Anion Exchange of Ni–Co Layered Double Hydroxide (LDH) Nanoarrays for a High‐Capacitance Supercapacitor Electrode: A Comparison of Alkali Anion Exchange and Sulfuration

A facile and new anion exchange process is presented, which involves the conversion of NiCo‐CO3 layered double hydroxide (LDH) nanosheet arrays in an alkaline solution. The anion exchange between CO32− and OH− results in the construction of a reservoir for OH− anions, and the decoration of thin nano...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 24; no. 72; pp. 19309 - 19316
Main Authors Zou, Wenru, Guo, Wenxin, Liu, Xinyi, Luo, Yunli, Ye, Qinglan, Xu, Xuetang, Wang, Fan
Format Journal Article
LanguageEnglish
Published Germany 20.12.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A facile and new anion exchange process is presented, which involves the conversion of NiCo‐CO3 layered double hydroxide (LDH) nanosheet arrays in an alkaline solution. The anion exchange between CO32− and OH− results in the construction of a reservoir for OH− anions, and the decoration of thin nanoflakes on the surface of nanosheets effectively enlarges the surface area of NiCo LDH nanoarrays. The capacitance of the as‐soaked NiCo LDH nanoarrays electrode increases from 1.78 F cm−2 (684 F g−1) to 6.22 F cm−2 (2391 F g−1) at 2 mA cm−2 after soaking for 12 h. Moreover, the soaked NiCo‐OH LDH electrode exhibits an enhanced rate capacity, high coulombic efficiency, and good cycling stability compared with the Ni–Co‐S nanosheet electrode synthesized through a hydrothermal sulfuration process. The as‐assembled all‐solid‐state NiCo LDH//active carbon asymmetric supercapacitor shows a maximum energy density of 83.4 W h kg−1 at a power density of 1066 W kg−1. Supercapacitor electrodes: Anion exchange is used to enhance the diffusion of OH− of layered double hydroxide (LDH) nanoarrays to achieve promising capacitive performance for supercapacitors (see figure).
AbstractList A facile and new anion exchange process is presented, which involves the conversion of NiCo-CO layered double hydroxide (LDH) nanosheet arrays in an alkaline solution. The anion exchange between CO and OH results in the construction of a reservoir for OH anions, and the decoration of thin nanoflakes on the surface of nanosheets effectively enlarges the surface area of NiCo LDH nanoarrays. The capacitance of the as-soaked NiCo LDH nanoarrays electrode increases from 1.78 F cm (684 F g ) to 6.22 F cm (2391 F g ) at 2 mA cm after soaking for 12 h. Moreover, the soaked NiCo-OH LDH electrode exhibits an enhanced rate capacity, high coulombic efficiency, and good cycling stability compared with the Ni-Co-S nanosheet electrode synthesized through a hydrothermal sulfuration process. The as-assembled all-solid-state NiCo LDH//active carbon asymmetric supercapacitor shows a maximum energy density of 83.4 W h kg at a power density of 1066 W kg .
A facile and new anion exchange process is presented, which involves the conversion of NiCo‐CO 3 layered double hydroxide (LDH) nanosheet arrays in an alkaline solution. The anion exchange between CO 3 2− and OH − results in the construction of a reservoir for OH − anions, and the decoration of thin nanoflakes on the surface of nanosheets effectively enlarges the surface area of NiCo LDH nanoarrays. The capacitance of the as‐soaked NiCo LDH nanoarrays electrode increases from 1.78 F cm −2 (684 F g −1 ) to 6.22 F cm −2 (2391 F g −1 ) at 2 mA cm −2 after soaking for 12 h. Moreover, the soaked NiCo‐OH LDH electrode exhibits an enhanced rate capacity, high coulombic efficiency, and good cycling stability compared with the Ni–Co‐S nanosheet electrode synthesized through a hydrothermal sulfuration process. The as‐assembled all‐solid‐state NiCo LDH//active carbon asymmetric supercapacitor shows a maximum energy density of 83.4 W h kg −1 at a power density of 1066 W kg −1 .
A facile and new anion exchange process is presented, which involves the conversion of NiCo‐CO3 layered double hydroxide (LDH) nanosheet arrays in an alkaline solution. The anion exchange between CO32− and OH− results in the construction of a reservoir for OH− anions, and the decoration of thin nanoflakes on the surface of nanosheets effectively enlarges the surface area of NiCo LDH nanoarrays. The capacitance of the as‐soaked NiCo LDH nanoarrays electrode increases from 1.78 F cm−2 (684 F g−1) to 6.22 F cm−2 (2391 F g−1) at 2 mA cm−2 after soaking for 12 h. Moreover, the soaked NiCo‐OH LDH electrode exhibits an enhanced rate capacity, high coulombic efficiency, and good cycling stability compared with the Ni–Co‐S nanosheet electrode synthesized through a hydrothermal sulfuration process. The as‐assembled all‐solid‐state NiCo LDH//active carbon asymmetric supercapacitor shows a maximum energy density of 83.4 W h kg−1 at a power density of 1066 W kg−1. Supercapacitor electrodes: Anion exchange is used to enhance the diffusion of OH− of layered double hydroxide (LDH) nanoarrays to achieve promising capacitive performance for supercapacitors (see figure).
A facile and new anion exchange process is presented, which involves the conversion of NiCo-CO3 layered double hydroxide (LDH) nanosheet arrays in an alkaline solution. The anion exchange between CO3 2- and OH- results in the construction of a reservoir for OH- anions, and the decoration of thin nanoflakes on the surface of nanosheets effectively enlarges the surface area of NiCo LDH nanoarrays. The capacitance of the as-soaked NiCo LDH nanoarrays electrode increases from 1.78 F cm-2 (684 F g-1 ) to 6.22 F cm-2 (2391 F g-1 ) at 2 mA cm-2 after soaking for 12 h. Moreover, the soaked NiCo-OH LDH electrode exhibits an enhanced rate capacity, high coulombic efficiency, and good cycling stability compared with the Ni-Co-S nanosheet electrode synthesized through a hydrothermal sulfuration process. The as-assembled all-solid-state NiCo LDH//active carbon asymmetric supercapacitor shows a maximum energy density of 83.4 W h kg-1 at a power density of 1066 W kg-1 .A facile and new anion exchange process is presented, which involves the conversion of NiCo-CO3 layered double hydroxide (LDH) nanosheet arrays in an alkaline solution. The anion exchange between CO3 2- and OH- results in the construction of a reservoir for OH- anions, and the decoration of thin nanoflakes on the surface of nanosheets effectively enlarges the surface area of NiCo LDH nanoarrays. The capacitance of the as-soaked NiCo LDH nanoarrays electrode increases from 1.78 F cm-2 (684 F g-1 ) to 6.22 F cm-2 (2391 F g-1 ) at 2 mA cm-2 after soaking for 12 h. Moreover, the soaked NiCo-OH LDH electrode exhibits an enhanced rate capacity, high coulombic efficiency, and good cycling stability compared with the Ni-Co-S nanosheet electrode synthesized through a hydrothermal sulfuration process. The as-assembled all-solid-state NiCo LDH//active carbon asymmetric supercapacitor shows a maximum energy density of 83.4 W h kg-1 at a power density of 1066 W kg-1 .
Author Ye, Qinglan
Zou, Wenru
Luo, Yunli
Xu, Xuetang
Guo, Wenxin
Wang, Fan
Liu, Xinyi
Author_xml – sequence: 1
  givenname: Wenru
  surname: Zou
  fullname: Zou, Wenru
  organization: Guangxi University
– sequence: 2
  givenname: Wenxin
  surname: Guo
  fullname: Guo, Wenxin
  organization: Guangxi University
– sequence: 3
  givenname: Xinyi
  surname: Liu
  fullname: Liu, Xinyi
  organization: Guangxi University
– sequence: 4
  givenname: Yunli
  surname: Luo
  fullname: Luo, Yunli
  organization: Guangxi University
– sequence: 5
  givenname: Qinglan
  surname: Ye
  fullname: Ye, Qinglan
  organization: Guangxi University
– sequence: 6
  givenname: Xuetang
  surname: Xu
  fullname: Xu, Xuetang
  email: xxtang@gxu.edu.cn
  organization: Guangxi University
– sequence: 7
  givenname: Fan
  orcidid: 0000-0002-6106-4724
  surname: Wang
  fullname: Wang, Fan
  email: fanwang@gxu.edu.cn
  organization: Guangxi University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30326158$$D View this record in MEDLINE/PubMed
BookMark eNqFUctu1DAUtVARnQ5sWSIv20UGO3Ze7EbpQJCGdgGsI9e-6RicONiJaHazZYfEf_Sj5kvq0bRFqoRYXcn3PK7POUFHne0AodeULCgh8Vu5gXYRE5oTHtP8GZrRJKYRy9LkCM1IwbMoTVhxjE68_0YIKVLGXqBjRlic0iSfodtlp22HVzdyI7prwLbBF3q3_VNavBYTOFD43I5XBnA1KWdvtAJ8uj6vzvCF6KxwTkweN9ZhgSt9vdltf5eiF1IPopOAP489OHl4CJiVATk4q-AdXu62v0rb9sJpH_yD7dJ8F0bjJ_eITgUV04xODGHxEj1vhPHw6n7O0df3qy9lFa0vP3wsl-tIcp7nkcpZwZqCN7TJOKEF45lqIJUhEEJ5LkgBKpYZEKqylHHOsyxJgLIiZ4qKRLI5Oj3o9s7-GMEPdau9BGNEB3b0dUzjoJOTEOQcvbmHjlctqLp3uhVuqh8yDoDFASCd9d5B8wihpN6XWO9LrB9LDAT-hLDPc__9wQlt_k0rDrSf2sD0H5O6rFaf_nLvAHy2s_A
CitedBy_id crossref_primary_10_1016_j_ccr_2021_214253
crossref_primary_10_1007_s10854_022_09269_4
crossref_primary_10_1016_j_jallcom_2021_161453
crossref_primary_10_1021_acsomega_3c01211
crossref_primary_10_1002_smll_202401315
crossref_primary_10_1016_j_jpowsour_2019_227590
crossref_primary_10_1021_acs_energyfuels_3c00315
crossref_primary_10_1016_j_electacta_2020_137081
crossref_primary_10_1016_j_jece_2022_108030
crossref_primary_10_1016_j_jcis_2021_08_094
crossref_primary_10_1016_j_est_2024_111467
crossref_primary_10_3390_catal14010028
crossref_primary_10_1021_acs_jpcc_9b09018
crossref_primary_10_1016_j_surfin_2021_101263
crossref_primary_10_1016_j_jpowsour_2021_230657
crossref_primary_10_1021_acsami_2c12823
crossref_primary_10_1039_D2NR07096K
crossref_primary_10_1016_j_jcis_2020_03_084
crossref_primary_10_1021_acs_inorgchem_3c04568
crossref_primary_10_1016_j_est_2022_104300
crossref_primary_10_1021_acs_inorgchem_9b00905
crossref_primary_10_1039_D0DT03237A
crossref_primary_10_1039_C9QI00681H
crossref_primary_10_1016_j_jallcom_2023_171034
crossref_primary_10_1021_acsami_1c19320
crossref_primary_10_1016_j_cej_2021_133233
crossref_primary_10_1016_j_jclepro_2021_127384
crossref_primary_10_1088_1361_6528_ac7fa4
crossref_primary_10_1039_C9NJ05866D
crossref_primary_10_1002_batt_202200026
crossref_primary_10_1007_s10311_021_01200_3
crossref_primary_10_1016_j_jpcs_2023_111772
crossref_primary_10_1002_ece2_21
crossref_primary_10_1134_S0036024424701541
crossref_primary_10_1016_j_jallcom_2023_172364
crossref_primary_10_1021_acsaem_2c03468
crossref_primary_10_1016_j_est_2021_102330
crossref_primary_10_1016_j_chemosphere_2024_142652
crossref_primary_10_1002_adfm_201903879
crossref_primary_10_1002_ente_201900680
crossref_primary_10_3390_molecules29112546
crossref_primary_10_1016_j_est_2023_110117
crossref_primary_10_1016_j_jallcom_2022_165391
crossref_primary_10_1039_D0SE00909A
crossref_primary_10_1016_j_est_2021_102858
crossref_primary_10_1016_j_apmt_2021_101297
crossref_primary_10_1016_j_electacta_2020_137098
crossref_primary_10_1016_j_electacta_2021_137932
crossref_primary_10_52676_1729_7885_2022_4_63_73
crossref_primary_10_1016_j_colsurfa_2022_129785
crossref_primary_10_1016_j_jpowsour_2025_236474
crossref_primary_10_1016_j_cej_2021_128479
crossref_primary_10_1016_j_jallcom_2021_161502
crossref_primary_10_1002_smll_202002806
crossref_primary_10_1039_D1SE00243K
crossref_primary_10_1016_j_jallcom_2022_167226
crossref_primary_10_1039_D1RA00424G
crossref_primary_10_1021_acsaem_0c02058
crossref_primary_10_1063_5_0217518
crossref_primary_10_1021_acs_energyfuels_4c05376
crossref_primary_10_1039_C9NR03790J
crossref_primary_10_1016_j_cej_2021_133936
crossref_primary_10_1016_j_compositesb_2022_109915
crossref_primary_10_1039_D4TA00299G
Cites_doi 10.1039/C7TA00932A
10.1002/advs.201700059
10.1016/j.nanoen.2016.05.042
10.1021/am5053784
10.1016/j.electacta.2017.07.158
10.1116/1.1247753
10.1021/acsami.5b07607
10.1002/chem.201700017
10.1016/j.electacta.2014.07.076
10.1002/adfm.201605307
10.1038/srep01718
10.1016/j.ceramint.2017.08.006
10.1016/j.electacta.2017.07.133
10.1039/C7TA01326D
10.1016/j.electacta.2017.11.009
10.1021/nl2023433
10.1021/ja102267j
10.1016/j.apsusc.2016.12.206
10.1021/acssuschemeng.7b01879
10.1021/acsami.6b02962
10.1002/advs.201700188
10.1039/C7TA07795E
10.1016/j.nanoen.2015.06.018
10.1016/j.electacta.2018.04.086
10.1039/C6NR04578B
10.1002/anie.201303971
10.1039/C7TA04001F
10.1016/j.jpowsour.2017.12.020
10.1016/j.cej.2017.01.010
10.1039/C7NR04752E
10.1021/acsami.7b03254
10.1039/C6TA08517B
10.1016/j.electacta.2014.11.040
10.1016/j.electacta.2016.02.053
10.1039/C7TA06437C
10.1002/smtd.201700230
10.1039/C6TA02164F
10.1016/j.jpowsour.2016.02.047
10.1002/ange.201303971
10.1016/j.nanoen.2015.04.015
10.2478/BF02475578
10.1021/acsami.5b07599
10.1016/j.jpowsour.2013.12.092
10.1016/j.nanoen.2015.10.036
10.1021/acsami.6b12518
10.1016/j.cej.2017.03.095
10.1002/advs.201600539
10.1021/acsami.5b10158
10.1002/celc.201700525
ContentType Journal Article
Copyright 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1002/chem.201804218
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 19316
ExternalDocumentID 30326158
10_1002_chem_201804218
CHEM201804218
Genre article
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Guangxi Province
  funderid: 2015GXNSFAA139028
– fundername: National Natural Science Foundation of China
  funderid: 51862002
– fundername: National Natural Science Foundation of China
  grantid: 51862002
– fundername: Natural Science Foundation of Guangxi Province
  grantid: 2015GXNSFAA139028
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7X8
ID FETCH-LOGICAL-c4488-d8393f94f1f74019347dfe6c0940148a09ed2c7e01d7634447755e13983d1a5c3
IEDL.DBID DR2
ISSN 0947-6539
1521-3765
IngestDate Fri Jul 11 01:40:40 EDT 2025
Mon Jul 21 05:57:31 EDT 2025
Thu Apr 24 22:57:42 EDT 2025
Tue Jul 01 01:29:44 EDT 2025
Wed Jan 22 17:09:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 72
Keywords electrochemistry
anions
supercapacitors
coulombic efficiency
sulfuration
ion exchange
Language English
License 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4488-d8393f94f1f74019347dfe6c0940148a09ed2c7e01d7634447755e13983d1a5c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6106-4724
PMID 30326158
PQID 2121488030
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2121488030
pubmed_primary_30326158
crossref_primary_10_1002_chem_201804218
crossref_citationtrail_10_1002_chem_201804218
wiley_primary_10_1002_chem_201804218_CHEM201804218
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 20, 2018
PublicationDateYYYYMMDD 2018-12-20
PublicationDate_xml – month: 12
  year: 2018
  text: December 20, 2018
  day: 20
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry
PublicationYear 2018
References 2017; 5
2014 2014; 53 126
2015; 15
2013; 3
2015; 16
2017; 4
2016; 19
2017; 27
2017; 43
2017; 23
2011; 11
2004; 2
2014; 254
2015; 7
2017; 9
2017; 315
2018; 274
2015; 151
2016; 4
2018; 2
2018; 259
2018; 378
2010; 132
2016; 312
2016; 193
2014; 141
1994; 3
2017; 322
2014; 6
2017; 400
2016; 26
2016; 8
2017; 248
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_10_2
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 248
  start-page: 322
  year: 2017
  end-page: 332
  publication-title: Electrochim. Acta
– volume: 151
  start-page: 35
  year: 2015
  end-page: 41
  publication-title: Electrochim. Acta
– volume: 19
  start-page: 222
  year: 2016
  end-page: 233
  publication-title: Nano Energy
– volume: 4
  start-page: 1700059
  year: 2017
  publication-title: Adv. Sci.
– volume: 6
  start-page: 19318
  year: 2014
  end-page: 19326
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 8421
  year: 2016
  end-page: 8427
  publication-title: J. Mater. Chem. A
– volume: 53 126
  start-page: 1488 1512
  year: 2014 2014
  end-page: 1504 1530
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 7
  start-page: 24204
  year: 2015
  end-page: 24211
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 1718
  year: 2013
  publication-title: Sci. Rep.
– volume: 23
  start-page: 4435
  year: 2017
  end-page: 4441
  publication-title: Chem. Eur. J.
– volume: 254
  start-page: 249
  year: 2014
  end-page: 257
  publication-title: J. Power Sources
– volume: 8
  start-page: 33732
  year: 2016
  end-page: 33740
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 9923
  year: 2017
  end-page: 9934
  publication-title: ACS Sustainable Chem. Eng.
– volume: 16
  start-page: 71
  year: 2015
  end-page: 80
  publication-title: Nano Energy
– volume: 5
  start-page: 24981
  year: 2017
  end-page: 24988
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 7144
  year: 2017
  end-page: 7152
  publication-title: J. Mater. Chem. A
– volume: 248
  start-page: 562
  year: 2017
  end-page: 569
  publication-title: Electrochim. Acta
– volume: 15
  start-page: 145
  year: 2015
  end-page: 152
  publication-title: Nano Energy
– volume: 8
  start-page: 8568
  year: 2016
  end-page: 8575
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 2562
  year: 2016
  end-page: 2572
  publication-title: ACS Appl. Mater. Interfaces
– volume: 315
  start-page: 35
  year: 2017
  end-page: 45
  publication-title: Chem. Eng. J.
– volume: 4
  start-page: 18335
  year: 2016
  end-page: 18341
  publication-title: J. Mater. Chem. A
– volume: 132
  start-page: 7472
  year: 2010
  end-page: 7477
  publication-title: J. Am. Chem. Soc.
– volume: 400
  start-page: 238
  year: 2017
  end-page: 244
  publication-title: Appl. Surf. Sci.
– volume: 5
  start-page: 15460
  year: 2017
  end-page: 15485
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 26512
  year: 2015
  end-page: 26521
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 15206
  year: 2017
  end-page: 15225
  publication-title: Nanoscale
– volume: 4
  start-page: 1700188
  year: 2017
  publication-title: Adv. Sci.
– volume: 4
  start-page: 2428
  year: 2017
  end-page: 2441
  publication-title: ChemElectroChem
– volume: 11
  start-page: 5165
  year: 2011
  end-page: 5172
  publication-title: Nano Lett.
– volume: 5
  start-page: 9443
  year: 2017
  end-page: 9464
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 18774
  year: 2017
  end-page: 18781
  publication-title: ACS Appl. Mater. Interfaces
– volume: 141
  start-page: 286
  year: 2014
  end-page: 293
  publication-title: Electrochim. Acta
– volume: 3
  start-page: 247
  year: 1994
  end-page: 254
  publication-title: Surf. Sci. Spectra
– volume: 4
  start-page: 1600539
  year: 2017
  publication-title: Adv. Sci.
– volume: 322
  start-page: 498
  year: 2017
  end-page: 509
  publication-title: Chem. Eng. J.
– volume: 274
  start-page: 208
  year: 2018
  end-page: 216
  publication-title: Electrochim. Acta
– volume: 2
  start-page: 347
  year: 2004
  end-page: 362
  publication-title: Cent. Eur. J. Chem.
– volume: 259
  start-page: 1037
  year: 2018
  end-page: 1044
  publication-title: Electrochim. Acta
– volume: 2
  start-page: 1700230
  year: 2018
  publication-title: Small Meth.
– volume: 26
  start-page: 313
  year: 2016
  end-page: 323
  publication-title: Nano Energy
– volume: 5
  start-page: 24407
  year: 2017
  end-page: 24415
  publication-title: J. Mater. Chem. A
– volume: 312
  start-page: 156
  year: 2016
  end-page: 164
  publication-title: J. Power Sources
– volume: 193
  start-page: 116
  year: 2016
  end-page: 127
  publication-title: Electrochim. Acta
– volume: 27
  start-page: 1605307
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 43
  start-page: 14897
  year: 2017
  end-page: 14904
  publication-title: Ceram. Int.
– volume: 8
  start-page: 17055
  year: 2016
  end-page: 17063
  publication-title: Nanoscale
– volume: 378
  start-page: 31
  year: 2018
  end-page: 39
  publication-title: J. Power Sources
– ident: e_1_2_6_4_1
  doi: 10.1039/C7TA00932A
– ident: e_1_2_6_5_1
  doi: 10.1002/advs.201700059
– ident: e_1_2_6_35_1
  doi: 10.1016/j.nanoen.2016.05.042
– ident: e_1_2_6_17_1
  doi: 10.1021/am5053784
– ident: e_1_2_6_40_1
  doi: 10.1016/j.electacta.2017.07.158
– ident: e_1_2_6_37_1
  doi: 10.1116/1.1247753
– ident: e_1_2_6_48_1
  doi: 10.1021/acsami.5b07607
– ident: e_1_2_6_12_1
  doi: 10.1002/chem.201700017
– ident: e_1_2_6_27_1
  doi: 10.1016/j.electacta.2014.07.076
– ident: e_1_2_6_8_1
  doi: 10.1002/adfm.201605307
– ident: e_1_2_6_26_1
  doi: 10.1038/srep01718
– ident: e_1_2_6_30_1
  doi: 10.1016/j.ceramint.2017.08.006
– ident: e_1_2_6_23_1
  doi: 10.1016/j.electacta.2017.07.133
– ident: e_1_2_6_42_1
  doi: 10.1039/C7TA01326D
– ident: e_1_2_6_9_1
  doi: 10.1016/j.electacta.2017.11.009
– ident: e_1_2_6_41_1
  doi: 10.1021/nl2023433
– ident: e_1_2_6_7_1
  doi: 10.1021/ja102267j
– ident: e_1_2_6_18_1
  doi: 10.1016/j.apsusc.2016.12.206
– ident: e_1_2_6_39_1
  doi: 10.1021/acssuschemeng.7b01879
– ident: e_1_2_6_14_1
  doi: 10.1021/acsami.6b02962
– ident: e_1_2_6_1_1
  doi: 10.1002/advs.201700188
– ident: e_1_2_6_36_1
  doi: 10.1039/C7TA07795E
– ident: e_1_2_6_21_1
  doi: 10.1016/j.nanoen.2015.06.018
– ident: e_1_2_6_15_1
  doi: 10.1016/j.electacta.2018.04.086
– ident: e_1_2_6_22_1
  doi: 10.1039/C6NR04578B
– ident: e_1_2_6_10_1
  doi: 10.1002/anie.201303971
– ident: e_1_2_6_24_1
  doi: 10.1039/C7TA04001F
– ident: e_1_2_6_32_1
  doi: 10.1016/j.jpowsour.2017.12.020
– ident: e_1_2_6_43_1
  doi: 10.1016/j.cej.2017.01.010
– ident: e_1_2_6_3_1
  doi: 10.1039/C7NR04752E
– ident: e_1_2_6_20_1
  doi: 10.1021/acsami.7b03254
– ident: e_1_2_6_33_1
  doi: 10.1039/C6TA08517B
– ident: e_1_2_6_19_1
  doi: 10.1016/j.electacta.2014.11.040
– ident: e_1_2_6_45_1
  doi: 10.1016/j.electacta.2016.02.053
– ident: e_1_2_6_11_1
  doi: 10.1039/C7TA06437C
– ident: e_1_2_6_2_1
  doi: 10.1002/smtd.201700230
– ident: e_1_2_6_25_1
  doi: 10.1039/C6TA02164F
– ident: e_1_2_6_44_1
  doi: 10.1016/j.jpowsour.2016.02.047
– ident: e_1_2_6_10_2
  doi: 10.1002/ange.201303971
– ident: e_1_2_6_28_1
  doi: 10.1016/j.nanoen.2015.04.015
– ident: e_1_2_6_34_1
  doi: 10.2478/BF02475578
– ident: e_1_2_6_47_1
  doi: 10.1021/acsami.5b07599
– ident: e_1_2_6_16_1
  doi: 10.1016/j.jpowsour.2013.12.092
– ident: e_1_2_6_46_1
  doi: 10.1016/j.nanoen.2015.10.036
– ident: e_1_2_6_29_1
  doi: 10.1021/acsami.6b12518
– ident: e_1_2_6_38_1
  doi: 10.1016/j.cej.2017.03.095
– ident: e_1_2_6_6_1
  doi: 10.1002/advs.201600539
– ident: e_1_2_6_31_1
  doi: 10.1021/acsami.5b10158
– ident: e_1_2_6_13_1
  doi: 10.1002/celc.201700525
SSID ssj0009633
Score 2.5220401
Snippet A facile and new anion exchange process is presented, which involves the conversion of NiCo‐CO3 layered double hydroxide (LDH) nanosheet arrays in an alkaline...
A facile and new anion exchange process is presented, which involves the conversion of NiCo‐CO 3 layered double hydroxide (LDH) nanosheet arrays in an alkaline...
A facile and new anion exchange process is presented, which involves the conversion of NiCo-CO layered double hydroxide (LDH) nanosheet arrays in an alkaline...
A facile and new anion exchange process is presented, which involves the conversion of NiCo-CO3 layered double hydroxide (LDH) nanosheet arrays in an alkaline...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 19309
SubjectTerms anions
coulombic efficiency
electrochemistry
ion exchange
sulfuration
supercapacitors
Title Anion Exchange of Ni–Co Layered Double Hydroxide (LDH) Nanoarrays for a High‐Capacitance Supercapacitor Electrode: A Comparison of Alkali Anion Exchange and Sulfuration
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201804218
https://www.ncbi.nlm.nih.gov/pubmed/30326158
https://www.proquest.com/docview/2121488030
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTttAFB1VbGDTF5SGlmqQKlEWBj_GdswuMkFRBSwoSOyseUoRkR0lsdR0lW13lfgPPipfwr2e2CGgqhLd2dbMeEb3zJ0z9txzCfnqBj7XKkkcKY3rsERyJwGf6ChXaBUBv_cqIe3zi6h3zb7fhDePovitPkTzwQ1nRuWvcYJzMT5aiobCmDCS3GsD7DyM9sUDW8iKLpf6UYAum0uexQ5qsNaqja5_tFp9dVV6RjVXmWu19Jy-IbzutD1xcntYTsSh_PVEz_F_RvWWvF7wUtqxQHpHXun8PVlP63Rwm-S-k4MJafenDRWmhaEX_fnsLi3oGZ9ixk8KZFwMNO1NFfS0rzT9dnbSO6DgwAs-GvHpmAJDppzi2ZL57E8K67TsTxB29Ec51CNpH0CZrk3Oo_Qx7cxnv9MmWSK-tjO4hc0DfdIfnitoZWBKC-ktcn3avUp7ziLZgyNhhwjgAKYWmIQZz2CSwCRgsTI6kqjvB3jhbqKVL2PtegpcImMsjsNQA39tB8rjoQw-kLW8yPVHQhlw8DYX2g-NZFJEPBCJAN-losggHWsRpzZ2JhdK6JiQY5BZDWc_QytkjRVaZL8pP7QaIH8tuVdjJwPz4L8XnuuiHGfAEDz0lYHbItsWVE1bwCJgHxtCbb-Cxj9ekqFYRnO385JKn8gGXuOxHN_9TNYmo1LvArmaiC_VBHoAJecdwg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTttAFB0VuoBN34X0xVSqVLow-DG2Y3aRCXLbkEUBqTtrnlJEZKMQS01X2XZXif_go_Il3OuJjUJVIbVLWzP2WPfMnTPjmXMI-eAGPtcqSRwpjeuwRHIngZzoKFdoFQG_92oh7eNhlJ2xL9_DZjchnoWx-hDtghv2jDpfYwfHBen9W9VQ-Cg8Su51AXded408RFtvlM8__HarIAX4sm7yLHZQhbXRbXT9_dX6q-PSH2RzlbvWg8_RYyKaZts9J-d71VTsyZ93FB3_67uekEdLakp7FktPyQNdPCMbaeMI95xc9wqIIu3_sKeFaWnocLSYX6UlHfAZmn5S4ONirGk2U9DUkdJ0d3CYfaKQw0s-mfDZJQWSTDnF7SWL-e8Uhmo5miLy6El1oSfS3oAyfevPo_QB7S3mv9LWLxFf2xufw_yB3mkPLxQ8ZWwqi-oX5Oyof5pmztLvwZEwSQR8AFkLTMKMZ9AnMAlYrIyOJEr8AWS4m2jly1i7noKsyBiL4zDUQGG7gfJ4KIOXZL0oC71NKAMa3uVC-6GRTIqIByIRkL5UFBlkZB3iNNHO5VIMHT05xrmVcfZzjELeRqFDPrblL6wMyF9Lvm_Ak0N48PcLL3RZXeZAEjxMl4HbIVsWVe2zgEjAVDaE2n6NjXtekqNeRnv16l8q7ZCN7PR4kA8-D7--Jpt4H3fp-O4bsj6dVPotcK2peFf3phvypSHe
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LjtMwFLVgkIAN74HyNBISsMiMkzhJza5KWxUoFQJGml3k-CFVUyVVp5Eoq27ZIfEffFS_hHvjJkMHISRYJrITW_f4-jixzyHkGQsDabQQnlKWeVwo6QnIiZ5mudEx8Hu_FtJ-N4lHR_zNcXT8yyl-pw_RfnDDkVHnaxzgc20Pz0RDoU94ktzvAuz87kVyicdMoHlD_8OZgBTAy5nJ88RDEdZGtpEFh7v1d6el37jmLnWt557hdSKbVrstJycH1TI_UF_OCTr-T7dukGtbYkp7Dkk3yQVT3CJX0sYP7jb50SsghnTw2Z0VpqWlk-lm_T0t6Viu0PKTAhvPZ4aOVhpaOtWGvhj3Ry8pZPBSLhZydUqBIlNJcXPJZv0thYlaTZeIO_qxmpuFcjegzMC582jzivY2669p65aIr-3NTmD1QM-1RxYanjKzlcP0HXI0HHxKR97W7cFTsEQEdABVC63g1rfoEihCnmhrYoUCfwAYyYTRgUoM8zXkRM55kkSRAQLbDbUvIxXuk72iLMw9QjmQ8K7MTRBZxVUeyzAXOSQvHccW-ViHeE2wM7WVQkdHjlnmRJyDDKOQtVHokOdt-bkTAfljyacNdjIID_58kYUpq9MMKIKPyTJkHXLXgap9FtAIWMhGUDuoofGXl2SoltFe3f-XSk_I5ff9YTZ-PXn7gFzF27hFJ2APyd5yUZlHQLSW-eN6LP0EcZsgjQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anion+Exchange+of+Ni%E2%80%93Co+Layered+Double+Hydroxide+%28LDH%29+Nanoarrays+for+a+High%E2%80%90Capacitance+Supercapacitor+Electrode%3A+A%E2%80%89Comparison+of+Alkali+Anion+Exchange+and+Sulfuration&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Zou%2C+Wenru&rft.au=Guo%2C+Wenxin&rft.au=Liu%2C+Xinyi&rft.au=Luo%2C+Yunli&rft.date=2018-12-20&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=24&rft.issue=72&rft.spage=19309&rft.epage=19316&rft_id=info:doi/10.1002%2Fchem.201804218&rft.externalDBID=10.1002%252Fchem.201804218&rft.externalDocID=CHEM201804218
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon