Transcriptional instability is not a universal attribute of aging
Summary It has been proposed that cumulative somatic mutations contribute to the aging process by disrupting the transcriptional networks that regulate cell structure and function. Experimental support for this model emerged from a recent study of cardiomyocytes that showed a dramatic increase in th...
Saved in:
Published in | Aging cell Vol. 6; no. 6; pp. 775 - 782 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.12.2007
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
It has been proposed that cumulative somatic mutations contribute to the aging process by disrupting the transcriptional networks that regulate cell structure and function. Experimental support for this model emerged from a recent study of cardiomyocytes that showed a dramatic increase in the transcriptional heterogeneity of these long‐lived postmitotic cells with age. To determine if regulatory instability is a hallmark of aging in renewing tissues, we evaluated gene expression noise in four hematopoietic cell types: stem cells, granulocytes, naïve B cells and naïve T cells. We used flow cytometry to purify phenotypically equivalent cells from young and old mice, and applied multiplexed quantitative reverse transcription–polymerase chain reaction to measure the copy number of six different mRNA transcripts in 324 individual cells. There was a trend toward higher transcript levels in cells isolated from old animals, but no significant increase in transcriptional heterogeneity with age was found in the surveyed populations. Flow cytometric analysis of membrane protein expression also indicated that cell‐to‐cell variability was unaffected by age. We conclude that large‐scale regulatory destabilization is not a universal concomitant of aging, and may be of significance as an aging mechanism primarily in nonrenewing tissues. |
---|---|
AbstractList | It has been proposed that cumulative somatic mutations contribute to the aging process by disrupting the transcriptional networks that regulate cell structure and function. Experimental support for this model emerged from a recent study of cardiomyocytes that showed a dramatic increase in the transcriptional heterogeneity of these long-lived postmitotic cells with age. To determine if regulatory instability is a hallmark of aging in renewing tissues, we evaluated gene expression noise in four hematopoietic cell types: stem cells, granulocytes, naïve B cells and naïve T cells. We used flow cytometry to purify phenotypically equivalent cells from young and old mice, and applied multiplexed quantitative reverse transcription-polymerase chain reaction to measure the copy number of six different mRNA transcripts in 324 individual cells. There was a trend toward higher transcript levels in cells isolated from old animals, but no significant increase in transcriptional heterogeneity with age was found in the surveyed populations. Flow cytometric analysis of membrane protein expression also indicated that cell-to-cell variability was unaffected by age. We conclude that large-scale regulatory destabilization is not a universal concomitant of aging, and may be of significance as an aging mechanism primarily in nonrenewing tissues. Summary It has been proposed that cumulative somatic mutations contribute to the aging process by disrupting the transcriptional networks that regulate cell structure and function. Experimental support for this model emerged from a recent study of cardiomyocytes that showed a dramatic increase in the transcriptional heterogeneity of these long‐lived postmitotic cells with age. To determine if regulatory instability is a hallmark of aging in renewing tissues, we evaluated gene expression noise in four hematopoietic cell types: stem cells, granulocytes, naïve B cells and naïve T cells. We used flow cytometry to purify phenotypically equivalent cells from young and old mice, and applied multiplexed quantitative reverse transcription–polymerase chain reaction to measure the copy number of six different mRNA transcripts in 324 individual cells. There was a trend toward higher transcript levels in cells isolated from old animals, but no significant increase in transcriptional heterogeneity with age was found in the surveyed populations. Flow cytometric analysis of membrane protein expression also indicated that cell‐to‐cell variability was unaffected by age. We conclude that large‐scale regulatory destabilization is not a universal concomitant of aging, and may be of significance as an aging mechanism primarily in nonrenewing tissues. It has been proposed that cumulative somatic mutations contribute to the aging process by disrupting the transcriptional networks that regulate cell structure and function. Experimental support for this model emerged from a recent study of cardiomyocytes that showed a dramatic increase in the transcriptional heterogeneity of these long-lived postmitotic cells with age. To determine if regulatory instability is a hallmark of aging in renewing tissues, we evaluated gene expression noise in four hematopoietic cell types: stem cells, granulocytes, naive B cells and naive T cells. We used flow cytometry to purify phenotypically equivalent cells from young and old mice, and applied multiplexed quantitative reverse transcription-polymerase chain reaction to measure the copy number of six different mRNA transcripts in 324 individual cells. There was a trend toward higher transcript levels in cells isolated from old animals, but no significant increase in transcriptional heterogeneity with age was found in the surveyed populations. Flow cytometric analysis of membrane protein expression also indicated that cell-to-cell variability was unaffected by age. We conclude that large-scale regulatory destabilization is not a universal concomitant of aging, and may be of significance as an aging mechanism primarily in nonrenewing tissues. It has been proposed that cumulative somatic mutations contribute to the aging process by disrupting the transcriptional networks that regulate cell structure and function. Experimental support for this model emerged from a recent study of cardiomyocytes that showed a dramatic increase in the transcriptional heterogeneity of these long-lived postmitotic cells with age. To determine if regulatory instability is a hallmark of aging in renewing tissues, we evaluated gene expression noise in four hematopoietic cell types: stem cells, granulocytes, naïve B cells and naïve T cells. We used flow cytometry to purify phenotypically equivalent cells from young and old mice, and applied multiplexed quantitative reverse transcription-polymerase chain reaction to measure the copy number of six different mRNA transcripts in 324 individual cells. There was a trend toward higher transcript levels in cells isolated from old animals, but no significant increase in transcriptional heterogeneity with age was found in the surveyed populations. Flow cytometric analysis of membrane protein expression also indicated that cell-to-cell variability was unaffected by age. We conclude that large-scale regulatory destabilization is not a universal concomitant of aging, and may be of significance as an aging mechanism primarily in nonrenewing tissues.It has been proposed that cumulative somatic mutations contribute to the aging process by disrupting the transcriptional networks that regulate cell structure and function. Experimental support for this model emerged from a recent study of cardiomyocytes that showed a dramatic increase in the transcriptional heterogeneity of these long-lived postmitotic cells with age. To determine if regulatory instability is a hallmark of aging in renewing tissues, we evaluated gene expression noise in four hematopoietic cell types: stem cells, granulocytes, naïve B cells and naïve T cells. We used flow cytometry to purify phenotypically equivalent cells from young and old mice, and applied multiplexed quantitative reverse transcription-polymerase chain reaction to measure the copy number of six different mRNA transcripts in 324 individual cells. There was a trend toward higher transcript levels in cells isolated from old animals, but no significant increase in transcriptional heterogeneity with age was found in the surveyed populations. Flow cytometric analysis of membrane protein expression also indicated that cell-to-cell variability was unaffected by age. We conclude that large-scale regulatory destabilization is not a universal concomitant of aging, and may be of significance as an aging mechanism primarily in nonrenewing tissues. |
Author | Weissman, Irving L. Schiebinger, Geoffrey R. Rossi, Derrick J. Kim, Stuart K. Quake, Stephen R. Warren, Luigi A. |
Author_xml | – sequence: 1 givenname: Luigi A. surname: Warren fullname: Warren, Luigi A. – sequence: 2 givenname: Derrick J. surname: Rossi fullname: Rossi, Derrick J. – sequence: 3 givenname: Geoffrey R. surname: Schiebinger fullname: Schiebinger, Geoffrey R. – sequence: 4 givenname: Irving L. surname: Weissman fullname: Weissman, Irving L. – sequence: 5 givenname: Stuart K. surname: Kim fullname: Kim, Stuart K. – sequence: 6 givenname: Stephen R. surname: Quake fullname: Quake, Stephen R. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17925006$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUT1PwzAQtRAIaOEvoExsDefYcZwBpKoqH1IlFpgt27WRq9QptgP035NQ6MACt9xJ7-Ok90bo0LfeIJRhyHE_V6sc04pO6qpgeQFQ5QCEVPnHATrdA4f7G_MTNIpxBYCrGsgxOul3UQKwUzR9CtJHHdwmudbLJnM-Jqlc49I2czHzbcpk1nn3ZkLsYZlScKpLJmttJl-cfzlDR1Y20Zx_7zF6vp0_ze4ni8e7h9l0MdGU8mqildFMWm0tKGCcU1ZiUtKyZtIoC4YaulRQl0BqxS2ue6worDZsuaREUUPG6HLnuwnta2diEmsXtWka6U3bRcF4CQXF7E9iASUnRcV74sU3sVNrsxSb4NYybMVPOj3hZkfQoY0xGCu0S3IIKgXpGoFBDHWIlRiSFkPqYqhDfNUhPnoD_stg_-Nv6fVO-u4as_23Tkxn80V_kU_BN6Gx |
CitedBy_id | crossref_primary_10_1016_j_cell_2016_07_050 crossref_primary_10_1016_j_molcel_2010_08_015 crossref_primary_10_1371_journal_pone_0026105 crossref_primary_10_1371_journal_pone_0030542 crossref_primary_10_1186_s13059_023_03036_2 crossref_primary_10_1038_s43587_024_00706_z crossref_primary_10_1371_journal_pone_0021211 crossref_primary_10_1038_s41593_019_0491_3 crossref_primary_10_1016_j_mad_2008_03_010 crossref_primary_10_1038_s42255_020_00304_4 crossref_primary_10_1371_journal_pone_0120889 crossref_primary_10_1016_j_cell_2014_06_027 crossref_primary_10_1101_gr_278144_123 crossref_primary_10_18632_aging_100014 crossref_primary_10_1093_bfgp_elx025 crossref_primary_10_1016_j_cell_2017_09_004 crossref_primary_10_1016_j_tcb_2016_11_006 crossref_primary_10_1038_s41556_018_0227_8 crossref_primary_10_1016_j_biocel_2022_106343 crossref_primary_10_1002_JLB_1RI0418_160R crossref_primary_10_1371_journal_pone_0185236 crossref_primary_10_1371_journal_pgen_1000776 crossref_primary_10_1126_science_aah4115 crossref_primary_10_1093_molbev_msab302 crossref_primary_10_5483_BMBRep_2019_52_1_296 crossref_primary_10_1016_j_yjmcc_2015_12_017 crossref_primary_10_1038_nrm4048 crossref_primary_10_1016_j_ceb_2016_12_009 crossref_primary_10_3389_fnagi_2016_00183 crossref_primary_10_18632_aging_101912 crossref_primary_10_3390_ijms24043701 crossref_primary_10_1063_1_3596394 crossref_primary_10_1038_nmeth_1557 crossref_primary_10_1038_s43587_024_00696_y crossref_primary_10_1146_annurev_genet_102209_163607 crossref_primary_10_3389_fcvm_2018_00167 crossref_primary_10_1016_j_cell_2008_01_036 crossref_primary_10_7554_eLife_80380 |
Cites_doi | 10.1016/j.cell.2005.01.027 10.1016/j.coi.2005.07.002 10.1016/S1074-7613(01)00220-5 10.1016/S0047-6374(02)00028-3 10.1084/jem.157.1.202 10.1093/acprof:oso/9780198569237.001.0001 10.1126/science.273.5272.242 10.1007/s004410000188 10.1073/pnas.97.15.8403 10.1016/j.molmed.2006.07.007 10.1038/35041682 10.1073/pnas.0503280102 10.1101/gr.125502 10.1101/gr.2890204 10.1038/nature04844 10.1038/ng1297-431 10.1126/science.273.5271.70 10.1182/blood.V25.5.683.683 10.4049/jimmunol.138.12.4313 10.1016/0923-2494(96)80237-9 10.1073/pnas.261562798 10.1016/j.exger.2006.11.019 10.1101/gr.3820805 10.1084/jem.147.4.984 10.1016/j.immuni.2006.06.001 10.1126/science.1087447 10.1093/nar/gni182 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM 7X8 |
DOI | 10.1111/j.1474-9726.2007.00337.x |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Nucleic Acids Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1474-9726 |
EndPage | 782 |
ExternalDocumentID | 17925006 10_1111_j_1474_9726_2007_00337_x ACEL337 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: R01 AG025941 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 23M 24P 2WC 31~ 36B 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FH 8UM 930 A01 A03 AAHHS AAZKR ABCQN ABDBF ABEML ABJNI ACCFJ ACCMX ACGFO ACGFS ACPRK ACSCC ACUHS ACXQS ADBBV ADKYN ADRAZ ADZMN ADZOD AEEZP AEGXH AENEX AEQDE AFBPY AFEBI AFKRA AFZJQ AIAGR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BAWUL BBNVY BCNDV BENPR BFHJK BHPHI BY8 CAG CCPQU COF CS3 D-6 D-7 D-E D-F DIK DR2 E3Z EAD EAP EBD EBS EJD EMB EMK EMOBN EST ESX F00 F01 F04 F5P FIJ GODZA GROUPED_DOAJ GX1 HCIFZ HF~ HOLLA HZ~ IAO IHE IHR IPNFZ ITC IX1 J0M K.9 KQ8 LC2 LC3 LH4 LK8 LP6 LP7 LW6 M48 M7P MK4 N04 N05 N9A O9- OBS OIG OK1 OVD P2P P2X P2Z P4B P4D PIMPY Q11 ROL RPM RX1 SUPJJ SV3 TEORI TR2 TUS UB1 V8K W8V WIN WQJ WRC WXI XG1 YFH YUY ~IA ~WT AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7TM AAMMB AEFGJ AGXDD AIDQK AIDYY 7X8 |
ID | FETCH-LOGICAL-c4487-cbec6afcff0b06884651354596aebf0e4e4db095039b8f1935422fce6dd43b4e3 |
IEDL.DBID | M48 |
ISSN | 1474-9718 1474-9726 |
IngestDate | Thu Jul 10 17:14:20 EDT 2025 Fri Jul 11 02:35:43 EDT 2025 Thu Apr 03 07:11:58 EDT 2025 Tue Jul 01 01:49:08 EDT 2025 Thu Apr 24 22:55:37 EDT 2025 Wed Jan 22 16:22:19 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4487-cbec6afcff0b06884651354596aebf0e4e4db095039b8f1935422fce6dd43b4e3 |
Notes | Luigi A. Warren and Derrick J. Rossi contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1474-9726.2007.00337.x |
PMID | 17925006 |
PQID | 20583278 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_68502416 proquest_miscellaneous_20583278 pubmed_primary_17925006 crossref_citationtrail_10_1111_j_1474_9726_2007_00337_x crossref_primary_10_1111_j_1474_9726_2007_00337_x wiley_primary_10_1111_j_1474_9726_2007_00337_x_ACEL337 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2007 2007-12-00 2007-Dec 20071201 |
PublicationDateYYYYMMDD | 2007-12-01 |
PublicationDate_xml | – month: 12 year: 2007 text: December 2007 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England |
PublicationTitle | Aging cell |
PublicationTitleAlternate | Aging Cell |
PublicationYear | 2007 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 1983; 157 2006; 12 2002; 12 1995; 12 2007 1961; 38 2000; 408 1965; 25 2005; 120 1987; 138 2006; 24 2000; 301 2005; 102 2004; 14 2000; 97 2002; 123 1997; 17 2001; 15 1995; 146 1964; 78 1981 1978; 147 1996; 273 2005; 15 2007; 42 2003; 302 2005; 17 2005; 33 2006; 441 2001; 98 Edwards JL (e_1_2_6_12_1) 1961; 38 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_17_1 e_1_2_6_16_1 Simon JL (e_1_2_6_26_1) 1995; 12 e_1_2_6_21_1 e_1_2_6_20_1 Hinrichs HR (e_1_2_6_15_1) 1964; 78 Galbraith PR (e_1_2_6_13_1) 1965; 25 e_1_2_6_9_1 Lewinsohn DM (e_1_2_6_18_1) 1987; 138 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 Strober S (e_1_2_6_28_1) 1981 e_1_2_6_29_1 e_1_2_6_27_1 |
References_xml | – volume: 15 start-page: 659 year: 2001 end-page: 669 article-title: Upregulation of Flt3 expression within the bone marrow Lin(–)Sca1(+)c‐kit(+) stem cell compartment is accompanied by loss of self‐renewal capacity publication-title: Immunity – volume: 146 start-page: 23 year: 1995 end-page: 34 article-title: Quantitative and qualitative changes in CD44 and MEL‐14 expression by T cells in C57BL/6 mice during aging publication-title: Res. Immunol – volume: 273 start-page: 242 year: 1996 end-page: 245 article-title: Long‐term lymphohematopoietic reconstitution by a single CD34‐low/negative hematopoietic stem cell publication-title: Science – volume: 157 start-page: 202 year: 1983 end-page: 218 article-title: The ‘Ly‐1 B’ cell subpopulation in normal immunodefective, and autoimmune mice publication-title: J. Exp. Med – volume: 78 start-page: 245 year: 1964 end-page: 253 article-title: Incorporation of thymidine into DNA of mouse organs publication-title: Arch. Pathol – year: 2007 – volume: 14 start-page: 1938 year: 2004 end-page: 1947 article-title: Quantification of multiple gene expression in individual cells publication-title: Genome Res – volume: 25 start-page: 683 year: 1965 end-page: 692 article-title: Patterns of granulocyte kinetics in health, infection and in carcinoma publication-title: Blood – volume: 17 start-page: 463 year: 2005 article-title: B cell development and receptor diversity during aging publication-title: Curr. Opin. Immunol – volume: 38 start-page: 437 year: 1961 end-page: 453 article-title: Cell renewal in adult mouse tissues publication-title: Am. J. Pathol – volume: 15 start-page: 1388 year: 2005 end-page: 1392 article-title: Gene expression profiling in single cells from the pancreatic islets of Langerhans reveals lognormal distribution of mRNA levels publication-title: Genome Res – volume: 138 start-page: 4313 year: 1987 end-page: 4321 article-title: Leukocyte‐endothelial cell recognition: evidence of a common molecular mechanism shared by neutrophils, lymphocytes, and other leukocytes publication-title: J. Immunol – volume: 24 start-page: 659 year: 2006 article-title: Evolving patterns of lymphopoiesis from embryogenesis through senescence publication-title: Immunity – volume: 123 start-page: 907 year: 2002 end-page: 915 article-title: Large genome rearrangements as a primary cause of aging publication-title: Mech. Ageing Dev – volume: 273 start-page: 70 year: 1996 end-page: 74 article-title: The aging immune system: primer and prospectus publication-title: Science – volume: 12 start-page: 440 year: 2006 article-title: DNA damage‐induced cell death by apoptosis publication-title: Trends Mol. Med – volume: 302 start-page: 249 year: 2003 end-page: 255 article-title: A gene‐coexpression network for global discovery of conserved genetic modules publication-title: Science – volume: 408 start-page: 233 year: 2000 end-page: 238 article-title: Why do we age? publication-title: Nature – volume: 98 start-page: 14541 year: 2001 end-page: 14546 article-title: Flk‐2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long‐term stem cells publication-title: Proc. Natl Acad. Sci. USA – volume: 42 year: 2007 article-title: Hematopoietic stem cell aging: mechanism and consequence publication-title: Exp. Gerontol – volume: 102 start-page: 9194 year: 2005 end-page: 9199 article-title: Cell intrinsic alterations underlie hematopoietic stem cell aging publication-title: Proc. Natl Acad. Sci. USA – volume: 12 start-page: 1732 year: 2002 end-page: 1738 article-title: Genome dynamics in aging mice publication-title: Genome Res – volume: 147 start-page: 984 year: 1978 end-page: 996 article-title: Expression of IgD by murine lymphocytes. Loss of surface IgD indicates maturation of memory B cells publication-title: J. Exp. Med – volume: 17 start-page: 431 year: 1997 end-page: 434 article-title: Rapid accumulation of genome rearrangements in liver but not in brain of old mice publication-title: Nat. Genet – volume: 120 start-page: 437 year: 2005 end-page: 447 article-title: Understanding the odd science of aging publication-title: Cell – volume: 441 start-page: 1011 year: 2006 end-page: 1014 article-title: Increased cell‐to‐cell variation in gene expression in ageing mouse heart publication-title: Nature – start-page: 19 year: 1981 end-page: 53 – volume: 301 start-page: 133 year: 2000 end-page: 142 article-title: Radiation‐induced apoptosis publication-title: Cell Tissue Res – volume: 33 start-page: e180 year: 2005 article-title: Multiplexed tandem PCR: gene profiling from small amounts of RNA using SYBR Green detection publication-title: Nucleic Acids Res – volume: 97 start-page: 8403 year: 2000 end-page: 8408 article-title: Distinct spectra of somatic mutations accumulated with age in mouse heart and small intestine publication-title: Proc. Natl Acad. Sci. USA – volume: 12 start-page: 115 year: 1995 end-page: 121 article-title: The new biostatistics of resampling publication-title: MD Comput – ident: e_1_2_6_16_1 doi: 10.1016/j.cell.2005.01.027 – start-page: 19 volume-title: The Current Status of Modern Therapy year: 1981 ident: e_1_2_6_28_1 – ident: e_1_2_6_3_1 doi: 10.1016/j.coi.2005.07.002 – ident: e_1_2_6_2_1 doi: 10.1016/S1074-7613(01)00220-5 – volume: 12 start-page: 115 year: 1995 ident: e_1_2_6_26_1 article-title: The new biostatistics of resampling publication-title: MD Comput – ident: e_1_2_6_32_1 doi: 10.1016/S0047-6374(02)00028-3 – ident: e_1_2_6_14_1 doi: 10.1084/jem.157.1.202 – ident: e_1_2_6_31_1 doi: 10.1093/acprof:oso/9780198569237.001.0001 – ident: e_1_2_6_21_1 doi: 10.1126/science.273.5272.242 – ident: e_1_2_6_30_1 doi: 10.1007/s004410000188 – ident: e_1_2_6_10_1 doi: 10.1073/pnas.97.15.8403 – ident: e_1_2_6_23_1 doi: 10.1016/j.molmed.2006.07.007 – volume: 78 start-page: 245 year: 1964 ident: e_1_2_6_15_1 article-title: Incorporation of thymidine into DNA of mouse organs publication-title: Arch. Pathol – ident: e_1_2_6_17_1 doi: 10.1038/35041682 – ident: e_1_2_6_25_1 doi: 10.1073/pnas.0503280102 – ident: e_1_2_6_11_1 doi: 10.1101/gr.125502 – ident: e_1_2_6_22_1 doi: 10.1101/gr.2890204 – ident: e_1_2_6_4_1 doi: 10.1038/nature04844 – ident: e_1_2_6_9_1 doi: 10.1038/ng1297-431 – ident: e_1_2_6_19_1 doi: 10.1126/science.273.5271.70 – volume: 25 start-page: 683 year: 1965 ident: e_1_2_6_13_1 article-title: Patterns of granulocyte kinetics in health, infection and in carcinoma publication-title: Blood doi: 10.1182/blood.V25.5.683.683 – volume: 138 start-page: 4313 year: 1987 ident: e_1_2_6_18_1 article-title: Leukocyte‐endothelial cell recognition: evidence of a common molecular mechanism shared by neutrophils, lymphocytes, and other leukocytes publication-title: J. Immunol doi: 10.4049/jimmunol.138.12.4313 – ident: e_1_2_6_5_1 doi: 10.1016/0923-2494(96)80237-9 – volume: 38 start-page: 437 year: 1961 ident: e_1_2_6_12_1 article-title: Cell renewal in adult mouse tissues publication-title: Am. J. Pathol – ident: e_1_2_6_8_1 doi: 10.1073/pnas.261562798 – ident: e_1_2_6_24_1 doi: 10.1016/j.exger.2006.11.019 – ident: e_1_2_6_6_1 doi: 10.1101/gr.3820805 – ident: e_1_2_6_7_1 doi: 10.1084/jem.147.4.984 – ident: e_1_2_6_20_1 doi: 10.1016/j.immuni.2006.06.001 – ident: e_1_2_6_29_1 doi: 10.1126/science.1087447 – ident: e_1_2_6_27_1 doi: 10.1093/nar/gni182 |
SSID | ssj0017903 |
Score | 2.0739534 |
Snippet | Summary
It has been proposed that cumulative somatic mutations contribute to the aging process by disrupting the transcriptional networks that regulate cell... It has been proposed that cumulative somatic mutations contribute to the aging process by disrupting the transcriptional networks that regulate cell structure... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 775 |
SubjectTerms | aging Aging - genetics Animals Cellular Senescence - genetics FACS Flow Cytometry gene regulation hematopoiesis Hematopoietic Stem Cells - metabolism Mice Mice, Inbred C57BL RNA, Messenger - analysis RNA, Messenger - metabolism single‐cell analysis stem cells Transcription, Genetic |
SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SELz4ftTnHrxu2W2ePZbSUkQ9iIXeliSbQKlsxW7B-uudJN1qfUARbwvJ7G4ymcyXZDIfQtcyEYCjqYoZpTomOTwJlZgYy1RSnkoirbsofHfP-gNyM6TDRfyTuwsT8kMsN9ycZfj52hm4VNMvRs5J3OJNVmUixJg3HJ50oVsOHz0sM0m5PFQ-1j6IpGI1qOfHF616qm_wcxXNenfU20HjqiEhCmXcmJWqod--5Hj8n5buou0Fao3aYZjtoQ1T7KPNwGM5P0Bt7_Gq-Qcqjhzo9GG382g0jYpJGcloFmJAoFiWgWfLRBMbeZqkQzTodR87_XjBzRBrWNDxWIPumbTa2kQ53hpHqY4BjbWYNMomhhiSK4BvCW4pYQElUtJsWm1YnhOsiMFHqFZMCnOCIpZoznJrmsJaIjRWlEqBpWSJBQcuVB3xSg-ZXiQud_wZT9nnBQwnmesgR6vpTtShg7LXOkqXks8heccaMleVqjOwNHd8IgszmU2hFoXpj4vfazBBAfKkrI6Owxj5-CpvAdZMoIR5Ta_9O1m7072Fp9O_Cp6hLb8d7SNwzlGtfJmZC8BRpbr0FvIODYYN9g priority: 102 providerName: Wiley-Blackwell |
Title | Transcriptional instability is not a universal attribute of aging |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1474-9726.2007.00337.x https://www.ncbi.nlm.nih.gov/pubmed/17925006 https://www.proquest.com/docview/20583278 https://www.proquest.com/docview/68502416 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46EXwR785rH3ztaJtrH0TGdExxIuJgbyVpExBGp7vA9u89SVvdUGH4EgI5p01PLudLc5IPoSsZCMDRVPmM0tQnGeSECrSPZSgpDyWRxh4U7j6xTo889Gl_DVXHFUsDjn9d2lk-qd5o0Jh9zG9gwF8vROUQTvyYR6y6kxBj3gBkuQH-idvh2iXfews8dnzJpU4oluN7fn3SstP6gUSXga3zTO0dtF1CSq9Z9IFdtKbzPbRZkEzO91HTuaNqcgDBN4sIXUzs3Hsbe_lw4klvWgRoQLGcFCRY2hsaz3EYHaBe--611fFL4gQ_hdUW91NoGCZNakygLKmM5TvHAJViJrUygSaaZAqwVYBjJQxAOEqiyKSaZRnBimh8iGr5MNfHyGNByllmdCSMISLFilIpsJQsMOBdhaojXlkmSctbxS25xSBZXF1wklibWs5Lu90NNk1mdRR-ab4XN2usoHNZGT-BYWD3NmSuh9MxSFGYm7j4W4IJCngkZHV0VLTa91t5DEAwgBLmmnHl6iTN1t0j5E7-8SmnaMv9JnaRMWeoNhlN9Tngm4m6QOsReYb09iWCtH3_cOE68Cfg7PGf |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFA4yEX3xfpm39cHXjnbNbY9jOKZOH2SCbyVJExBHK64D56_3JFmn8wIivhWS0zY5OTlfkpPzIXQmIg44msiQEqJCnMETl5EOExELwmKBhbEXha9vaP8OX96T-xkdkL0L4_NDzDfcrGW4-doauN2Q_mTlDIdt1qJVKsIkYU0AlMuW4Nutr27nuaRsJioXbe9lYr4Y1vPtmxZ91RcAuohnnUPqbaBR1RQfh_LYnJSyqV4_ZXn8p7ZuovUZcA06fqRtoSWdb6MVT2U53UEd5_SqKQgqPljc6SJvp8HDOMiLMhDBxIeBQLEoPdWWDgoTOKakXXTXOx92--GMniFUsKZjoQL1U2GUMZG01DWu0wGQtanQ0kQaa5xJQHBR0pbcAFAkuNUyStMsw4nEOtlDtbzI9QEKaKQYzYxucWMwV4kkRPBECBoZ8OFc1hGrFJGqWe5yS6ExSj-uYRhObQdZZk17qA4dlL7UUTyXfPL5O34h06h0nYKx2RMUketiMoZaBGZAxn-uQTkB1BPTOtr3g-T9q6wNcDOCEupU_evfSTvd8wE8Hf5VsIFW-8PrQTq4uLk6Qmtud9oF5ByjWvk80ScAq0p56szlDfnQEhE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA7SongR39ZX9-B1Zbd57nGpLVVr8WCleFmS3QQKsi22BfvvnWS31fqA4i2QTHaZSTJfksl8CF3JQACOpspnlKY-yaAkVKB9LENJeSiJNPah8EOPdfrkbkAHZfyTfQtT5IdYHrjZmeHWazvBx5n5Nsk58SPeYItMhBjza8CTVZs0D0Z4NX7uv_SXdwo8cjzJpVQoVuN6fu1r1Vn9QKCrgNZ5pPYu2imhpBcXtt9DGzrfR5sFueT8AMXODS0WBWg4tEjQxcLOveHEy0dTT3qzIjADquW0IL_S3sh4jrvoEPXbradmxy8JE_wUdlncT8EgTJrUmEBZMhnLc44BIkVMamUCTTTJFGCqAEdKGIBulDQaJtUsywhWROMjVMlHuT5BHgtSzjKjG8IYIlKsKJUCS8kCA15VqBriC80kaZlN3JJavCZfdxWcJFanluvSXnODTpP3GgqXkuMio8YaMvWF8hMY_vZOQ-Z6NJtAKwprEhd_t2CCAg4JWQ0dF1b7_CqPAAAGUMOcGdf-nSRutrpQOv2vYB1tPd60k-5t7_4MbbvjYhchc44q07eZvgCcM1WX5QD-AMKG728 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcriptional+instability+is+not+a+universal+attribute+of+aging&rft.jtitle=Aging+cell&rft.au=Warren%2C+Luigi+A.&rft.au=Rossi%2C+Derrick+J.&rft.au=Schiebinger%2C+Geoffrey+R.&rft.au=Weissman%2C+Irving+L.&rft.date=2007-12-01&rft.issn=1474-9718&rft.eissn=1474-9726&rft.volume=6&rft.issue=6&rft.spage=775&rft.epage=782&rft_id=info:doi/10.1111%2Fj.1474-9726.2007.00337.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1474_9726_2007_00337_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-9718&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-9718&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-9718&client=summon |