447755e13983d1a5c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6106-4724 |
PMID | 30326158 |
PQID | 2121488030 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2121488030 pubmed_primary_30326158 crossref_primary_10_1002_chem_201804218 crossref_citationtrail_10_1002_chem_201804218 wiley_primary_10_1002_chem_201804218_CHEM201804218 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 20, 2018 |
PublicationDateYYYYMMDD | 2018-12-20 |
PublicationDate_xml | – month: 12 year: 2018 text: December 20, 2018 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chemistry |
PublicationYear | 2018 |
References | 2017; 5 2014 2014; 53 126 2015; 15 2013; 3 2015; 16 2017; 4 2016; 19 2017; 27 2017; 43 2017; 23 2011; 11 2004; 2 2014; 254 2015; 7 2017; 9 2017; 315 2018; 274 2015; 151 2016; 4 2018; 2 2018; 259 2018; 378 2010; 132 2016; 312 2016; 193 2014; 141 1994; 3 2017; 322 2014; 6 2017; 400 2016; 26 2016; 8 2017; 248 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_1_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_10_2 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 248 start-page: 322 year: 2017 end-page: 332 publication-title: Electrochim. Acta – volume: 151 start-page: 35 year: 2015 end-page: 41 publication-title: Electrochim. Acta – volume: 19 start-page: 222 year: 2016 end-page: 233 publication-title: Nano Energy – volume: 4 start-page: 1700059 year: 2017 publication-title: Adv. Sci. – volume: 6 start-page: 19318 year: 2014 end-page: 19326 publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 8421 year: 2016 end-page: 8427 publication-title: J. Mater. Chem. A – volume: 53 126 start-page: 1488 1512 year: 2014 2014 end-page: 1504 1530 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 start-page: 24204 year: 2015 end-page: 24211 publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 1718 year: 2013 publication-title: Sci. Rep. – volume: 23 start-page: 4435 year: 2017 end-page: 4441 publication-title: Chem. Eur. J. – volume: 254 start-page: 249 year: 2014 end-page: 257 publication-title: J. Power Sources – volume: 8 start-page: 33732 year: 2016 end-page: 33740 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 9923 year: 2017 end-page: 9934 publication-title: ACS Sustainable Chem. Eng. – volume: 16 start-page: 71 year: 2015 end-page: 80 publication-title: Nano Energy – volume: 5 start-page: 24981 year: 2017 end-page: 24988 publication-title: J. Mater. Chem. A – volume: 5 start-page: 7144 year: 2017 end-page: 7152 publication-title: J. Mater. Chem. A – volume: 248 start-page: 562 year: 2017 end-page: 569 publication-title: Electrochim. Acta – volume: 15 start-page: 145 year: 2015 end-page: 152 publication-title: Nano Energy – volume: 8 start-page: 8568 year: 2016 end-page: 8575 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 2562 year: 2016 end-page: 2572 publication-title: ACS Appl. Mater. Interfaces – volume: 315 start-page: 35 year: 2017 end-page: 45 publication-title: Chem. Eng. J. – volume: 4 start-page: 18335 year: 2016 end-page: 18341 publication-title: J. Mater. Chem. A – volume: 132 start-page: 7472 year: 2010 end-page: 7477 publication-title: J. Am. Chem. Soc. – volume: 400 start-page: 238 year: 2017 end-page: 244 publication-title: Appl. Surf. Sci. – volume: 5 start-page: 15460 year: 2017 end-page: 15485 publication-title: J. Mater. Chem. A – volume: 7 start-page: 26512 year: 2015 end-page: 26521 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 15206 year: 2017 end-page: 15225 publication-title: Nanoscale – volume: 4 start-page: 1700188 year: 2017 publication-title: Adv. Sci. – volume: 4 start-page: 2428 year: 2017 end-page: 2441 publication-title: ChemElectroChem – volume: 11 start-page: 5165 year: 2011 end-page: 5172 publication-title: Nano Lett. – volume: 5 start-page: 9443 year: 2017 end-page: 9464 publication-title: J. Mater. Chem. A – volume: 9 start-page: 18774 year: 2017 end-page: 18781 publication-title: ACS Appl. Mater. Interfaces – volume: 141 start-page: 286 year: 2014 end-page: 293 publication-title: Electrochim. Acta – volume: 3 start-page: 247 year: 1994 end-page: 254 publication-title: Surf. Sci. Spectra – volume: 4 start-page: 1600539 year: 2017 publication-title: Adv. Sci. – volume: 322 start-page: 498 year: 2017 end-page: 509 publication-title: Chem. Eng. J. – volume: 274 start-page: 208 year: 2018 end-page: 216 publication-title: Electrochim. Acta – volume: 2 start-page: 347 year: 2004 end-page: 362 publication-title: Cent. Eur. J. Chem. – volume: 259 start-page: 1037 year: 2018 end-page: 1044 publication-title: Electrochim. Acta – volume: 2 start-page: 1700230 year: 2018 publication-title: Small Meth. – volume: 26 start-page: 313 year: 2016 end-page: 323 publication-title: Nano Energy – volume: 5 start-page: 24407 year: 2017 end-page: 24415 publication-title: J. Mater. Chem. A – volume: 312 start-page: 156 year: 2016 end-page: 164 publication-title: J. Power Sources – volume: 193 start-page: 116 year: 2016 end-page: 127 publication-title: Electrochim. Acta – volume: 27 start-page: 1605307 year: 2017 publication-title: Adv. Funct. Mater. – volume: 43 start-page: 14897 year: 2017 end-page: 14904 publication-title: Ceram. Int. – volume: 8 start-page: 17055 year: 2016 end-page: 17063 publication-title: Nanoscale – volume: 378 start-page: 31 year: 2018 end-page: 39 publication-title: J. Power Sources – ident: e_1_2_6_4_1 doi: 10.1039/C7TA00932A – ident: e_1_2_6_5_1 doi: 10.1002/advs.201700059 – ident: e_1_2_6_35_1 doi: 10.1016/j.nanoen.2016.05.042 – ident: e_1_2_6_17_1 doi: 10.1021/am5053784 – ident: e_1_2_6_40_1 doi: 10.1016/j.electacta.2017.07.158 – ident: e_1_2_6_37_1 doi: 10.1116/1.1247753 – ident: e_1_2_6_48_1 doi: 10.1021/acsami.5b07607 – ident: e_1_2_6_12_1 doi: 10.1002/chem.201700017 – ident: e_1_2_6_27_1 doi: 10.1016/j.electacta.2014.07.076 – ident: e_1_2_6_8_1 doi: 10.1002/adfm.201605307 – ident: e_1_2_6_26_1 doi: 10.1038/srep01718 – ident: e_1_2_6_30_1 doi: 10.1016/j.ceramint.2017.08.006 – ident: e_1_2_6_23_1 doi: 10.1016/j.electacta.2017.07.133 – ident: e_1_2_6_42_1 doi: 10.1039/C7TA01326D – ident: e_1_2_6_9_1 doi: 10.1016/j.electacta.2017.11.009 – ident: e_1_2_6_41_1 doi: 10.1021/nl2023433 – ident: e_1_2_6_7_1 doi: 10.1021/ja102267j – ident: e_1_2_6_18_1 doi: 10.1016/j.apsusc.2016.12.206 – ident: e_1_2_6_39_1 doi: 10.1021/acssuschemeng.7b01879 – ident: e_1_2_6_14_1 doi: 10.1021/acsami.6b02962 – ident: e_1_2_6_1_1 doi: 10.1002/advs.201700188 – ident: e_1_2_6_36_1 doi: 10.1039/C7TA07795E – ident: e_1_2_6_21_1 doi: 10.1016/j.nanoen.2015.06.018 – ident: e_1_2_6_15_1 doi: 10.1016/j.electacta.2018.04.086 – ident: e_1_2_6_22_1 doi: 10.1039/C6NR04578B – ident: e_1_2_6_10_1 doi: 10.1002/anie.201303971 – ident: e_1_2_6_24_1 doi: 10.1039/C7TA04001F – ident: e_1_2_6_32_1 doi: 10.1016/j.jpowsour.2017.12.020 – ident: e_1_2_6_43_1 doi: 10.1016/j.cej.2017.01.010 – ident: e_1_2_6_3_1 doi: 10.1039/C7NR04752E – ident: e_1_2_6_20_1 doi: 10.1021/acsami.7b03254 – ident: e_1_2_6_33_1 doi: 10.1039/C6TA08517B – ident: e_1_2_6_19_1 doi: 10.1016/j.electacta.2014.11.040 – ident: e_1_2_6_45_1 doi: 10.1016/j.electacta.2016.02.053 – ident: e_1_2_6_11_1 doi: 10.1039/C7TA06437C – ident: e_1_2_6_2_1 doi: 10.1002/smtd.201700230 – ident: e_1_2_6_25_1 doi: 10.1039/C6TA02164F – ident: e_1_2_6_44_1 doi: 10.1016/j.jpowsour.2016.02.047 – ident: e_1_2_6_10_2 doi: 10.1002/ange.201303971 – ident: e_1_2_6_28_1 doi: 10.1016/j.nanoen.2015.04.015 – ident: e_1_2_6_34_1 doi: 10.2478/BF02475578 – ident: e_1_2_6_47_1 doi: 10.1021/acsami.5b07599 – ident: e_1_2_6_16_1 doi: 10.1016/j.jpowsour.2013.12.092 – ident: e_1_2_6_46_1 doi: 10.1016/j.nanoen.2015.10.036 – ident: e_1_2_6_29_1 doi: 10.1021/acsami.6b12518 – ident: e_1_2_6_38_1 doi: 10.1016/j.cej.2017.03.095 – ident: e_1_2_6_6_1 doi: 10.1002/advs.201600539 – ident: e_1_2_6_31_1 doi: 10.1021/acsami.5b10158 – ident: e_1_2_6_13_1 doi: 10.1002/celc.201700525 |
SSID | ssj0009633 |
Score | 2.5220401 |
Snippet | A facile and new anion exchange process is presented, which involves the conversion of NiCo‐CO3 layered double hydroxide (LDH) nanosheet arrays in an alkaline... A facile and new anion exchange process is presented, which involves the conversion of NiCo‐CO 3 layered double hydroxide (LDH) nanosheet arrays in an alkaline... A facile and new anion exchange process is presented, which involves the conversion of NiCo-CO layered double hydroxide (LDH) nanosheet arrays in an alkaline... A facile and new anion exchange process is presented, which involves the conversion of NiCo-CO3 layered double hydroxide (LDH) nanosheet arrays in an alkaline... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 19309 |
SubjectTerms | anions coulombic efficiency electrochemistry ion exchange sulfuration supercapacitors |
Title | Anion Exchange of Ni–Co Layered Double Hydroxide (LDH) Nanoarrays for a High‐Capacitance Supercapacitor Electrode: A Comparison of Alkali Anion Exchange and Sulfuration |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201804218 https://www.ncbi.nlm.nih.gov/pubmed/30326158 https://www.proquest.com/docview/2121488030 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTttAFB1VbGDTF5SGlmqQKlEWBj_GdswuMkFRBSwoSOyseUoRkR0lsdR0lW13lfgPPipfwr2e2CGgqhLd2dbMeEb3zJ0z9txzCfnqBj7XKkkcKY3rsERyJwGf6ChXaBUBv_cqIe3zi6h3zb7fhDePovitPkTzwQ1nRuWvcYJzMT5aiobCmDCS3GsD7DyM9sUDW8iKLpf6UYAum0uexQ5qsNaqja5_tFp9dVV6RjVXmWu19Jy-IbzutD1xcntYTsSh_PVEz_F_RvWWvF7wUtqxQHpHXun8PVlP63Rwm-S-k4MJafenDRWmhaEX_fnsLi3oGZ9ixk8KZFwMNO1NFfS0rzT9dnbSO6DgwAs-GvHpmAJDppzi2ZL57E8K67TsTxB29Ec51CNpH0CZrk3Oo_Qx7cxnv9MmWSK-tjO4hc0DfdIfnitoZWBKC-ktcn3avUp7ziLZgyNhhwjgAKYWmIQZz2CSwCRgsTI6kqjvB3jhbqKVL2PtegpcImMsjsNQA39tB8rjoQw-kLW8yPVHQhlw8DYX2g-NZFJEPBCJAN-losggHWsRpzZ2JhdK6JiQY5BZDWc_QytkjRVaZL8pP7QaIH8tuVdjJwPz4L8XnuuiHGfAEDz0lYHbItsWVE1bwCJgHxtCbb-Cxj9ekqFYRnO385JKn8gGXuOxHN_9TNYmo1LvArmaiC_VBHoAJecdwg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTttAFB0VuoBN34X0xVSqVLow-DG2Y3aRCXLbkEUBqTtrnlJEZKMQS01X2XZXif_go_Il3OuJjUJVIbVLWzP2WPfMnTPjmXMI-eAGPtcqSRwpjeuwRHIngZzoKFdoFQG_92oh7eNhlJ2xL9_DZjchnoWx-hDtghv2jDpfYwfHBen9W9VQ-Cg8Su51AXded408RFtvlM8__HarIAX4sm7yLHZQhbXRbXT9_dX6q-PSH2RzlbvWg8_RYyKaZts9J-d71VTsyZ93FB3_67uekEdLakp7FktPyQNdPCMbaeMI95xc9wqIIu3_sKeFaWnocLSYX6UlHfAZmn5S4ONirGk2U9DUkdJ0d3CYfaKQw0s-mfDZJQWSTDnF7SWL-e8Uhmo5miLy6El1oSfS3oAyfevPo_QB7S3mv9LWLxFf2xufw_yB3mkPLxQ8ZWwqi-oX5Oyof5pmztLvwZEwSQR8AFkLTMKMZ9AnMAlYrIyOJEr8AWS4m2jly1i7noKsyBiL4zDUQGG7gfJ4KIOXZL0oC71NKAMa3uVC-6GRTIqIByIRkL5UFBlkZB3iNNHO5VIMHT05xrmVcfZzjELeRqFDPrblL6wMyF9Lvm_Ak0N48PcLL3RZXeZAEjxMl4HbIVsWVe2zgEjAVDaE2n6NjXtekqNeRnv16l8q7ZCN7PR4kA8-D7--Jpt4H3fp-O4bsj6dVPotcK2peFf3phvypSHe |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LjtMwFLVgkIAN74HyNBISsMiMkzhJza5KWxUoFQJGml3k-CFVUyVVp5Eoq27ZIfEffFS_hHvjJkMHISRYJrITW_f4-jixzyHkGQsDabQQnlKWeVwo6QnIiZ5mudEx8Hu_FtJ-N4lHR_zNcXT8yyl-pw_RfnDDkVHnaxzgc20Pz0RDoU94ktzvAuz87kVyicdMoHlD_8OZgBTAy5nJ88RDEdZGtpEFh7v1d6el37jmLnWt557hdSKbVrstJycH1TI_UF_OCTr-T7dukGtbYkp7Dkk3yQVT3CJX0sYP7jb50SsghnTw2Z0VpqWlk-lm_T0t6Viu0PKTAhvPZ4aOVhpaOtWGvhj3Ry8pZPBSLhZydUqBIlNJcXPJZv0thYlaTZeIO_qxmpuFcjegzMC582jzivY2669p65aIr-3NTmD1QM-1RxYanjKzlcP0HXI0HHxKR97W7cFTsEQEdABVC63g1rfoEihCnmhrYoUCfwAYyYTRgUoM8zXkRM55kkSRAQLbDbUvIxXuk72iLMw9QjmQ8K7MTRBZxVUeyzAXOSQvHccW-ViHeE2wM7WVQkdHjlnmRJyDDKOQtVHokOdt-bkTAfljyacNdjIID_58kYUpq9MMKIKPyTJkHXLXgap9FtAIWMhGUDuoofGXl2SoltFe3f-XSk_I5ff9YTZ-PXn7gFzF27hFJ2APyd5yUZlHQLSW-eN6LP0EcZsgjQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anion+Exchange+of+Ni%E2%80%93Co+Layered+Double+Hydroxide+%28LDH%29+Nanoarrays+for+a+High%E2%80%90Capacitance+Supercapacitor+Electrode%3A+A%E2%80%89Comparison+of+Alkali+Anion+Exchange+and+Sulfuration&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Zou%2C+Wenru&rft.au=Guo%2C+Wenxin&rft.au=Liu%2C+Xinyi&rft.au=Luo%2C+Yunli&rft.date=2018-12-20&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=24&rft.issue=72&rft.spage=19309&rft.epage=19316&rft_id=info:doi/10.1002%2Fchem.201804218&rft.externalDBID=10.1002%252Fchem.201804218&rft.externalDocID=CHEM201804218 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |