Charge Injection in Solution-Processed Organic Field-Effect Transistors: Physics, Models and Characterization Methods
A high‐mobility organic semiconductor employed as the active material in a field‐effect transistor does not guarantee per se that expectations of high performance are fulfilled. This is even truer if a downscaled, short channel is adopted. Only if contacts are able to provide the device with as much...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 24; no. 11; pp. 1357 - 1387 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
15.03.2012
WILEY‐VCH Verlag |
Subjects | |
Online Access | Get full text |
ISSN | 0935-9648 1521-4095 1521-4095 |
DOI | 10.1002/adma.201104206 |
Cover
Loading…
Abstract | A high‐mobility organic semiconductor employed as the active material in a field‐effect transistor does not guarantee per se that expectations of high performance are fulfilled. This is even truer if a downscaled, short channel is adopted. Only if contacts are able to provide the device with as much charge as it needs, with a negligible voltage drop across them, then high expectations can turn into high performances. It is a fact that this is not always the case in the field of organic electronics.
In this review, we aim to offer a comprehensive overview on the subject of current injection in organic thin film transistors: physical principles concerning energy level (mis)alignment at interfaces, models describing charge injection, technologies for interface tuning, and techniques for characterizing devices. Finally, a survey of the most recent accomplishments in the field is given. Principles are described in general, but the technologies and survey emphasis is on solution processed transistors, because it is our opinion that scalable, roll‐to‐roll printing processing is one, if not the brightest, possible scenario for the future of organic electronics.
With the exception of electrolyte‐gated organic transistors, where impressively low width normalized resistances were reported (in the range of 10 Ω·cm), to date the lowest values reported for devices where the semiconductor is solution‐processed and where the most common architectures are adopted, are ∼10 kΩ·cm for transistors with a field effect mobility in the 0.1–1 cm2/Vs range. Although these values represent the best case, they still pose a severe limitation for downscaling the channel lengths below a few micrometers, necessary for increasing the device switching speed. Moreover, techniques to lower contact resistances have been often developed on a case‐by‐case basis, depending on the materials, architecture and processing techniques. The lack of a standard strategy has hampered the progress of the field for a long time. Only recently, as the understanding of the rather complex physical processes at the metal/semiconductor interfaces has improved, more general approaches, with a validity that extends to several materials, are being proposed and successfully tested in the literature. Only a combined scientific and technological effort, on the one side to fully understand contact phenomena and on the other to completely master the tailoring of interfaces, will enable the development of advanced organic electronics applications and their widespread adoption in low‐cost, large‐area printed circuits.
A comprehensive overview on the subject of current injection in organic thin‐film transistors is given: physical principles concerning energy level (mis)alignment at interfaces, models describing charge injection, technologies for interface tuning, and techniques for characterizing devices. Finally, a survey of the most recent accomplishments in the field is given. |
---|---|
AbstractList | A high‐mobility organic semiconductor employed as the active material in a field‐effect transistor does not guarantee per se that expectations of high performance are fulfilled. This is even truer if a downscaled, short channel is adopted. Only if contacts are able to provide the device with as much charge as it needs, with a negligible voltage drop across them, then high expectations can turn into high performances. It is a fact that this is not always the case in the field of organic electronics.
In this review, we aim to offer a comprehensive overview on the subject of current injection in organic thin film transistors: physical principles concerning energy level (mis)alignment at interfaces, models describing charge injection, technologies for interface tuning, and techniques for characterizing devices. Finally, a survey of the most recent accomplishments in the field is given. Principles are described in general, but the technologies and survey emphasis is on solution processed transistors, because it is our opinion that scalable, roll‐to‐roll printing processing is one, if not the brightest, possible scenario for the future of organic electronics.
With the exception of electrolyte‐gated organic transistors, where impressively low width normalized resistances were reported (in the range of 10 Ω·cm), to date the lowest values reported for devices where the semiconductor is solution‐processed and where the most common architectures are adopted, are ∼10 kΩ·cm for transistors with a field effect mobility in the 0.1–1 cm2/Vs range. Although these values represent the best case, they still pose a severe limitation for downscaling the channel lengths below a few micrometers, necessary for increasing the device switching speed. Moreover, techniques to lower contact resistances have been often developed on a case‐by‐case basis, depending on the materials, architecture and processing techniques. The lack of a standard strategy has hampered the progress of the field for a long time. Only recently, as the understanding of the rather complex physical processes at the metal/semiconductor interfaces has improved, more general approaches, with a validity that extends to several materials, are being proposed and successfully tested in the literature. Only a combined scientific and technological effort, on the one side to fully understand contact phenomena and on the other to completely master the tailoring of interfaces, will enable the development of advanced organic electronics applications and their widespread adoption in low‐cost, large‐area printed circuits.
A comprehensive overview on the subject of current injection in organic thin‐film transistors is given: physical principles concerning energy level (mis)alignment at interfaces, models describing charge injection, technologies for interface tuning, and techniques for characterizing devices. Finally, a survey of the most recent accomplishments in the field is given. A high‐mobility organic semiconductor employed as the active material in a field‐effect transistor does not guarantee per se that expectations of high performance are fulfilled. This is even truer if a downscaled, short channel is adopted. Only if contacts are able to provide the device with as much charge as it needs, with a negligible voltage drop across them, then high expectations can turn into high performances. It is a fact that this is not always the case in the field of organic electronics. In this review, we aim to offer a comprehensive overview on the subject of current injection in organic thin film transistors: physical principles concerning energy level (mis)alignment at interfaces, models describing charge injection, technologies for interface tuning, and techniques for characterizing devices. Finally, a survey of the most recent accomplishments in the field is given. Principles are described in general, but the technologies and survey emphasis is on solution processed transistors, because it is our opinion that scalable, roll‐to‐roll printing processing is one, if not the brightest, possible scenario for the future of organic electronics. With the exception of electrolyte‐gated organic transistors, where impressively low width normalized resistances were reported (in the range of 10 Ω·cm), to date the lowest values reported for devices where the semiconductor is solution‐processed and where the most common architectures are adopted, are ∼10 kΩ·cm for transistors with a field effect mobility in the 0.1–1 cm 2 /Vs range. Although these values represent the best case, they still pose a severe limitation for downscaling the channel lengths below a few micrometers, necessary for increasing the device switching speed. Moreover, techniques to lower contact resistances have been often developed on a case‐by‐case basis, depending on the materials, architecture and processing techniques. The lack of a standard strategy has hampered the progress of the field for a long time. Only recently, as the understanding of the rather complex physical processes at the metal/semiconductor interfaces has improved, more general approaches, with a validity that extends to several materials, are being proposed and successfully tested in the literature. Only a combined scientific and technological effort, on the one side to fully understand contact phenomena and on the other to completely master the tailoring of interfaces, will enable the development of advanced organic electronics applications and their widespread adoption in low‐cost, large‐area printed circuits. A high-mobility organic semiconductor employed as the active material in a field-effect transistor does not guarantee per se that expectations of high performance are fulfilled. This is even truer if a downscaled, short channel is adopted. Only if contacts are able to provide the device with as much charge as it needs, with a negligible voltage drop across them, then high expectations can turn into high performances. It is a fact that this is not always the case in the field of organic electronics. In this review, we aim to offer a comprehensive overview on the subject of current injection in organic thin film transistors: physical principles concerning energy level (mis)alignment at interfaces, models describing charge injection, technologies for interface tuning, and techniques for characterizing devices. Finally, a survey of the most recent accomplishments in the field is given. Principles are described in general, but the technologies and survey emphasis is on solution processed transistors, because it is our opinion that scalable, roll-to-roll printing processing is one, if not the brightest, possible scenario for the future of organic electronics. With the exception of electrolyte-gated organic transistors, where impressively low width normalized resistances were reported (in the range of 10 Ω·cm), to date the lowest values reported for devices where the semiconductor is solution-processed and where the most common architectures are adopted, are ∼10 kΩ·cm for transistors with a field effect mobility in the 0.1-1 cm(2)/Vs range. Although these values represent the best case, they still pose a severe limitation for downscaling the channel lengths below a few micrometers, necessary for increasing the device switching speed. Moreover, techniques to lower contact resistances have been often developed on a case-by-case basis, depending on the materials, architecture and processing techniques. The lack of a standard strategy has hampered the progress of the field for a long time. Only recently, as the understanding of the rather complex physical processes at the metal/semiconductor interfaces has improved, more general approaches, with a validity that extends to several materials, are being proposed and successfully tested in the literature. Only a combined scientific and technological effort, on the one side to fully understand contact phenomena and on the other to completely master the tailoring of interfaces, will enable the development of advanced organic electronics applications and their widespread adoption in low-cost, large-area printed circuits. A high-mobility organic semiconductor employed as the active material in a field-effect transistor does not guarantee per se that expectations of high performance are fulfilled. This is even truer if a downscaled, short channel is adopted. Only if contacts are able to provide the device with as much charge as it needs, with a negligible voltage drop across them, then high expectations can turn into high performances. It is a fact that this is not always the case in the field of organic electronics. In this review, we aim to offer a comprehensive overview on the subject of current injection in organic thin film transistors: physical principles concerning energy level (mis)alignment at interfaces, models describing charge injection, technologies for interface tuning, and techniques for characterizing devices. Finally, a survey of the most recent accomplishments in the field is given. Principles are described in general, but the technologies and survey emphasis is on solution processed transistors, because it is our opinion that scalable, roll-to-roll printing processing is one, if not the brightest, possible scenario for the future of organic electronics. With the exception of electrolyte-gated organic transistors, where impressively low width normalized resistances were reported (in the range of 10 Ω·cm), to date the lowest values reported for devices where the semiconductor is solution-processed and where the most common architectures are adopted, are ∼10 kΩ·cm for transistors with a field effect mobility in the 0.1-1 cm(2)/Vs range. Although these values represent the best case, they still pose a severe limitation for downscaling the channel lengths below a few micrometers, necessary for increasing the device switching speed. Moreover, techniques to lower contact resistances have been often developed on a case-by-case basis, depending on the materials, architecture and processing techniques. The lack of a standard strategy has hampered the progress of the field for a long time. Only recently, as the understanding of the rather complex physical processes at the metal/semiconductor interfaces has improved, more general approaches, with a validity that extends to several materials, are being proposed and successfully tested in the literature. Only a combined scientific and technological effort, on the one side to fully understand contact phenomena and on the other to completely master the tailoring of interfaces, will enable the development of advanced organic electronics applications and their widespread adoption in low-cost, large-area printed circuits.A high-mobility organic semiconductor employed as the active material in a field-effect transistor does not guarantee per se that expectations of high performance are fulfilled. This is even truer if a downscaled, short channel is adopted. Only if contacts are able to provide the device with as much charge as it needs, with a negligible voltage drop across them, then high expectations can turn into high performances. It is a fact that this is not always the case in the field of organic electronics. In this review, we aim to offer a comprehensive overview on the subject of current injection in organic thin film transistors: physical principles concerning energy level (mis)alignment at interfaces, models describing charge injection, technologies for interface tuning, and techniques for characterizing devices. Finally, a survey of the most recent accomplishments in the field is given. Principles are described in general, but the technologies and survey emphasis is on solution processed transistors, because it is our opinion that scalable, roll-to-roll printing processing is one, if not the brightest, possible scenario for the future of organic electronics. With the exception of electrolyte-gated organic transistors, where impressively low width normalized resistances were reported (in the range of 10 Ω·cm), to date the lowest values reported for devices where the semiconductor is solution-processed and where the most common architectures are adopted, are ∼10 kΩ·cm for transistors with a field effect mobility in the 0.1-1 cm(2)/Vs range. Although these values represent the best case, they still pose a severe limitation for downscaling the channel lengths below a few micrometers, necessary for increasing the device switching speed. Moreover, techniques to lower contact resistances have been often developed on a case-by-case basis, depending on the materials, architecture and processing techniques. The lack of a standard strategy has hampered the progress of the field for a long time. Only recently, as the understanding of the rather complex physical processes at the metal/semiconductor interfaces has improved, more general approaches, with a validity that extends to several materials, are being proposed and successfully tested in the literature. Only a combined scientific and technological effort, on the one side to fully understand contact phenomena and on the other to completely master the tailoring of interfaces, will enable the development of advanced organic electronics applications and their widespread adoption in low-cost, large-area printed circuits. |
Author | Caironi, Mario Natali, Dario |
Author_xml | – sequence: 1 givenname: Dario surname: Natali fullname: Natali, Dario organization: Center for Nano Science and Technology @ PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy – sequence: 2 givenname: Mario surname: Caironi fullname: Caironi, Mario email: Mario.Caironi@iit.it organization: Center for Nano Science and Technology @ PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22354535$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1vEzEQhi1URNPClSPyjQsb_L1eblHalKKmrUQBiYvltWcbl8262LuC8OvZNG2FkBCnmcPzvNLMe4D2utgBQi8pmVJC2Fvr13bKCKVEMKKeoAmVjBaCVHIPTUjFZVEpoffRQc43hJBKEfUM7TPGpZBcTtAwX9l0Dfi0uwHXh9jh0OGPsR22e3GZooOcweOLdG274PAiQOuL46YZaXyVbJdD7mPK7_DlapODy2_wMnpoM7adx9tw63pI4Ze9C19Cv4o-P0dPG9tmeHE_D9GnxfHV_H1xdnFyOp-dFU4IrQrnylpoEJxBIxUD5b2yhDKvXSM0166kVc2c8wwIcMuI1lLWnBMmGKe154fo9S73NsXvA-TerEN20La2gzhkU7FSc6IIG8lX9-RQr8Gb2xTWNm3Mw6dGQOwAl2LOCRrjQn93VJ9saA0lZluI2RZiHgsZtelf2kPyP4VqJ_wILWz-Q5vZ0XL2p1vs3LET-Pno2vTNqJKX0nw5PzFfl5_p4oM6N5r_BrGwrXE |
CitedBy_id | crossref_primary_10_1039_C4RA02077D crossref_primary_10_1002_adma_202109445 crossref_primary_10_1016_j_orgel_2015_07_038 crossref_primary_10_1016_j_jallcom_2021_161610 crossref_primary_10_1088_0268_1242_30_6_064003 crossref_primary_10_1016_j_synthmet_2014_11_023 crossref_primary_10_1063_1_4792066 crossref_primary_10_1002_adma_201300318 crossref_primary_10_1021_acs_jpcc_6b07573 crossref_primary_10_1016_j_aej_2022_05_013 crossref_primary_10_1039_D1TC00968K crossref_primary_10_1002_aelm_202000080 crossref_primary_10_1002_admi_201600215 crossref_primary_10_1021_acsaelm_0c00398 crossref_primary_10_1021_jp4023844 crossref_primary_10_1002_adfm_202009359 crossref_primary_10_1021_acsami_7b19279 crossref_primary_10_1002_smll_202205570 crossref_primary_10_1039_C8TA04901G crossref_primary_10_1002_adfm_201600482 crossref_primary_10_1002_aelm_202100928 crossref_primary_10_1016_j_synthmet_2018_11_002 crossref_primary_10_1007_s13391_018_00112_9 crossref_primary_10_1039_C6TC05467F crossref_primary_10_1002_adma_201605282 crossref_primary_10_1016_j_orgel_2012_09_029 crossref_primary_10_1016_j_orgel_2012_10_028 crossref_primary_10_1002_adma_201404627 crossref_primary_10_1039_D3CE00305A crossref_primary_10_1021_acsami_0c05640 crossref_primary_10_1016_j_orgel_2014_05_006 crossref_primary_10_1039_C8PY00540K crossref_primary_10_1002_admi_201500501 crossref_primary_10_1021_cm303908f crossref_primary_10_1088_2058_8585_ac72dd crossref_primary_10_1021_acs_jpcc_9b11515 crossref_primary_10_1039_C8NR02341G crossref_primary_10_1021_acsami_5b02610 crossref_primary_10_1002_adma_201205361 crossref_primary_10_1002_smm2_1261 crossref_primary_10_1038_srep38941 crossref_primary_10_1088_2058_8585_ac7929 crossref_primary_10_1002_smll_202105896 crossref_primary_10_1016_j_spmi_2015_03_045 crossref_primary_10_1016_j_synthmet_2024_117590 crossref_primary_10_1016_j_tsf_2013_11_045 crossref_primary_10_1021_acsami_0c08902 crossref_primary_10_1016_j_orgel_2013_12_022 crossref_primary_10_1016_j_orgel_2014_05_019 crossref_primary_10_1109_TED_2017_2677086 crossref_primary_10_1002_adma_202104075 crossref_primary_10_1021_acs_chemmater_3c02093 crossref_primary_10_1002_aelm_201800175 crossref_primary_10_3390_cryst9020085 crossref_primary_10_1103_PhysRevB_110_214207 crossref_primary_10_1103_PhysRevMaterials_8_054606 crossref_primary_10_1002_adfm_201601144 crossref_primary_10_1002_adma_202002281 crossref_primary_10_1088_0022_3727_47_20_205402 crossref_primary_10_1002_aelm_201900055 crossref_primary_10_1021_acsami_2c22350 crossref_primary_10_1016_j_carbon_2024_119575 crossref_primary_10_1016_j_orgel_2014_04_032 crossref_primary_10_1088_2058_8585_ab76e1 crossref_primary_10_1039_c2jm32721j crossref_primary_10_1002_adma_201607054 crossref_primary_10_1016_j_polymer_2023_126577 crossref_primary_10_1039_C6MH00411C crossref_primary_10_1016_j_orgel_2012_09_018 crossref_primary_10_1021_acs_jpcc_8b04302 crossref_primary_10_1021_acsami_6b16259 crossref_primary_10_1002_nano_202000059 crossref_primary_10_1002_advs_202416141 crossref_primary_10_1109_LED_2012_2224631 crossref_primary_10_1021_am502007j crossref_primary_10_1016_j_orgel_2017_04_004 crossref_primary_10_1103_PhysRevApplied_8_034020 crossref_primary_10_1080_15980316_2018_1430068 crossref_primary_10_1088_1361_6463_ab42a9 crossref_primary_10_1021_acsaelm_5c00043 crossref_primary_10_1039_C5CP03369A crossref_primary_10_1088_2631_8695_ab3327 crossref_primary_10_1007_s00339_014_8652_4 crossref_primary_10_1002_adfm_201302070 crossref_primary_10_1016_j_orgel_2016_03_033 crossref_primary_10_1039_C9QM00450E crossref_primary_10_1016_j_orgel_2025_107195 crossref_primary_10_1002_adma_201503133 crossref_primary_10_1038_srep10407 crossref_primary_10_1088_2058_8585_aba3af crossref_primary_10_1016_j_mee_2013_03_064 crossref_primary_10_1021_am5057689 crossref_primary_10_1002_aelm_201700514 crossref_primary_10_1126_sciadv_aaz5156 crossref_primary_10_1021_jp5119647 crossref_primary_10_1016_j_matchemphys_2019_02_002 crossref_primary_10_1021_acs_jpclett_4c03140 crossref_primary_10_1002_adma_201205041 crossref_primary_10_1002_pssa_201700064 crossref_primary_10_1016_j_synthmet_2014_04_034 crossref_primary_10_1039_C5TC01540E crossref_primary_10_1002_adma_201300006 crossref_primary_10_1021_am5037862 crossref_primary_10_1002_adfm_201500525 crossref_primary_10_1149_2_0131504jss crossref_primary_10_1039_C3TA12779F crossref_primary_10_1016_j_orgel_2020_105709 crossref_primary_10_1002_adfm_201904508 crossref_primary_10_1016_j_orgel_2018_03_019 crossref_primary_10_1103_PhysRevApplied_8_054012 crossref_primary_10_1002_aelm_202300548 crossref_primary_10_1002_adfm_201401154 crossref_primary_10_1021_acsami_0c05106 crossref_primary_10_1002_aelm_201600094 crossref_primary_10_3390_ma14010003 crossref_primary_10_1039_c3tc30930d crossref_primary_10_1002_aelm_201600097 crossref_primary_10_1016_j_orgel_2014_11_020 crossref_primary_10_1021_acs_jpcc_8b02689 crossref_primary_10_1070_RCR4897 crossref_primary_10_1016_j_orgel_2015_09_024 crossref_primary_10_1002_adfm_202100202 crossref_primary_10_1088_2058_8585_acda48 crossref_primary_10_1039_C9NH00694J crossref_primary_10_1002_aelm_202100430 crossref_primary_10_1016_j_orgel_2013_05_002 crossref_primary_10_1039_C7TC03938G crossref_primary_10_1002_INMD_20240032 crossref_primary_10_1002_adfm_201706105 crossref_primary_10_1007_s10854_015_3495_0 crossref_primary_10_1002_adma_202211184 crossref_primary_10_1038_s41598_017_03882_8 crossref_primary_10_1002_adfm_201903889 crossref_primary_10_1109_TED_2017_2655943 crossref_primary_10_1126_sciadv_1701186 crossref_primary_10_1021_jp306597n crossref_primary_10_1109_TED_2019_2910116 crossref_primary_10_1021_acs_chemmater_0c01397 crossref_primary_10_1039_C9TC00443B crossref_primary_10_1002_marc_202300634 crossref_primary_10_1016_j_mattod_2014_08_037 crossref_primary_10_1021_acsaelm_2c01481 crossref_primary_10_1149_2162_8777_acc75c crossref_primary_10_1039_D2QM00768A crossref_primary_10_1002_adfm_201400394 crossref_primary_10_1002_aelm_201800453 crossref_primary_10_1080_15421406_2017_1289443 crossref_primary_10_1039_D0MH00203H crossref_primary_10_1002_adma_201902291 crossref_primary_10_1016_j_dyepig_2019_03_030 crossref_primary_10_1039_c2cp41712j crossref_primary_10_1088_1361_6463_50_6_065107 crossref_primary_10_1016_j_synthmet_2015_10_011 crossref_primary_10_1038_s41467_019_09119_8 crossref_primary_10_1002_adma_201601589 crossref_primary_10_1016_j_orgel_2013_10_002 crossref_primary_10_1002_adfm_201403773 crossref_primary_10_1109_TED_2020_3035494 crossref_primary_10_1016_j_orgel_2013_04_014 crossref_primary_10_1002_adfm_201602610 crossref_primary_10_1021_acsami_9b09607 crossref_primary_10_1002_adma_202110468 crossref_primary_10_1016_j_sse_2018_12_014 crossref_primary_10_1088_1361_6463_aa5e8a crossref_primary_10_1002_adfm_201403527 crossref_primary_10_1088_1361_6641_aaff37 crossref_primary_10_1016_j_orgel_2020_105742 crossref_primary_10_1021_acsami_1c05764 crossref_primary_10_1088_0022_3727_48_40_405105 crossref_primary_10_1038_s41598_020_58660_w crossref_primary_10_1002_advs_201801566 crossref_primary_10_1002_admi_201900581 crossref_primary_10_1021_acsaelm_2c01218 crossref_primary_10_1021_acs_chemrev_1c00581 crossref_primary_10_1002_adfm_201902105 crossref_primary_10_1021_acsami_6b12832 crossref_primary_10_1038_srep31387 crossref_primary_10_7567_JJAP_55_03DC07 crossref_primary_10_1002_admi_201600518 crossref_primary_10_1021_acsami_0c06418 crossref_primary_10_1002_adma_201205330 crossref_primary_10_1021_acsnano_3c00782 crossref_primary_10_1021_acs_langmuir_6b03145 crossref_primary_10_1002_adfm_201803907 crossref_primary_10_1002_adma_201604833 crossref_primary_10_1002_adfm_202101981 crossref_primary_10_1002_adma_201705463 crossref_primary_10_1021_jp5049698 crossref_primary_10_1109_TED_2017_2650216 crossref_primary_10_1002_aelm_201800340 crossref_primary_10_1039_C5TC03714J crossref_primary_10_1002_adfm_201602996 crossref_primary_10_1016_j_dyepig_2017_01_054 crossref_primary_10_1002_adma_201205320 crossref_primary_10_1016_j_orgel_2014_12_001 crossref_primary_10_1002_pi_5768 crossref_primary_10_1016_j_orgel_2019_105523 crossref_primary_10_1002_aelm_201800339 crossref_primary_10_1016_j_orgel_2018_08_004 crossref_primary_10_1038_s41467_018_07706_9 crossref_primary_10_1002_adfm_201802201 crossref_primary_10_1002_aelm_201600240 crossref_primary_10_1002_aelm_201900789 crossref_primary_10_1002_ijch_201400023 crossref_primary_10_1002_smtd_202400546 crossref_primary_10_1021_acs_macromol_5b02658 crossref_primary_10_1063_5_0005441 crossref_primary_10_1002_adma_201801830 crossref_primary_10_1002_adfm_201904590 crossref_primary_10_1002_advs_202104977 crossref_primary_10_1021_acsami_0c08683 crossref_primary_10_1002_adma_201201464 crossref_primary_10_1088_2058_8585_ab59cc crossref_primary_10_1002_adma_201204979 crossref_primary_10_1088_1361_6641_abf62d crossref_primary_10_1039_C9RA04563E crossref_primary_10_3390_cryst13071075 crossref_primary_10_1016_j_orgel_2014_01_013 crossref_primary_10_1149_2_046309jss crossref_primary_10_1016_j_sse_2019_107676 crossref_primary_10_1063_1_4811127 crossref_primary_10_1039_c2jm32925e crossref_primary_10_3390_mi12070742 crossref_primary_10_1002_aelm_201900879 crossref_primary_10_1002_adfm_201904576 crossref_primary_10_1016_j_orgel_2015_03_031 crossref_primary_10_1002_aelm_201500409 crossref_primary_10_1002_adma_201905909 crossref_primary_10_1016_j_orgel_2021_106343 crossref_primary_10_1002_advs_202400112 crossref_primary_10_1016_j_orgel_2015_02_006 crossref_primary_10_1021_acsami_1c17845 crossref_primary_10_1021_acssensors_4c03314 crossref_primary_10_1149_1945_7111_ac88fa crossref_primary_10_1021_acs_chemrev_6b00329 crossref_primary_10_1039_C4TC02611J crossref_primary_10_1063_1_5118337 crossref_primary_10_7567_JJAP_55_04EL06 crossref_primary_10_1021_acsami_1c01386 crossref_primary_10_1002_adma_201500233 crossref_primary_10_1002_aelm_202201055 crossref_primary_10_3389_fmats_2020_00131 crossref_primary_10_1063_1_4938529 crossref_primary_10_1109_JPHOTOV_2020_3044131 crossref_primary_10_1007_s10854_013_1550_2 crossref_primary_10_1063_5_0170627 crossref_primary_10_1109_TED_2021_3063332 crossref_primary_10_1002_polb_23350 crossref_primary_10_1021_am401375c crossref_primary_10_1016_j_mtbio_2024_101274 crossref_primary_10_1002_adfm_202000058 crossref_primary_10_1002_aelm_201800723 crossref_primary_10_1016_j_orgel_2024_107014 crossref_primary_10_1002_pssa_202000097 crossref_primary_10_1016_j_orgel_2022_106430 crossref_primary_10_1016_j_orgel_2023_106853 crossref_primary_10_1063_1_4871715 crossref_primary_10_1016_j_chempr_2017_10_005 crossref_primary_10_1021_acsami_6b12328 crossref_primary_10_1016_j_orgel_2017_06_043 crossref_primary_10_1021_acs_chemmater_9b05215 crossref_primary_10_1016_j_orgel_2016_04_038 crossref_primary_10_1002_admi_201400384 crossref_primary_10_1016_j_orgel_2014_08_027 crossref_primary_10_1039_C7NR01116D crossref_primary_10_1016_j_orgel_2015_12_008 crossref_primary_10_1039_c3nr03093h crossref_primary_10_1021_ja508453n crossref_primary_10_1063_1_4860958 crossref_primary_10_1063_1_4876057 crossref_primary_10_1002_adem_201701190 crossref_primary_10_1002_adfm_201601956 crossref_primary_10_1002_aelm_201500454 crossref_primary_10_1002_adfm_201707105 crossref_primary_10_1016_j_orgel_2014_09_024 crossref_primary_10_1021_acs_langmuir_5b02316 crossref_primary_10_1002_adfm_201707221 crossref_primary_10_1088_1361_6528_aacc22 crossref_primary_10_7567_APEX_9_111601 crossref_primary_10_1016_j_apsusc_2017_05_137 crossref_primary_10_1038_s41467_024_53372_5 crossref_primary_10_1007_s11426_014_5240_6 crossref_primary_10_1002_pssa_202100500 crossref_primary_10_1002_pssr_201800297 crossref_primary_10_1002_adfm_201907641 crossref_primary_10_3390_cryst12050651 crossref_primary_10_1016_j_mee_2015_11_006 crossref_primary_10_1016_j_orgel_2012_12_038 crossref_primary_10_1002_adfm_201606291 crossref_primary_10_3390_cryst11121448 crossref_primary_10_1002_asia_201700472 crossref_primary_10_1021_cm502486n crossref_primary_10_1002_adfm_201502151 crossref_primary_10_1109_LED_2013_2244059 crossref_primary_10_1088_1361_6528_ad3e01 crossref_primary_10_1002_adma_201304280 crossref_primary_10_1021_acsaelm_4c00289 crossref_primary_10_1021_acsami_3c10260 crossref_primary_10_1098_rsos_221272 crossref_primary_10_1070_RCR4839 crossref_primary_10_1038_ncomms10550 crossref_primary_10_1016_j_orgel_2021_106159 crossref_primary_10_1002_adma_202103183 crossref_primary_10_1016_j_orgel_2019_01_010 crossref_primary_10_1016_j_carbon_2024_119126 crossref_primary_10_1080_15421406_2015_1094610 crossref_primary_10_1039_C8TC01852A crossref_primary_10_1039_c3tc31456a crossref_primary_10_1021_acsami_6b03671 crossref_primary_10_1002_adma_201200655 crossref_primary_10_1021_ct4000845 crossref_primary_10_1038_srep29811 crossref_primary_10_1016_j_mseb_2021_115397 crossref_primary_10_1021_am506971b crossref_primary_10_1002_adfm_202212825 crossref_primary_10_1021_acsaelm_3c01813 crossref_primary_10_1039_C4CC01360C crossref_primary_10_1002_aelm_201600409 crossref_primary_10_1016_j_synthmet_2021_116985 crossref_primary_10_1002_aelm_202000238 crossref_primary_10_1088_0953_8984_27_46_462001 crossref_primary_10_1039_C4CP02413C crossref_primary_10_1088_1361_6633_80_2_026502 crossref_primary_10_1016_j_orgel_2012_07_028 crossref_primary_10_1002_aelm_202000110 crossref_primary_10_1039_D2CP02595G crossref_primary_10_1002_adfm_201302428 crossref_primary_10_1002_adma_202406178 crossref_primary_10_1016_j_orgel_2015_04_001 crossref_primary_10_1021_acs_accounts_4c00338 crossref_primary_10_1021_nl501081q crossref_primary_10_1039_c3py00089c crossref_primary_10_1016_j_mtphys_2024_101475 crossref_primary_10_1021_acsami_5b06944 crossref_primary_10_3390_electronics8020249 crossref_primary_10_1021_jp4088173 crossref_primary_10_1002_admt_201800182 crossref_primary_10_1021_cg501621k crossref_primary_10_1109_TED_2021_3051927 crossref_primary_10_1016_j_synthmet_2020_116670 crossref_primary_10_1007_s10854_023_11819_3 crossref_primary_10_1002_aelm_201500024 crossref_primary_10_1021_cm5043183 crossref_primary_10_1039_C5CP00523J crossref_primary_10_1002_adma_202410442 crossref_primary_10_1016_j_orgel_2016_06_004 crossref_primary_10_1080_23746149_2020_1747945 crossref_primary_10_1007_s12274_018_2088_7 crossref_primary_10_1039_D1TC04366H crossref_primary_10_1039_C5TC01130B crossref_primary_10_1002_macp_201900010 crossref_primary_10_1002_admi_202101377 crossref_primary_10_1002_aelm_201700331 crossref_primary_10_1039_c2cp41557g crossref_primary_10_1088_0268_1242_30_7_074001 crossref_primary_10_1109_LED_2019_2909844 crossref_primary_10_1002_advs_202003697 crossref_primary_10_1002_adma_201702729 crossref_primary_10_1002_adma_201303349 crossref_primary_10_1016_j_orgel_2013_09_008 crossref_primary_10_1002_adma_201801079 crossref_primary_10_1002_cplu_201900277 crossref_primary_10_1021_acsami_7b03785 crossref_primary_10_1038_s41467_018_07388_3 crossref_primary_10_1016_j_orgel_2020_106034 crossref_primary_10_1038_ncomms14975 crossref_primary_10_1063_1_4960051 crossref_primary_10_1016_j_orgel_2017_07_008 crossref_primary_10_1088_1674_1056_ab44a1 crossref_primary_10_1039_C9TC05695E crossref_primary_10_1021_acs_chemmater_6b03671 crossref_primary_10_1016_j_orgel_2024_107191 crossref_primary_10_1007_s00339_018_2130_3 crossref_primary_10_1103_PhysRevApplied_13_054066 crossref_primary_10_1038_s41467_018_06084_6 crossref_primary_10_1002_cphc_202100261 crossref_primary_10_1021_acsami_6b14220 crossref_primary_10_1109_TED_2017_2738699 crossref_primary_10_1063_1_5042255 crossref_primary_10_1002_adfm_201901700 crossref_primary_10_1021_acsami_6b06967 crossref_primary_10_1039_D0TC01099E crossref_primary_10_1209_0295_5075_106_58002 crossref_primary_10_1021_acs_chemmater_6b00298 crossref_primary_10_1016_j_optmat_2014_04_013 crossref_primary_10_1002_mabi_202000211 crossref_primary_10_1021_acsaelm_9b00538 crossref_primary_10_1039_C8TC03185A crossref_primary_10_1039_C8TC00970H |
Cites_doi | 10.1021/am1008375 10.1016/j.orgel.2011.04.020 10.1002/adma.200401285 10.1063/1.2828711 10.1002/adfm.201001583 10.1002/adfm.201100592 10.1063/1.1345805 10.1016/j.sse.2005.02.004 10.1021/nn1027032 10.1002/adma.201001202 10.1016/j.orgel.2010.11.002 10.1063/1.1415374 10.1021/ja069235m 10.1002/adma.200903712 10.1063/1.2806234 10.1016/j.orgel.2009.10.021 10.1109/TED.2005.850954 10.1021/cm102419z 10.1063/1.2776252 10.1063/1.1645993 10.1103/PhysRevB.9.5183 10.1002/adfm.200900408 10.1063/1.1613369 10.1063/1.3276694 10.1063/1.3090489 10.1002/adma.200701812 10.1063/1.2904629 10.1002/adfm.200900189 10.1063/1.2352808 10.1021/cm103326n 10.1088/0022-3727/44/11/115101 10.1016/S1369-7021(11)70184-5 10.1002/adma.200803541 10.1088/0268-1242/26/3/034006 10.1002/adma.201003128 10.1063/1.3153510 10.1557/mrs2008.149 10.1002/adma.200800150 10.1016/j.orgel.2010.06.001 10.1016/j.orgel.2010.01.028 10.1002/0470068329 10.1063/1.3533020 10.1063/1.2535741 10.1021/nl061566 10.1063/1.2770963 10.1063/1.1562731 10.1002/adma.200901141 10.1016/S0009-2614(98)01277-9 10.1063/1.2737418 10.1016/j.orgel.2011.03.007 10.1016/j.progpolymsci.2008.08.001 10.1016/S0379-6779(97)03864-2 10.1039/b902492c 10.1063/1.2402349 10.1002/adma.201001402 10.1063/1.1639945 10.1063/1.3276913 10.1063/1.1558998 10.1063/1.3115826 10.1002/cphc.200900472 10.1103/PhysRevB.59.7507 10.1063/1.3204655 10.1063/1.3424792 10.1109/LED.2011.2162483 10.1063/1.1611278 10.1002/adfm.201000785 10.1002/adfm.200801019 10.1021/nn100728p 10.1063/1.3049616 10.1103/PhysRevLett.99.256801 10.1002/adfm.201002651 10.1002/1521-4095(20020705)14:13/14<961::AID-ADMA961>3.0.CO;2-X 10.1021/cm1029744 10.1021/am200143g 10.1021/cm071018c 10.1063/1.2917523 10.1126/science.1102896 10.1063/1.2496249 10.1103/PhysRevB.72.155206 10.1021/la104136w 10.1002/adma.200903628 10.1063/1.2357155 10.1103/PhysRevB.57.12964 10.1016/j.sse.2007.11.007 10.1109/LED.2010.2044137 10.1109/LED.2010.2052092 10.1088/0268-1242/24/11/115012 10.1002/adma.200803455 10.1021/am1008826 10.1038/nature03376 10.1109/TED.2009.2035540 10.1063/1.1527983 10.1063/1.2767235 10.1063/1.1806533 10.1063/1.2955515 10.1063/1.3518075 10.1063/1.1581389 10.1088/0268-1242/26/3/034003 10.1063/1.1760838 10.1021/nn9014664 10.1002/adma.200903559 10.1039/c0cs00194e 10.1063/1.3058640 10.1063/1.3488817 10.1002/adfm.201000346 10.1002/adma.201000232 10.1073/pnas.0708340105 10.1016/j.synthmet.2009.08.020 10.1002/adfm.201002696 10.1063/1.3339877 10.1016/j.orgel.2009.09.001 10.1038/nmat2825 10.1021/ma200864s 10.1109/55.596930 10.1038/nmat2291 10.1002/adma.201004588 10.1103/PhysRevB.54.R14321 10.1109/TED.2010.2044272 10.1889/1.2759555 10.1002/adma.200701876 10.1021/ja066092v 10.1002/adma.200803812 10.1063/1.3490716 10.1103/PhysRevB.64.085201 10.1016/j.orgel.2009.08.008 10.1063/1.3479531 10.1103/PhysRevLett.86.3867 10.1002/adma.200901454 10.1049/el:19880369 10.1103/PhysRevB.78.153312 10.1103/PhysRevLett.103.256803 10.1109/JPROC.2005.850301 10.1063/1.1637443 10.1063/1.2771532 10.1063/1.3479476 10.1063/1.2999590 10.1063/1.1858874 10.1143/JJAP.49.101601 10.1063/1.3072669 10.1063/1.1470702 10.1016/j.orgel.2011.09.023 10.1002/adfm.201002290 10.1002/pssa.200510027 10.1016/j.orgel.2009.11.008 10.1016/j.orgel.2009.03.012 10.1149/1.1582466 10.1016/j.tsf.2006.10.074 10.1063/1.2186367 10.1016/j.mser.2008.12.001 10.1103/PhysRevLett.98.066101 10.1063/1.1290697 10.1063/1.2776235 10.1016/j.orgel.2011.12.001 10.1103/PhysRevB.72.235302 10.1016/j.orgel.2010.12.022 10.1021/ma102451b 10.1002/pssc.200777576 10.1016/j.ssc.2009.07.006 10.1021/jp004519t 10.1016/j.orgel.2010.01.002 10.1063/1.2215132 10.1016/j.orgel.2008.01.004 10.1063/1.2804288 10.1103/PhysRevB.79.165306 10.1016/j.orgel.2008.06.008 10.1039/b909902f 10.1063/1.1639937 10.1002/adma.201102410 10.1021/am200705j 10.1002/adma.201100304 10.1063/1.2126140 10.1063/1.3231928 10.1002/adma.201101134 10.1016/0379-6779(95)03375-0 10.1063/1.1431691 10.1063/1.1453509 10.1088/0268-1242/23/12/125027 10.1021/cm1023426 10.1109/TED.2008.2010579 10.1021/jp046246y 10.1063/1.1645316 10.1063/1.3488607 10.1063/1.373091 10.1143/JJAP.47.3174 10.1116/1.1885021 10.1063/1.3187787 10.1038/nature04699 10.1126/science.290.5499.2123 10.1889/1.2835023 10.1038/nnano.2007.365 10.1002/1521-4095(200105)13:9<631::AID-ADMA631>3.0.CO;2-F 10.1002/adma.200802934 10.1063/1.2857461 10.1016/j.sse.2007.10.027 10.1021/ar9000873 10.1063/1.1849845 10.1103/PhysRevLett.95.237601 10.1103/PhysRevLett.106.216402 10.1021/jp111677x 10.1002/adma.200903711 10.1063/1.2738382 10.1063/1.2168669 10.1002/adma.200802893 10.1016/j.synthmet.2009.11.008 10.1063/1.2197033 10.1002/adfm.200900315 10.1063/1.2112189 10.3390/s7030267 10.1016/S0927-796X(02)00093-1 10.1039/b718935d 10.1063/1.3247195 10.1049/el:19950481 |
ContentType | Journal Article |
Copyright | Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1002/adma.201104206 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | 1387 |
ExternalDocumentID | 22354535 10_1002_adma_201104206 ADMA201104206 ark_67375_WNG_ZMV1FJ6N_8 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c4486-cc7b48e432ef562e6dd6a012d8cf4838c719b2ccd2e0e3a208855b33024231bd3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 08:43:37 EDT 2025 Wed Feb 19 01:55:29 EST 2025 Thu Apr 24 23:09:03 EDT 2025 Tue Jul 01 02:26:21 EDT 2025 Wed Jan 22 16:18:34 EST 2025 Wed Oct 30 09:51:58 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4486-cc7b48e432ef562e6dd6a012d8cf4838c719b2ccd2e0e3a208855b33024231bd3 |
Notes | ark:/67375/WNG-ZMV1FJ6N-8 ArticleID:ADMA201104206 istex:8CCF0D2105C0CE76F3E39E86C33A3B9AEC2D9B6F ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 22354535 |
PQID | 927830602 |
PQPubID | 23479 |
PageCount | 31 |
ParticipantIDs | proquest_miscellaneous_927830602 pubmed_primary_22354535 crossref_citationtrail_10_1002_adma_201104206 crossref_primary_10_1002_adma_201104206 wiley_primary_10_1002_adma_201104206_ADMA201104206 istex_primary_ark_67375_WNG_ZMV1FJ6N_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 15, 2012 |
PublicationDateYYYYMMDD | 2012-03-15 |
PublicationDate_xml | – month: 03 year: 2012 text: March 15, 2012 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv. Mater |
PublicationYear | 2012 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag |
References | S. Braun, W. R. Salaneck, M. Fahlman, Adv. Mater. 2009, 21, 1450. J. C. Scott, G. G. Malliaras, Chem. Phys. Lett. 1999, 299, 115. C. Vanoni, S. Tsujino, T. A. Jung, Appl. Phys. Lett. 2007, 90, 193119. S. P. Pang, H. N. Tsao, X. L. Feng, K. Mullen, Adv. Mater. 2009, 21, 3488. S. V. Novikov, Phys. Status Solidi C. 2008, 5, 750. Y. Roichman, N. Tessler, Appl. Phys. Lett. 2002, 80, 151. P. Stoliar, R. Kshirsagar, M. Massi, P. Annibale, C. Albonetti, D. M. de Leeuw, F. Biscarini, J. Am. Chem. Soc. 2007, 129, 6477. N. Tessler, Y. Preezant, N. Rappaport, Y. Roichman, Adv. Mater. 2009, 21, 2741. J. E. Anthony, A. Facchetti, M. Heeney, S. R. Marder, X. Zhan, Adv. Mater. 2010, 22, 3876. K. Nomoto, N. Hirai, N. Yoneya, N. Kawashima, M. Noda, M. Wada, J. Kasahara, IEEE Electron Dev. 2005, 52, 1519. B. Iñiguez, R. Picos, D. Veksler, A. Koudymov, M. S. Shur, T. Ytterdal, W. Jackson, Solid State Electron. 2008, 52, 400. M. A. Baldo, S. R. Forrest, Phys. Rev. B 2001, 64, 17. T. W. Kelley, C. D. Frisbie, J. Phys. Chem. B 2001, 105, 4538. G. B. Blanchet, C. R. Fincher, M. Lefenfeld, J. A. Rogers, Appl. Phys. Lett. 2004, 84, 296. I. Yagi, K. Tsukagoshi, Y. Aoyagi, Appl. Phys. Lett. 2004, 84, 813. K. Asadi, Y. Wu, F. Gholamrezaie, P. Rudolf, P. W. M. Blom, Adv. Mater. 2009, 21, 4109. P. V. Pesavento, R. J. Chesterfield, C. R. Newman, C. D. Frisbie, J. Appl. Phys. 2004, 96, 7312. Y. Y. Zhang, Y. M. Shi, F. M. Chen, S. G. Mhaisalkar, L. J. Li, B. S. Ong, Y. L. Wu, Appl. Phys. Lett. 2007, 91, 223512. A. Rose, Concepts in photoconductivity and allied problems, Interscience Publishers, New York 1963. S. D. Wang, Y. Yan, K. Tsukagoshi, Appl. Phys. Lett. 2010, 97, 063307. Q.-D. Ling, D.-J. Liaw, C. Zhu, D. S.-H. Chan, E.-T. Kang, K.-G. Neoh, Prog. Polym. Sci. 2008, 33, 917. L. Xiao, Z. Chen, B. Qu, J. Luo, S. Kong, Q. Gong, J. Kido, Adv. Mater. 2011, 23, 926. T. Hassenkam, D. R. Greve, T. Bjornholm, Adv. Mater. 2001, 13, 631. M. Scharnberg, J. Hu, J. Kanzow, K. Ratzke, R. Adelung, F. Faupel, C. Pannemann, U. Hilleringmann, S. Meyer, J. Pflaum, Appl. Phys. Lett. 2005, 86, 024104. M. Estrada, I. Mejia, A. Cerdeira, J. Pallares, L. F. Marsal, B. Iniguez, Solid State Electron. 2008, 52, 787. T. J. Richards, H. Sirringhaus, J. Appl. Phys. 2007, 102, 094510. E. von Hauff, F. Johnen, A. V. Tunc, L. Govor, J. Parisi, J. Appl. Phys. 2010, 108, 063709. N. Koch, S. Duhm, J. P. Rabe, A. Vollmer, R. L. Johnson, Phys. Rev. Lett. 2005, 95, 237601. T. H. J. van Osch, J. Perelaer, A. W. M. de Laat, U. S. Schubert, Adv. Mater. 2008, 20, 343. K. P. Puntambekar, P. V. Pesavento, C. D. Frisbie, Appl. Phys. Lett. 2003, 83, 5539. J. Li, X.-W. Zhang, L. Zhang, H. Khizar ul, X.-Y. Jiang, W.-Q. Zhu, Z.-L. Zhang, Solid State Commun. 2009, 149, 1826. D. Natali, L. Fumagalli, M. Sampietro, J. Appl. Phys. 2007, 101, 014501. M. Kröger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, A. Kahn, Appl. Phys. Lett. 2009, 95, 123301. M.-W. Lee, M.-Y. Lee, J.-C. Choi, J.-S. Park, C.-K. Song, Org. Electron. 2010, 11, 854. T. Li, P. P. Ruden, I. H. Campbell, D. L. Smith, J. Appl. Phys. 2003, 93, 4017. K. Nomoto, N. Yoneya, N. Hirai, I. Yagi, N. Kawashima, M. Noda, J. Kasahara, J. Soc. Inf. Display 2007, 15, 491. I. Yagi, N. Hirai, Y. Miyamoto, M. Noda, A. Imaoka, N. Yoneya, K. Nomoto, J. Kasahara, A. Yumoto, T. Urabe, J. Soc. Inf. Display 2008, 16, 15. F. Cicoira, C. M. Aguirre, R. Martel, ACS Nano 2011, 5, 283. J. Frisch, H. Glowatzki, S. Janietz, N. Koch, Org. Electron. 2009, 10, 1459. P. L. Bullejos, J. A. J. Tejada, F. M. Gomez-Campos, M. J. Deen, O. Marinov, J. Appl. Phys. 2009, 106, 4. T. Schuettfort, S. Huettner, S. Lilliu, J. E. Macdonald, L. Thomsen, C. R. McNeill, Macromolecules 2011, 44, 1530. S. D. Wang, Y. Yan, K. Tsukagoshi, Ieee Electron Device Letters 2010, 31, 509. Y.-L. Loo, I. McCulloch, Mrs Bull. 2008, 33, 653. B. Bröker, R.-P. Blum, L. Beverina, O. T. Hofmann, M. Sassi, R. Ruffo, G. A. Pagani, G. Heimel, A. Vollmer, J. Frisch, J. P. Rabe, E. Zojer, N. Koch, Chem. Phys. Chem. 2009, 10, 2947. B. H. Hamadani, C. A. Richter, J. S. Suehle, D. J. Gundlach, Appl. Phys. Lett. 2008, 92. T. Li, J. W. Balk, P. P. Ruden, I. H. Campbell, D. L. Smith, J. Appl. Phys. 2002, 91, 4312. C.-a. Di, G. Yu, Y. Liu, Y. Guo, W. Wu, D. Wei, D. Zhu, Phys. Chem. Chem. Phys. 2008, 10, 2302. T. Sekitani, Y. Noguchi, U. Zschieschang, H. Klauk, T. Someya, P. Natl. Acad. Sci. USA 2008, 105, 4976. M. Koehler, I. Biaggio, M. G. E. da Luz, Phys. Rev. B 2008, 78, 235308. P. Bröms, J. Birgerson, W. R. Salaneck, Synthetic Met. 1997, 88, 255. X. Zhao, X. Zhan, Chem. Soc. Rev. 2011, 40, 3728. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666. S. Cho, J. Lee, M. Tong, J. H. Seo, C. Yang, Adv. Funct. Mater. 2011, 21, 1910. A. Southard, V. Sangwan, J. Cheng, E. D. Williams, M. S. Fuhrer, Org. Electron. 2009, 10, 1556. S. Jeong, H. C. Song, W. W. Lee, S. S. Lee, Y. Choi, W. Son, E. D. Kim, C. H. Paik, S. H. Oh, B.-H. Ryu, Langmuir 2011, 27, 3144. D. F. Blossey, Phys. Rev. B 1974, 9, 5183. L. Burgi, H. Sirringhaus, R. H. Friend, Appl. Phys. Lett. 2002, 80, 2913. B. H. Hamadani, D. Natelson, Proc. IEEE 2005, 93, 1306. H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E. P. Woo, Science 2000, 290, 2123. M. A. Lampert, P. Mark, Current Injection in Solids, Academic Press, New York1970. A. Ahnood, K. Ghaffarzadeh, A. Nathan, P. Servati, F. Li, M. R. Esmaeili-Rad, A. Sazonov, Appl. Phys. Lett. 2008, 93, 163503. M. Caironi, Y.-Y. Noh, H. Sirringhaus, Semicond. Sci. Tech. 2011, 26, 034006. K. Hong, S. H. Kim, C. Yang, T. K. An, H. Cha, C. Park, C. E. Park, Org. Electron. 2011, 12, 516. D. Gupta, M. Katiyar, Org. Electron. 2009, 10, 775. C. W. Sohn, T. U. Rim, G. B. Choi, Y. H. Jeong, IEEE Electron Dev. 2010, 57, 986. A. C. Dürr, F. Schreiber, M. Kelsch, H. D. Carstanjen, H. Dosch, Adv. Mater. 2002, 14, 961. D. Boudinet, M. Benwadih, S. Altazin, R. Gwoziecki, J. M. Verilhac, R. Coppard, G. Le Blevennec, I. Chartier, G. Horowitz, Org. Electron. 2010, 11, 291. T. N. Ng, S. Sambandan, R. Lujan, A. C. Arias, C. R. Newman, H. Yan, A. Facchetti, Appl. Phys. Lett. 2009, 94, 233307. J. A. Nichols, D. J. Gundlach, T. N. Jackson, Appl. Phys. Lett. 2003, 83, 2366. R. Coehoorn, W. F. Pasveer, P. A. Bobbert, M. A. J. Michels, Phys. Rev. B 2005, 72, 155206. I. H. Campbell, S. Rubin, T. A. Zawodzinski, J. D. Kress, R. L. Martin, D. L. Smith, N. N. Barashkov, J. P. Ferraris, Phys. Rev. B 1996, 54, R14321. Y. Changhun, K. Minseok, L. Seung Won, M. Hanul, P. Sunmin, K. Jae Bon, K. Jeong Won, Y. In-Kyu, Y. Seunghyup, IEEE Electr. Device Lett., 2011, 32, 1454. V. Sholin, S. A. Carter, R. A. Street, A. C. Arias, Appl. Phys. Lett. 2008, 92, 063307. P. V. Pesavento, K. P. Puntambekar, C. D. Frisbie, J. C. McKeen, P. P. Ruden, J. Appl. Phys. 2006, 99, 094504. K. Hong, S. Y. Yang, C. Yang, S. H. Kim, D. Choi, C. E. Park, Org. Electron. 2008, 9, 864. R. J. Chesterfield, J. C. McKeen, C. R. Newman, P. C. Ewbank, D. t. A. da Silva Filho, J.-L. Brédas, L. L. Miller, K. R. Mann, C. D. Frisbie, J. Phys. Chem. B 2004, 108, 19281. T. Manaka, S. Kawashima, M. Iwamoto, Appl. Phys. Lett. 2010, 97, 113302. J. H. Cho, D. H. Kim, Y. Jang, W. H. Lee, K. Ihm, J. H. Han, S. Chung, K. Cho, Appl. Phys. Lett. 2006, 89, 132101. A. L. Burin, M. A. Ratner, J. Chem. Phys. 2000, 113, 3941. Y. Cao, S. Liu, Q. Shen, K. Yan, P. Li, J. Xu, D. Yu, M. L. Steigerwald, C. Nuckolls, Z. Liu, X. Guo, Adv. Funct. Mater. 2009, 19, 2743. M. Vissenberg, M. Matters, Phys. Rev. B 1998, 57, 12964. A. Estrada, A. Cerdeira, J. Puigdollers, L. Resendiz, J. Pallares, L. F. Marsal, C. Voz, B. Iniguez, Solid State Electron. 2005, 49, 1009. T. Sekitani, T. Someya, Mater. Today 2011, 14, 398. H. Klauk, Chem. Soc. Rev. 2010, 39, 2643. C. W. Sele, T. von Werne, R. H. Friend, H. Sirringhaus, Adv. Mater. 2005, 17, 997. M. Knupfer, G. Paasch, J. Vac. Sci. Technol. A 2005, 23, 1072. W. Fikry, G. Ghibaudo, H. Haddara, S. Cristoloveanu, M. Dutoit, Electron. Lett. 1995, 31, 762. J. C. Blakesley, N. C. Greenham, J. Appl. Phys. 2009, 106, 034507. C.-a. Di, D. Wei, G. Yu, Y. Liu, Y. Guo, D. Zhu, Adv. Mater. 2008, 20, 3289. R. S. Ashraf, Z. Chen, D. S. Leem, H. Bronstein, W. Zhang, B. Schroeder, Y. Geerts, J. Smith, S. Watkins, T. D. Anthopoulos, H. Sirringhaus, J. C. de Mello, M. Heeney, I. McCulloch, Chem. Mater. 2011, 23, 768. J. Rivnay, M. F. Toney, Y. Zheng, I. V. Kauvar, Z. Chen, V. Wagner, A. Facchetti, A. Salleo, Adv. Mater. 2010, 22, 4359. K. C. Dickey, T. J. Smith, K. J. Stevenson, S. Subramanian, J. E. Anthony, Y.-L. Loo, Chem. Mater. 2007, 19, 5210. L. Giraudet, O. Simonetti, Org. Electron. 2011, 12, 219. C. Reese, Z. Bao, Adv. Funct. Mater. 2009, 19, 763. Z. Chen, H. Lemke, S. Albert-Seifried, M. Caironi, M. M. Nielsen, M. Heeney, W. Zhang, I. McCulloch, H. Sirringhaus, Adv. Mater. 2010, 22, 2371. P. Marmont, N. Battaglini, P. Lang, G. Horowitz, J. Hwang, A. Kahn, C. Amato, P. Calas, Org. Electron. 2008, 9, 419. L. Romaner, G. Heimel, Br, é, J.-L. das, A. Gerlach, F. Schreiber, R. L. Johnson, J. Zegenhagenörg, S. Duhm, N. Koch, E. Zojer, Phys. Rev. Lett. 2007, 99, 256801. R. Schroeder, L. Majewski, M. Grell, Appl. Phys. Lett. 2004, 84, 1004. J. D. Yuen, R. Kumar, D. Zakhidov, J. Seifter, B. Lim, A. J. Heeger, F. Wudl, Adv. Mater. 2011, 23, 3780. N. Zhao, M. Chiesa, H. Sirringhaus, Y. Li, Y. Wu, B. Ong, J. Appl. Phys. 2007, 101, 064513. D. Boudinet, M. Benwadih, Y. B. Qi, S. Altazin, J. M. Verilhac, M. Kroger, C. Serbutoviez, R. Gwoziecki, R. Coppard, G. Le Blevennec, A. Kahn, G. Horowitz, Org. Electron. 2010, 11, 227. C. Bock, D. V. Pham, U. Kunze, D. Kafer, G. Witte, A. Terfort, Appl. Phys. Lett. 2007, 91, 052110. F. C. Chen, L. J. Kung, T. H. Chen, Y. S. Lin, Appl. Phys. Lett. 2007, 90, 073504. I. G. Hill, Appl. Phys. Lett. 2005, 87, 163505. M. C. Gwinner, Y. Vaynzof, K. K. Banger, P. K. H. Ho, R. H. Friend, H. Sirringhaus, Adv. Funct. Mater. 2010, 20, 3457. D.-J. Yun, K. Hong, S. h. Kim, W.-M. Yun, J.-y. Jang, W.-S. Kwon, C.-E. Park, S.-W. Rhee, ACS Appl. Mater. Interfaces 2011, 1995; 31 2010; 11 2011; 115 2007; 101 2002; 14 2007; 102 2010; 97 2010; 108 2000; 87 2003; 150 2008; 105 2008; 33 1970 2012; 13 1974; 9 2010; 22 2009; 11 2010; 20 2009; 95 2009; 10 2009; 94 1999; 59 2008; 23 2007; 7 2007; 2 1999; 299 2002; 91 2005; 72 2008; 20 2009; 19 2010; 4 2006; 441 2010; 9 2007; 19 2010; 31 2009; 64 2000; 113 2010; 39 2007; 90 2007; 91 2005; 86 2005; 87 2002; 81 2008; 52 2002; 80 2010; 160 2007; 98 2011; 3 2004; 306 2007; 99 2011; 5 2007; 15 2009; 79 2010; 49 2008; 47 2005; 95 2005; 97 1988; 24 2005; 93 2005; 17 2009; 103 2006; 100 2009; 105 2009; 106 1995; 74 2010; 57 2009; 42 1997; 88 2008; 9 2008; 78 2008; 7 2008; 5 2011; 12 2011; 14 2003; 93 2003; 94 2005; 23 2009; 159 2001; 86 2000; 290 2001; 105 2009; 56 1988; 135 1997; 18 2011; 21 2011; 23 2011; 26 2003; 82 2011; 27 2003; 83 2001; 13 2006; 128 1998; 57 2002; 39 2009; 24 2007; 129 2004; 84 2009; 21 2011 2006; 99 2005; 434 2011; 40 2008; 16 2009 2006 2006; 6 2011; 32 2008; 10 2005; 49 2004; 108 2008; 92 2008; 93 1996; 54 2001; 64 2004; 96 2007; 515 2011; 106 2006; 89 2006; 88 2005; 202 2005; 52 1963 2011; 44 2001; 78 2001; 79 2010; 96 2009; 149 e_1_2_7_3_2 e_1_2_7_127_2 e_1_2_7_104_2 e_1_2_7_19_2 e_1_2_7_83_2 e_1_2_7_60_2 e_1_2_7_191_2 e_1_2_7_11_2 e_1_2_7_45_2 e_1_2_7_68_2 Miyadera T. (e_1_2_7_194_2) 2007; 91 e_1_2_7_142_2 e_1_2_7_188_2 e_1_2_7_202_2 e_1_2_7_225_2 e_1_2_7_165_2 e_1_2_7_116_2 e_1_2_7_71_2 e_1_2_7_94_2 e_1_2_7_180_2 e_1_2_7_23_2 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_79_2 e_1_2_7_192_2 e_1_2_7_131_2 e_1_2_7_154_2 e_1_2_7_214_2 e_1_2_7_139_2 e_1_2_7_4_2 e_1_2_7_105_2 e_1_2_7_128_2 Hong J.‐P. (e_1_2_7_92_2) 2008; 92 e_1_2_7_82_2 e_1_2_7_120_2 Gili E. (e_1_2_7_166_2) 2009 e_1_2_7_12_2 e_1_2_7_44_2 e_1_2_7_67_2 e_1_2_7_226_2 e_1_2_7_181_2 e_1_2_7_143_2 e_1_2_7_29_2 e_1_2_7_203_2 e_1_2_7_189_2 e_1_2_7_117_2 e_1_2_7_93_2 e_1_2_7_70_2 e_1_2_7_24_2 e_1_2_7_32_2 e_1_2_7_55_2 e_1_2_7_170_2 e_1_2_7_215_2 e_1_2_7_78_2 e_1_2_7_193_2 e_1_2_7_132_2 e_1_2_7_155_2 Noguchi Y. (e_1_2_7_177_2) 2008; 93 e_1_2_7_178_2 e_1_2_7_129_2 e_1_2_7_106_2 e_1_2_7_9_2 e_1_2_7_121_2 e_1_2_7_81_2 e_1_2_7_1_2 e_1_2_7_13_2 e_1_2_7_43_2 e_1_2_7_204_2 e_1_2_7_227_2 e_1_2_7_66_2 e_1_2_7_89_2 e_1_2_7_182_2 e_1_2_7_28_2 e_1_2_7_144_2 e_1_2_7_167_2 Lampert M. A. (e_1_2_7_26_2) 1970 e_1_2_7_118_2 e_1_2_7_110_2 e_1_2_7_25_2 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_171_2 e_1_2_7_216_2 e_1_2_7_77_2 e_1_2_7_39_2 e_1_2_7_133_2 e_1_2_7_179_2 e_1_2_7_156_2 Rose A. (e_1_2_7_27_2) 1963 e_1_2_7_107_2 e_1_2_7_2_2 e_1_2_7_122_2 e_1_2_7_80_2 e_1_2_7_14_2 e_1_2_7_42_2 e_1_2_7_65_2 e_1_2_7_160_2 e_1_2_7_183_2 e_1_2_7_205_2 e_1_2_7_88_2 e_1_2_7_145_2 e_1_2_7_168_2 e_1_2_7_220_2 e_1_2_7_119_2 e_1_2_7_111_2 e_1_2_7_91_2 e_1_2_7_30_2 e_1_2_7_76_2 e_1_2_7_53_2 e_1_2_7_195_2 e_1_2_7_99_2 e_1_2_7_172_2 e_1_2_7_217_2 e_1_2_7_38_2 e_1_2_7_134_2 e_1_2_7_157_2 e_1_2_7_108_2 e_1_2_7_7_2 e_1_2_7_123_2 e_1_2_7_100_2 e_1_2_7_15_2 e_1_2_7_41_2 e_1_2_7_87_2 e_1_2_7_64_2 e_1_2_7_206_2 e_1_2_7_161_2 e_1_2_7_49_2 e_1_2_7_146_2 e_1_2_7_221_2 e_1_2_7_169_2 e_1_2_7_90_2 e_1_2_7_112_2 e_1_2_7_52_2 e_1_2_7_75_2 e_1_2_7_98_2 e_1_2_7_150_2 e_1_2_7_173_2 e_1_2_7_218_2 e_1_2_7_37_2 e_1_2_7_196_2 e_1_2_7_135_2 e_1_2_7_210_2 e_1_2_7_158_2 Caironi M. (e_1_2_7_16_2) 2011 e_1_2_7_8_2 e_1_2_7_101_2 e_1_2_7_124_2 e_1_2_7_40_2 e_1_2_7_63_2 e_1_2_7_86_2 e_1_2_7_162_2 e_1_2_7_207_2 e_1_2_7_48_2 e_1_2_7_222_2 e_1_2_7_185_2 e_1_2_7_147_2 e_1_2_7_109_2 e_1_2_7_113_2 e_1_2_7_51_2 e_1_2_7_97_2 e_1_2_7_219_2 e_1_2_7_74_2 e_1_2_7_20_2 e_1_2_7_36_2 e_1_2_7_151_2 e_1_2_7_59_2 e_1_2_7_174_2 e_1_2_7_211_2 e_1_2_7_197_2 e_1_2_7_136_2 e_1_2_7_159_2 e_1_2_7_5_2 e_1_2_7_125_2 e_1_2_7_102_2 e_1_2_7_17_2 e_1_2_7_208_2 e_1_2_7_62_2 e_1_2_7_85_2 e_1_2_7_47_2 e_1_2_7_140_2 e_1_2_7_200_2 e_1_2_7_223_2 e_1_2_7_163_2 e_1_2_7_186_2 e_1_2_7_148_2 e_1_2_7_114_2 e_1_2_7_50_2 e_1_2_7_73_2 e_1_2_7_96_2 e_1_2_7_21_2 e_1_2_7_35_2 e_1_2_7_58_2 Jain S. (e_1_2_7_184_2) 1988; 135 e_1_2_7_152_2 e_1_2_7_175_2 e_1_2_7_198_2 e_1_2_7_212_2 e_1_2_7_137_2 e_1_2_7_103_2 e_1_2_7_126_2 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_61_2 e_1_2_7_190_2 e_1_2_7_209_2 e_1_2_7_84_2 e_1_2_7_10_2 e_1_2_7_46_2 e_1_2_7_69_2 e_1_2_7_141_2 e_1_2_7_164_2 e_1_2_7_187_2 e_1_2_7_201_2 e_1_2_7_224_2 e_1_2_7_149_2 e_1_2_7_115_2 e_1_2_7_72_2 e_1_2_7_22_2 e_1_2_7_95_2 e_1_2_7_34_2 e_1_2_7_57_2 e_1_2_7_130_2 e_1_2_7_153_2 e_1_2_7_199_2 e_1_2_7_176_2 e_1_2_7_213_2 e_1_2_7_138_2 |
References_xml | – reference: S. Scheinert, G. Paasch, I. Horselmann, A. Herasimovich, Phys. Status Solidi A 2005, 202, R82. – reference: M. Caironi, E. Gili, T. Sakanoue, X. Cheng, H. Sirringhaus, ACS Nano 2010, 4, 1451. – reference: A. Luzio, C. Musumeci, C. R. Newman, A. Facchetti, T. J. Marks, B. Pignataro, Chem. Mater. 2011, 23, 1061. – reference: T. Hallam, M. Lee, N. Zhao, I. Nandhakumar, M. Kemerink, M. Heeney, I. McCulloch, H. Sirringhaus, Phys. Rev. Lett. 2009, 103, 256803. – reference: J. H. Cho, J. Lee, Y. Xia, B. Kim, Y. He, M. J. Renn, T. P. Lodge, C. Daniel Frisbie, Nat. Mater. 2008, 7, 900. – reference: M. Kano, T. Minari, K. Tsukagoshi, Appl. Phys. Lett. 2009, 94, 143304. – reference: F. Cicoira, C. M. Aguirre, R. Martel, ACS Nano 2011, 5, 283. – reference: D. Beljonne, J. Cornil, L. Muccioli, C. Zannoni, J. L. Bredas, F. Castet, Chem. Mater. 2011, 23, 591. – reference: J. Frisch, H. Glowatzki, S. Janietz, N. Koch, Org. Electron. 2009, 10, 1459. – reference: F. C. Chen, L. J. Kung, T. H. Chen, Y. S. Lin, Appl. Phys. Lett. 2007, 90, 073504. – reference: P. Marmont, N. Battaglini, P. Lang, G. Horowitz, J. Hwang, A. Kahn, C. Amato, P. Calas, Org. Electron. 2008, 9, 419. – reference: G. Gelinck, P. Heremans, K. Nomoto, T. D. Anthopoulos, Adv. Mater. 2010, 22, 3778. – reference: T. Sekitani, Y. Noguchi, U. Zschieschang, H. Klauk, T. Someya, P. Natl. Acad. Sci. USA 2008, 105, 4976. – reference: S. Cho, J. Lee, M. Tong, J. H. Seo, C. Yang, Adv. Funct. Mater. 2011, 21, 1910. – reference: K. A. Singh, G. Sauve, R. Zhang, T. Kowalewski, R. D. McCullough, L. M. Porter, Appl. Phys. Lett. 2008, 92, 263303. – reference: H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E. P. Woo, Science 2000, 290, 2123. – reference: J. A. Nichols, D. J. Gundlach, T. N. Jackson, Appl. Phys. Lett. 2003, 83, 2366. – reference: W. Liu, B. L. Jackson, J. Zhu, C.-Q. Miao, C.-H. Chung, Y. J. Park, K. Sun, J. Woo, Y.-H. Xie, ACS Nano 2010, 4, 3927. – reference: M. Scharnberg, J. Hu, J. Kanzow, K. Ratzke, R. Adelung, F. Faupel, C. Pannemann, U. Hilleringmann, S. Meyer, J. Pflaum, Appl. Phys. Lett. 2005, 86, 024104. – reference: T. H. J. van Osch, J. Perelaer, A. W. M. de Laat, U. S. Schubert, Adv. Mater. 2008, 20, 343. – reference: D. Gupta, M. Katiyar, Org. Electron. 2009, 10, 775. – reference: C.-a. Di, Y. Liu, G. Yu, D. Zhu, Accounts Chem. Res. 2009, 42, 1573. – reference: M. Kim, J. Kim, H. Son, J. H. Jang, M. Yi, Jpn. J. Appl. Phys. 2010, 49, 101601. – reference: D. J. Gundlach, L. Zhou, J. A. Nichols, T. N. Jackson, P. V. Necliudov, M. S. Shur, J. Appl. Phys. 2006, 100, 024509. – reference: M. Koehler, I. Biaggio, M. G. E. da Luz, Phys. Rev. B 2008, 78, 235308. – reference: S. P. Pang, H. N. Tsao, X. L. Feng, K. Mullen, Adv. Mater. 2009, 21, 3488. – reference: H. Klauk, Chem. Soc. Rev. 2010, 39, 2643. – reference: M. Kröger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, A. Kahn, Appl. Phys. Lett. 2009, 95, 123301. – reference: C.-W. Chu, S.-H. Li, C.-W. Chen, V. Shrotriya, Y. Yang, Appl. Phys. Lett. 2005, 87, 193508. – reference: K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666. – reference: E. Gili, M. Caironi, H. Sirringhaus, in Handbook of Nanofabrication, (Ed: G. Wiederrecht), Elsevier, 2009. – reference: Y. Roichman, N. Tessler, Appl. Phys. Lett. 2002, 80, 151. – reference: U. Wolf, V. I. Arkhipov, H. Bassler, Phys. Rev. B 1999, 59, 7507. – reference: K.-D. Jung, Y. C. Kim, B.-G. Park, H. Shin, J. D. Lee, IEEE Electron Dev. 2009, 56, 431. – reference: S. D. Wang, Y. Yan, K. Tsukagoshi, Appl. Phys. Lett. 2010, 97, 063307. – reference: I. Yagi, K. Tsukagoshi, Y. Aoyagi, Appl. Phys. Lett. 2004, 84, 813. – reference: R. Winter, M. S. Hammer, C. Deibel, J. Pflaum, Appl. Phys. Lett. 2009, 95, 263313. – reference: S. Jain, IEE Proc.-I 1988, 135, 162. – reference: S. Braun, W. R. Salaneck, M. Fahlman, Adv. Mater. 2009, 21, 1450. – reference: M. Caironi, C. Newman, J. R. Moore, D. Natali, H. Yan, A. Facchetti, H. Sirringhaus, Appl. Phys. Lett. 2010, 96, 183303. – reference: Y. Xu, R. Gwoziecki, I. Chartier, R. Coppard, F. Balestra, G. Ghibaudo, Appl. Phys. Lett. 2010, 97, 063302. – reference: M. Weis, J. Lin, D. Taguchi, T. Manaka, M. Iwamoto, Appl. Phys. Lett. 2010, 97, 263304. – reference: S. Pang, Y. Hernandez, X. Feng, K. Müllen, Adv. Mater. 2011, 23, 2779. – reference: Y.-Y. Noh, X. Cheng, M. Tello, M.-J. Lee, H. Sirringhaus,Semicond. Sci. Tech. 2011, 26, 034003. – reference: N. Tessler, Y. Preezant, N. Rappaport, Y. Roichman, Adv. Mater. 2009, 21, 2741. – reference: D. W. Li, L. J. Guo, Appl. Phys. Lett. 2006, 88, 063513. – reference: W. Fikry, G. Ghibaudo, H. Haddara, S. Cristoloveanu, M. Dutoit, Electron. Lett. 1995, 31, 762. – reference: C. W. Sele, T. von Werne, R. H. Friend, H. Sirringhaus, Adv. Mater. 2005, 17, 997. – reference: P. Bröms, J. Birgerson, W. R. Salaneck, Synthetic Met. 1997, 88, 255. – reference: J. C. Blakesley, N. C. Greenham, J. Appl. Phys. 2009, 106, 034507. – reference: C. Reese, Z. Bao, Adv. Funct. Mater. 2009, 19, 763. – reference: K.-J. Baeg, J. Kim, D. Khim, M. Caironi, D.-Y. Kim, I.-K. You, J. R. Quinn, A. Facchetti, Y.-Y. Noh, ACS Appl. Mater. Interfaces 2011, 3, 3205. – reference: C. Vanoni, S. Tsujino, T. A. Jung, Appl. Phys. Lett. 2007, 90, 193119. – reference: B. Iñiguez, R. Picos, D. Veksler, A. Koudymov, M. S. Shur, T. Ytterdal, W. Jackson, Solid State Electron. 2008, 52, 400. – reference: M. N. Islam, B. Mazhari, Semicond. Sci. Tech. 2008, 23, 125027. – reference: S. V. Novikov, Phys. Status Solidi C. 2008, 5, 750. – reference: K. Hong, S. H. Kim, C. Yang, W. M. Yun, S. Nam, J. Jang, C. Park, C. E. Park, ACS Appl. Mater. Interfaces 2011, 3, 74. – reference: Y. Hong, F. Yan, P. Migliorato, S. H. Han, J. Jang, Thin Solid Films 2007, 515, 4032. – reference: E. von Hauff, F. Johnen, A. V. Tunc, L. Govor, J. Parisi, J. Appl. Phys. 2010, 108, 063709. – reference: L. Burgi, H. Sirringhaus, R. H. Friend, Appl. Phys. Lett. 2002, 80, 2913. – reference: X. Li, W. T. T. Smaal, C. Kjellander, B. van der Putten, K. Gualandris, E. C. P. Smits, J. Anthony, D. J. Broer, P. W. M. Blom, J. Genoe, G. Gelinck, Org. Electron. 2011, 12, 1319. – reference: I. H. Campbell, S. Rubin, T. A. Zawodzinski, J. D. Kress, R. L. Martin, D. L. Smith, N. N. Barashkov, J. P. Ferraris, Phys. Rev. B 1996, 54, R14321. – reference: I. G. Hill, Appl. Phys. Lett. 2005, 87, 163505. – reference: S. H. Kim, S. H. Lee, J. Jang, IEEE Electr. Device Lett., IEEE 2010, 31, 1044. – reference: T. Li, J. W. Balk, P. P. Ruden, I. H. Campbell, D. L. Smith, J. Appl. Phys. 2002, 91, 4312. – reference: J.-P. Hong, A.-Y. Park, S. Lee, J. Kang, N. Shin, D. Y. Yoon, Appl. Phys. Lett. 2008, 92. – reference: A. Estrada, A. Cerdeira, J. Puigdollers, L. Resendiz, J. Pallares, L. F. Marsal, C. Voz, B. Iniguez, Solid State Electron. 2005, 49, 1009. – reference: T. Miyadera, T. Minari, K. Tsukagoshi, H. Ito, Y. Aoyagi, Appl. Phys. Lett. 2007, 91. – reference: X. Cheng, Y.-Y. Noh, J. Wang, M. Tello, J. Frisch, R.-P. Blum, A. Vollmer, J. P. Rabe, N. Koch, H. Sirringhaus, Adv. Funct. Mater. 2009, 19, 2407. – reference: B. H. Hamadani, D. Natelson, Proc. IEEE 2005, 93, 1306. – reference: J. Li, X.-W. Zhang, L. Zhang, H. Khizar ul, X.-Y. Jiang, W.-Q. Zhu, Z.-L. Zhang, Solid State Commun. 2009, 149, 1826. – reference: C. Bock, D. V. Pham, U. Kunze, D. Kafer, G. Witte, A. Terfort, Appl. Phys. Lett. 2007, 91, 052110. – reference: J. H. Cho, D. H. Kim, Y. Jang, W. H. Lee, K. Ihm, J. H. Han, S. Chung, K. Cho, Appl. Phys. Lett. 2006, 89, 132101. – reference: A. Rose, Concepts in photoconductivity and allied problems, Interscience Publishers, New York 1963. – reference: Y. Wen, Y. Liu, C.-a. Di, Y. Wang, X. Sun, Y. Guo, J. Zheng, W. Wu, S. Ye, G. Yu, Adv. Mater. 2009, 21, 1631. – reference: D.-J. Yun, K. Hong, S. h. Kim, W.-M. Yun, J.-y. Jang, W.-S. Kwon, C.-E. Park, S.-W. Rhee, ACS Appl. Mater. Interfaces 2011, 3, 43. – reference: Y. Wen, Y. Liu, Adv. Mater. 2010, 22, 1331. – reference: M. Vissenberg, M. Matters, Phys. Rev. B 1998, 57, 12964. – reference: R. J. Chesterfield, J. C. McKeen, C. R. Newman, P. C. Ewbank, D. t. A. da Silva Filho, J.-L. Brédas, L. L. Miller, K. R. Mann, C. D. Frisbie, J. Phys. Chem. B 2004, 108, 19281. – reference: B. Broker, R. P. Blum, J. Frisch, A. Vollmer, O. T. Hofmann, R. Rieger, K. Mullen, J. P. Rabe, E. Zojer, N. Koch, Appl. Phys. Lett. 2008, 93, 243303. – reference: M. Knupfer, G. Paasch, J. Vac. Sci. Technol. A 2005, 23, 1072. – reference: T. Hassenkam, D. R. Greve, T. Bjornholm, Adv. Mater. 2001, 13, 631. – reference: P. L. Bullejos, J. A. J. Tejada, F. M. Gomez-Campos, M. J. Deen, O. Marinov, J. Appl. Phys. 2009, 106, 4. – reference: E. Meijer, G. Gelinck, E. van Veenendaal, B. Huisman, D. de Leeuw, T. Klapwijk, Appl. Phys. Lett. 2003, 82, 4576. – reference: M. Caironi, Y.-Y. Noh, H. Sirringhaus, Semicond. Sci. Tech. 2011, 26, 034006. – reference: S. M. Sze, K. K. Ng, Physics of Semiconductor Devices, 3rd Edition, John Wiley & Sons, Inc., 2006. – reference: A. Herasimovich, S. Scheinert, I. Hoerselmann, J. Appl. Phys. 2007, 102, 054509. – reference: M. Estrada, I. Mejia, A. Cerdeira, J. Pallares, L. F. Marsal, B. Iniguez, Solid State Electron. 2008, 52, 787. – reference: M. Caironi, M. Bird, D. Fazzi, Z. Chen, R. Di Pietro, C. Newman, A. Facchetti, H. Sirringhaus, Adv. Funct. Mater. 2011, 21, 3371. – reference: S. Y. Park, Y. H. Noh, H. H. Lee, Appl. Phys. Lett. 2006, 88, 113503. – reference: F. Fujimori, K. Shigeto, T. Hamano, T. Minari, T. Miyadera, K. Tsukagoshi, Y. Aoyagi, Appl. Phys. Lett. 2007, 90, 193507. – reference: A. S. Molinari, I. G. Lezama, P. Parisse, T. Takenobu, Y. Iwasa, A. F. Morpurgo, Appl. Phys. Lett. 2008, 92. – reference: A. Bolognesi, A. Di Carlo, P. Lugli, Appl. Phys. Lett. 2002, 81, 4646. – reference: X.-H. Zhang, B. Domercq, B. Kippelen, Synthetic Met. 2009, 159, 2371. – reference: M. A. Baldo, S. R. Forrest, Phys. Rev. B 2001, 64, 17. – reference: R. S. Ashraf, Z. Chen, D. S. Leem, H. Bronstein, W. Zhang, B. Schroeder, Y. Geerts, J. Smith, S. Watkins, T. D. Anthopoulos, H. Sirringhaus, J. C. de Mello, M. Heeney, I. McCulloch, Chem. Mater. 2011, 23, 768. – reference: N. Tessler, Y. Roichman, Appl. Phys. Lett. 2001, 79, 2987. – reference: M. C. Gwinner, R. D. Pietro, Y. Vaynzof, K. J. Greenberg, P. K. H. Ho, R. H. Friend, H. Sirringhaus, Adv. Funct. Mater. 2011, 21, 1432. – reference: D. Huang, F. Liao, S. Molesa, D. Redinger, V. Subramanian, J. Electrochem. Soc. 2003, 150, G412. – reference: P. Stoliar, R. Kshirsagar, M. Massi, P. Annibale, C. Albonetti, D. M. de Leeuw, F. Biscarini, J. Am. Chem. Soc. 2007, 129, 6477. – reference: G. L. Whiting, A. C. Arias, Appl. Phys. Lett. 2009, 95, 253302. – reference: Y. L. Shen, M. W. Klein, D. B. Jacobs, J. C. Scott, G. G. Malliaras, Phys. Rev. Lett. 2001, 86, 3867. – reference: B. Bröker, R.-P. Blum, L. Beverina, O. T. Hofmann, M. Sassi, R. Ruffo, G. A. Pagani, G. Heimel, A. Vollmer, J. Frisch, J. P. Rabe, E. Zojer, N. Koch, Chem. Phys. Chem. 2009, 10, 2947. – reference: Y. Noguchi, T. Sekitani, T. Yokota, T. Someya, Appl. Phys. Lett. 2008, 93, 3. – reference: A. Salleo, R. J. Kline, D. M. DeLongchamp, M. L. Chabinyc, Adv. Mater. 2010, 22, 3812. – reference: M. Caironi, E. Gili, H. Sirringhaus, in Organic Electronics II: More Materials and Applications, (Ed: H. Klauk), Wiley VCH, 2011, 281. – reference: V. Sholin, S. A. Carter, R. A. Street, A. C. Arias, Appl. Phys. Lett. 2008, 92, 063307. – reference: A. C. Dürr, F. Schreiber, M. Kelsch, H. D. Carstanjen, H. Dosch, Adv. Mater. 2002, 14, 961. – reference: T. Li, P. P. Ruden, I. H. Campbell, D. L. Smith, J. Appl. Phys. 2003, 93, 4017. – reference: Y.-Y. Noh, X. Cheng, M. Tello, M.-J. Lee, H. Sirringhaus, Semicond. Sci. Tech. 2011, 26, 034003. – reference: L. S. Hung, C. H. Chen, Mat. Sci. Eng. R 2002, 39, 143. – reference: L.-L. Chua, J. Zaumseil, J.-F. Chang, E. C. W. Ou, P. K. H. Ho, H. Sirringhaus, R. H. Friend, Nature 2005, 434, 194. – reference: H. B. Akkerman, P. W. M. Blom, D. M. de Leeuw, B. de Boer, Nature 2006, 441, 69. – reference: X. Zhan, A. Facchetti, S. Barlow, T. J. Marks, M. A. Ratner, M. R. Wasielewski, S. R. Marder, Adv. Mater. 2011, 23, 268. – reference: L. Chen, H. Xu, L.-G. Yang, G.-Q. Zhang, Y. Li, M. Wang, H.-Z. Chen, J. Phys. D Appl. Phys. 2011, 44, 115101. – reference: C.-H. Chang, C.-H. Chien, J.-Y. Yang, Appl. Phys. Lett. 2007, 91, 083502. – reference: J. Li X.-W. Zhang, L. Zhang, K. Haq, X.-Y. Jiang, W.-Q. Zhu, Z.-L. Zhang, Semicond. Sci. Tech. 2009, 24, 115012. – reference: D. F. Blossey, Phys. Rev. B 1974, 9, 5183. – reference: Q.-D. Ling, D.-J. Liaw, C. Zhu, D. S.-H. Chan, E.-T. Kang, K.-G. Neoh, Prog. Polym. Sci. 2008, 33, 917. – reference: B. H. Hamadani, C. A. Richter, J. S. Suehle, D. J. Gundlach, Appl. Phys. Lett. 2008, 92. – reference: K. D. Jung, Y. C. Kim, H. Shin, B. G. Park, J. D. Lee, E. S. Cho, S. J. Kwon, Appl. Phys. Lett. 2010, 96, 103305. – reference: Z. Chen, H. Lemke, S. Albert-Seifried, M. Caironi, M. M. Nielsen, M. Heeney, W. Zhang, I. McCulloch, H. Sirringhaus, Adv. Mater. 2010, 22, 2371. – reference: I. Yagi, N. Hirai, Y. Miyamoto, M. Noda, A. Imaoka, N. Yoneya, K. Nomoto, J. Kasahara, A. Yumoto, T. Urabe, J. Soc. Inf. Display 2008, 16, 15. – reference: M. A. Lampert, P. Mark, Current Injection in Solids, Academic Press, New York1970. – reference: K. Hong, S. H. Kim, C. Yang, T. K. An, H. Cha, C. Park, C. E. Park, Org. Electron. 2011, 12, 516. – reference: F. Flores, J. Ortega, H. Vazquez, Phys. Chem. Chem. Phys. 2009, 11, 8658. – reference: S. D. Wang, Y. Yan, K. Tsukagoshi, Ieee Electron Device Letters 2010, 31, 509. – reference: N. Zhao, M. Chiesa, H. Sirringhaus, Y. Li, Y. Wu, B. Ong, J. Appl. Phys. 2007, 101, 064513. – reference: S. Scheinert, G. Paasch, J. Appl. Phys. 2009, 105, 014509. – reference: T. N. Ng, W. R. Silveira, J. A. Marohn, Phys. Rev. Lett. 2007, 98, 066101. – reference: T. Umeda, D. Kumaki, S. Tokito, J. Appl. Phys. 2009, 105, 024516. – reference: Y. Changhun, K. Minseok, L. Seung Won, M. Hanul, P. Sunmin, K. Jae Bon, K. Jeong Won, Y. In-Kyu, Y. Seunghyup, IEEE Electr. Device Lett., 2011, 32, 1454. – reference: C.-a. Di, G. Yu, Y. Liu, X. Xu, D. Wei, Y. Song, Y. Sun, Y. Wang, D. Zhu, J. Liu, X. Liu, D. Wu, J. Am. Chem. Soc. 2006, 128, 16418. – reference: R. Coehoorn, W. F. Pasveer, P. A. Bobbert, M. A. J. Michels, Phys. Rev. B 2005, 72, 155206. – reference: K. Seshadri, C. D. Frisbie, Appl. Phys. Lett. 2001, 78, 993. – reference: T. Manaka, S. Kawashima, M. Iwamoto, Appl. Phys. Lett. 2010, 97, 113302. – reference: A. L. Burin, M. A. Ratner, J. Chem. Phys. 2000, 113, 3941. – reference: J. Hwang, A. Wan, A. Kahn, Mat. Sci. Eng. R 2009, 64, 1. – reference: C.-a. Di, G. Yu, Y. Liu, Y. Guo, Y. Wang, W. Wu, D. Zhu, Adv. Mater. 2008, 20, 1286. – reference: Y. Chen, I. Shih, S. Xiao, J. Appl. Phys. 2004, 96, 454. – reference: I. Lange, J. C. Blakesley, J. Frisch, A. Vollmer, N. Koch, D. Neher, Phys. Rev. Lett. 2011, 106, 216402. – reference: D. Natali, L. Fumagalli, M. Sampietro, J. Appl. Phys. 2007, 101, 014501. – reference: A. Ahnood, K. Ghaffarzadeh, A. Nathan, P. Servati, F. Li, M. R. Esmaeili-Rad, A. Sazonov, Appl. Phys. Lett. 2008, 93, 163503. – reference: B. Park, A. Aiyar, J.-i. Hong, E. Reichmanis, ACS Appl. Mater. Interfaces 2011, 3, 1574. – reference: Y. Y. Zhang, Y. M. Shi, F. M. Chen, S. G. Mhaisalkar, L. J. Li, B. S. Ong, Y. L. Wu, Appl. Phys. Lett. 2007, 91, 223512. – reference: C. H. Shim, F. Maruoka, R. Hattori, IEEE Electron Dev. 2010, 57, 195. – reference: J. D. Yuen, R. Kumar, D. Zakhidov, J. Seifter, B. Lim, A. J. Heeger, F. Wudl, Adv. Mater. 2011, 23, 3780. – reference: W. Takashima, T. Murasaki, S. Nagamatsu, T. Morita, K. Kaneto, Appl. Phys. Lett. 2007, 91, 071905. – reference: G. Horowitz, M. E. Hajlaoui, R. Hajlaoui, J. Appl. Phys. 2000, 87, 4456. – reference: C.-a. Di, D. Wei, G. Yu, Y. Liu, Y. Guo, D. Zhu, Adv. Mater. 2008, 20, 3289. – reference: K.-D. Jung, Y. C. Kim, B.-J. Kim, B.-G. Park, H. Shin, J. D. Lee, Jpn. J. Appl. Phys. 2008, 47, 3174. – reference: J. Zhang, Y. Zhao, Z. Wei, Y. Sun, Y. He, C.-a. Di, W. Xu, W. Hu, Y. Liu, D. Zhu, Adv. Funct. Mater. 2011, 21, 786. – reference: M. Kitamura, Y. Kuzumoto, S. Aomori, M. Kamura, J. H. Na, Y. Arakawa, Appl. Phys. Lett. 2009, 94, 083310. – reference: B. H. Hamadani, D. Natelson, Appl. Phys. Lett. 2004, 84, 443. – reference: C. Chun-Ying, J. Kanicki, IEEE Electr. Device Lett., 1997, 18, 340. – reference: G. M. Rangger, O. T. Hofmann, L. Romaner, G. Heimel, ö Br, B. ker, R.-P. Blum, R. L. Johnson, N. Koch, E. Zojer, Phys. Rev. B 2009, 79, 165306. – reference: B. H. Hamadani, D. Natelson, J. Appl. Phys. 2005, 97, 064508. – reference: Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller-Meskamp, K. Leo, Adv. Funct. Mater. 2011, 21, 1076. – reference: J. C. Scott, G. G. Malliaras, Chem. Phys. Lett. 1999, 299, 115. – reference: Y.-L. Loo, I. McCulloch, Mrs Bull. 2008, 33, 653. – reference: E. von Hauff, J. Parisi, V. Dyakonov, J. Appl. Phys. 2006, 100, 073713. – reference: K. P. Puntambekar, P. V. Pesavento, C. D. Frisbie, Appl. Phys. Lett. 2003, 83, 5539. – reference: H. Bai, G. Shi, Sensors 2007, 7, 267. – reference: G. Ghibaudo, Electronics Letters 1988, 24, 543. – reference: B. Park, A. Aiyar, M. S. Park, M. Srinivasarao, E. Reichmanis, J. Phys. Chem. C 2011, 115, 11719. – reference: A. Southard, V. Sangwan, J. Cheng, E. D. Williams, M. S. Fuhrer, Org. Electron. 2009, 10, 1556. – reference: P. V. Pesavento, K. P. Puntambekar, C. D. Frisbie, J. C. McKeen, P. P. Ruden, J. Appl. Phys. 2006, 99, 094504. – reference: A. Hoppe, D. Knipp, B. Gburek, A. Benor, M. Marinkovic, V. Wagner, Org. Electron. 2010, 11, 626. – reference: S. Jeong, H. C. Song, W. W. Lee, S. S. Lee, Y. Choi, W. Son, E. D. Kim, C. H. Paik, S. H. Oh, B.-H. Ryu, Langmuir 2011, 27, 3144. – reference: Y. Zhao, C.-a. Di, X. Gao, Y. Hu, Y. Guo, L. Zhang, Y. Liu, J. Wang, W. Hu, D. Zhu, Adv. Mater. 2011, 23, 2448. – reference: M. C. Gwinner, Y. Vaynzof, K. K. Banger, P. K. H. Ho, R. H. Friend, H. Sirringhaus, Adv. Funct. Mater. 2010, 20, 3457. – reference: L. Xiao, Z. Chen, B. Qu, J. Luo, S. Kong, Q. Gong, J. Kido, Adv. Mater. 2011, 23, 926. – reference: C. Sciascia, N. Martino, T. Schuettfort, B. Watts, G. Grancini, M. R. Antognazza, M. Zavelani-Rossi, C. R. McNeill, M. Caironi, Adv. Mater. 2011, 23, 5086. – reference: T. Lindner, G. Paasch, J. Appl. Phys. 2007, 102, 033708. – reference: K. Hong, S. Y. Yang, C. Yang, S. H. Kim, D. Choi, C. E. Park, Org. Electron. 2008, 9, 864. – reference: D. Boudinet, M. Benwadih, S. Altazin, R. Gwoziecki, J. M. Verilhac, R. Coppard, G. Le Blevennec, I. Chartier, G. Horowitz, Org. Electron. 2010, 11, 291. – reference: K. Asadi, Y. Wu, F. Gholamrezaie, P. Rudolf, P. W. M. Blom, Adv. Mater. 2009, 21, 4109. – reference: T. Sakanoue, H. Sirringhaus, Nat. Mater. 2010, 9, 736. – reference: N. Koch, S. Duhm, J. P. Rabe, A. Vollmer, R. L. Johnson, Phys. Rev. Lett. 2005, 95, 237601. – reference: M.-W. Lee, M.-Y. Lee, J.-C. Choi, J.-S. Park, C.-K. Song, Org. Electron. 2010, 11, 854. – reference: O. Simonetti, L. Giraudet, T. Maurel, J. L. Nicolas, A. Belkhir, Org. Electron. 2010, 11, 1381. – reference: G. R. Dholakia, M. Meyyappan, A. Facchetti, T. J. Marks, Nano Lett. 2006, 6, 2447. – reference: Y.-Y. Noh, N. Zhao, M. Caironi, H. Sirringhaus, Nat. Nanotechnol. 2007, 2, 784. – reference: D. Kumaki, T. Umeda, S. Tokito, Appl. Phys. Lett. 2008, 92, 013301. – reference: P. Bröms, J. Birgersson, N. Johansson, M. Lögdlund, W. R. Salaneck, Synthetic Met. 1995, 74, 179. – reference: S. Altazin, R. Clerc, R. Gwoziecki, D. Boudinet, G. Ghibaudo, G. Pananakakis, I. Chartier, R. Coppard, Org. Electron. 2011, 12, 897. – reference: T. Sekitani, T. Someya, Mater. Today 2011, 14, 398. – reference: X. Cheng, M. Caironi, Y.-Y. Noh, C. Newman, J. Wang, M. Lee, K. Banger, R. Di Pietro, A. Facchetti, H. Sirringhaus, Org. Electron. 2012, 13, 320. – reference: K. Hong, S. H. Kim, C. Yang, J. Jang, H. Cha, C. E. Park, Appl. Phys. Lett. 2010, 97, 103304. – reference: B. H. Hamadani, H. Ding, Y. Gao, D. Natelson, Phys. Rev. B 2005, 72, 235302. – reference: T. Schuettfort, S. Huettner, S. Lilliu, J. E. Macdonald, L. Thomsen, C. R. McNeill, Macromolecules 2011, 44, 1530. – reference: P. V. Pesavento, R. J. Chesterfield, C. R. Newman, C. D. Frisbie, J. Appl. Phys. 2004, 96, 7312. – reference: A. Facchetti, Chem. Mater. 2011, 23, 733. – reference: K. A. Singh, T. Young, R. D. McCullough, T. Kowalewski, L. M. Porter, Adv. Funct. Mater. 2010, 20, 2216. – reference: D. Braga, M. Ha, W. Xie, C. D. Frisbie, Appl. Phys. Lett. 2010, 97, 193311. – reference: J. E. Anthony, A. Facchetti, M. Heeney, S. R. Marder, X. Zhan, Adv. Mater. 2010, 22, 3876. – reference: R. Schroeder, L. Majewski, M. Grell, Appl. Phys. Lett. 2004, 84, 1004. – reference: C. W. Sohn, T. U. Rim, G. B. Choi, Y. H. Jeong, IEEE Electron Dev. 2010, 57, 986. – reference: L. Giraudet, O. Simonetti, Org. Electron. 2011, 12, 219. – reference: C. Sciascia, M. Celebrano, M. Binda, D. Natali, G. Lanzani, J. R. Cabanillas-Gonzalez, Org. Electron. 2012, 13, 66. – reference: G. Paasch, H. Peisert, M. Knupfer, J. Fink, S. Scheinert, J. Appl. Phys. 2003, 93, 6084. – reference: S. P. Tiwari, X.-H. Zhang, J. W. J. Potscavage, B. Kippelen, J. Appl. Phys. 2009, 106, 054504. – reference: L. Burgi, T. J. Richards, R. H. Friend, H. Sirringhaus, J. Appl. Phys. 2003, 94, 6129. – reference: L. Romaner, G. Heimel, Br, é, J.-L. das, A. Gerlach, F. Schreiber, R. L. Johnson, J. Zegenhagenörg, S. Duhm, N. Koch, E. Zojer, Phys. Rev. Lett. 2007, 99, 256801. – reference: K. Nomoto, N. Hirai, N. Yoneya, N. Kawashima, M. Noda, M. Wada, J. Kasahara, IEEE Electron Dev. 2005, 52, 1519. – reference: G. B. Blanchet, C. R. Fincher, M. Lefenfeld, J. A. Rogers, Appl. Phys. Lett. 2004, 84, 296. – reference: K. C. Dickey, T. J. Smith, K. J. Stevenson, S. Subramanian, J. E. Anthony, Y.-L. Loo, Chem. Mater. 2007, 19, 5210. – reference: T. J. Richards, H. Sirringhaus, J. Appl. Phys. 2007, 102, 094510. – reference: D. Boudinet, M. Benwadih, Y. B. Qi, S. Altazin, J. M. Verilhac, M. Kroger, C. Serbutoviez, R. Gwoziecki, R. Coppard, G. Le Blevennec, A. Kahn, G. Horowitz, Org. Electron. 2010, 11, 227. – reference: J. Rivnay, R. Steyrleuthner, L. H. Jimison, A. Casadei, Z. Chen, M. F. Toney, A. Facchetti, D. Neher, A. Salleo, Macromolecules 2011, 44, 5246. – reference: S. Cho, J. H. Seo, K. Lee, A. J. Heeger, Adv. Funct. Mater. 2009, 19, 1459. – reference: X. Zhao, X. Zhan, Chem. Soc. Rev. 2011, 40, 3728. – reference: K. Nomoto, N. Yoneya, N. Hirai, I. Yagi, N. Kawashima, M. Noda, J. Kasahara, J. Soc. Inf. Display 2007, 15, 491. – reference: T. N. Ng, S. Sambandan, R. Lujan, A. C. Arias, C. R. Newman, H. Yan, A. Facchetti, Appl. Phys. Lett. 2009, 94, 233307. – reference: F.-C. Chen, L.-J. Kung, T.-H. Chen, Y.-S. Lin, Appl. Phys. Lett. 2007, 90, 073504. – reference: Y. Cao, S. Liu, Q. Shen, K. Yan, P. Li, J. Xu, D. Yu, M. L. Steigerwald, C. Nuckolls, Z. Liu, X. Guo, Adv. Funct. Mater. 2009, 19, 2743. – reference: J. Rivnay, M. F. Toney, Y. Zheng, I. V. Kauvar, Z. Chen, V. Wagner, A. Facchetti, A. Salleo, Adv. Mater. 2010, 22, 4359. – reference: M. Singh, H. M. Haverinen, P. Dhagat, G. E. Jabbour, Adv. Mater. 2010, 22, 673. – reference: R. Steyrleuthner, M. Schubert, F. Jaiser, J. C. Blakesley, Z. Chen, A. Facchetti, D. Neher, Adv. Mater. 2010, 22, 2799. – reference: J. Li, X.-W. Zhang, L. Zhang, H. Zhang, X.-Y. Jiang, K. Haq, W.-Q. Zhu, Z.-L. Zhang, Synthetic Met. 2010, 160, 376. – reference: T. W. Kelley, C. D. Frisbie, J. Phys. Chem. B 2001, 105, 4538. – reference: C.-a. Di, G. Yu, Y. Liu, Y. Guo, W. Wu, D. Wei, D. Zhu, Phys. Chem. Chem. Phys. 2008, 10, 2302. – volume: 96 start-page: 454 year: 2004 publication-title: J. Appl. Phys. – volume: 23 start-page: 268 year: 2011 publication-title: Adv. Mater. – volume: 90 start-page: 073504 year: 2007 publication-title: Appl. Phys. Lett. – volume: 94 start-page: 083310 year: 2009 publication-title: Appl. Phys. Lett. – volume: 78 start-page: 235308 year: 2008 publication-title: Phys. Rev. B – volume: 95 start-page: 263313 year: 2009 publication-title: Appl. Phys. Lett. – volume: 93 start-page: 4017 year: 2003 publication-title: J. Appl. Phys. – volume: 102 start-page: 033708 year: 2007 publication-title: J. Appl. Phys. – volume: 87 start-page: 4456 year: 2000 publication-title: J. Appl. Phys. – volume: 33 start-page: 917 year: 2008 publication-title: Prog. Polym. Sci. – volume: 17 start-page: 997 year: 2005 publication-title: Adv. Mater. – volume: 21 start-page: 786 year: 2011 publication-title: Adv. Funct. Mater. – volume: 86 start-page: 024104 year: 2005 publication-title: Appl. Phys. Lett. – volume: 21 start-page: 1076 year: 2011 publication-title: Adv. Funct. Mater. – volume: 74 start-page: 179 year: 1995 publication-title: Synthetic Met. – volume: 23 start-page: 5086 year: 2011 publication-title: Adv. Mater. – volume: 82 start-page: 4576 year: 2003 publication-title: Appl. Phys. Lett. – volume: 19 start-page: 5210 year: 2007 publication-title: Chem. Mater. – volume: 14 start-page: 961 year: 2002 publication-title: Adv. Mater. – volume: 90 start-page: 193507 year: 2007 publication-title: Appl. Phys. Lett. – volume: 22 start-page: 1331 year: 2010 publication-title: Adv. Mater. – volume: 91 start-page: 4312 year: 2002 publication-title: J. Appl. Phys. – volume: 99 start-page: 094504 year: 2006 publication-title: J. Appl. Phys. – volume: 97 start-page: 113302 year: 2010 publication-title: Appl. Phys. Lett. – volume: 97 start-page: 103304 year: 2010 publication-title: Appl. Phys. Lett. – volume: 93 start-page: 1306 year: 2005 publication-title: Proc. IEEE – volume: 19 start-page: 2407 year: 2009 publication-title: Adv. Funct. Mater. – volume: 441 start-page: 69 year: 2006 publication-title: Nature – volume: 22 start-page: 2371 year: 2010 publication-title: Adv. Mater. – volume: 9 start-page: 419 year: 2008 publication-title: Org. Electron. – volume: 88 start-page: 113503 year: 2006 publication-title: Appl. Phys. Lett. – volume: 108 start-page: 19281 year: 2004 publication-title: J. Phys. Chem. B – volume: 31 start-page: 509 year: 2010 publication-title: Ieee Electron Device Letters – volume: 92 year: 2008 publication-title: Appl. Phys. Lett. – volume: 14 start-page: 398 year: 2011 publication-title: Mater. Today – volume: 31 start-page: 1044 year: 2010 publication-title: IEEE Electr. Device Lett., IEEE – volume: 105 start-page: 014509 year: 2009 publication-title: J. Appl. Phys. – volume: 80 start-page: 2913 year: 2002 publication-title: Appl. Phys. Lett. – volume: 13 start-page: 631 year: 2001 publication-title: Adv. Mater. – volume: 4 start-page: 1451 year: 2010 publication-title: ACS Nano – volume: 149 start-page: 1826 year: 2009 publication-title: Solid State Commun. – volume: 94 start-page: 233307 year: 2009 publication-title: Appl. Phys. Lett. – volume: 20 start-page: 3289 year: 2008 publication-title: Adv. Mater. – volume: 101 start-page: 014501 year: 2007 publication-title: J. Appl. Phys. – volume: 57 start-page: 12964 year: 1998 publication-title: Phys. Rev. B – volume: 23 start-page: 3780 year: 2011 publication-title: Adv. Mater. – volume: 96 start-page: 183303 year: 2010 publication-title: Appl. Phys. Lett. – start-page: 281 year: 2011 – volume: 103 start-page: 256803 year: 2009 publication-title: Phys. Rev. Lett. – volume: 39 start-page: 143 year: 2002 publication-title: Mat. Sci. Eng. R – volume: 84 start-page: 813 year: 2004 publication-title: Appl. Phys. Lett. – volume: 52 start-page: 787 year: 2008 publication-title: Solid State Electron. – volume: 11 start-page: 854 year: 2010 publication-title: Org. Electron. – volume: 290 start-page: 2123 year: 2000 publication-title: Science – volume: 23 start-page: 1061 year: 2011 publication-title: Chem. Mater. – volume: 64 start-page: 17 year: 2001 publication-title: Phys. Rev. B – year: 2009 – volume: 91 year: 2007 publication-title: Appl. Phys. Lett. – volume: 105 start-page: 024516 year: 2009 publication-title: J. Appl. Phys. – volume: 96 start-page: 7312 year: 2004 publication-title: J. Appl. Phys. – volume: 97 start-page: 064508 year: 2005 publication-title: J. Appl. Phys. – volume: 59 start-page: 7507 year: 1999 publication-title: Phys. Rev. B – volume: 20 start-page: 1286 year: 2008 publication-title: Adv. Mater. – volume: 115 start-page: 11719 year: 2011 publication-title: J. Phys. Chem. C – volume: 21 start-page: 3371 year: 2011 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 2447 year: 2006 publication-title: Nano Lett. – volume: 90 start-page: 193119 year: 2007 publication-title: Appl. Phys. Lett. – volume: 11 start-page: 291 year: 2010 publication-title: Org. Electron. – volume: 92 start-page: 013301 year: 2008 publication-title: Appl. Phys. Lett. – volume: 22 start-page: 3778 year: 2010 publication-title: Adv. Mater. – volume: 49 start-page: 1009 year: 2005 publication-title: Solid State Electron. – volume: 52 start-page: 1519 year: 2005 publication-title: IEEE Electron Dev. – volume: 91 start-page: 052110 year: 2007 publication-title: Appl. Phys. Lett. – volume: 91 start-page: 223512 year: 2007 publication-title: Appl. Phys. Lett. – volume: 21 start-page: 1432 year: 2011 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 1381 year: 2010 publication-title: Org. Electron. – volume: 10 start-page: 2947 year: 2009 publication-title: Chem. Phys. Chem. – volume: 92 start-page: 063307 year: 2008 publication-title: Appl. Phys. Lett. – volume: 10 start-page: 1459 year: 2009 publication-title: Org. Electron. – volume: 93 start-page: 6084 year: 2003 publication-title: J. Appl. Phys. – volume: 11 start-page: 1381 year: 2010 – volume: 87 start-page: 163505 year: 2005 publication-title: Appl. Phys. Lett. – volume: 20 start-page: 3457 year: 2010 publication-title: Adv. Funct. Mater. – volume: 306 start-page: 666 year: 2004 publication-title: Science – volume: 19 start-page: 1459 year: 2009 publication-title: Adv. Funct. Mater. – volume: 106 start-page: 4 year: 2009 publication-title: J. Appl. Phys. – volume: 434 start-page: 194 year: 2005 publication-title: Nature – volume: 97 start-page: 193311 year: 2010 publication-title: Appl. Phys. Lett. – volume: 56 start-page: 431 year: 2009 publication-title: IEEE Electron Dev. – volume: 113 start-page: 3941 year: 2000 publication-title: J. Chem. Phys. – volume: 93 start-page: 163503 year: 2008 publication-title: Appl. Phys. Lett. – volume: 3 start-page: 1574 year: 2011 publication-title: ACS Appl. Mater. Interfaces – volume: 44 start-page: 115101 year: 2011 publication-title: J. Phys. D Appl. Phys. – volume: 22 start-page: 4359 year: 2010 publication-title: Adv. Mater. – volume: 84 start-page: 443 year: 2004 publication-title: Appl. Phys. Lett. – volume: 89 start-page: 132101 year: 2006 publication-title: Appl. Phys. Lett. – volume: 99 start-page: 256801 year: 2007 publication-title: Phys. Rev. Lett. – volume: 202 start-page: R82 year: 2005 publication-title: Phys. Status Solidi A – year: 1963 – volume: 23 start-page: 926 year: 2011 publication-title: Adv. Mater. – volume: 3 start-page: 43 year: 2011 publication-title: ACS Appl. Mater. Interfaces – volume: 84 start-page: 1004 year: 2004 publication-title: Appl. Phys. Lett. – volume: 13 start-page: 66 year: 2012 publication-title: Org. Electron. – volume: 5 start-page: 750 year: 2008 publication-title: Phys. Status Solidi C. – volume: 26 start-page: 034003 year: 2011 publication-title: Semicond. Sci. Tech. – volume: 95 start-page: 237601 year: 2005 publication-title: Phys. Rev. Lett. – volume: 42 start-page: 1573 year: 2009 publication-title: Accounts Chem. Res. – volume: 10 start-page: 775 year: 2009 publication-title: Org. Electron. – volume: 21 start-page: 4109 year: 2009 publication-title: Adv. Mater. – volume: 93 start-page: 3 year: 2008 publication-title: Appl. Phys. Lett. – volume: 91 start-page: 071905 year: 2007 publication-title: Appl. Phys. Lett. – volume: 86 start-page: 3867 year: 2001 publication-title: Phys. Rev. Lett. – volume: 23 start-page: 733 year: 2011 publication-title: Chem. Mater. – volume: 23 start-page: 591 year: 2011 publication-title: Chem. Mater. – volume: 44 start-page: 5246 year: 2011 publication-title: Macromolecules – volume: 72 start-page: 235302 year: 2005 publication-title: Phys. Rev. B – volume: 101 start-page: 064513 year: 2007 publication-title: J. Appl. Phys. – volume: 7 start-page: 267 year: 2007 publication-title: Sensors – volume: 11 start-page: 626 year: 2010 publication-title: Org. Electron. – volume: 102 start-page: 094510 year: 2007 publication-title: J. Appl. Phys. – volume: 44 start-page: 1530 year: 2011 publication-title: Macromolecules – volume: 23 start-page: 125027 year: 2008 publication-title: Semicond. Sci. Tech. – volume: 79 start-page: 165306 year: 2009 publication-title: Phys. Rev. B – volume: 150 start-page: G412 year: 2003 publication-title: J. Electrochem. Soc. – volume: 4 start-page: 3927 year: 2010 publication-title: ACS Nano – volume: 79 start-page: 2987 year: 2001 publication-title: Appl. Phys. Lett. – volume: 84 start-page: 296 year: 2004 publication-title: Appl. Phys. Lett. – volume: 57 start-page: 986 year: 2010 publication-title: IEEE Electron Dev. – volume: 93 start-page: 243303 year: 2008 publication-title: Appl. Phys. Lett. – volume: 100 start-page: 073713 year: 2006 publication-title: J. Appl. Phys. – volume: 83 start-page: 5539 year: 2003 publication-title: Appl. Phys. Lett. – volume: 40 start-page: 3728 year: 2011 publication-title: Chem. Soc. Rev. – volume: 54 start-page: R14321 year: 1996 publication-title: Phys. Rev. B – volume: 94 start-page: 143304 year: 2009 publication-title: Appl. Phys. Lett. – volume: 96 start-page: 103305 year: 2010 publication-title: Appl. Phys. Lett. – volume: 12 start-page: 897 year: 2011 publication-title: Org. Electron. – volume: 129 start-page: 6477 year: 2007 publication-title: J. Am. Chem. Soc. – volume: 20 start-page: 343 year: 2008 publication-title: Adv. Mater. – volume: 24 start-page: 115012 year: 2009 publication-title: Semicond. Sci. Tech. – volume: 2 start-page: 784 year: 2007 publication-title: Nat. Nanotechnol. – volume: 52 start-page: 400 year: 2008 publication-title: Solid State Electron. – volume: 64 start-page: 1 year: 2009 publication-title: Mat. Sci. Eng. R – volume: 83 start-page: 2366 year: 2003 publication-title: Appl. Phys. Lett. – volume: 515 start-page: 4032 year: 2007 publication-title: Thin Solid Films – volume: 32 start-page: 1454 year: 2011 publication-title: IEEE Electr. Device Lett. – volume: 128 start-page: 16418 year: 2006 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 1319 year: 2011 publication-title: Org. Electron. – volume: 15 start-page: 491 year: 2007 publication-title: J. Soc. Inf. Display – volume: 100 start-page: 024509 year: 2006 publication-title: J. Appl. Phys. – volume: 22 start-page: 3876 year: 2010 publication-title: Adv. Mater. – volume: 299 start-page: 115 year: 1999 publication-title: Chem. Phys. Lett. – volume: 9 start-page: 736 year: 2010 publication-title: Nat. Mater. – volume: 20 start-page: 2216 year: 2010 publication-title: Adv. Funct. Mater. – volume: 106 start-page: 216402 year: 2011 publication-title: Phys. Rev. Lett. – volume: 19 start-page: 2743 year: 2009 publication-title: Adv. Funct. Mater. – volume: 88 start-page: 255 year: 1997 publication-title: Synthetic Met. – volume: 10 start-page: 2302 year: 2008 publication-title: Phys. Chem. Chem. Phys. – volume: 27 start-page: 3144 year: 2011 publication-title: Langmuir – volume: 9 start-page: 864 year: 2008 publication-title: Org. Electron. – volume: 97 start-page: 263304 year: 2010 publication-title: Appl. Phys. Lett. – volume: 39 start-page: 2643 year: 2010 publication-title: Chem. Soc. Rev. – volume: 24 start-page: 543 year: 1988 publication-title: Electronics Letters – volume: 21 start-page: 1910 year: 2011 publication-title: Adv. Funct. Mater. – year: 1970 – volume: 22 start-page: 3812 year: 2010 publication-title: Adv. Mater. – volume: 13 start-page: 320 year: 2012 publication-title: Org. Electron. – volume: 78 start-page: 993 year: 2001 publication-title: Appl. Phys. Lett. – volume: 11 start-page: 8658 year: 2009 publication-title: Phys. Chem. Chem. Phys. – volume: 81 start-page: 4646 year: 2002 publication-title: Appl. Phys. Lett. – volume: 3 start-page: 3205 year: 2011 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 283 year: 2011 publication-title: ACS Nano – volume: 23 start-page: 768 year: 2011 publication-title: Chem. Mater. – volume: 31 start-page: 762 year: 1995 publication-title: Electron. Lett. – volume: 16 start-page: 15 year: 2008 publication-title: J. Soc. Inf. Display – volume: 21 start-page: 1631 year: 2009 publication-title: Adv. Mater. – volume: 72 start-page: 155206 year: 2005 publication-title: Phys. Rev. B – volume: 108 start-page: 063709 year: 2010 publication-title: J. Appl. Phys. – volume: 106 start-page: 034507 year: 2009 publication-title: J. Appl. Phys. – volume: 18 start-page: 340 year: 1997 publication-title: IEEE Electr. Device Lett. – volume: 22 start-page: 2799 year: 2010 publication-title: Adv. Mater. – volume: 159 start-page: 2371 year: 2009 publication-title: Synthetic Met. – volume: 91 start-page: 083502 year: 2007 publication-title: Appl. Phys. Lett. – volume: 23 start-page: 1072 year: 2005 publication-title: J. Vac. Sci. Technol. A – volume: 97 start-page: 063302 year: 2010 publication-title: Appl. Phys. Lett. – volume: 135 start-page: 162 year: 1988 publication-title: IEE Proc.‐I – volume: 10 start-page: 1556 year: 2009 publication-title: Org. Electron. – volume: 19 start-page: 763 year: 2009 publication-title: Adv. Funct. Mater. – volume: 106 start-page: 054504 year: 2009 publication-title: J. Appl. Phys. – volume: 49 start-page: 101601 year: 2010 publication-title: Jpn. J. Appl. Phys. – volume: 88 start-page: 063513 year: 2006 publication-title: Appl. Phys. Lett. – volume: 105 start-page: 4538 year: 2001 publication-title: J. Phys. Chem. B – volume: 97 start-page: 063307 year: 2010 publication-title: Appl. Phys. Lett. – volume: 92 start-page: 263303 year: 2008 publication-title: Appl. Phys. Lett. – volume: 47 start-page: 3174 year: 2008 publication-title: Jpn. J. Appl. Phys. – volume: 22 start-page: 673 year: 2010 publication-title: Adv. Mater. – volume: 21 start-page: 1450 year: 2009 publication-title: Adv. Mater. – volume: 26 start-page: 034006 year: 2011 publication-title: Semicond. Sci. Tech. – volume: 94 start-page: 6129 year: 2003 publication-title: J. Appl. Phys. – volume: 12 start-page: 516 year: 2011 publication-title: Org. Electron. – volume: 87 start-page: 193508 year: 2005 publication-title: Appl. Phys. Lett. – volume: 98 start-page: 066101 year: 2007 publication-title: Phys. Rev. Lett. – volume: 7 start-page: 900 year: 2008 publication-title: Nat. Mater. – volume: 21 start-page: 3488 year: 2009 publication-title: Adv. Mater. – volume: 21 start-page: 2741 year: 2009 publication-title: Adv. Mater. – volume: 95 start-page: 253302 year: 2009 publication-title: Appl. Phys. Lett. – volume: 12 start-page: 219 year: 2011 publication-title: Org. Electron. – volume: 33 start-page: 653 year: 2008 publication-title: Mrs Bull. – volume: 23 start-page: 2779 year: 2011 publication-title: Adv. Mater. – volume: 3 start-page: 74 year: 2011 publication-title: ACS Appl. Mater. Interfaces – volume: 57 start-page: 195 year: 2010 publication-title: IEEE Electron Dev. – year: 2006 – volume: 102 start-page: 054509 year: 2007 publication-title: J. Appl. Phys. – volume: 160 start-page: 376 year: 2010 publication-title: Synthetic Met. – volume: 105 start-page: 4976 year: 2008 publication-title: P. Natl. Acad. Sci. USA – volume: 9 start-page: 5183 year: 1974 publication-title: Phys. Rev. B – volume: 95 start-page: 123301 year: 2009 publication-title: Appl. Phys. Lett. – volume: 11 start-page: 227 year: 2010 publication-title: Org. Electron. – volume: 23 start-page: 2448 year: 2011 publication-title: Adv. Mater. – volume: 80 start-page: 151 year: 2002 publication-title: Appl. Phys. Lett. – ident: e_1_2_7_139_2 doi: 10.1021/am1008375 – ident: e_1_2_7_205_2 doi: 10.1016/j.orgel.2011.04.020 – ident: e_1_2_7_15_2 doi: 10.1002/adma.200401285 – ident: e_1_2_7_101_2 doi: 10.1063/1.2828711 – ident: e_1_2_7_178_2 doi: 10.1002/adfm.201001583 – ident: e_1_2_7_11_2 doi: 10.1002/adfm.201100592 – ident: e_1_2_7_200_2 doi: 10.1063/1.1345805 – ident: e_1_2_7_191_2 doi: 10.1016/j.sse.2005.02.004 – ident: e_1_2_7_133_2 doi: 10.1021/nn1027032 – ident: e_1_2_7_218_2 doi: 10.1002/adma.201001202 – ident: e_1_2_7_63_2 doi: 10.1016/j.orgel.2010.11.002 – ident: e_1_2_7_66_2 doi: 10.1063/1.1415374 – ident: e_1_2_7_97_2 doi: 10.1021/ja069235m – ident: e_1_2_7_13_2 doi: 10.1002/adma.200903712 – ident: e_1_2_7_145_2 doi: 10.1063/1.2806234 – ident: e_1_2_7_88_2 doi: 10.1016/j.orgel.2009.10.021 – ident: e_1_2_7_29_2 – ident: e_1_2_7_154_2 doi: 10.1109/TED.2005.850954 – ident: e_1_2_7_9_2 doi: 10.1021/cm102419z – ident: e_1_2_7_46_2 doi: 10.1063/1.2776252 – ident: e_1_2_7_111_2 doi: 10.1063/1.1645993 – ident: e_1_2_7_30_2 doi: 10.1103/PhysRevB.9.5183 – ident: e_1_2_7_153_2 doi: 10.1002/adfm.200900408 – ident: e_1_2_7_56_2 doi: 10.1063/1.1613369 – volume-title: Current Injection in Solids year: 1970 ident: e_1_2_7_26_2 – ident: e_1_2_7_222_2 doi: 10.1063/1.3276694 – ident: e_1_2_7_221_2 doi: 10.1063/1.3090489 – ident: e_1_2_7_109_2 doi: 10.1002/adma.200701812 – ident: e_1_2_7_25_2 doi: 10.1063/1.2904629 – ident: e_1_2_7_227_2 doi: 10.1002/adfm.200900189 – ident: e_1_2_7_226_2 doi: 10.1063/1.2352808 – ident: e_1_2_7_138_2 doi: 10.1021/cm103326n – ident: e_1_2_7_215_2 doi: 10.1088/0022-3727/44/11/115101 – ident: e_1_2_7_2_2 doi: 10.1016/S1369-7021(11)70184-5 – ident: e_1_2_7_65_2 doi: 10.1002/adma.200803541 – ident: e_1_2_7_72_2 doi: 10.1088/0268-1242/26/3/034006 – ident: e_1_2_7_100_2 doi: 10.1002/adma.201003128 – ident: e_1_2_7_175_2 doi: 10.1063/1.3153510 – ident: e_1_2_7_6_2 doi: 10.1557/mrs2008.149 – ident: e_1_2_7_123_2 doi: 10.1002/adma.200800150 – ident: e_1_2_7_61_2 doi: 10.1016/j.orgel.2010.06.001 – ident: e_1_2_7_144_2 doi: 10.1016/j.orgel.2010.01.028 – ident: e_1_2_7_28_2 doi: 10.1002/0470068329 – ident: e_1_2_7_207_2 doi: 10.1063/1.3533020 – ident: e_1_2_7_165_2 doi: 10.1063/1.2535741 – ident: e_1_2_7_157_2 doi: 10.1021/nl061566 – ident: e_1_2_7_136_2 doi: 10.1063/1.2770963 – ident: e_1_2_7_20_2 doi: 10.1063/1.1562731 – ident: e_1_2_7_167_2 doi: 10.1002/adma.200901141 – ident: e_1_2_7_32_2 doi: 10.1016/S0009-2614(98)01277-9 – ident: e_1_2_7_112_2 doi: 10.1063/1.2737418 – ident: e_1_2_7_69_2 doi: 10.1016/j.orgel.2011.03.007 – volume-title: Handbook of Nanofabrication year: 2009 ident: e_1_2_7_166_2 – ident: e_1_2_7_5_2 doi: 10.1016/j.progpolymsci.2008.08.001 – ident: e_1_2_7_159_2 doi: 10.1016/S0379-6779(97)03864-2 – ident: e_1_2_7_23_2 doi: 10.1039/b902492c – ident: e_1_2_7_179_2 doi: 10.1063/1.2402349 – ident: e_1_2_7_124_2 doi: 10.1002/adma.201001402 – ident: e_1_2_7_64_2 doi: 10.1063/1.1639945 – ident: e_1_2_7_172_2 doi: 10.1063/1.3276913 – ident: e_1_2_7_53_2 doi: 10.1063/1.1558998 – start-page: 281 volume-title: Organic Electronics II: More Materials and Applications year: 2011 ident: e_1_2_7_16_2 – ident: e_1_2_7_106_2 doi: 10.1063/1.3115826 – ident: e_1_2_7_130_2 doi: 10.1002/cphc.200900472 – ident: e_1_2_7_31_2 doi: 10.1103/PhysRevB.59.7507 – ident: e_1_2_7_78_2 doi: 10.1063/1.3204655 – ident: e_1_2_7_75_2 doi: 10.1063/1.3424792 – ident: e_1_2_7_173_2 doi: 10.1109/LED.2011.2162483 – ident: e_1_2_7_201_2 doi: 10.1063/1.1611278 – ident: e_1_2_7_128_2 doi: 10.1002/adfm.201000785 – ident: e_1_2_7_189_2 doi: 10.1002/adfm.200801019 – ident: e_1_2_7_152_2 doi: 10.1021/nn100728p – ident: e_1_2_7_129_2 doi: 10.1063/1.3049616 – ident: e_1_2_7_121_2 doi: 10.1103/PhysRevLett.99.256801 – ident: e_1_2_7_81_2 doi: 10.1002/adfm.201002651 – ident: e_1_2_7_160_2 doi: 10.1002/1521-4095(20020705)14:13/14<961::AID-ADMA961>3.0.CO;2-X – ident: e_1_2_7_82_2 doi: 10.1021/cm1029744 – ident: e_1_2_7_213_2 doi: 10.1021/am200143g – ident: e_1_2_7_164_2 doi: 10.1021/cm071018c – ident: e_1_2_7_193_2 doi: 10.1063/1.2917523 – ident: e_1_2_7_149_2 doi: 10.1126/science.1102896 – ident: e_1_2_7_142_2 doi: 10.1063/1.2496249 – ident: e_1_2_7_62_2 doi: 10.1103/PhysRevB.72.155206 – ident: e_1_2_7_171_2 doi: 10.1021/la104136w – ident: e_1_2_7_126_2 doi: 10.1002/adma.200903628 – ident: e_1_2_7_162_2 doi: 10.1063/1.2357155 – ident: e_1_2_7_182_2 doi: 10.1103/PhysRevB.57.12964 – ident: e_1_2_7_186_2 doi: 10.1016/j.sse.2007.11.007 – ident: e_1_2_7_187_2 doi: 10.1109/LED.2010.2044137 – ident: e_1_2_7_90_2 doi: 10.1109/LED.2010.2052092 – ident: e_1_2_7_104_2 doi: 10.1088/0268-1242/24/11/115012 – ident: e_1_2_7_95_2 doi: 10.1002/adma.200803455 – ident: e_1_2_7_148_2 doi: 10.1021/am1008826 – ident: e_1_2_7_77_2 doi: 10.1038/nature03376 – ident: e_1_2_7_45_2 doi: 10.1109/TED.2009.2035540 – ident: e_1_2_7_60_2 doi: 10.1063/1.1527983 – ident: e_1_2_7_93_2 doi: 10.1063/1.2767235 – ident: e_1_2_7_39_2 – ident: e_1_2_7_57_2 doi: 10.1063/1.1806533 – volume-title: Concepts in photoconductivity and allied problems year: 1963 ident: e_1_2_7_27_2 – ident: e_1_2_7_223_2 doi: 10.1063/1.2955515 – ident: e_1_2_7_212_2 doi: 10.1063/1.3518075 – ident: e_1_2_7_214_2 doi: 10.1063/1.1581389 – ident: e_1_2_7_91_2 doi: 10.1088/0268-1242/26/3/034003 – ident: e_1_2_7_113_2 doi: 10.1063/1.1760838 – ident: e_1_2_7_174_2 doi: 10.1021/nn9014664 – ident: e_1_2_7_1_2 doi: 10.1002/adma.200903559 – ident: e_1_2_7_3_2 doi: 10.1039/c0cs00194e – ident: e_1_2_7_47_2 doi: 10.1063/1.3058640 – ident: e_1_2_7_102_2 doi: 10.1063/1.2535741 – ident: e_1_2_7_131_2 doi: 10.1063/1.3488817 – ident: e_1_2_7_156_2 doi: 10.1002/adfm.201000346 – ident: e_1_2_7_220_2 doi: 10.1002/adma.201000232 – ident: e_1_2_7_14_2 doi: 10.1073/pnas.0708340105 – ident: e_1_2_7_163_2 doi: 10.1016/j.synthmet.2009.08.020 – ident: e_1_2_7_108_2 doi: 10.1002/adfm.201002696 – ident: e_1_2_7_50_2 doi: 10.1063/1.3339877 – ident: e_1_2_7_147_2 doi: 10.1016/j.orgel.2009.09.001 – ident: e_1_2_7_12_2 doi: 10.1038/nmat2825 – ident: e_1_2_7_217_2 doi: 10.1021/ma200864s – ident: e_1_2_7_195_2 doi: 10.1109/55.596930 – ident: e_1_2_7_211_2 doi: 10.1038/nmat2291 – ident: e_1_2_7_127_2 doi: 10.1002/adma.201004588 – ident: e_1_2_7_84_2 doi: 10.1103/PhysRevB.54.R14321 – ident: e_1_2_7_68_2 doi: 10.1109/TED.2010.2044272 – ident: e_1_2_7_7_2 doi: 10.1889/1.2759555 – ident: e_1_2_7_170_2 doi: 10.1002/adma.200701876 – ident: e_1_2_7_117_2 doi: 10.1021/ja066092v – ident: e_1_2_7_151_2 doi: 10.1002/adma.200803812 – volume: 135 start-page: 162 year: 1988 ident: e_1_2_7_184_2 publication-title: IEE Proc.‐I – ident: e_1_2_7_209_2 doi: 10.1063/1.3490716 – ident: e_1_2_7_37_2 doi: 10.1103/PhysRevB.64.085201 – ident: e_1_2_7_122_2 doi: 10.1016/j.orgel.2009.08.008 – ident: e_1_2_7_52_2 doi: 10.1063/1.3479531 – ident: e_1_2_7_135_2 doi: 10.1021/cm1029744 – volume: 93 start-page: 3 year: 2008 ident: e_1_2_7_177_2 publication-title: Appl. Phys. Lett. – ident: e_1_2_7_33_2 doi: 10.1103/PhysRevLett.86.3867 – ident: e_1_2_7_125_2 doi: 10.1002/adma.200901454 – ident: e_1_2_7_183_2 doi: 10.1049/el:19880369 – ident: e_1_2_7_34_2 doi: 10.1103/PhysRevB.78.153312 – ident: e_1_2_7_204_2 doi: 10.1103/PhysRevLett.103.256803 – ident: e_1_2_7_58_2 doi: 10.1109/JPROC.2005.850301 – ident: e_1_2_7_202_2 doi: 10.1063/1.1637443 – ident: e_1_2_7_146_2 doi: 10.1063/1.2771532 – ident: e_1_2_7_180_2 doi: 10.1063/1.3479476 – ident: e_1_2_7_188_2 doi: 10.1063/1.2999590 – ident: e_1_2_7_94_2 doi: 10.1063/1.1858874 – ident: e_1_2_7_137_2 doi: 10.1143/JJAP.49.101601 – ident: e_1_2_7_216_2 doi: 10.1063/1.3072669 – ident: e_1_2_7_203_2 doi: 10.1063/1.1470702 – ident: e_1_2_7_208_2 doi: 10.1016/j.orgel.2011.09.023 – ident: e_1_2_7_141_2 doi: 10.1002/adfm.201002290 – ident: e_1_2_7_59_2 doi: 10.1002/pssa.200510027 – ident: e_1_2_7_86_2 doi: 10.1016/j.orgel.2009.11.008 – ident: e_1_2_7_44_2 doi: 10.1016/j.orgel.2009.03.012 – ident: e_1_2_7_169_2 doi: 10.1149/1.1582466 – ident: e_1_2_7_54_2 doi: 10.1016/j.tsf.2006.10.074 – ident: e_1_2_7_119_2 doi: 10.1063/1.2186367 – ident: e_1_2_7_18_2 doi: 10.1016/j.mser.2008.12.001 – ident: e_1_2_7_35_2 doi: 10.1103/PhysRevLett.98.066101 – ident: e_1_2_7_38_2 doi: 10.1063/1.1290697 – ident: e_1_2_7_42_2 doi: 10.1063/1.2776235 – ident: e_1_2_7_176_2 doi: 10.1016/j.orgel.2011.12.001 – ident: e_1_2_7_49_2 doi: 10.1103/PhysRevB.72.235302 – ident: e_1_2_7_140_2 doi: 10.1016/j.orgel.2010.12.022 – ident: e_1_2_7_219_2 doi: 10.1021/ma102451b – ident: e_1_2_7_36_2 doi: 10.1002/pssc.200777576 – volume: 92 year: 2008 ident: e_1_2_7_92_2 publication-title: Appl. Phys. Lett. – volume: 91 year: 2007 ident: e_1_2_7_194_2 publication-title: Appl. Phys. Lett. – ident: e_1_2_7_116_2 doi: 10.1016/j.ssc.2009.07.006 – ident: e_1_2_7_199_2 doi: 10.1021/jp004519t – ident: e_1_2_7_51_2 doi: 10.1016/j.orgel.2010.01.002 – ident: e_1_2_7_40_2 doi: 10.1063/1.2215132 – ident: e_1_2_7_55_2 – ident: e_1_2_7_85_2 doi: 10.1016/j.orgel.2008.01.004 – ident: e_1_2_7_67_2 doi: 10.1063/1.2804288 – ident: e_1_2_7_118_2 doi: 10.1103/PhysRevB.79.165306 – ident: e_1_2_7_132_2 doi: 10.1016/j.orgel.2008.06.008 – ident: e_1_2_7_10_2 doi: 10.1039/b909902f – ident: e_1_2_7_155_2 doi: 10.1063/1.1639937 – ident: e_1_2_7_210_2 doi: 10.1002/adma.201102410 – ident: e_1_2_7_83_2 doi: 10.1021/am200705j – ident: e_1_2_7_150_2 doi: 10.1002/adma.201100304 – ident: e_1_2_7_103_2 doi: 10.1063/1.2126140 – ident: e_1_2_7_107_2 doi: 10.1063/1.3231928 – ident: e_1_2_7_79_2 doi: 10.1002/adma.201101134 – ident: e_1_2_7_158_2 doi: 10.1016/0379-6779(95)03375-0 – ident: e_1_2_7_96_2 doi: 10.1088/0268-1242/26/3/034003 – ident: e_1_2_7_76_2 doi: 10.1063/1.1431691 – ident: e_1_2_7_41_2 doi: 10.1063/1.1453509 – ident: e_1_2_7_70_2 doi: 10.1088/0268-1242/23/12/125027 – ident: e_1_2_7_24_2 doi: 10.1021/cm1023426 – ident: e_1_2_7_73_2 – ident: e_1_2_7_74_2 doi: 10.1109/TED.2008.2010579 – ident: e_1_2_7_197_2 doi: 10.1021/jp046246y – ident: e_1_2_7_196_2 doi: 10.1063/1.1645316 – ident: e_1_2_7_198_2 doi: 10.1063/1.3488607 – ident: e_1_2_7_181_2 doi: 10.1063/1.373091 – ident: e_1_2_7_71_2 doi: 10.1143/JJAP.47.3174 – ident: e_1_2_7_19_2 doi: 10.1116/1.1885021 – ident: e_1_2_7_21_2 doi: 10.1063/1.3187787 – ident: e_1_2_7_98_2 doi: 10.1038/nature04699 – ident: e_1_2_7_225_2 doi: 10.1126/science.290.5499.2123 – ident: e_1_2_7_8_2 doi: 10.1889/1.2835023 – ident: e_1_2_7_87_2 doi: 10.1038/nnano.2007.365 – ident: e_1_2_7_206_2 doi: 10.1002/1521-4095(200105)13:9<631::AID-ADMA631>3.0.CO;2-F – ident: e_1_2_7_134_2 doi: 10.1002/adma.200802934 – ident: e_1_2_7_168_2 doi: 10.1063/1.2857461 – ident: e_1_2_7_190_2 doi: 10.1016/j.sse.2007.10.027 – ident: e_1_2_7_110_2 doi: 10.1021/ar9000873 – ident: e_1_2_7_161_2 doi: 10.1063/1.1849845 – ident: e_1_2_7_114_2 doi: 10.1103/PhysRevLett.95.237601 – ident: e_1_2_7_22_2 doi: 10.1103/PhysRevLett.106.216402 – ident: e_1_2_7_224_2 doi: 10.1021/jp111677x – ident: e_1_2_7_80_2 doi: 10.1002/adma.200903711 – ident: e_1_2_7_115_2 doi: 10.1063/1.2738382 – ident: e_1_2_7_143_2 doi: 10.1063/1.2168669 – ident: e_1_2_7_17_2 doi: 10.1002/adma.200802893 – ident: e_1_2_7_105_2 doi: 10.1016/j.synthmet.2009.11.008 – ident: e_1_2_7_48_2 doi: 10.1063/1.2197033 – ident: e_1_2_7_89_2 doi: 10.1002/adfm.200900315 – ident: e_1_2_7_43_2 doi: 10.1063/1.2112189 – ident: e_1_2_7_4_2 doi: 10.3390/s7030267 – ident: e_1_2_7_99_2 doi: 10.1016/S0927-796X(02)00093-1 – ident: e_1_2_7_120_2 doi: 10.1039/b718935d – ident: e_1_2_7_192_2 doi: 10.1063/1.3247195 – ident: e_1_2_7_185_2 doi: 10.1049/el:19950481 |
SSID | ssj0009606 |
Score | 2.5565372 |
SecondaryResourceType | review_article |
Snippet | A high‐mobility organic semiconductor employed as the active material in a field‐effect transistor does not guarantee per se that expectations of high... A high-mobility organic semiconductor employed as the active material in a field-effect transistor does not guarantee per se that expectations of high... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1357 |
SubjectTerms | Chemistry, Physical contact resistance Flow Injection Analysis interfaces Materials Testing Models, Chemical Organic Chemicals - chemistry organic electronics organic field-effect transistor organic semiconductors Transistors, Electronic |
Title | Charge Injection in Solution-Processed Organic Field-Effect Transistors: Physics, Models and Characterization Methods |
URI | https://api.istex.fr/ark:/67375/WNG-ZMV1FJ6N-8/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201104206 https://www.ncbi.nlm.nih.gov/pubmed/22354535 https://www.proquest.com/docview/927830602 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL1CZQMLypvwkhcINqTN2LEnZjcqDKXSzAJRqNhYfiJolVbNjASs-AS-kS_B156kHQRCgl2i2InjXPue2OeeC_BoXHkfNOelDlqWdZCuNMYj2UEKGRpuWEgE2bnY3a_3DvjBuSj-rA8xLLjhyEjzNQ5wbbrtM9FQ7ZJuUHRfNU2a20jYQlT0-kw_CuF5EttjvJSibnrVxopur1df80oXsYM__w5yriPY5IKmm6D7xmfmyeHWcmG27NdfdB3_5-2uwpUVPiWTbFDX4IJvr8Plc6qFN-ALbtF_8ORV-ynxuFrysSX98tqPb99XsQfekRzoackUaXLxSpZKJsk_JnmS7hlJFFTbPSWYle2oI7p1ZGdQkc5BomSW8lx3N2F_-uLNzm65yuBQ2vjbJ0prx6ZufM2oDxFoeeGc0NElusaGumGNHY-kodY66ivPNI1THo_mwRA4sJFx7BZstMetvwPECcllpQ3HWFgqtKl9CCE-RXuHabMLKPsvqOxK3hyzbBypLMxMFXapGrq0gCdD-ZMs7PHHko-TQQzF9Okh0uHGXL2bv1TvZ29H0z0xV00BpLcYFQcp7rzo1h8vOyUxn0klKlrA7WxJw80iPIsglvECaLKHvzRGTZ7PJsPZ3X-pdA8uxWOKRLoRvw8bi9OlfxCR1cI8TKPnJ_39HAE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL1C7QJY8H6EpxcINqTN2LEnZjcqDNPSmQVqAbGx_ER9KEXNjASs-AS-kS_B15mkDAIhwTKJnTjOde6xfe65AI-GhfdBc57roGVeBulyYzySHaSQoeKGhUSQnYnJfrnzjndsQoyFafUh-gU3HBnpf40DHBekN89UQ7VLwkHRf5UURbfXMa13mlW9PlOQQoCe5PYYz6Uoq063saCbq_VX_NI6dvGn34HOVQybnND4Mpiu-S335GhjMTcb9ssvyo7_9X5X4NISopJRa1NX4Zyvr8HFn4QLr8Nn3KX_4Ml2fZioXDU5qEm3wvb967dl-IF3pI31tGSMTLl4pVVLJslFJoWS5hlJLFTbPCWYmO24Ibp2ZKsXkm7jRMk0pbpubsD--MXe1iRfJnHIbZz5idzaoSkrXzLqQ8RaXjgndPSKrrKhrFhlhwNpqLWO-sIzTeNfj0cLYYgd2MA4dhPW6pPa3wbihOSy0IZjOCwV2pQ-hBCfor3DzNkZ5N0nVHapcI6JNo5Vq81MFXap6rs0gyd9-Y-ttscfSz5OFtEX06dHyIgbcvV29lK9n74ZjHfETFUZkM5kVBynuPmia3-yaJTElCaFKGgGt1pT6m8WEVrEsYxnQJNB_KUxavR8OuqP7vxLpYdwfrI33VW727NXd-FCPE-RVzfg92Btfrrw9yPQmpsHaSj9AK6tIBw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVQKyFY8H6EpxcINqTNOLYnZjfqENrCjBCiUHVj-Yn6UFo1MxKw4hP4Rr4EX3uSdhAICZZJ7MRxrn1P7HPPRejJsHDOK8Zy5ZXIqRc219oB2UFw4SumSx8JslO-uUO3d9nuuSj-pA_RL7jByIjzNQzwE-vXz0RDlY26QcF9UQKa26uUFxXY9fjdmYAU4POotleyXHBadbKNBVlfrr_kllahhz__DnMuQ9jog-qrSHWtT9STw7X5TK-Zr78IO_7P611DVxYAFY-SRV1HF1xzA10-J1t4E32BPfpPDm81B5HI1eD9Bnfraz--fV8EHziLU6SnwTXw5MKVpJWMo4OM-iTtCxw5qKZ9jiEt21GLVWPxRi8jnaJE8SQmum5voZ365fuNzXyRwiE34b-P58YMNa0cLYnzAWk5bi1XwSfaynhalZUZDoQmxljiClcqEuY8FuyjBORQDrQtb6OV5rhxdxG2XDBRKM0gGJZwpanz3oenKGchb3aG8u4LSrPQN4c0G0cyKTMTCV0q-y7N0LO-_ElS9vhjyafRIPpi6vQQ-HBDJj9OX8m9yYdBvc2nssoQ7ixGhlEKWy-qccfzVgpIaFLwgmToTrKk_mYBnwUUW7IMkWgPf2mMHI0no_7o3r9Ueowuvh3X8s3W9PV9dCmcJkCqG7AHaGV2OncPA8qa6UdxIP0EUK4e1A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Charge+injection+in+solution-processed+organic+field-effect+transistors%3A+physics%2C+models+and+characterization+methods&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Natali%2C+Dario&rft.au=Caironi%2C+Mario&rft.date=2012-03-15&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=24&rft.issue=11&rft.spage=1357&rft_id=info:doi/10.1002%2Fadma.201104206&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |