Charge Injection in Solution-Processed Organic Field-Effect Transistors: Physics, Models and Characterization Methods

A high‐mobility organic semiconductor employed as the active material in a field‐effect transistor does not guarantee per se that expectations of high performance are fulfilled. This is even truer if a downscaled, short channel is adopted. Only if contacts are able to provide the device with as much...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 24; no. 11; pp. 1357 - 1387
Main Authors Natali, Dario, Caironi, Mario
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 15.03.2012
WILEY‐VCH Verlag
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.201104206

Cover

Loading…
Abstract A high‐mobility organic semiconductor employed as the active material in a field‐effect transistor does not guarantee per se that expectations of high performance are fulfilled. This is even truer if a downscaled, short channel is adopted. Only if contacts are able to provide the device with as much charge as it needs, with a negligible voltage drop across them, then high expectations can turn into high performances. It is a fact that this is not always the case in the field of organic electronics. In this review, we aim to offer a comprehensive overview on the subject of current injection in organic thin film transistors: physical principles concerning energy level (mis)alignment at interfaces, models describing charge injection, technologies for interface tuning, and techniques for characterizing devices. Finally, a survey of the most recent accomplishments in the field is given. Principles are described in general, but the technologies and survey emphasis is on solution processed transistors, because it is our opinion that scalable, roll‐to‐roll printing processing is one, if not the brightest, possible scenario for the future of organic electronics. With the exception of electrolyte‐gated organic transistors, where impressively low width normalized resistances were reported (in the range of 10 Ω·cm), to date the lowest values reported for devices where the semiconductor is solution‐processed and where the most common architectures are adopted, are ∼10 kΩ·cm for transistors with a field effect mobility in the 0.1–1 cm2/Vs range. Although these values represent the best case, they still pose a severe limitation for downscaling the channel lengths below a few micrometers, necessary for increasing the device switching speed. Moreover, techniques to lower contact resistances have been often developed on a case‐by‐case basis, depending on the materials, architecture and processing techniques. The lack of a standard strategy has hampered the progress of the field for a long time. Only recently, as the understanding of the rather complex physical processes at the metal/semiconductor interfaces has improved, more general approaches, with a validity that extends to several materials, are being proposed and successfully tested in the literature. Only a combined scientific and technological effort, on the one side to fully understand contact phenomena and on the other to completely master the tailoring of interfaces, will enable the development of advanced organic electronics applications and their widespread adoption in low‐cost, large‐area printed circuits. A comprehensive overview on the subject of current injection in organic thin‐film transistors is given: physical principles concerning energy level (mis)alignment at interfaces, models describing charge injection, technologies for interface tuning, and techniques for characterizing devices. Finally, a survey of the most recent accomplishments in the field is given.
AbstractList A high‐mobility organic semiconductor employed as the active material in a field‐effect transistor does not guarantee per se that expectations of high performance are fulfilled. This is even truer if a downscaled, short channel is adopted. Only if contacts are able to provide the device with as much charge as it needs, with a negligible voltage drop across them, then high expectations can turn into high performances. It is a fact that this is not always the case in the field of organic electronics. In this review, we aim to offer a comprehensive overview on the subject of current injection in organic thin film transistors: physical principles concerning energy level (mis)alignment at interfaces, models describing charge injection, technologies for interface tuning, and techniques for characterizing devices. Finally, a survey of the most recent accomplishments in the field is given. Principles are described in general, but the technologies and survey emphasis is on solution processed transistors, because it is our opinion that scalable, roll‐to‐roll printing processing is one, if not the brightest, possible scenario for the future of organic electronics. With the exception of electrolyte‐gated organic transistors, where impressively low width normalized resistances were reported (in the range of 10 Ω·cm), to date the lowest values reported for devices where the semiconductor is solution‐processed and where the most common architectures are adopted, are ∼10 kΩ·cm for transistors with a field effect mobility in the 0.1–1 cm2/Vs range. Although these values represent the best case, they still pose a severe limitation for downscaling the channel lengths below a few micrometers, necessary for increasing the device switching speed. Moreover, techniques to lower contact resistances have been often developed on a case‐by‐case basis, depending on the materials, architecture and processing techniques. The lack of a standard strategy has hampered the progress of the field for a long time. Only recently, as the understanding of the rather complex physical processes at the metal/semiconductor interfaces has improved, more general approaches, with a validity that extends to several materials, are being proposed and successfully tested in the literature. Only a combined scientific and technological effort, on the one side to fully understand contact phenomena and on the other to completely master the tailoring of interfaces, will enable the development of advanced organic electronics applications and their widespread adoption in low‐cost, large‐area printed circuits. A comprehensive overview on the subject of current injection in organic thin‐film transistors is given: physical principles concerning energy level (mis)alignment at interfaces, models describing charge injection, technologies for interface tuning, and techniques for characterizing devices. Finally, a survey of the most recent accomplishments in the field is given.
A high‐mobility organic semiconductor employed as the active material in a field‐effect transistor does not guarantee per se that expectations of high performance are fulfilled. This is even truer if a downscaled, short channel is adopted. Only if contacts are able to provide the device with as much charge as it needs, with a negligible voltage drop across them, then high expectations can turn into high performances. It is a fact that this is not always the case in the field of organic electronics. In this review, we aim to offer a comprehensive overview on the subject of current injection in organic thin film transistors: physical principles concerning energy level (mis)alignment at interfaces, models describing charge injection, technologies for interface tuning, and techniques for characterizing devices. Finally, a survey of the most recent accomplishments in the field is given. Principles are described in general, but the technologies and survey emphasis is on solution processed transistors, because it is our opinion that scalable, roll‐to‐roll printing processing is one, if not the brightest, possible scenario for the future of organic electronics. With the exception of electrolyte‐gated organic transistors, where impressively low width normalized resistances were reported (in the range of 10 Ω·cm), to date the lowest values reported for devices where the semiconductor is solution‐processed and where the most common architectures are adopted, are ∼10 kΩ·cm for transistors with a field effect mobility in the 0.1–1 cm 2 /Vs range. Although these values represent the best case, they still pose a severe limitation for downscaling the channel lengths below a few micrometers, necessary for increasing the device switching speed. Moreover, techniques to lower contact resistances have been often developed on a case‐by‐case basis, depending on the materials, architecture and processing techniques. The lack of a standard strategy has hampered the progress of the field for a long time. Only recently, as the understanding of the rather complex physical processes at the metal/semiconductor interfaces has improved, more general approaches, with a validity that extends to several materials, are being proposed and successfully tested in the literature. Only a combined scientific and technological effort, on the one side to fully understand contact phenomena and on the other to completely master the tailoring of interfaces, will enable the development of advanced organic electronics applications and their widespread adoption in low‐cost, large‐area printed circuits.
A high-mobility organic semiconductor employed as the active material in a field-effect transistor does not guarantee per se that expectations of high performance are fulfilled. This is even truer if a downscaled, short channel is adopted. Only if contacts are able to provide the device with as much charge as it needs, with a negligible voltage drop across them, then high expectations can turn into high performances. It is a fact that this is not always the case in the field of organic electronics. In this review, we aim to offer a comprehensive overview on the subject of current injection in organic thin film transistors: physical principles concerning energy level (mis)alignment at interfaces, models describing charge injection, technologies for interface tuning, and techniques for characterizing devices. Finally, a survey of the most recent accomplishments in the field is given. Principles are described in general, but the technologies and survey emphasis is on solution processed transistors, because it is our opinion that scalable, roll-to-roll printing processing is one, if not the brightest, possible scenario for the future of organic electronics. With the exception of electrolyte-gated organic transistors, where impressively low width normalized resistances were reported (in the range of 10 Ω·cm), to date the lowest values reported for devices where the semiconductor is solution-processed and where the most common architectures are adopted, are ∼10 kΩ·cm for transistors with a field effect mobility in the 0.1-1 cm(2)/Vs range. Although these values represent the best case, they still pose a severe limitation for downscaling the channel lengths below a few micrometers, necessary for increasing the device switching speed. Moreover, techniques to lower contact resistances have been often developed on a case-by-case basis, depending on the materials, architecture and processing techniques. The lack of a standard strategy has hampered the progress of the field for a long time. Only recently, as the understanding of the rather complex physical processes at the metal/semiconductor interfaces has improved, more general approaches, with a validity that extends to several materials, are being proposed and successfully tested in the literature. Only a combined scientific and technological effort, on the one side to fully understand contact phenomena and on the other to completely master the tailoring of interfaces, will enable the development of advanced organic electronics applications and their widespread adoption in low-cost, large-area printed circuits.
A high-mobility organic semiconductor employed as the active material in a field-effect transistor does not guarantee per se that expectations of high performance are fulfilled. This is even truer if a downscaled, short channel is adopted. Only if contacts are able to provide the device with as much charge as it needs, with a negligible voltage drop across them, then high expectations can turn into high performances. It is a fact that this is not always the case in the field of organic electronics. In this review, we aim to offer a comprehensive overview on the subject of current injection in organic thin film transistors: physical principles concerning energy level (mis)alignment at interfaces, models describing charge injection, technologies for interface tuning, and techniques for characterizing devices. Finally, a survey of the most recent accomplishments in the field is given. Principles are described in general, but the technologies and survey emphasis is on solution processed transistors, because it is our opinion that scalable, roll-to-roll printing processing is one, if not the brightest, possible scenario for the future of organic electronics. With the exception of electrolyte-gated organic transistors, where impressively low width normalized resistances were reported (in the range of 10 Ω·cm), to date the lowest values reported for devices where the semiconductor is solution-processed and where the most common architectures are adopted, are ∼10 kΩ·cm for transistors with a field effect mobility in the 0.1-1 cm(2)/Vs range. Although these values represent the best case, they still pose a severe limitation for downscaling the channel lengths below a few micrometers, necessary for increasing the device switching speed. Moreover, techniques to lower contact resistances have been often developed on a case-by-case basis, depending on the materials, architecture and processing techniques. The lack of a standard strategy has hampered the progress of the field for a long time. Only recently, as the understanding of the rather complex physical processes at the metal/semiconductor interfaces has improved, more general approaches, with a validity that extends to several materials, are being proposed and successfully tested in the literature. Only a combined scientific and technological effort, on the one side to fully understand contact phenomena and on the other to completely master the tailoring of interfaces, will enable the development of advanced organic electronics applications and their widespread adoption in low-cost, large-area printed circuits.A high-mobility organic semiconductor employed as the active material in a field-effect transistor does not guarantee per se that expectations of high performance are fulfilled. This is even truer if a downscaled, short channel is adopted. Only if contacts are able to provide the device with as much charge as it needs, with a negligible voltage drop across them, then high expectations can turn into high performances. It is a fact that this is not always the case in the field of organic electronics. In this review, we aim to offer a comprehensive overview on the subject of current injection in organic thin film transistors: physical principles concerning energy level (mis)alignment at interfaces, models describing charge injection, technologies for interface tuning, and techniques for characterizing devices. Finally, a survey of the most recent accomplishments in the field is given. Principles are described in general, but the technologies and survey emphasis is on solution processed transistors, because it is our opinion that scalable, roll-to-roll printing processing is one, if not the brightest, possible scenario for the future of organic electronics. With the exception of electrolyte-gated organic transistors, where impressively low width normalized resistances were reported (in the range of 10 Ω·cm), to date the lowest values reported for devices where the semiconductor is solution-processed and where the most common architectures are adopted, are ∼10 kΩ·cm for transistors with a field effect mobility in the 0.1-1 cm(2)/Vs range. Although these values represent the best case, they still pose a severe limitation for downscaling the channel lengths below a few micrometers, necessary for increasing the device switching speed. Moreover, techniques to lower contact resistances have been often developed on a case-by-case basis, depending on the materials, architecture and processing techniques. The lack of a standard strategy has hampered the progress of the field for a long time. Only recently, as the understanding of the rather complex physical processes at the metal/semiconductor interfaces has improved, more general approaches, with a validity that extends to several materials, are being proposed and successfully tested in the literature. Only a combined scientific and technological effort, on the one side to fully understand contact phenomena and on the other to completely master the tailoring of interfaces, will enable the development of advanced organic electronics applications and their widespread adoption in low-cost, large-area printed circuits.
Author Caironi, Mario
Natali, Dario
Author_xml – sequence: 1
  givenname: Dario
  surname: Natali
  fullname: Natali, Dario
  organization: Center for Nano Science and Technology @ PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy
– sequence: 2
  givenname: Mario
  surname: Caironi
  fullname: Caironi, Mario
  email: Mario.Caironi@iit.it
  organization: Center for Nano Science and Technology @ PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22354535$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1vEzEQhi1URNPClSPyjQsb_L1eblHalKKmrUQBiYvltWcbl8262LuC8OvZNG2FkBCnmcPzvNLMe4D2utgBQi8pmVJC2Fvr13bKCKVEMKKeoAmVjBaCVHIPTUjFZVEpoffRQc43hJBKEfUM7TPGpZBcTtAwX9l0Dfi0uwHXh9jh0OGPsR22e3GZooOcweOLdG274PAiQOuL46YZaXyVbJdD7mPK7_DlapODy2_wMnpoM7adx9tw63pI4Ze9C19Cv4o-P0dPG9tmeHE_D9GnxfHV_H1xdnFyOp-dFU4IrQrnylpoEJxBIxUD5b2yhDKvXSM0166kVc2c8wwIcMuI1lLWnBMmGKe154fo9S73NsXvA-TerEN20La2gzhkU7FSc6IIG8lX9-RQr8Gb2xTWNm3Mw6dGQOwAl2LOCRrjQn93VJ9saA0lZluI2RZiHgsZtelf2kPyP4VqJ_wILWz-Q5vZ0XL2p1vs3LET-Pno2vTNqJKX0nw5PzFfl5_p4oM6N5r_BrGwrXE
CitedBy_id crossref_primary_10_1039_C4RA02077D
crossref_primary_10_1002_adma_202109445
crossref_primary_10_1016_j_orgel_2015_07_038
crossref_primary_10_1016_j_jallcom_2021_161610
crossref_primary_10_1088_0268_1242_30_6_064003
crossref_primary_10_1016_j_synthmet_2014_11_023
crossref_primary_10_1063_1_4792066
crossref_primary_10_1002_adma_201300318
crossref_primary_10_1021_acs_jpcc_6b07573
crossref_primary_10_1016_j_aej_2022_05_013
crossref_primary_10_1039_D1TC00968K
crossref_primary_10_1002_aelm_202000080
crossref_primary_10_1002_admi_201600215
crossref_primary_10_1021_acsaelm_0c00398
crossref_primary_10_1021_jp4023844
crossref_primary_10_1002_adfm_202009359
crossref_primary_10_1021_acsami_7b19279
crossref_primary_10_1002_smll_202205570
crossref_primary_10_1039_C8TA04901G
crossref_primary_10_1002_adfm_201600482
crossref_primary_10_1002_aelm_202100928
crossref_primary_10_1016_j_synthmet_2018_11_002
crossref_primary_10_1007_s13391_018_00112_9
crossref_primary_10_1039_C6TC05467F
crossref_primary_10_1002_adma_201605282
crossref_primary_10_1016_j_orgel_2012_09_029
crossref_primary_10_1016_j_orgel_2012_10_028
crossref_primary_10_1002_adma_201404627
crossref_primary_10_1039_D3CE00305A
crossref_primary_10_1021_acsami_0c05640
crossref_primary_10_1016_j_orgel_2014_05_006
crossref_primary_10_1039_C8PY00540K
crossref_primary_10_1002_admi_201500501
crossref_primary_10_1021_cm303908f
crossref_primary_10_1088_2058_8585_ac72dd
crossref_primary_10_1021_acs_jpcc_9b11515
crossref_primary_10_1039_C8NR02341G
crossref_primary_10_1021_acsami_5b02610
crossref_primary_10_1002_adma_201205361
crossref_primary_10_1002_smm2_1261
crossref_primary_10_1038_srep38941
crossref_primary_10_1088_2058_8585_ac7929
crossref_primary_10_1002_smll_202105896
crossref_primary_10_1016_j_spmi_2015_03_045
crossref_primary_10_1016_j_synthmet_2024_117590
crossref_primary_10_1016_j_tsf_2013_11_045
crossref_primary_10_1021_acsami_0c08902
crossref_primary_10_1016_j_orgel_2013_12_022
crossref_primary_10_1016_j_orgel_2014_05_019
crossref_primary_10_1109_TED_2017_2677086
crossref_primary_10_1002_adma_202104075
crossref_primary_10_1021_acs_chemmater_3c02093
crossref_primary_10_1002_aelm_201800175
crossref_primary_10_3390_cryst9020085
crossref_primary_10_1103_PhysRevB_110_214207
crossref_primary_10_1103_PhysRevMaterials_8_054606
crossref_primary_10_1002_adfm_201601144
crossref_primary_10_1002_adma_202002281
crossref_primary_10_1088_0022_3727_47_20_205402
crossref_primary_10_1002_aelm_201900055
crossref_primary_10_1021_acsami_2c22350
crossref_primary_10_1016_j_carbon_2024_119575
crossref_primary_10_1016_j_orgel_2014_04_032
crossref_primary_10_1088_2058_8585_ab76e1
crossref_primary_10_1039_c2jm32721j
crossref_primary_10_1002_adma_201607054
crossref_primary_10_1016_j_polymer_2023_126577
crossref_primary_10_1039_C6MH00411C
crossref_primary_10_1016_j_orgel_2012_09_018
crossref_primary_10_1021_acs_jpcc_8b04302
crossref_primary_10_1021_acsami_6b16259
crossref_primary_10_1002_nano_202000059
crossref_primary_10_1002_advs_202416141
crossref_primary_10_1109_LED_2012_2224631
crossref_primary_10_1021_am502007j
crossref_primary_10_1016_j_orgel_2017_04_004
crossref_primary_10_1103_PhysRevApplied_8_034020
crossref_primary_10_1080_15980316_2018_1430068
crossref_primary_10_1088_1361_6463_ab42a9
crossref_primary_10_1021_acsaelm_5c00043
crossref_primary_10_1039_C5CP03369A
crossref_primary_10_1088_2631_8695_ab3327
crossref_primary_10_1007_s00339_014_8652_4
crossref_primary_10_1002_adfm_201302070
crossref_primary_10_1016_j_orgel_2016_03_033
crossref_primary_10_1039_C9QM00450E
crossref_primary_10_1016_j_orgel_2025_107195
crossref_primary_10_1002_adma_201503133
crossref_primary_10_1038_srep10407
crossref_primary_10_1088_2058_8585_aba3af
crossref_primary_10_1016_j_mee_2013_03_064
crossref_primary_10_1021_am5057689
crossref_primary_10_1002_aelm_201700514
crossref_primary_10_1126_sciadv_aaz5156
crossref_primary_10_1021_jp5119647
crossref_primary_10_1016_j_matchemphys_2019_02_002
crossref_primary_10_1021_acs_jpclett_4c03140
crossref_primary_10_1002_adma_201205041
crossref_primary_10_1002_pssa_201700064
crossref_primary_10_1016_j_synthmet_2014_04_034
crossref_primary_10_1039_C5TC01540E
crossref_primary_10_1002_adma_201300006
crossref_primary_10_1021_am5037862
crossref_primary_10_1002_adfm_201500525
crossref_primary_10_1149_2_0131504jss
crossref_primary_10_1039_C3TA12779F
crossref_primary_10_1016_j_orgel_2020_105709
crossref_primary_10_1002_adfm_201904508
crossref_primary_10_1016_j_orgel_2018_03_019
crossref_primary_10_1103_PhysRevApplied_8_054012
crossref_primary_10_1002_aelm_202300548
crossref_primary_10_1002_adfm_201401154
crossref_primary_10_1021_acsami_0c05106
crossref_primary_10_1002_aelm_201600094
crossref_primary_10_3390_ma14010003
crossref_primary_10_1039_c3tc30930d
crossref_primary_10_1002_aelm_201600097
crossref_primary_10_1016_j_orgel_2014_11_020
crossref_primary_10_1021_acs_jpcc_8b02689
crossref_primary_10_1070_RCR4897
crossref_primary_10_1016_j_orgel_2015_09_024
crossref_primary_10_1002_adfm_202100202
crossref_primary_10_1088_2058_8585_acda48
crossref_primary_10_1039_C9NH00694J
crossref_primary_10_1002_aelm_202100430
crossref_primary_10_1016_j_orgel_2013_05_002
crossref_primary_10_1039_C7TC03938G
crossref_primary_10_1002_INMD_20240032
crossref_primary_10_1002_adfm_201706105
crossref_primary_10_1007_s10854_015_3495_0
crossref_primary_10_1002_adma_202211184
crossref_primary_10_1038_s41598_017_03882_8
crossref_primary_10_1002_adfm_201903889
crossref_primary_10_1109_TED_2017_2655943
crossref_primary_10_1126_sciadv_1701186
crossref_primary_10_1021_jp306597n
crossref_primary_10_1109_TED_2019_2910116
crossref_primary_10_1021_acs_chemmater_0c01397
crossref_primary_10_1039_C9TC00443B
crossref_primary_10_1002_marc_202300634
crossref_primary_10_1016_j_mattod_2014_08_037
crossref_primary_10_1021_acsaelm_2c01481
crossref_primary_10_1149_2162_8777_acc75c
crossref_primary_10_1039_D2QM00768A
crossref_primary_10_1002_adfm_201400394
crossref_primary_10_1002_aelm_201800453
crossref_primary_10_1080_15421406_2017_1289443
crossref_primary_10_1039_D0MH00203H
crossref_primary_10_1002_adma_201902291
crossref_primary_10_1016_j_dyepig_2019_03_030
crossref_primary_10_1039_c2cp41712j
crossref_primary_10_1088_1361_6463_50_6_065107
crossref_primary_10_1016_j_synthmet_2015_10_011
crossref_primary_10_1038_s41467_019_09119_8
crossref_primary_10_1002_adma_201601589
crossref_primary_10_1016_j_orgel_2013_10_002
crossref_primary_10_1002_adfm_201403773
crossref_primary_10_1109_TED_2020_3035494
crossref_primary_10_1016_j_orgel_2013_04_014
crossref_primary_10_1002_adfm_201602610
crossref_primary_10_1021_acsami_9b09607
crossref_primary_10_1002_adma_202110468
crossref_primary_10_1016_j_sse_2018_12_014
crossref_primary_10_1088_1361_6463_aa5e8a
crossref_primary_10_1002_adfm_201403527
crossref_primary_10_1088_1361_6641_aaff37
crossref_primary_10_1016_j_orgel_2020_105742
crossref_primary_10_1021_acsami_1c05764
crossref_primary_10_1088_0022_3727_48_40_405105
crossref_primary_10_1038_s41598_020_58660_w
crossref_primary_10_1002_advs_201801566
crossref_primary_10_1002_admi_201900581
crossref_primary_10_1021_acsaelm_2c01218
crossref_primary_10_1021_acs_chemrev_1c00581
crossref_primary_10_1002_adfm_201902105
crossref_primary_10_1021_acsami_6b12832
crossref_primary_10_1038_srep31387
crossref_primary_10_7567_JJAP_55_03DC07
crossref_primary_10_1002_admi_201600518
crossref_primary_10_1021_acsami_0c06418
crossref_primary_10_1002_adma_201205330
crossref_primary_10_1021_acsnano_3c00782
crossref_primary_10_1021_acs_langmuir_6b03145
crossref_primary_10_1002_adfm_201803907
crossref_primary_10_1002_adma_201604833
crossref_primary_10_1002_adfm_202101981
crossref_primary_10_1002_adma_201705463
crossref_primary_10_1021_jp5049698
crossref_primary_10_1109_TED_2017_2650216
crossref_primary_10_1002_aelm_201800340
crossref_primary_10_1039_C5TC03714J
crossref_primary_10_1002_adfm_201602996
crossref_primary_10_1016_j_dyepig_2017_01_054
crossref_primary_10_1002_adma_201205320
crossref_primary_10_1016_j_orgel_2014_12_001
crossref_primary_10_1002_pi_5768
crossref_primary_10_1016_j_orgel_2019_105523
crossref_primary_10_1002_aelm_201800339
crossref_primary_10_1016_j_orgel_2018_08_004
crossref_primary_10_1038_s41467_018_07706_9
crossref_primary_10_1002_adfm_201802201
crossref_primary_10_1002_aelm_201600240
crossref_primary_10_1002_aelm_201900789
crossref_primary_10_1002_ijch_201400023
crossref_primary_10_1002_smtd_202400546
crossref_primary_10_1021_acs_macromol_5b02658
crossref_primary_10_1063_5_0005441
crossref_primary_10_1002_adma_201801830
crossref_primary_10_1002_adfm_201904590
crossref_primary_10_1002_advs_202104977
crossref_primary_10_1021_acsami_0c08683
crossref_primary_10_1002_adma_201201464
crossref_primary_10_1088_2058_8585_ab59cc
crossref_primary_10_1002_adma_201204979
crossref_primary_10_1088_1361_6641_abf62d
crossref_primary_10_1039_C9RA04563E
crossref_primary_10_3390_cryst13071075
crossref_primary_10_1016_j_orgel_2014_01_013
crossref_primary_10_1149_2_046309jss
crossref_primary_10_1016_j_sse_2019_107676
crossref_primary_10_1063_1_4811127
crossref_primary_10_1039_c2jm32925e
crossref_primary_10_3390_mi12070742
crossref_primary_10_1002_aelm_201900879
crossref_primary_10_1002_adfm_201904576
crossref_primary_10_1016_j_orgel_2015_03_031
crossref_primary_10_1002_aelm_201500409
crossref_primary_10_1002_adma_201905909
crossref_primary_10_1016_j_orgel_2021_106343
crossref_primary_10_1002_advs_202400112
crossref_primary_10_1016_j_orgel_2015_02_006
crossref_primary_10_1021_acsami_1c17845
crossref_primary_10_1021_acssensors_4c03314
crossref_primary_10_1149_1945_7111_ac88fa
crossref_primary_10_1021_acs_chemrev_6b00329
crossref_primary_10_1039_C4TC02611J
crossref_primary_10_1063_1_5118337
crossref_primary_10_7567_JJAP_55_04EL06
crossref_primary_10_1021_acsami_1c01386
crossref_primary_10_1002_adma_201500233
crossref_primary_10_1002_aelm_202201055
crossref_primary_10_3389_fmats_2020_00131
crossref_primary_10_1063_1_4938529
crossref_primary_10_1109_JPHOTOV_2020_3044131
crossref_primary_10_1007_s10854_013_1550_2
crossref_primary_10_1063_5_0170627
crossref_primary_10_1109_TED_2021_3063332
crossref_primary_10_1002_polb_23350
crossref_primary_10_1021_am401375c
crossref_primary_10_1016_j_mtbio_2024_101274
crossref_primary_10_1002_adfm_202000058
crossref_primary_10_1002_aelm_201800723
crossref_primary_10_1016_j_orgel_2024_107014
crossref_primary_10_1002_pssa_202000097
crossref_primary_10_1016_j_orgel_2022_106430
crossref_primary_10_1016_j_orgel_2023_106853
crossref_primary_10_1063_1_4871715
crossref_primary_10_1016_j_chempr_2017_10_005
crossref_primary_10_1021_acsami_6b12328
crossref_primary_10_1016_j_orgel_2017_06_043
crossref_primary_10_1021_acs_chemmater_9b05215
crossref_primary_10_1016_j_orgel_2016_04_038
crossref_primary_10_1002_admi_201400384
crossref_primary_10_1016_j_orgel_2014_08_027
crossref_primary_10_1039_C7NR01116D
crossref_primary_10_1016_j_orgel_2015_12_008
crossref_primary_10_1039_c3nr03093h
crossref_primary_10_1021_ja508453n
crossref_primary_10_1063_1_4860958
crossref_primary_10_1063_1_4876057
crossref_primary_10_1002_adem_201701190
crossref_primary_10_1002_adfm_201601956
crossref_primary_10_1002_aelm_201500454
crossref_primary_10_1002_adfm_201707105
crossref_primary_10_1016_j_orgel_2014_09_024
crossref_primary_10_1021_acs_langmuir_5b02316
crossref_primary_10_1002_adfm_201707221
crossref_primary_10_1088_1361_6528_aacc22
crossref_primary_10_7567_APEX_9_111601
crossref_primary_10_1016_j_apsusc_2017_05_137
crossref_primary_10_1038_s41467_024_53372_5
crossref_primary_10_1007_s11426_014_5240_6
crossref_primary_10_1002_pssa_202100500
crossref_primary_10_1002_pssr_201800297
crossref_primary_10_1002_adfm_201907641
crossref_primary_10_3390_cryst12050651
crossref_primary_10_1016_j_mee_2015_11_006
crossref_primary_10_1016_j_orgel_2012_12_038
crossref_primary_10_1002_adfm_201606291
crossref_primary_10_3390_cryst11121448
crossref_primary_10_1002_asia_201700472
crossref_primary_10_1021_cm502486n
crossref_primary_10_1002_adfm_201502151
crossref_primary_10_1109_LED_2013_2244059
crossref_primary_10_1088_1361_6528_ad3e01
crossref_primary_10_1002_adma_201304280
crossref_primary_10_1021_acsaelm_4c00289
crossref_primary_10_1021_acsami_3c10260
crossref_primary_10_1098_rsos_221272
crossref_primary_10_1070_RCR4839
crossref_primary_10_1038_ncomms10550
crossref_primary_10_1016_j_orgel_2021_106159
crossref_primary_10_1002_adma_202103183
crossref_primary_10_1016_j_orgel_2019_01_010
crossref_primary_10_1016_j_carbon_2024_119126
crossref_primary_10_1080_15421406_2015_1094610
crossref_primary_10_1039_C8TC01852A
crossref_primary_10_1039_c3tc31456a
crossref_primary_10_1021_acsami_6b03671
crossref_primary_10_1002_adma_201200655
crossref_primary_10_1021_ct4000845
crossref_primary_10_1038_srep29811
crossref_primary_10_1016_j_mseb_2021_115397
crossref_primary_10_1021_am506971b
crossref_primary_10_1002_adfm_202212825
crossref_primary_10_1021_acsaelm_3c01813
crossref_primary_10_1039_C4CC01360C
crossref_primary_10_1002_aelm_201600409
crossref_primary_10_1016_j_synthmet_2021_116985
crossref_primary_10_1002_aelm_202000238
crossref_primary_10_1088_0953_8984_27_46_462001
crossref_primary_10_1039_C4CP02413C
crossref_primary_10_1088_1361_6633_80_2_026502
crossref_primary_10_1016_j_orgel_2012_07_028
crossref_primary_10_1002_aelm_202000110
crossref_primary_10_1039_D2CP02595G
crossref_primary_10_1002_adfm_201302428
crossref_primary_10_1002_adma_202406178
crossref_primary_10_1016_j_orgel_2015_04_001
crossref_primary_10_1021_acs_accounts_4c00338
crossref_primary_10_1021_nl501081q
crossref_primary_10_1039_c3py00089c
crossref_primary_10_1016_j_mtphys_2024_101475
crossref_primary_10_1021_acsami_5b06944
crossref_primary_10_3390_electronics8020249
crossref_primary_10_1021_jp4088173
crossref_primary_10_1002_admt_201800182
crossref_primary_10_1021_cg501621k
crossref_primary_10_1109_TED_2021_3051927
crossref_primary_10_1016_j_synthmet_2020_116670
crossref_primary_10_1007_s10854_023_11819_3
crossref_primary_10_1002_aelm_201500024
crossref_primary_10_1021_cm5043183
crossref_primary_10_1039_C5CP00523J
crossref_primary_10_1002_adma_202410442
crossref_primary_10_1016_j_orgel_2016_06_004
crossref_primary_10_1080_23746149_2020_1747945
crossref_primary_10_1007_s12274_018_2088_7
crossref_primary_10_1039_D1TC04366H
crossref_primary_10_1039_C5TC01130B
crossref_primary_10_1002_macp_201900010
crossref_primary_10_1002_admi_202101377
crossref_primary_10_1002_aelm_201700331
crossref_primary_10_1039_c2cp41557g
crossref_primary_10_1088_0268_1242_30_7_074001
crossref_primary_10_1109_LED_2019_2909844
crossref_primary_10_1002_advs_202003697
crossref_primary_10_1002_adma_201702729
crossref_primary_10_1002_adma_201303349
crossref_primary_10_1016_j_orgel_2013_09_008
crossref_primary_10_1002_adma_201801079
crossref_primary_10_1002_cplu_201900277
crossref_primary_10_1021_acsami_7b03785
crossref_primary_10_1038_s41467_018_07388_3
crossref_primary_10_1016_j_orgel_2020_106034
crossref_primary_10_1038_ncomms14975
crossref_primary_10_1063_1_4960051
crossref_primary_10_1016_j_orgel_2017_07_008
crossref_primary_10_1088_1674_1056_ab44a1
crossref_primary_10_1039_C9TC05695E
crossref_primary_10_1021_acs_chemmater_6b03671
crossref_primary_10_1016_j_orgel_2024_107191
crossref_primary_10_1007_s00339_018_2130_3
crossref_primary_10_1103_PhysRevApplied_13_054066
crossref_primary_10_1038_s41467_018_06084_6
crossref_primary_10_1002_cphc_202100261
crossref_primary_10_1021_acsami_6b14220
crossref_primary_10_1109_TED_2017_2738699
crossref_primary_10_1063_1_5042255
crossref_primary_10_1002_adfm_201901700
crossref_primary_10_1021_acsami_6b06967
crossref_primary_10_1039_D0TC01099E
crossref_primary_10_1209_0295_5075_106_58002
crossref_primary_10_1021_acs_chemmater_6b00298
crossref_primary_10_1016_j_optmat_2014_04_013
crossref_primary_10_1002_mabi_202000211
crossref_primary_10_1021_acsaelm_9b00538
crossref_primary_10_1039_C8TC03185A
crossref_primary_10_1039_C8TC00970H
Cites_doi 10.1021/am1008375
10.1016/j.orgel.2011.04.020
10.1002/adma.200401285
10.1063/1.2828711
10.1002/adfm.201001583
10.1002/adfm.201100592
10.1063/1.1345805
10.1016/j.sse.2005.02.004
10.1021/nn1027032
10.1002/adma.201001202
10.1016/j.orgel.2010.11.002
10.1063/1.1415374
10.1021/ja069235m
10.1002/adma.200903712
10.1063/1.2806234
10.1016/j.orgel.2009.10.021
10.1109/TED.2005.850954
10.1021/cm102419z
10.1063/1.2776252
10.1063/1.1645993
10.1103/PhysRevB.9.5183
10.1002/adfm.200900408
10.1063/1.1613369
10.1063/1.3276694
10.1063/1.3090489
10.1002/adma.200701812
10.1063/1.2904629
10.1002/adfm.200900189
10.1063/1.2352808
10.1021/cm103326n
10.1088/0022-3727/44/11/115101
10.1016/S1369-7021(11)70184-5
10.1002/adma.200803541
10.1088/0268-1242/26/3/034006
10.1002/adma.201003128
10.1063/1.3153510
10.1557/mrs2008.149
10.1002/adma.200800150
10.1016/j.orgel.2010.06.001
10.1016/j.orgel.2010.01.028
10.1002/0470068329
10.1063/1.3533020
10.1063/1.2535741
10.1021/nl061566
10.1063/1.2770963
10.1063/1.1562731
10.1002/adma.200901141
10.1016/S0009-2614(98)01277-9
10.1063/1.2737418
10.1016/j.orgel.2011.03.007
10.1016/j.progpolymsci.2008.08.001
10.1016/S0379-6779(97)03864-2
10.1039/b902492c
10.1063/1.2402349
10.1002/adma.201001402
10.1063/1.1639945
10.1063/1.3276913
10.1063/1.1558998
10.1063/1.3115826
10.1002/cphc.200900472
10.1103/PhysRevB.59.7507
10.1063/1.3204655
10.1063/1.3424792
10.1109/LED.2011.2162483
10.1063/1.1611278
10.1002/adfm.201000785
10.1002/adfm.200801019
10.1021/nn100728p
10.1063/1.3049616
10.1103/PhysRevLett.99.256801
10.1002/adfm.201002651
10.1002/1521-4095(20020705)14:13/14<961::AID-ADMA961>3.0.CO;2-X
10.1021/cm1029744
10.1021/am200143g
10.1021/cm071018c
10.1063/1.2917523
10.1126/science.1102896
10.1063/1.2496249
10.1103/PhysRevB.72.155206
10.1021/la104136w
10.1002/adma.200903628
10.1063/1.2357155
10.1103/PhysRevB.57.12964
10.1016/j.sse.2007.11.007
10.1109/LED.2010.2044137
10.1109/LED.2010.2052092
10.1088/0268-1242/24/11/115012
10.1002/adma.200803455
10.1021/am1008826
10.1038/nature03376
10.1109/TED.2009.2035540
10.1063/1.1527983
10.1063/1.2767235
10.1063/1.1806533
10.1063/1.2955515
10.1063/1.3518075
10.1063/1.1581389
10.1088/0268-1242/26/3/034003
10.1063/1.1760838
10.1021/nn9014664
10.1002/adma.200903559
10.1039/c0cs00194e
10.1063/1.3058640
10.1063/1.3488817
10.1002/adfm.201000346
10.1002/adma.201000232
10.1073/pnas.0708340105
10.1016/j.synthmet.2009.08.020
10.1002/adfm.201002696
10.1063/1.3339877
10.1016/j.orgel.2009.09.001
10.1038/nmat2825
10.1021/ma200864s
10.1109/55.596930
10.1038/nmat2291
10.1002/adma.201004588
10.1103/PhysRevB.54.R14321
10.1109/TED.2010.2044272
10.1889/1.2759555
10.1002/adma.200701876
10.1021/ja066092v
10.1002/adma.200803812
10.1063/1.3490716
10.1103/PhysRevB.64.085201
10.1016/j.orgel.2009.08.008
10.1063/1.3479531
10.1103/PhysRevLett.86.3867
10.1002/adma.200901454
10.1049/el:19880369
10.1103/PhysRevB.78.153312
10.1103/PhysRevLett.103.256803
10.1109/JPROC.2005.850301
10.1063/1.1637443
10.1063/1.2771532
10.1063/1.3479476
10.1063/1.2999590
10.1063/1.1858874
10.1143/JJAP.49.101601
10.1063/1.3072669
10.1063/1.1470702
10.1016/j.orgel.2011.09.023
10.1002/adfm.201002290
10.1002/pssa.200510027
10.1016/j.orgel.2009.11.008
10.1016/j.orgel.2009.03.012
10.1149/1.1582466
10.1016/j.tsf.2006.10.074
10.1063/1.2186367
10.1016/j.mser.2008.12.001
10.1103/PhysRevLett.98.066101
10.1063/1.1290697
10.1063/1.2776235
10.1016/j.orgel.2011.12.001
10.1103/PhysRevB.72.235302
10.1016/j.orgel.2010.12.022
10.1021/ma102451b
10.1002/pssc.200777576
10.1016/j.ssc.2009.07.006
10.1021/jp004519t
10.1016/j.orgel.2010.01.002
10.1063/1.2215132
10.1016/j.orgel.2008.01.004
10.1063/1.2804288
10.1103/PhysRevB.79.165306
10.1016/j.orgel.2008.06.008
10.1039/b909902f
10.1063/1.1639937
10.1002/adma.201102410
10.1021/am200705j
10.1002/adma.201100304
10.1063/1.2126140
10.1063/1.3231928
10.1002/adma.201101134
10.1016/0379-6779(95)03375-0
10.1063/1.1431691
10.1063/1.1453509
10.1088/0268-1242/23/12/125027
10.1021/cm1023426
10.1109/TED.2008.2010579
10.1021/jp046246y
10.1063/1.1645316
10.1063/1.3488607
10.1063/1.373091
10.1143/JJAP.47.3174
10.1116/1.1885021
10.1063/1.3187787
10.1038/nature04699
10.1126/science.290.5499.2123
10.1889/1.2835023
10.1038/nnano.2007.365
10.1002/1521-4095(200105)13:9<631::AID-ADMA631>3.0.CO;2-F
10.1002/adma.200802934
10.1063/1.2857461
10.1016/j.sse.2007.10.027
10.1021/ar9000873
10.1063/1.1849845
10.1103/PhysRevLett.95.237601
10.1103/PhysRevLett.106.216402
10.1021/jp111677x
10.1002/adma.200903711
10.1063/1.2738382
10.1063/1.2168669
10.1002/adma.200802893
10.1016/j.synthmet.2009.11.008
10.1063/1.2197033
10.1002/adfm.200900315
10.1063/1.2112189
10.3390/s7030267
10.1016/S0927-796X(02)00093-1
10.1039/b718935d
10.1063/1.3247195
10.1049/el:19950481
ContentType Journal Article
Copyright Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/adma.201104206
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage 1387
ExternalDocumentID 22354535
10_1002_adma_201104206
ADMA201104206
ark_67375_WNG_ZMV1FJ6N_8
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c4486-cc7b48e432ef562e6dd6a012d8cf4838c719b2ccd2e0e3a208855b33024231bd3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 08:43:37 EDT 2025
Wed Feb 19 01:55:29 EST 2025
Thu Apr 24 23:09:03 EDT 2025
Tue Jul 01 02:26:21 EDT 2025
Wed Jan 22 16:18:34 EST 2025
Wed Oct 30 09:51:58 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4486-cc7b48e432ef562e6dd6a012d8cf4838c719b2ccd2e0e3a208855b33024231bd3
Notes ark:/67375/WNG-ZMV1FJ6N-8
ArticleID:ADMA201104206
istex:8CCF0D2105C0CE76F3E39E86C33A3B9AEC2D9B6F
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 22354535
PQID 927830602
PQPubID 23479
PageCount 31
ParticipantIDs proquest_miscellaneous_927830602
pubmed_primary_22354535
crossref_citationtrail_10_1002_adma_201104206
crossref_primary_10_1002_adma_201104206
wiley_primary_10_1002_adma_201104206_ADMA201104206
istex_primary_ark_67375_WNG_ZMV1FJ6N_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 15, 2012
PublicationDateYYYYMMDD 2012-03-15
PublicationDate_xml – month: 03
  year: 2012
  text: March 15, 2012
  day: 15
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv. Mater
PublicationYear 2012
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
References S. Braun, W. R. Salaneck, M. Fahlman, Adv. Mater. 2009, 21, 1450.
J. C. Scott, G. G. Malliaras, Chem. Phys. Lett. 1999, 299, 115.
C. Vanoni, S. Tsujino, T. A. Jung, Appl. Phys. Lett. 2007, 90, 193119.
S. P. Pang, H. N. Tsao, X. L. Feng, K. Mullen, Adv. Mater. 2009, 21, 3488.
S. V. Novikov, Phys. Status Solidi C. 2008, 5, 750.
Y. Roichman, N. Tessler, Appl. Phys. Lett. 2002, 80, 151.
P. Stoliar, R. Kshirsagar, M. Massi, P. Annibale, C. Albonetti, D. M. de Leeuw, F. Biscarini, J. Am. Chem. Soc. 2007, 129, 6477.
N. Tessler, Y. Preezant, N. Rappaport, Y. Roichman, Adv. Mater. 2009, 21, 2741.
J. E. Anthony, A. Facchetti, M. Heeney, S. R. Marder, X. Zhan, Adv. Mater. 2010, 22, 3876.
K. Nomoto, N. Hirai, N. Yoneya, N. Kawashima, M. Noda, M. Wada, J. Kasahara, IEEE Electron Dev. 2005, 52, 1519.
B. Iñiguez, R. Picos, D. Veksler, A. Koudymov, M. S. Shur, T. Ytterdal, W. Jackson, Solid State Electron. 2008, 52, 400.
M. A. Baldo, S. R. Forrest, Phys. Rev. B 2001, 64, 17.
T. W. Kelley, C. D. Frisbie, J. Phys. Chem. B 2001, 105, 4538.
G. B. Blanchet, C. R. Fincher, M. Lefenfeld, J. A. Rogers, Appl. Phys. Lett. 2004, 84, 296.
I. Yagi, K. Tsukagoshi, Y. Aoyagi, Appl. Phys. Lett. 2004, 84, 813.
K. Asadi, Y. Wu, F. Gholamrezaie, P. Rudolf, P. W. M. Blom, Adv. Mater. 2009, 21, 4109.
P. V. Pesavento, R. J. Chesterfield, C. R. Newman, C. D. Frisbie, J. Appl. Phys. 2004, 96, 7312.
Y. Y. Zhang, Y. M. Shi, F. M. Chen, S. G. Mhaisalkar, L. J. Li, B. S. Ong, Y. L. Wu, Appl. Phys. Lett. 2007, 91, 223512.
A. Rose, Concepts in photoconductivity and allied problems, Interscience Publishers, New York 1963.
S. D. Wang, Y. Yan, K. Tsukagoshi, Appl. Phys. Lett. 2010, 97, 063307.
Q.-D. Ling, D.-J. Liaw, C. Zhu, D. S.-H. Chan, E.-T. Kang, K.-G. Neoh, Prog. Polym. Sci. 2008, 33, 917.
L. Xiao, Z. Chen, B. Qu, J. Luo, S. Kong, Q. Gong, J. Kido, Adv. Mater. 2011, 23, 926.
T. Hassenkam, D. R. Greve, T. Bjornholm, Adv. Mater. 2001, 13, 631.
M. Scharnberg, J. Hu, J. Kanzow, K. Ratzke, R. Adelung, F. Faupel, C. Pannemann, U. Hilleringmann, S. Meyer, J. Pflaum, Appl. Phys. Lett. 2005, 86, 024104.
M. Estrada, I. Mejia, A. Cerdeira, J. Pallares, L. F. Marsal, B. Iniguez, Solid State Electron. 2008, 52, 787.
T. J. Richards, H. Sirringhaus, J. Appl. Phys. 2007, 102, 094510.
E. von Hauff, F. Johnen, A. V. Tunc, L. Govor, J. Parisi, J. Appl. Phys. 2010, 108, 063709.
N. Koch, S. Duhm, J. P. Rabe, A. Vollmer, R. L. Johnson, Phys. Rev. Lett. 2005, 95, 237601.
T. H. J. van Osch, J. Perelaer, A. W. M. de Laat, U. S. Schubert, Adv. Mater. 2008, 20, 343.
K. P. Puntambekar, P. V. Pesavento, C. D. Frisbie, Appl. Phys. Lett. 2003, 83, 5539.
J. Li, X.-W. Zhang, L. Zhang, H. Khizar ul, X.-Y. Jiang, W.-Q. Zhu, Z.-L. Zhang, Solid State Commun. 2009, 149, 1826.
D. Natali, L. Fumagalli, M. Sampietro, J. Appl. Phys. 2007, 101, 014501.
M. Kröger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, A. Kahn, Appl. Phys. Lett. 2009, 95, 123301.
M.-W. Lee, M.-Y. Lee, J.-C. Choi, J.-S. Park, C.-K. Song, Org. Electron. 2010, 11, 854.
T. Li, P. P. Ruden, I. H. Campbell, D. L. Smith, J. Appl. Phys. 2003, 93, 4017.
K. Nomoto, N. Yoneya, N. Hirai, I. Yagi, N. Kawashima, M. Noda, J. Kasahara, J. Soc. Inf. Display 2007, 15, 491.
I. Yagi, N. Hirai, Y. Miyamoto, M. Noda, A. Imaoka, N. Yoneya, K. Nomoto, J. Kasahara, A. Yumoto, T. Urabe, J. Soc. Inf. Display 2008, 16, 15.
F. Cicoira, C. M. Aguirre, R. Martel, ACS Nano 2011, 5, 283.
J. Frisch, H. Glowatzki, S. Janietz, N. Koch, Org. Electron. 2009, 10, 1459.
P. L. Bullejos, J. A. J. Tejada, F. M. Gomez-Campos, M. J. Deen, O. Marinov, J. Appl. Phys. 2009, 106, 4.
T. Schuettfort, S. Huettner, S. Lilliu, J. E. Macdonald, L. Thomsen, C. R. McNeill, Macromolecules 2011, 44, 1530.
S. D. Wang, Y. Yan, K. Tsukagoshi, Ieee Electron Device Letters 2010, 31, 509.
Y.-L. Loo, I. McCulloch, Mrs Bull. 2008, 33, 653.
B. Bröker, R.-P. Blum, L. Beverina, O. T. Hofmann, M. Sassi, R. Ruffo, G. A. Pagani, G. Heimel, A. Vollmer, J. Frisch, J. P. Rabe, E. Zojer, N. Koch, Chem. Phys. Chem. 2009, 10, 2947.
B. H. Hamadani, C. A. Richter, J. S. Suehle, D. J. Gundlach, Appl. Phys. Lett. 2008, 92.
T. Li, J. W. Balk, P. P. Ruden, I. H. Campbell, D. L. Smith, J. Appl. Phys. 2002, 91, 4312.
C.-a. Di, G. Yu, Y. Liu, Y. Guo, W. Wu, D. Wei, D. Zhu, Phys. Chem. Chem. Phys. 2008, 10, 2302.
T. Sekitani, Y. Noguchi, U. Zschieschang, H. Klauk, T. Someya, P. Natl. Acad. Sci. USA 2008, 105, 4976.
M. Koehler, I. Biaggio, M. G. E. da Luz, Phys. Rev. B 2008, 78, 235308.
P. Bröms, J. Birgerson, W. R. Salaneck, Synthetic Met. 1997, 88, 255.
X. Zhao, X. Zhan, Chem. Soc. Rev. 2011, 40, 3728.
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.
S. Cho, J. Lee, M. Tong, J. H. Seo, C. Yang, Adv. Funct. Mater. 2011, 21, 1910.
A. Southard, V. Sangwan, J. Cheng, E. D. Williams, M. S. Fuhrer, Org. Electron. 2009, 10, 1556.
S. Jeong, H. C. Song, W. W. Lee, S. S. Lee, Y. Choi, W. Son, E. D. Kim, C. H. Paik, S. H. Oh, B.-H. Ryu, Langmuir 2011, 27, 3144.
D. F. Blossey, Phys. Rev. B 1974, 9, 5183.
L. Burgi, H. Sirringhaus, R. H. Friend, Appl. Phys. Lett. 2002, 80, 2913.
B. H. Hamadani, D. Natelson, Proc. IEEE 2005, 93, 1306.
H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E. P. Woo, Science 2000, 290, 2123.
M. A. Lampert, P. Mark, Current Injection in Solids, Academic Press, New York1970.
A. Ahnood, K. Ghaffarzadeh, A. Nathan, P. Servati, F. Li, M. R. Esmaeili-Rad, A. Sazonov, Appl. Phys. Lett. 2008, 93, 163503.
M. Caironi, Y.-Y. Noh, H. Sirringhaus, Semicond. Sci. Tech. 2011, 26, 034006.
K. Hong, S. H. Kim, C. Yang, T. K. An, H. Cha, C. Park, C. E. Park, Org. Electron. 2011, 12, 516.
D. Gupta, M. Katiyar, Org. Electron. 2009, 10, 775.
C. W. Sohn, T. U. Rim, G. B. Choi, Y. H. Jeong, IEEE Electron Dev. 2010, 57, 986.
A. C. Dürr, F. Schreiber, M. Kelsch, H. D. Carstanjen, H. Dosch, Adv. Mater. 2002, 14, 961.
D. Boudinet, M. Benwadih, S. Altazin, R. Gwoziecki, J. M. Verilhac, R. Coppard, G. Le Blevennec, I. Chartier, G. Horowitz, Org. Electron. 2010, 11, 291.
T. N. Ng, S. Sambandan, R. Lujan, A. C. Arias, C. R. Newman, H. Yan, A. Facchetti, Appl. Phys. Lett. 2009, 94, 233307.
J. A. Nichols, D. J. Gundlach, T. N. Jackson, Appl. Phys. Lett. 2003, 83, 2366.
R. Coehoorn, W. F. Pasveer, P. A. Bobbert, M. A. J. Michels, Phys. Rev. B 2005, 72, 155206.
I. H. Campbell, S. Rubin, T. A. Zawodzinski, J. D. Kress, R. L. Martin, D. L. Smith, N. N. Barashkov, J. P. Ferraris, Phys. Rev. B 1996, 54, R14321.
Y. Changhun, K. Minseok, L. Seung Won, M. Hanul, P. Sunmin, K. Jae Bon, K. Jeong Won, Y. In-Kyu, Y. Seunghyup, IEEE Electr. Device Lett., 2011, 32, 1454.
V. Sholin, S. A. Carter, R. A. Street, A. C. Arias, Appl. Phys. Lett. 2008, 92, 063307.
P. V. Pesavento, K. P. Puntambekar, C. D. Frisbie, J. C. McKeen, P. P. Ruden, J. Appl. Phys. 2006, 99, 094504.
K. Hong, S. Y. Yang, C. Yang, S. H. Kim, D. Choi, C. E. Park, Org. Electron. 2008, 9, 864.
R. J. Chesterfield, J. C. McKeen, C. R. Newman, P. C. Ewbank, D. t. A. da Silva Filho, J.-L. Brédas, L. L. Miller, K. R. Mann, C. D. Frisbie, J. Phys. Chem. B 2004, 108, 19281.
T. Manaka, S. Kawashima, M. Iwamoto, Appl. Phys. Lett. 2010, 97, 113302.
J. H. Cho, D. H. Kim, Y. Jang, W. H. Lee, K. Ihm, J. H. Han, S. Chung, K. Cho, Appl. Phys. Lett. 2006, 89, 132101.
A. L. Burin, M. A. Ratner, J. Chem. Phys. 2000, 113, 3941.
Y. Cao, S. Liu, Q. Shen, K. Yan, P. Li, J. Xu, D. Yu, M. L. Steigerwald, C. Nuckolls, Z. Liu, X. Guo, Adv. Funct. Mater. 2009, 19, 2743.
M. Vissenberg, M. Matters, Phys. Rev. B 1998, 57, 12964.
A. Estrada, A. Cerdeira, J. Puigdollers, L. Resendiz, J. Pallares, L. F. Marsal, C. Voz, B. Iniguez, Solid State Electron. 2005, 49, 1009.
T. Sekitani, T. Someya, Mater. Today 2011, 14, 398.
H. Klauk, Chem. Soc. Rev. 2010, 39, 2643.
C. W. Sele, T. von Werne, R. H. Friend, H. Sirringhaus, Adv. Mater. 2005, 17, 997.
M. Knupfer, G. Paasch, J. Vac. Sci. Technol. A 2005, 23, 1072.
W. Fikry, G. Ghibaudo, H. Haddara, S. Cristoloveanu, M. Dutoit, Electron. Lett. 1995, 31, 762.
J. C. Blakesley, N. C. Greenham, J. Appl. Phys. 2009, 106, 034507.
C.-a. Di, D. Wei, G. Yu, Y. Liu, Y. Guo, D. Zhu, Adv. Mater. 2008, 20, 3289.
R. S. Ashraf, Z. Chen, D. S. Leem, H. Bronstein, W. Zhang, B. Schroeder, Y. Geerts, J. Smith, S. Watkins, T. D. Anthopoulos, H. Sirringhaus, J. C. de Mello, M. Heeney, I. McCulloch, Chem. Mater. 2011, 23, 768.
J. Rivnay, M. F. Toney, Y. Zheng, I. V. Kauvar, Z. Chen, V. Wagner, A. Facchetti, A. Salleo, Adv. Mater. 2010, 22, 4359.
K. C. Dickey, T. J. Smith, K. J. Stevenson, S. Subramanian, J. E. Anthony, Y.-L. Loo, Chem. Mater. 2007, 19, 5210.
L. Giraudet, O. Simonetti, Org. Electron. 2011, 12, 219.
C. Reese, Z. Bao, Adv. Funct. Mater. 2009, 19, 763.
Z. Chen, H. Lemke, S. Albert-Seifried, M. Caironi, M. M. Nielsen, M. Heeney, W. Zhang, I. McCulloch, H. Sirringhaus, Adv. Mater. 2010, 22, 2371.
P. Marmont, N. Battaglini, P. Lang, G. Horowitz, J. Hwang, A. Kahn, C. Amato, P. Calas, Org. Electron. 2008, 9, 419.
L. Romaner, G. Heimel, Br, é, J.-L. das, A. Gerlach, F. Schreiber, R. L. Johnson, J. Zegenhagenörg, S. Duhm, N. Koch, E. Zojer, Phys. Rev. Lett. 2007, 99, 256801.
R. Schroeder, L. Majewski, M. Grell, Appl. Phys. Lett. 2004, 84, 1004.
J. D. Yuen, R. Kumar, D. Zakhidov, J. Seifter, B. Lim, A. J. Heeger, F. Wudl, Adv. Mater. 2011, 23, 3780.
N. Zhao, M. Chiesa, H. Sirringhaus, Y. Li, Y. Wu, B. Ong, J. Appl. Phys. 2007, 101, 064513.
D. Boudinet, M. Benwadih, Y. B. Qi, S. Altazin, J. M. Verilhac, M. Kroger, C. Serbutoviez, R. Gwoziecki, R. Coppard, G. Le Blevennec, A. Kahn, G. Horowitz, Org. Electron. 2010, 11, 227.
C. Bock, D. V. Pham, U. Kunze, D. Kafer, G. Witte, A. Terfort, Appl. Phys. Lett. 2007, 91, 052110.
F. C. Chen, L. J. Kung, T. H. Chen, Y. S. Lin, Appl. Phys. Lett. 2007, 90, 073504.
I. G. Hill, Appl. Phys. Lett. 2005, 87, 163505.
M. C. Gwinner, Y. Vaynzof, K. K. Banger, P. K. H. Ho, R. H. Friend, H. Sirringhaus, Adv. Funct. Mater. 2010, 20, 3457.
D.-J. Yun, K. Hong, S. h. Kim, W.-M. Yun, J.-y. Jang, W.-S. Kwon, C.-E. Park, S.-W. Rhee, ACS Appl. Mater. Interfaces 2011,
1995; 31
2010; 11
2011; 115
2007; 101
2002; 14
2007; 102
2010; 97
2010; 108
2000; 87
2003; 150
2008; 105
2008; 33
1970
2012; 13
1974; 9
2010; 22
2009; 11
2010; 20
2009; 95
2009; 10
2009; 94
1999; 59
2008; 23
2007; 7
2007; 2
1999; 299
2002; 91
2005; 72
2008; 20
2009; 19
2010; 4
2006; 441
2010; 9
2007; 19
2010; 31
2009; 64
2000; 113
2010; 39
2007; 90
2007; 91
2005; 86
2005; 87
2002; 81
2008; 52
2002; 80
2010; 160
2007; 98
2011; 3
2004; 306
2007; 99
2011; 5
2007; 15
2009; 79
2010; 49
2008; 47
2005; 95
2005; 97
1988; 24
2005; 93
2005; 17
2009; 103
2006; 100
2009; 105
2009; 106
1995; 74
2010; 57
2009; 42
1997; 88
2008; 9
2008; 78
2008; 7
2008; 5
2011; 12
2011; 14
2003; 93
2003; 94
2005; 23
2009; 159
2001; 86
2000; 290
2001; 105
2009; 56
1988; 135
1997; 18
2011; 21
2011; 23
2011; 26
2003; 82
2011; 27
2003; 83
2001; 13
2006; 128
1998; 57
2002; 39
2009; 24
2007; 129
2004; 84
2009; 21
2011
2006; 99
2005; 434
2011; 40
2008; 16
2009
2006
2006; 6
2011; 32
2008; 10
2005; 49
2004; 108
2008; 92
2008; 93
1996; 54
2001; 64
2004; 96
2007; 515
2011; 106
2006; 89
2006; 88
2005; 202
2005; 52
1963
2011; 44
2001; 78
2001; 79
2010; 96
2009; 149
e_1_2_7_3_2
e_1_2_7_127_2
e_1_2_7_104_2
e_1_2_7_19_2
e_1_2_7_83_2
e_1_2_7_60_2
e_1_2_7_191_2
e_1_2_7_11_2
e_1_2_7_45_2
e_1_2_7_68_2
Miyadera T. (e_1_2_7_194_2) 2007; 91
e_1_2_7_142_2
e_1_2_7_188_2
e_1_2_7_202_2
e_1_2_7_225_2
e_1_2_7_165_2
e_1_2_7_116_2
e_1_2_7_71_2
e_1_2_7_94_2
e_1_2_7_180_2
e_1_2_7_23_2
e_1_2_7_33_2
e_1_2_7_56_2
e_1_2_7_79_2
e_1_2_7_192_2
e_1_2_7_131_2
e_1_2_7_154_2
e_1_2_7_214_2
e_1_2_7_139_2
e_1_2_7_4_2
e_1_2_7_105_2
e_1_2_7_128_2
Hong J.‐P. (e_1_2_7_92_2) 2008; 92
e_1_2_7_82_2
e_1_2_7_120_2
Gili E. (e_1_2_7_166_2) 2009
e_1_2_7_12_2
e_1_2_7_44_2
e_1_2_7_67_2
e_1_2_7_226_2
e_1_2_7_181_2
e_1_2_7_143_2
e_1_2_7_29_2
e_1_2_7_203_2
e_1_2_7_189_2
e_1_2_7_117_2
e_1_2_7_93_2
e_1_2_7_70_2
e_1_2_7_24_2
e_1_2_7_32_2
e_1_2_7_55_2
e_1_2_7_170_2
e_1_2_7_215_2
e_1_2_7_78_2
e_1_2_7_193_2
e_1_2_7_132_2
e_1_2_7_155_2
Noguchi Y. (e_1_2_7_177_2) 2008; 93
e_1_2_7_178_2
e_1_2_7_129_2
e_1_2_7_106_2
e_1_2_7_9_2
e_1_2_7_121_2
e_1_2_7_81_2
e_1_2_7_1_2
e_1_2_7_13_2
e_1_2_7_43_2
e_1_2_7_204_2
e_1_2_7_227_2
e_1_2_7_66_2
e_1_2_7_89_2
e_1_2_7_182_2
e_1_2_7_28_2
e_1_2_7_144_2
e_1_2_7_167_2
Lampert M. A. (e_1_2_7_26_2) 1970
e_1_2_7_118_2
e_1_2_7_110_2
e_1_2_7_25_2
e_1_2_7_31_2
e_1_2_7_54_2
e_1_2_7_171_2
e_1_2_7_216_2
e_1_2_7_77_2
e_1_2_7_39_2
e_1_2_7_133_2
e_1_2_7_179_2
e_1_2_7_156_2
Rose A. (e_1_2_7_27_2) 1963
e_1_2_7_107_2
e_1_2_7_2_2
e_1_2_7_122_2
e_1_2_7_80_2
e_1_2_7_14_2
e_1_2_7_42_2
e_1_2_7_65_2
e_1_2_7_160_2
e_1_2_7_183_2
e_1_2_7_205_2
e_1_2_7_88_2
e_1_2_7_145_2
e_1_2_7_168_2
e_1_2_7_220_2
e_1_2_7_119_2
e_1_2_7_111_2
e_1_2_7_91_2
e_1_2_7_30_2
e_1_2_7_76_2
e_1_2_7_53_2
e_1_2_7_195_2
e_1_2_7_99_2
e_1_2_7_172_2
e_1_2_7_217_2
e_1_2_7_38_2
e_1_2_7_134_2
e_1_2_7_157_2
e_1_2_7_108_2
e_1_2_7_7_2
e_1_2_7_123_2
e_1_2_7_100_2
e_1_2_7_15_2
e_1_2_7_41_2
e_1_2_7_87_2
e_1_2_7_64_2
e_1_2_7_206_2
e_1_2_7_161_2
e_1_2_7_49_2
e_1_2_7_146_2
e_1_2_7_221_2
e_1_2_7_169_2
e_1_2_7_90_2
e_1_2_7_112_2
e_1_2_7_52_2
e_1_2_7_75_2
e_1_2_7_98_2
e_1_2_7_150_2
e_1_2_7_173_2
e_1_2_7_218_2
e_1_2_7_37_2
e_1_2_7_196_2
e_1_2_7_135_2
e_1_2_7_210_2
e_1_2_7_158_2
Caironi M. (e_1_2_7_16_2) 2011
e_1_2_7_8_2
e_1_2_7_101_2
e_1_2_7_124_2
e_1_2_7_40_2
e_1_2_7_63_2
e_1_2_7_86_2
e_1_2_7_162_2
e_1_2_7_207_2
e_1_2_7_48_2
e_1_2_7_222_2
e_1_2_7_185_2
e_1_2_7_147_2
e_1_2_7_109_2
e_1_2_7_113_2
e_1_2_7_51_2
e_1_2_7_97_2
e_1_2_7_219_2
e_1_2_7_74_2
e_1_2_7_20_2
e_1_2_7_36_2
e_1_2_7_151_2
e_1_2_7_59_2
e_1_2_7_174_2
e_1_2_7_211_2
e_1_2_7_197_2
e_1_2_7_136_2
e_1_2_7_159_2
e_1_2_7_5_2
e_1_2_7_125_2
e_1_2_7_102_2
e_1_2_7_17_2
e_1_2_7_208_2
e_1_2_7_62_2
e_1_2_7_85_2
e_1_2_7_47_2
e_1_2_7_140_2
e_1_2_7_200_2
e_1_2_7_223_2
e_1_2_7_163_2
e_1_2_7_186_2
e_1_2_7_148_2
e_1_2_7_114_2
e_1_2_7_50_2
e_1_2_7_73_2
e_1_2_7_96_2
e_1_2_7_21_2
e_1_2_7_35_2
e_1_2_7_58_2
Jain S. (e_1_2_7_184_2) 1988; 135
e_1_2_7_152_2
e_1_2_7_175_2
e_1_2_7_198_2
e_1_2_7_212_2
e_1_2_7_137_2
e_1_2_7_103_2
e_1_2_7_126_2
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_61_2
e_1_2_7_190_2
e_1_2_7_209_2
e_1_2_7_84_2
e_1_2_7_10_2
e_1_2_7_46_2
e_1_2_7_69_2
e_1_2_7_141_2
e_1_2_7_164_2
e_1_2_7_187_2
e_1_2_7_201_2
e_1_2_7_224_2
e_1_2_7_149_2
e_1_2_7_115_2
e_1_2_7_72_2
e_1_2_7_22_2
e_1_2_7_95_2
e_1_2_7_34_2
e_1_2_7_57_2
e_1_2_7_130_2
e_1_2_7_153_2
e_1_2_7_199_2
e_1_2_7_176_2
e_1_2_7_213_2
e_1_2_7_138_2
References_xml – reference: S. Scheinert, G. Paasch, I. Horselmann, A. Herasimovich, Phys. Status Solidi A 2005, 202, R82.
– reference: M. Caironi, E. Gili, T. Sakanoue, X. Cheng, H. Sirringhaus, ACS Nano 2010, 4, 1451.
– reference: A. Luzio, C. Musumeci, C. R. Newman, A. Facchetti, T. J. Marks, B. Pignataro, Chem. Mater. 2011, 23, 1061.
– reference: T. Hallam, M. Lee, N. Zhao, I. Nandhakumar, M. Kemerink, M. Heeney, I. McCulloch, H. Sirringhaus, Phys. Rev. Lett. 2009, 103, 256803.
– reference: J. H. Cho, J. Lee, Y. Xia, B. Kim, Y. He, M. J. Renn, T. P. Lodge, C. Daniel Frisbie, Nat. Mater. 2008, 7, 900.
– reference: M. Kano, T. Minari, K. Tsukagoshi, Appl. Phys. Lett. 2009, 94, 143304.
– reference: F. Cicoira, C. M. Aguirre, R. Martel, ACS Nano 2011, 5, 283.
– reference: D. Beljonne, J. Cornil, L. Muccioli, C. Zannoni, J. L. Bredas, F. Castet, Chem. Mater. 2011, 23, 591.
– reference: J. Frisch, H. Glowatzki, S. Janietz, N. Koch, Org. Electron. 2009, 10, 1459.
– reference: F. C. Chen, L. J. Kung, T. H. Chen, Y. S. Lin, Appl. Phys. Lett. 2007, 90, 073504.
– reference: P. Marmont, N. Battaglini, P. Lang, G. Horowitz, J. Hwang, A. Kahn, C. Amato, P. Calas, Org. Electron. 2008, 9, 419.
– reference: G. Gelinck, P. Heremans, K. Nomoto, T. D. Anthopoulos, Adv. Mater. 2010, 22, 3778.
– reference: T. Sekitani, Y. Noguchi, U. Zschieschang, H. Klauk, T. Someya, P. Natl. Acad. Sci. USA 2008, 105, 4976.
– reference: S. Cho, J. Lee, M. Tong, J. H. Seo, C. Yang, Adv. Funct. Mater. 2011, 21, 1910.
– reference: K. A. Singh, G. Sauve, R. Zhang, T. Kowalewski, R. D. McCullough, L. M. Porter, Appl. Phys. Lett. 2008, 92, 263303.
– reference: H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E. P. Woo, Science 2000, 290, 2123.
– reference: J. A. Nichols, D. J. Gundlach, T. N. Jackson, Appl. Phys. Lett. 2003, 83, 2366.
– reference: W. Liu, B. L. Jackson, J. Zhu, C.-Q. Miao, C.-H. Chung, Y. J. Park, K. Sun, J. Woo, Y.-H. Xie, ACS Nano 2010, 4, 3927.
– reference: M. Scharnberg, J. Hu, J. Kanzow, K. Ratzke, R. Adelung, F. Faupel, C. Pannemann, U. Hilleringmann, S. Meyer, J. Pflaum, Appl. Phys. Lett. 2005, 86, 024104.
– reference: T. H. J. van Osch, J. Perelaer, A. W. M. de Laat, U. S. Schubert, Adv. Mater. 2008, 20, 343.
– reference: D. Gupta, M. Katiyar, Org. Electron. 2009, 10, 775.
– reference: C.-a. Di, Y. Liu, G. Yu, D. Zhu, Accounts Chem. Res. 2009, 42, 1573.
– reference: M. Kim, J. Kim, H. Son, J. H. Jang, M. Yi, Jpn. J. Appl. Phys. 2010, 49, 101601.
– reference: D. J. Gundlach, L. Zhou, J. A. Nichols, T. N. Jackson, P. V. Necliudov, M. S. Shur, J. Appl. Phys. 2006, 100, 024509.
– reference: M. Koehler, I. Biaggio, M. G. E. da Luz, Phys. Rev. B 2008, 78, 235308.
– reference: S. P. Pang, H. N. Tsao, X. L. Feng, K. Mullen, Adv. Mater. 2009, 21, 3488.
– reference: H. Klauk, Chem. Soc. Rev. 2010, 39, 2643.
– reference: M. Kröger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, A. Kahn, Appl. Phys. Lett. 2009, 95, 123301.
– reference: C.-W. Chu, S.-H. Li, C.-W. Chen, V. Shrotriya, Y. Yang, Appl. Phys. Lett. 2005, 87, 193508.
– reference: K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.
– reference: E. Gili, M. Caironi, H. Sirringhaus, in Handbook of Nanofabrication, (Ed: G. Wiederrecht), Elsevier, 2009.
– reference: Y. Roichman, N. Tessler, Appl. Phys. Lett. 2002, 80, 151.
– reference: U. Wolf, V. I. Arkhipov, H. Bassler, Phys. Rev. B 1999, 59, 7507.
– reference: K.-D. Jung, Y. C. Kim, B.-G. Park, H. Shin, J. D. Lee, IEEE Electron Dev. 2009, 56, 431.
– reference: S. D. Wang, Y. Yan, K. Tsukagoshi, Appl. Phys. Lett. 2010, 97, 063307.
– reference: I. Yagi, K. Tsukagoshi, Y. Aoyagi, Appl. Phys. Lett. 2004, 84, 813.
– reference: R. Winter, M. S. Hammer, C. Deibel, J. Pflaum, Appl. Phys. Lett. 2009, 95, 263313.
– reference: S. Jain, IEE Proc.-I 1988, 135, 162.
– reference: S. Braun, W. R. Salaneck, M. Fahlman, Adv. Mater. 2009, 21, 1450.
– reference: M. Caironi, C. Newman, J. R. Moore, D. Natali, H. Yan, A. Facchetti, H. Sirringhaus, Appl. Phys. Lett. 2010, 96, 183303.
– reference: Y. Xu, R. Gwoziecki, I. Chartier, R. Coppard, F. Balestra, G. Ghibaudo, Appl. Phys. Lett. 2010, 97, 063302.
– reference: M. Weis, J. Lin, D. Taguchi, T. Manaka, M. Iwamoto, Appl. Phys. Lett. 2010, 97, 263304.
– reference: S. Pang, Y. Hernandez, X. Feng, K. Müllen, Adv. Mater. 2011, 23, 2779.
– reference: Y.-Y. Noh, X. Cheng, M. Tello, M.-J. Lee, H. Sirringhaus,Semicond. Sci. Tech. 2011, 26, 034003.
– reference: N. Tessler, Y. Preezant, N. Rappaport, Y. Roichman, Adv. Mater. 2009, 21, 2741.
– reference: D. W. Li, L. J. Guo, Appl. Phys. Lett. 2006, 88, 063513.
– reference: W. Fikry, G. Ghibaudo, H. Haddara, S. Cristoloveanu, M. Dutoit, Electron. Lett. 1995, 31, 762.
– reference: C. W. Sele, T. von Werne, R. H. Friend, H. Sirringhaus, Adv. Mater. 2005, 17, 997.
– reference: P. Bröms, J. Birgerson, W. R. Salaneck, Synthetic Met. 1997, 88, 255.
– reference: J. C. Blakesley, N. C. Greenham, J. Appl. Phys. 2009, 106, 034507.
– reference: C. Reese, Z. Bao, Adv. Funct. Mater. 2009, 19, 763.
– reference: K.-J. Baeg, J. Kim, D. Khim, M. Caironi, D.-Y. Kim, I.-K. You, J. R. Quinn, A. Facchetti, Y.-Y. Noh, ACS Appl. Mater. Interfaces 2011, 3, 3205.
– reference: C. Vanoni, S. Tsujino, T. A. Jung, Appl. Phys. Lett. 2007, 90, 193119.
– reference: B. Iñiguez, R. Picos, D. Veksler, A. Koudymov, M. S. Shur, T. Ytterdal, W. Jackson, Solid State Electron. 2008, 52, 400.
– reference: M. N. Islam, B. Mazhari, Semicond. Sci. Tech. 2008, 23, 125027.
– reference: S. V. Novikov, Phys. Status Solidi C. 2008, 5, 750.
– reference: K. Hong, S. H. Kim, C. Yang, W. M. Yun, S. Nam, J. Jang, C. Park, C. E. Park, ACS Appl. Mater. Interfaces 2011, 3, 74.
– reference: Y. Hong, F. Yan, P. Migliorato, S. H. Han, J. Jang, Thin Solid Films 2007, 515, 4032.
– reference: E. von Hauff, F. Johnen, A. V. Tunc, L. Govor, J. Parisi, J. Appl. Phys. 2010, 108, 063709.
– reference: L. Burgi, H. Sirringhaus, R. H. Friend, Appl. Phys. Lett. 2002, 80, 2913.
– reference: X. Li, W. T. T. Smaal, C. Kjellander, B. van der Putten, K. Gualandris, E. C. P. Smits, J. Anthony, D. J. Broer, P. W. M. Blom, J. Genoe, G. Gelinck, Org. Electron. 2011, 12, 1319.
– reference: I. H. Campbell, S. Rubin, T. A. Zawodzinski, J. D. Kress, R. L. Martin, D. L. Smith, N. N. Barashkov, J. P. Ferraris, Phys. Rev. B 1996, 54, R14321.
– reference: I. G. Hill, Appl. Phys. Lett. 2005, 87, 163505.
– reference: S. H. Kim, S. H. Lee, J. Jang, IEEE Electr. Device Lett., IEEE 2010, 31, 1044.
– reference: T. Li, J. W. Balk, P. P. Ruden, I. H. Campbell, D. L. Smith, J. Appl. Phys. 2002, 91, 4312.
– reference: J.-P. Hong, A.-Y. Park, S. Lee, J. Kang, N. Shin, D. Y. Yoon, Appl. Phys. Lett. 2008, 92.
– reference: A. Estrada, A. Cerdeira, J. Puigdollers, L. Resendiz, J. Pallares, L. F. Marsal, C. Voz, B. Iniguez, Solid State Electron. 2005, 49, 1009.
– reference: T. Miyadera, T. Minari, K. Tsukagoshi, H. Ito, Y. Aoyagi, Appl. Phys. Lett. 2007, 91.
– reference: X. Cheng, Y.-Y. Noh, J. Wang, M. Tello, J. Frisch, R.-P. Blum, A. Vollmer, J. P. Rabe, N. Koch, H. Sirringhaus, Adv. Funct. Mater. 2009, 19, 2407.
– reference: B. H. Hamadani, D. Natelson, Proc. IEEE 2005, 93, 1306.
– reference: J. Li, X.-W. Zhang, L. Zhang, H. Khizar ul, X.-Y. Jiang, W.-Q. Zhu, Z.-L. Zhang, Solid State Commun. 2009, 149, 1826.
– reference: C. Bock, D. V. Pham, U. Kunze, D. Kafer, G. Witte, A. Terfort, Appl. Phys. Lett. 2007, 91, 052110.
– reference: J. H. Cho, D. H. Kim, Y. Jang, W. H. Lee, K. Ihm, J. H. Han, S. Chung, K. Cho, Appl. Phys. Lett. 2006, 89, 132101.
– reference: A. Rose, Concepts in photoconductivity and allied problems, Interscience Publishers, New York 1963.
– reference: Y. Wen, Y. Liu, C.-a. Di, Y. Wang, X. Sun, Y. Guo, J. Zheng, W. Wu, S. Ye, G. Yu, Adv. Mater. 2009, 21, 1631.
– reference: D.-J. Yun, K. Hong, S. h. Kim, W.-M. Yun, J.-y. Jang, W.-S. Kwon, C.-E. Park, S.-W. Rhee, ACS Appl. Mater. Interfaces 2011, 3, 43.
– reference: Y. Wen, Y. Liu, Adv. Mater. 2010, 22, 1331.
– reference: M. Vissenberg, M. Matters, Phys. Rev. B 1998, 57, 12964.
– reference: R. J. Chesterfield, J. C. McKeen, C. R. Newman, P. C. Ewbank, D. t. A. da Silva Filho, J.-L. Brédas, L. L. Miller, K. R. Mann, C. D. Frisbie, J. Phys. Chem. B 2004, 108, 19281.
– reference: B. Broker, R. P. Blum, J. Frisch, A. Vollmer, O. T. Hofmann, R. Rieger, K. Mullen, J. P. Rabe, E. Zojer, N. Koch, Appl. Phys. Lett. 2008, 93, 243303.
– reference: M. Knupfer, G. Paasch, J. Vac. Sci. Technol. A 2005, 23, 1072.
– reference: T. Hassenkam, D. R. Greve, T. Bjornholm, Adv. Mater. 2001, 13, 631.
– reference: P. L. Bullejos, J. A. J. Tejada, F. M. Gomez-Campos, M. J. Deen, O. Marinov, J. Appl. Phys. 2009, 106, 4.
– reference: E. Meijer, G. Gelinck, E. van Veenendaal, B. Huisman, D. de Leeuw, T. Klapwijk, Appl. Phys. Lett. 2003, 82, 4576.
– reference: M. Caironi, Y.-Y. Noh, H. Sirringhaus, Semicond. Sci. Tech. 2011, 26, 034006.
– reference: S. M. Sze, K. K. Ng, Physics of Semiconductor Devices, 3rd Edition, John Wiley & Sons, Inc., 2006.
– reference: A. Herasimovich, S. Scheinert, I. Hoerselmann, J. Appl. Phys. 2007, 102, 054509.
– reference: M. Estrada, I. Mejia, A. Cerdeira, J. Pallares, L. F. Marsal, B. Iniguez, Solid State Electron. 2008, 52, 787.
– reference: M. Caironi, M. Bird, D. Fazzi, Z. Chen, R. Di Pietro, C. Newman, A. Facchetti, H. Sirringhaus, Adv. Funct. Mater. 2011, 21, 3371.
– reference: S. Y. Park, Y. H. Noh, H. H. Lee, Appl. Phys. Lett. 2006, 88, 113503.
– reference: F. Fujimori, K. Shigeto, T. Hamano, T. Minari, T. Miyadera, K. Tsukagoshi, Y. Aoyagi, Appl. Phys. Lett. 2007, 90, 193507.
– reference: A. S. Molinari, I. G. Lezama, P. Parisse, T. Takenobu, Y. Iwasa, A. F. Morpurgo, Appl. Phys. Lett. 2008, 92.
– reference: A. Bolognesi, A. Di Carlo, P. Lugli, Appl. Phys. Lett. 2002, 81, 4646.
– reference: X.-H. Zhang, B. Domercq, B. Kippelen, Synthetic Met. 2009, 159, 2371.
– reference: M. A. Baldo, S. R. Forrest, Phys. Rev. B 2001, 64, 17.
– reference: R. S. Ashraf, Z. Chen, D. S. Leem, H. Bronstein, W. Zhang, B. Schroeder, Y. Geerts, J. Smith, S. Watkins, T. D. Anthopoulos, H. Sirringhaus, J. C. de Mello, M. Heeney, I. McCulloch, Chem. Mater. 2011, 23, 768.
– reference: N. Tessler, Y. Roichman, Appl. Phys. Lett. 2001, 79, 2987.
– reference: M. C. Gwinner, R. D. Pietro, Y. Vaynzof, K. J. Greenberg, P. K. H. Ho, R. H. Friend, H. Sirringhaus, Adv. Funct. Mater. 2011, 21, 1432.
– reference: D. Huang, F. Liao, S. Molesa, D. Redinger, V. Subramanian, J. Electrochem. Soc. 2003, 150, G412.
– reference: P. Stoliar, R. Kshirsagar, M. Massi, P. Annibale, C. Albonetti, D. M. de Leeuw, F. Biscarini, J. Am. Chem. Soc. 2007, 129, 6477.
– reference: G. L. Whiting, A. C. Arias, Appl. Phys. Lett. 2009, 95, 253302.
– reference: Y. L. Shen, M. W. Klein, D. B. Jacobs, J. C. Scott, G. G. Malliaras, Phys. Rev. Lett. 2001, 86, 3867.
– reference: B. Bröker, R.-P. Blum, L. Beverina, O. T. Hofmann, M. Sassi, R. Ruffo, G. A. Pagani, G. Heimel, A. Vollmer, J. Frisch, J. P. Rabe, E. Zojer, N. Koch, Chem. Phys. Chem. 2009, 10, 2947.
– reference: Y. Noguchi, T. Sekitani, T. Yokota, T. Someya, Appl. Phys. Lett. 2008, 93, 3.
– reference: A. Salleo, R. J. Kline, D. M. DeLongchamp, M. L. Chabinyc, Adv. Mater. 2010, 22, 3812.
– reference: M. Caironi, E. Gili, H. Sirringhaus, in Organic Electronics II: More Materials and Applications, (Ed: H. Klauk), Wiley VCH, 2011, 281.
– reference: V. Sholin, S. A. Carter, R. A. Street, A. C. Arias, Appl. Phys. Lett. 2008, 92, 063307.
– reference: A. C. Dürr, F. Schreiber, M. Kelsch, H. D. Carstanjen, H. Dosch, Adv. Mater. 2002, 14, 961.
– reference: T. Li, P. P. Ruden, I. H. Campbell, D. L. Smith, J. Appl. Phys. 2003, 93, 4017.
– reference: Y.-Y. Noh, X. Cheng, M. Tello, M.-J. Lee, H. Sirringhaus, Semicond. Sci. Tech. 2011, 26, 034003.
– reference: L. S. Hung, C. H. Chen, Mat. Sci. Eng. R 2002, 39, 143.
– reference: L.-L. Chua, J. Zaumseil, J.-F. Chang, E. C. W. Ou, P. K. H. Ho, H. Sirringhaus, R. H. Friend, Nature 2005, 434, 194.
– reference: H. B. Akkerman, P. W. M. Blom, D. M. de Leeuw, B. de Boer, Nature 2006, 441, 69.
– reference: X. Zhan, A. Facchetti, S. Barlow, T. J. Marks, M. A. Ratner, M. R. Wasielewski, S. R. Marder, Adv. Mater. 2011, 23, 268.
– reference: L. Chen, H. Xu, L.-G. Yang, G.-Q. Zhang, Y. Li, M. Wang, H.-Z. Chen, J. Phys. D Appl. Phys. 2011, 44, 115101.
– reference: C.-H. Chang, C.-H. Chien, J.-Y. Yang, Appl. Phys. Lett. 2007, 91, 083502.
– reference: J. Li X.-W. Zhang, L. Zhang, K. Haq, X.-Y. Jiang, W.-Q. Zhu, Z.-L. Zhang, Semicond. Sci. Tech. 2009, 24, 115012.
– reference: D. F. Blossey, Phys. Rev. B 1974, 9, 5183.
– reference: Q.-D. Ling, D.-J. Liaw, C. Zhu, D. S.-H. Chan, E.-T. Kang, K.-G. Neoh, Prog. Polym. Sci. 2008, 33, 917.
– reference: B. H. Hamadani, C. A. Richter, J. S. Suehle, D. J. Gundlach, Appl. Phys. Lett. 2008, 92.
– reference: K. D. Jung, Y. C. Kim, H. Shin, B. G. Park, J. D. Lee, E. S. Cho, S. J. Kwon, Appl. Phys. Lett. 2010, 96, 103305.
– reference: Z. Chen, H. Lemke, S. Albert-Seifried, M. Caironi, M. M. Nielsen, M. Heeney, W. Zhang, I. McCulloch, H. Sirringhaus, Adv. Mater. 2010, 22, 2371.
– reference: I. Yagi, N. Hirai, Y. Miyamoto, M. Noda, A. Imaoka, N. Yoneya, K. Nomoto, J. Kasahara, A. Yumoto, T. Urabe, J. Soc. Inf. Display 2008, 16, 15.
– reference: M. A. Lampert, P. Mark, Current Injection in Solids, Academic Press, New York1970.
– reference: K. Hong, S. H. Kim, C. Yang, T. K. An, H. Cha, C. Park, C. E. Park, Org. Electron. 2011, 12, 516.
– reference: F. Flores, J. Ortega, H. Vazquez, Phys. Chem. Chem. Phys. 2009, 11, 8658.
– reference: S. D. Wang, Y. Yan, K. Tsukagoshi, Ieee Electron Device Letters 2010, 31, 509.
– reference: N. Zhao, M. Chiesa, H. Sirringhaus, Y. Li, Y. Wu, B. Ong, J. Appl. Phys. 2007, 101, 064513.
– reference: S. Scheinert, G. Paasch, J. Appl. Phys. 2009, 105, 014509.
– reference: T. N. Ng, W. R. Silveira, J. A. Marohn, Phys. Rev. Lett. 2007, 98, 066101.
– reference: T. Umeda, D. Kumaki, S. Tokito, J. Appl. Phys. 2009, 105, 024516.
– reference: Y. Changhun, K. Minseok, L. Seung Won, M. Hanul, P. Sunmin, K. Jae Bon, K. Jeong Won, Y. In-Kyu, Y. Seunghyup, IEEE Electr. Device Lett., 2011, 32, 1454.
– reference: C.-a. Di, G. Yu, Y. Liu, X. Xu, D. Wei, Y. Song, Y. Sun, Y. Wang, D. Zhu, J. Liu, X. Liu, D. Wu, J. Am. Chem. Soc. 2006, 128, 16418.
– reference: R. Coehoorn, W. F. Pasveer, P. A. Bobbert, M. A. J. Michels, Phys. Rev. B 2005, 72, 155206.
– reference: K. Seshadri, C. D. Frisbie, Appl. Phys. Lett. 2001, 78, 993.
– reference: T. Manaka, S. Kawashima, M. Iwamoto, Appl. Phys. Lett. 2010, 97, 113302.
– reference: A. L. Burin, M. A. Ratner, J. Chem. Phys. 2000, 113, 3941.
– reference: J. Hwang, A. Wan, A. Kahn, Mat. Sci. Eng. R 2009, 64, 1.
– reference: C.-a. Di, G. Yu, Y. Liu, Y. Guo, Y. Wang, W. Wu, D. Zhu, Adv. Mater. 2008, 20, 1286.
– reference: Y. Chen, I. Shih, S. Xiao, J. Appl. Phys. 2004, 96, 454.
– reference: I. Lange, J. C. Blakesley, J. Frisch, A. Vollmer, N. Koch, D. Neher, Phys. Rev. Lett. 2011, 106, 216402.
– reference: D. Natali, L. Fumagalli, M. Sampietro, J. Appl. Phys. 2007, 101, 014501.
– reference: A. Ahnood, K. Ghaffarzadeh, A. Nathan, P. Servati, F. Li, M. R. Esmaeili-Rad, A. Sazonov, Appl. Phys. Lett. 2008, 93, 163503.
– reference: B. Park, A. Aiyar, J.-i. Hong, E. Reichmanis, ACS Appl. Mater. Interfaces 2011, 3, 1574.
– reference: Y. Y. Zhang, Y. M. Shi, F. M. Chen, S. G. Mhaisalkar, L. J. Li, B. S. Ong, Y. L. Wu, Appl. Phys. Lett. 2007, 91, 223512.
– reference: C. H. Shim, F. Maruoka, R. Hattori, IEEE Electron Dev. 2010, 57, 195.
– reference: J. D. Yuen, R. Kumar, D. Zakhidov, J. Seifter, B. Lim, A. J. Heeger, F. Wudl, Adv. Mater. 2011, 23, 3780.
– reference: W. Takashima, T. Murasaki, S. Nagamatsu, T. Morita, K. Kaneto, Appl. Phys. Lett. 2007, 91, 071905.
– reference: G. Horowitz, M. E. Hajlaoui, R. Hajlaoui, J. Appl. Phys. 2000, 87, 4456.
– reference: C.-a. Di, D. Wei, G. Yu, Y. Liu, Y. Guo, D. Zhu, Adv. Mater. 2008, 20, 3289.
– reference: K.-D. Jung, Y. C. Kim, B.-J. Kim, B.-G. Park, H. Shin, J. D. Lee, Jpn. J. Appl. Phys. 2008, 47, 3174.
– reference: J. Zhang, Y. Zhao, Z. Wei, Y. Sun, Y. He, C.-a. Di, W. Xu, W. Hu, Y. Liu, D. Zhu, Adv. Funct. Mater. 2011, 21, 786.
– reference: M. Kitamura, Y. Kuzumoto, S. Aomori, M. Kamura, J. H. Na, Y. Arakawa, Appl. Phys. Lett. 2009, 94, 083310.
– reference: B. H. Hamadani, D. Natelson, Appl. Phys. Lett. 2004, 84, 443.
– reference: C. Chun-Ying, J. Kanicki, IEEE Electr. Device Lett., 1997, 18, 340.
– reference: G. M. Rangger, O. T. Hofmann, L. Romaner, G. Heimel, ö Br, B. ker, R.-P. Blum, R. L. Johnson, N. Koch, E. Zojer, Phys. Rev. B 2009, 79, 165306.
– reference: B. H. Hamadani, D. Natelson, J. Appl. Phys. 2005, 97, 064508.
– reference: Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller-Meskamp, K. Leo, Adv. Funct. Mater. 2011, 21, 1076.
– reference: J. C. Scott, G. G. Malliaras, Chem. Phys. Lett. 1999, 299, 115.
– reference: Y.-L. Loo, I. McCulloch, Mrs Bull. 2008, 33, 653.
– reference: E. von Hauff, J. Parisi, V. Dyakonov, J. Appl. Phys. 2006, 100, 073713.
– reference: K. P. Puntambekar, P. V. Pesavento, C. D. Frisbie, Appl. Phys. Lett. 2003, 83, 5539.
– reference: H. Bai, G. Shi, Sensors 2007, 7, 267.
– reference: G. Ghibaudo, Electronics Letters 1988, 24, 543.
– reference: B. Park, A. Aiyar, M. S. Park, M. Srinivasarao, E. Reichmanis, J. Phys. Chem. C 2011, 115, 11719.
– reference: A. Southard, V. Sangwan, J. Cheng, E. D. Williams, M. S. Fuhrer, Org. Electron. 2009, 10, 1556.
– reference: P. V. Pesavento, K. P. Puntambekar, C. D. Frisbie, J. C. McKeen, P. P. Ruden, J. Appl. Phys. 2006, 99, 094504.
– reference: A. Hoppe, D. Knipp, B. Gburek, A. Benor, M. Marinkovic, V. Wagner, Org. Electron. 2010, 11, 626.
– reference: S. Jeong, H. C. Song, W. W. Lee, S. S. Lee, Y. Choi, W. Son, E. D. Kim, C. H. Paik, S. H. Oh, B.-H. Ryu, Langmuir 2011, 27, 3144.
– reference: Y. Zhao, C.-a. Di, X. Gao, Y. Hu, Y. Guo, L. Zhang, Y. Liu, J. Wang, W. Hu, D. Zhu, Adv. Mater. 2011, 23, 2448.
– reference: M. C. Gwinner, Y. Vaynzof, K. K. Banger, P. K. H. Ho, R. H. Friend, H. Sirringhaus, Adv. Funct. Mater. 2010, 20, 3457.
– reference: L. Xiao, Z. Chen, B. Qu, J. Luo, S. Kong, Q. Gong, J. Kido, Adv. Mater. 2011, 23, 926.
– reference: C. Sciascia, N. Martino, T. Schuettfort, B. Watts, G. Grancini, M. R. Antognazza, M. Zavelani-Rossi, C. R. McNeill, M. Caironi, Adv. Mater. 2011, 23, 5086.
– reference: T. Lindner, G. Paasch, J. Appl. Phys. 2007, 102, 033708.
– reference: K. Hong, S. Y. Yang, C. Yang, S. H. Kim, D. Choi, C. E. Park, Org. Electron. 2008, 9, 864.
– reference: D. Boudinet, M. Benwadih, S. Altazin, R. Gwoziecki, J. M. Verilhac, R. Coppard, G. Le Blevennec, I. Chartier, G. Horowitz, Org. Electron. 2010, 11, 291.
– reference: K. Asadi, Y. Wu, F. Gholamrezaie, P. Rudolf, P. W. M. Blom, Adv. Mater. 2009, 21, 4109.
– reference: T. Sakanoue, H. Sirringhaus, Nat. Mater. 2010, 9, 736.
– reference: N. Koch, S. Duhm, J. P. Rabe, A. Vollmer, R. L. Johnson, Phys. Rev. Lett. 2005, 95, 237601.
– reference: M.-W. Lee, M.-Y. Lee, J.-C. Choi, J.-S. Park, C.-K. Song, Org. Electron. 2010, 11, 854.
– reference: O. Simonetti, L. Giraudet, T. Maurel, J. L. Nicolas, A. Belkhir, Org. Electron. 2010, 11, 1381.
– reference: G. R. Dholakia, M. Meyyappan, A. Facchetti, T. J. Marks, Nano Lett. 2006, 6, 2447.
– reference: Y.-Y. Noh, N. Zhao, M. Caironi, H. Sirringhaus, Nat. Nanotechnol. 2007, 2, 784.
– reference: D. Kumaki, T. Umeda, S. Tokito, Appl. Phys. Lett. 2008, 92, 013301.
– reference: P. Bröms, J. Birgersson, N. Johansson, M. Lögdlund, W. R. Salaneck, Synthetic Met. 1995, 74, 179.
– reference: S. Altazin, R. Clerc, R. Gwoziecki, D. Boudinet, G. Ghibaudo, G. Pananakakis, I. Chartier, R. Coppard, Org. Electron. 2011, 12, 897.
– reference: T. Sekitani, T. Someya, Mater. Today 2011, 14, 398.
– reference: X. Cheng, M. Caironi, Y.-Y. Noh, C. Newman, J. Wang, M. Lee, K. Banger, R. Di Pietro, A. Facchetti, H. Sirringhaus, Org. Electron. 2012, 13, 320.
– reference: K. Hong, S. H. Kim, C. Yang, J. Jang, H. Cha, C. E. Park, Appl. Phys. Lett. 2010, 97, 103304.
– reference: B. H. Hamadani, H. Ding, Y. Gao, D. Natelson, Phys. Rev. B 2005, 72, 235302.
– reference: T. Schuettfort, S. Huettner, S. Lilliu, J. E. Macdonald, L. Thomsen, C. R. McNeill, Macromolecules 2011, 44, 1530.
– reference: P. V. Pesavento, R. J. Chesterfield, C. R. Newman, C. D. Frisbie, J. Appl. Phys. 2004, 96, 7312.
– reference: A. Facchetti, Chem. Mater. 2011, 23, 733.
– reference: K. A. Singh, T. Young, R. D. McCullough, T. Kowalewski, L. M. Porter, Adv. Funct. Mater. 2010, 20, 2216.
– reference: D. Braga, M. Ha, W. Xie, C. D. Frisbie, Appl. Phys. Lett. 2010, 97, 193311.
– reference: J. E. Anthony, A. Facchetti, M. Heeney, S. R. Marder, X. Zhan, Adv. Mater. 2010, 22, 3876.
– reference: R. Schroeder, L. Majewski, M. Grell, Appl. Phys. Lett. 2004, 84, 1004.
– reference: C. W. Sohn, T. U. Rim, G. B. Choi, Y. H. Jeong, IEEE Electron Dev. 2010, 57, 986.
– reference: L. Giraudet, O. Simonetti, Org. Electron. 2011, 12, 219.
– reference: C. Sciascia, M. Celebrano, M. Binda, D. Natali, G. Lanzani, J. R. Cabanillas-Gonzalez, Org. Electron. 2012, 13, 66.
– reference: G. Paasch, H. Peisert, M. Knupfer, J. Fink, S. Scheinert, J. Appl. Phys. 2003, 93, 6084.
– reference: S. P. Tiwari, X.-H. Zhang, J. W. J. Potscavage, B. Kippelen, J. Appl. Phys. 2009, 106, 054504.
– reference: L. Burgi, T. J. Richards, R. H. Friend, H. Sirringhaus, J. Appl. Phys. 2003, 94, 6129.
– reference: L. Romaner, G. Heimel, Br, é, J.-L. das, A. Gerlach, F. Schreiber, R. L. Johnson, J. Zegenhagenörg, S. Duhm, N. Koch, E. Zojer, Phys. Rev. Lett. 2007, 99, 256801.
– reference: K. Nomoto, N. Hirai, N. Yoneya, N. Kawashima, M. Noda, M. Wada, J. Kasahara, IEEE Electron Dev. 2005, 52, 1519.
– reference: G. B. Blanchet, C. R. Fincher, M. Lefenfeld, J. A. Rogers, Appl. Phys. Lett. 2004, 84, 296.
– reference: K. C. Dickey, T. J. Smith, K. J. Stevenson, S. Subramanian, J. E. Anthony, Y.-L. Loo, Chem. Mater. 2007, 19, 5210.
– reference: T. J. Richards, H. Sirringhaus, J. Appl. Phys. 2007, 102, 094510.
– reference: D. Boudinet, M. Benwadih, Y. B. Qi, S. Altazin, J. M. Verilhac, M. Kroger, C. Serbutoviez, R. Gwoziecki, R. Coppard, G. Le Blevennec, A. Kahn, G. Horowitz, Org. Electron. 2010, 11, 227.
– reference: J. Rivnay, R. Steyrleuthner, L. H. Jimison, A. Casadei, Z. Chen, M. F. Toney, A. Facchetti, D. Neher, A. Salleo, Macromolecules 2011, 44, 5246.
– reference: S. Cho, J. H. Seo, K. Lee, A. J. Heeger, Adv. Funct. Mater. 2009, 19, 1459.
– reference: X. Zhao, X. Zhan, Chem. Soc. Rev. 2011, 40, 3728.
– reference: K. Nomoto, N. Yoneya, N. Hirai, I. Yagi, N. Kawashima, M. Noda, J. Kasahara, J. Soc. Inf. Display 2007, 15, 491.
– reference: T. N. Ng, S. Sambandan, R. Lujan, A. C. Arias, C. R. Newman, H. Yan, A. Facchetti, Appl. Phys. Lett. 2009, 94, 233307.
– reference: F.-C. Chen, L.-J. Kung, T.-H. Chen, Y.-S. Lin, Appl. Phys. Lett. 2007, 90, 073504.
– reference: Y. Cao, S. Liu, Q. Shen, K. Yan, P. Li, J. Xu, D. Yu, M. L. Steigerwald, C. Nuckolls, Z. Liu, X. Guo, Adv. Funct. Mater. 2009, 19, 2743.
– reference: J. Rivnay, M. F. Toney, Y. Zheng, I. V. Kauvar, Z. Chen, V. Wagner, A. Facchetti, A. Salleo, Adv. Mater. 2010, 22, 4359.
– reference: M. Singh, H. M. Haverinen, P. Dhagat, G. E. Jabbour, Adv. Mater. 2010, 22, 673.
– reference: R. Steyrleuthner, M. Schubert, F. Jaiser, J. C. Blakesley, Z. Chen, A. Facchetti, D. Neher, Adv. Mater. 2010, 22, 2799.
– reference: J. Li, X.-W. Zhang, L. Zhang, H. Zhang, X.-Y. Jiang, K. Haq, W.-Q. Zhu, Z.-L. Zhang, Synthetic Met. 2010, 160, 376.
– reference: T. W. Kelley, C. D. Frisbie, J. Phys. Chem. B 2001, 105, 4538.
– reference: C.-a. Di, G. Yu, Y. Liu, Y. Guo, W. Wu, D. Wei, D. Zhu, Phys. Chem. Chem. Phys. 2008, 10, 2302.
– volume: 96
  start-page: 454
  year: 2004
  publication-title: J. Appl. Phys.
– volume: 23
  start-page: 268
  year: 2011
  publication-title: Adv. Mater.
– volume: 90
  start-page: 073504
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 94
  start-page: 083310
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 78
  start-page: 235308
  year: 2008
  publication-title: Phys. Rev. B
– volume: 95
  start-page: 263313
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 93
  start-page: 4017
  year: 2003
  publication-title: J. Appl. Phys.
– volume: 102
  start-page: 033708
  year: 2007
  publication-title: J. Appl. Phys.
– volume: 87
  start-page: 4456
  year: 2000
  publication-title: J. Appl. Phys.
– volume: 33
  start-page: 917
  year: 2008
  publication-title: Prog. Polym. Sci.
– volume: 17
  start-page: 997
  year: 2005
  publication-title: Adv. Mater.
– volume: 21
  start-page: 786
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 86
  start-page: 024104
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 21
  start-page: 1076
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 74
  start-page: 179
  year: 1995
  publication-title: Synthetic Met.
– volume: 23
  start-page: 5086
  year: 2011
  publication-title: Adv. Mater.
– volume: 82
  start-page: 4576
  year: 2003
  publication-title: Appl. Phys. Lett.
– volume: 19
  start-page: 5210
  year: 2007
  publication-title: Chem. Mater.
– volume: 14
  start-page: 961
  year: 2002
  publication-title: Adv. Mater.
– volume: 90
  start-page: 193507
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 22
  start-page: 1331
  year: 2010
  publication-title: Adv. Mater.
– volume: 91
  start-page: 4312
  year: 2002
  publication-title: J. Appl. Phys.
– volume: 99
  start-page: 094504
  year: 2006
  publication-title: J. Appl. Phys.
– volume: 97
  start-page: 113302
  year: 2010
  publication-title: Appl. Phys. Lett.
– volume: 97
  start-page: 103304
  year: 2010
  publication-title: Appl. Phys. Lett.
– volume: 93
  start-page: 1306
  year: 2005
  publication-title: Proc. IEEE
– volume: 19
  start-page: 2407
  year: 2009
  publication-title: Adv. Funct. Mater.
– volume: 441
  start-page: 69
  year: 2006
  publication-title: Nature
– volume: 22
  start-page: 2371
  year: 2010
  publication-title: Adv. Mater.
– volume: 9
  start-page: 419
  year: 2008
  publication-title: Org. Electron.
– volume: 88
  start-page: 113503
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 108
  start-page: 19281
  year: 2004
  publication-title: J. Phys. Chem. B
– volume: 31
  start-page: 509
  year: 2010
  publication-title: Ieee Electron Device Letters
– volume: 92
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 14
  start-page: 398
  year: 2011
  publication-title: Mater. Today
– volume: 31
  start-page: 1044
  year: 2010
  publication-title: IEEE Electr. Device Lett., IEEE
– volume: 105
  start-page: 014509
  year: 2009
  publication-title: J. Appl. Phys.
– volume: 80
  start-page: 2913
  year: 2002
  publication-title: Appl. Phys. Lett.
– volume: 13
  start-page: 631
  year: 2001
  publication-title: Adv. Mater.
– volume: 4
  start-page: 1451
  year: 2010
  publication-title: ACS Nano
– volume: 149
  start-page: 1826
  year: 2009
  publication-title: Solid State Commun.
– volume: 94
  start-page: 233307
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 20
  start-page: 3289
  year: 2008
  publication-title: Adv. Mater.
– volume: 101
  start-page: 014501
  year: 2007
  publication-title: J. Appl. Phys.
– volume: 57
  start-page: 12964
  year: 1998
  publication-title: Phys. Rev. B
– volume: 23
  start-page: 3780
  year: 2011
  publication-title: Adv. Mater.
– volume: 96
  start-page: 183303
  year: 2010
  publication-title: Appl. Phys. Lett.
– start-page: 281
  year: 2011
– volume: 103
  start-page: 256803
  year: 2009
  publication-title: Phys. Rev. Lett.
– volume: 39
  start-page: 143
  year: 2002
  publication-title: Mat. Sci. Eng. R
– volume: 84
  start-page: 813
  year: 2004
  publication-title: Appl. Phys. Lett.
– volume: 52
  start-page: 787
  year: 2008
  publication-title: Solid State Electron.
– volume: 11
  start-page: 854
  year: 2010
  publication-title: Org. Electron.
– volume: 290
  start-page: 2123
  year: 2000
  publication-title: Science
– volume: 23
  start-page: 1061
  year: 2011
  publication-title: Chem. Mater.
– volume: 64
  start-page: 17
  year: 2001
  publication-title: Phys. Rev. B
– year: 2009
– volume: 91
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 105
  start-page: 024516
  year: 2009
  publication-title: J. Appl. Phys.
– volume: 96
  start-page: 7312
  year: 2004
  publication-title: J. Appl. Phys.
– volume: 97
  start-page: 064508
  year: 2005
  publication-title: J. Appl. Phys.
– volume: 59
  start-page: 7507
  year: 1999
  publication-title: Phys. Rev. B
– volume: 20
  start-page: 1286
  year: 2008
  publication-title: Adv. Mater.
– volume: 115
  start-page: 11719
  year: 2011
  publication-title: J. Phys. Chem. C
– volume: 21
  start-page: 3371
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 2447
  year: 2006
  publication-title: Nano Lett.
– volume: 90
  start-page: 193119
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 11
  start-page: 291
  year: 2010
  publication-title: Org. Electron.
– volume: 92
  start-page: 013301
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 22
  start-page: 3778
  year: 2010
  publication-title: Adv. Mater.
– volume: 49
  start-page: 1009
  year: 2005
  publication-title: Solid State Electron.
– volume: 52
  start-page: 1519
  year: 2005
  publication-title: IEEE Electron Dev.
– volume: 91
  start-page: 052110
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 91
  start-page: 223512
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 21
  start-page: 1432
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 1381
  year: 2010
  publication-title: Org. Electron.
– volume: 10
  start-page: 2947
  year: 2009
  publication-title: Chem. Phys. Chem.
– volume: 92
  start-page: 063307
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 10
  start-page: 1459
  year: 2009
  publication-title: Org. Electron.
– volume: 93
  start-page: 6084
  year: 2003
  publication-title: J. Appl. Phys.
– volume: 11
  start-page: 1381
  year: 2010
– volume: 87
  start-page: 163505
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 20
  start-page: 3457
  year: 2010
  publication-title: Adv. Funct. Mater.
– volume: 306
  start-page: 666
  year: 2004
  publication-title: Science
– volume: 19
  start-page: 1459
  year: 2009
  publication-title: Adv. Funct. Mater.
– volume: 106
  start-page: 4
  year: 2009
  publication-title: J. Appl. Phys.
– volume: 434
  start-page: 194
  year: 2005
  publication-title: Nature
– volume: 97
  start-page: 193311
  year: 2010
  publication-title: Appl. Phys. Lett.
– volume: 56
  start-page: 431
  year: 2009
  publication-title: IEEE Electron Dev.
– volume: 113
  start-page: 3941
  year: 2000
  publication-title: J. Chem. Phys.
– volume: 93
  start-page: 163503
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 3
  start-page: 1574
  year: 2011
  publication-title: ACS Appl. Mater. Interfaces
– volume: 44
  start-page: 115101
  year: 2011
  publication-title: J. Phys. D Appl. Phys.
– volume: 22
  start-page: 4359
  year: 2010
  publication-title: Adv. Mater.
– volume: 84
  start-page: 443
  year: 2004
  publication-title: Appl. Phys. Lett.
– volume: 89
  start-page: 132101
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 99
  start-page: 256801
  year: 2007
  publication-title: Phys. Rev. Lett.
– volume: 202
  start-page: R82
  year: 2005
  publication-title: Phys. Status Solidi A
– year: 1963
– volume: 23
  start-page: 926
  year: 2011
  publication-title: Adv. Mater.
– volume: 3
  start-page: 43
  year: 2011
  publication-title: ACS Appl. Mater. Interfaces
– volume: 84
  start-page: 1004
  year: 2004
  publication-title: Appl. Phys. Lett.
– volume: 13
  start-page: 66
  year: 2012
  publication-title: Org. Electron.
– volume: 5
  start-page: 750
  year: 2008
  publication-title: Phys. Status Solidi C.
– volume: 26
  start-page: 034003
  year: 2011
  publication-title: Semicond. Sci. Tech.
– volume: 95
  start-page: 237601
  year: 2005
  publication-title: Phys. Rev. Lett.
– volume: 42
  start-page: 1573
  year: 2009
  publication-title: Accounts Chem. Res.
– volume: 10
  start-page: 775
  year: 2009
  publication-title: Org. Electron.
– volume: 21
  start-page: 4109
  year: 2009
  publication-title: Adv. Mater.
– volume: 93
  start-page: 3
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 91
  start-page: 071905
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 86
  start-page: 3867
  year: 2001
  publication-title: Phys. Rev. Lett.
– volume: 23
  start-page: 733
  year: 2011
  publication-title: Chem. Mater.
– volume: 23
  start-page: 591
  year: 2011
  publication-title: Chem. Mater.
– volume: 44
  start-page: 5246
  year: 2011
  publication-title: Macromolecules
– volume: 72
  start-page: 235302
  year: 2005
  publication-title: Phys. Rev. B
– volume: 101
  start-page: 064513
  year: 2007
  publication-title: J. Appl. Phys.
– volume: 7
  start-page: 267
  year: 2007
  publication-title: Sensors
– volume: 11
  start-page: 626
  year: 2010
  publication-title: Org. Electron.
– volume: 102
  start-page: 094510
  year: 2007
  publication-title: J. Appl. Phys.
– volume: 44
  start-page: 1530
  year: 2011
  publication-title: Macromolecules
– volume: 23
  start-page: 125027
  year: 2008
  publication-title: Semicond. Sci. Tech.
– volume: 79
  start-page: 165306
  year: 2009
  publication-title: Phys. Rev. B
– volume: 150
  start-page: G412
  year: 2003
  publication-title: J. Electrochem. Soc.
– volume: 4
  start-page: 3927
  year: 2010
  publication-title: ACS Nano
– volume: 79
  start-page: 2987
  year: 2001
  publication-title: Appl. Phys. Lett.
– volume: 84
  start-page: 296
  year: 2004
  publication-title: Appl. Phys. Lett.
– volume: 57
  start-page: 986
  year: 2010
  publication-title: IEEE Electron Dev.
– volume: 93
  start-page: 243303
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 100
  start-page: 073713
  year: 2006
  publication-title: J. Appl. Phys.
– volume: 83
  start-page: 5539
  year: 2003
  publication-title: Appl. Phys. Lett.
– volume: 40
  start-page: 3728
  year: 2011
  publication-title: Chem. Soc. Rev.
– volume: 54
  start-page: R14321
  year: 1996
  publication-title: Phys. Rev. B
– volume: 94
  start-page: 143304
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 96
  start-page: 103305
  year: 2010
  publication-title: Appl. Phys. Lett.
– volume: 12
  start-page: 897
  year: 2011
  publication-title: Org. Electron.
– volume: 129
  start-page: 6477
  year: 2007
  publication-title: J. Am. Chem. Soc.
– volume: 20
  start-page: 343
  year: 2008
  publication-title: Adv. Mater.
– volume: 24
  start-page: 115012
  year: 2009
  publication-title: Semicond. Sci. Tech.
– volume: 2
  start-page: 784
  year: 2007
  publication-title: Nat. Nanotechnol.
– volume: 52
  start-page: 400
  year: 2008
  publication-title: Solid State Electron.
– volume: 64
  start-page: 1
  year: 2009
  publication-title: Mat. Sci. Eng. R
– volume: 83
  start-page: 2366
  year: 2003
  publication-title: Appl. Phys. Lett.
– volume: 515
  start-page: 4032
  year: 2007
  publication-title: Thin Solid Films
– volume: 32
  start-page: 1454
  year: 2011
  publication-title: IEEE Electr. Device Lett.
– volume: 128
  start-page: 16418
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 1319
  year: 2011
  publication-title: Org. Electron.
– volume: 15
  start-page: 491
  year: 2007
  publication-title: J. Soc. Inf. Display
– volume: 100
  start-page: 024509
  year: 2006
  publication-title: J. Appl. Phys.
– volume: 22
  start-page: 3876
  year: 2010
  publication-title: Adv. Mater.
– volume: 299
  start-page: 115
  year: 1999
  publication-title: Chem. Phys. Lett.
– volume: 9
  start-page: 736
  year: 2010
  publication-title: Nat. Mater.
– volume: 20
  start-page: 2216
  year: 2010
  publication-title: Adv. Funct. Mater.
– volume: 106
  start-page: 216402
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 19
  start-page: 2743
  year: 2009
  publication-title: Adv. Funct. Mater.
– volume: 88
  start-page: 255
  year: 1997
  publication-title: Synthetic Met.
– volume: 10
  start-page: 2302
  year: 2008
  publication-title: Phys. Chem. Chem. Phys.
– volume: 27
  start-page: 3144
  year: 2011
  publication-title: Langmuir
– volume: 9
  start-page: 864
  year: 2008
  publication-title: Org. Electron.
– volume: 97
  start-page: 263304
  year: 2010
  publication-title: Appl. Phys. Lett.
– volume: 39
  start-page: 2643
  year: 2010
  publication-title: Chem. Soc. Rev.
– volume: 24
  start-page: 543
  year: 1988
  publication-title: Electronics Letters
– volume: 21
  start-page: 1910
  year: 2011
  publication-title: Adv. Funct. Mater.
– year: 1970
– volume: 22
  start-page: 3812
  year: 2010
  publication-title: Adv. Mater.
– volume: 13
  start-page: 320
  year: 2012
  publication-title: Org. Electron.
– volume: 78
  start-page: 993
  year: 2001
  publication-title: Appl. Phys. Lett.
– volume: 11
  start-page: 8658
  year: 2009
  publication-title: Phys. Chem. Chem. Phys.
– volume: 81
  start-page: 4646
  year: 2002
  publication-title: Appl. Phys. Lett.
– volume: 3
  start-page: 3205
  year: 2011
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 283
  year: 2011
  publication-title: ACS Nano
– volume: 23
  start-page: 768
  year: 2011
  publication-title: Chem. Mater.
– volume: 31
  start-page: 762
  year: 1995
  publication-title: Electron. Lett.
– volume: 16
  start-page: 15
  year: 2008
  publication-title: J. Soc. Inf. Display
– volume: 21
  start-page: 1631
  year: 2009
  publication-title: Adv. Mater.
– volume: 72
  start-page: 155206
  year: 2005
  publication-title: Phys. Rev. B
– volume: 108
  start-page: 063709
  year: 2010
  publication-title: J. Appl. Phys.
– volume: 106
  start-page: 034507
  year: 2009
  publication-title: J. Appl. Phys.
– volume: 18
  start-page: 340
  year: 1997
  publication-title: IEEE Electr. Device Lett.
– volume: 22
  start-page: 2799
  year: 2010
  publication-title: Adv. Mater.
– volume: 159
  start-page: 2371
  year: 2009
  publication-title: Synthetic Met.
– volume: 91
  start-page: 083502
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 23
  start-page: 1072
  year: 2005
  publication-title: J. Vac. Sci. Technol. A
– volume: 97
  start-page: 063302
  year: 2010
  publication-title: Appl. Phys. Lett.
– volume: 135
  start-page: 162
  year: 1988
  publication-title: IEE Proc.‐I
– volume: 10
  start-page: 1556
  year: 2009
  publication-title: Org. Electron.
– volume: 19
  start-page: 763
  year: 2009
  publication-title: Adv. Funct. Mater.
– volume: 106
  start-page: 054504
  year: 2009
  publication-title: J. Appl. Phys.
– volume: 49
  start-page: 101601
  year: 2010
  publication-title: Jpn. J. Appl. Phys.
– volume: 88
  start-page: 063513
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 105
  start-page: 4538
  year: 2001
  publication-title: J. Phys. Chem. B
– volume: 97
  start-page: 063307
  year: 2010
  publication-title: Appl. Phys. Lett.
– volume: 92
  start-page: 263303
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 47
  start-page: 3174
  year: 2008
  publication-title: Jpn. J. Appl. Phys.
– volume: 22
  start-page: 673
  year: 2010
  publication-title: Adv. Mater.
– volume: 21
  start-page: 1450
  year: 2009
  publication-title: Adv. Mater.
– volume: 26
  start-page: 034006
  year: 2011
  publication-title: Semicond. Sci. Tech.
– volume: 94
  start-page: 6129
  year: 2003
  publication-title: J. Appl. Phys.
– volume: 12
  start-page: 516
  year: 2011
  publication-title: Org. Electron.
– volume: 87
  start-page: 193508
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 98
  start-page: 066101
  year: 2007
  publication-title: Phys. Rev. Lett.
– volume: 7
  start-page: 900
  year: 2008
  publication-title: Nat. Mater.
– volume: 21
  start-page: 3488
  year: 2009
  publication-title: Adv. Mater.
– volume: 21
  start-page: 2741
  year: 2009
  publication-title: Adv. Mater.
– volume: 95
  start-page: 253302
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 12
  start-page: 219
  year: 2011
  publication-title: Org. Electron.
– volume: 33
  start-page: 653
  year: 2008
  publication-title: Mrs Bull.
– volume: 23
  start-page: 2779
  year: 2011
  publication-title: Adv. Mater.
– volume: 3
  start-page: 74
  year: 2011
  publication-title: ACS Appl. Mater. Interfaces
– volume: 57
  start-page: 195
  year: 2010
  publication-title: IEEE Electron Dev.
– year: 2006
– volume: 102
  start-page: 054509
  year: 2007
  publication-title: J. Appl. Phys.
– volume: 160
  start-page: 376
  year: 2010
  publication-title: Synthetic Met.
– volume: 105
  start-page: 4976
  year: 2008
  publication-title: P. Natl. Acad. Sci. USA
– volume: 9
  start-page: 5183
  year: 1974
  publication-title: Phys. Rev. B
– volume: 95
  start-page: 123301
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 11
  start-page: 227
  year: 2010
  publication-title: Org. Electron.
– volume: 23
  start-page: 2448
  year: 2011
  publication-title: Adv. Mater.
– volume: 80
  start-page: 151
  year: 2002
  publication-title: Appl. Phys. Lett.
– ident: e_1_2_7_139_2
  doi: 10.1021/am1008375
– ident: e_1_2_7_205_2
  doi: 10.1016/j.orgel.2011.04.020
– ident: e_1_2_7_15_2
  doi: 10.1002/adma.200401285
– ident: e_1_2_7_101_2
  doi: 10.1063/1.2828711
– ident: e_1_2_7_178_2
  doi: 10.1002/adfm.201001583
– ident: e_1_2_7_11_2
  doi: 10.1002/adfm.201100592
– ident: e_1_2_7_200_2
  doi: 10.1063/1.1345805
– ident: e_1_2_7_191_2
  doi: 10.1016/j.sse.2005.02.004
– ident: e_1_2_7_133_2
  doi: 10.1021/nn1027032
– ident: e_1_2_7_218_2
  doi: 10.1002/adma.201001202
– ident: e_1_2_7_63_2
  doi: 10.1016/j.orgel.2010.11.002
– ident: e_1_2_7_66_2
  doi: 10.1063/1.1415374
– ident: e_1_2_7_97_2
  doi: 10.1021/ja069235m
– ident: e_1_2_7_13_2
  doi: 10.1002/adma.200903712
– ident: e_1_2_7_145_2
  doi: 10.1063/1.2806234
– ident: e_1_2_7_88_2
  doi: 10.1016/j.orgel.2009.10.021
– ident: e_1_2_7_29_2
– ident: e_1_2_7_154_2
  doi: 10.1109/TED.2005.850954
– ident: e_1_2_7_9_2
  doi: 10.1021/cm102419z
– ident: e_1_2_7_46_2
  doi: 10.1063/1.2776252
– ident: e_1_2_7_111_2
  doi: 10.1063/1.1645993
– ident: e_1_2_7_30_2
  doi: 10.1103/PhysRevB.9.5183
– ident: e_1_2_7_153_2
  doi: 10.1002/adfm.200900408
– ident: e_1_2_7_56_2
  doi: 10.1063/1.1613369
– volume-title: Current Injection in Solids
  year: 1970
  ident: e_1_2_7_26_2
– ident: e_1_2_7_222_2
  doi: 10.1063/1.3276694
– ident: e_1_2_7_221_2
  doi: 10.1063/1.3090489
– ident: e_1_2_7_109_2
  doi: 10.1002/adma.200701812
– ident: e_1_2_7_25_2
  doi: 10.1063/1.2904629
– ident: e_1_2_7_227_2
  doi: 10.1002/adfm.200900189
– ident: e_1_2_7_226_2
  doi: 10.1063/1.2352808
– ident: e_1_2_7_138_2
  doi: 10.1021/cm103326n
– ident: e_1_2_7_215_2
  doi: 10.1088/0022-3727/44/11/115101
– ident: e_1_2_7_2_2
  doi: 10.1016/S1369-7021(11)70184-5
– ident: e_1_2_7_65_2
  doi: 10.1002/adma.200803541
– ident: e_1_2_7_72_2
  doi: 10.1088/0268-1242/26/3/034006
– ident: e_1_2_7_100_2
  doi: 10.1002/adma.201003128
– ident: e_1_2_7_175_2
  doi: 10.1063/1.3153510
– ident: e_1_2_7_6_2
  doi: 10.1557/mrs2008.149
– ident: e_1_2_7_123_2
  doi: 10.1002/adma.200800150
– ident: e_1_2_7_61_2
  doi: 10.1016/j.orgel.2010.06.001
– ident: e_1_2_7_144_2
  doi: 10.1016/j.orgel.2010.01.028
– ident: e_1_2_7_28_2
  doi: 10.1002/0470068329
– ident: e_1_2_7_207_2
  doi: 10.1063/1.3533020
– ident: e_1_2_7_165_2
  doi: 10.1063/1.2535741
– ident: e_1_2_7_157_2
  doi: 10.1021/nl061566
– ident: e_1_2_7_136_2
  doi: 10.1063/1.2770963
– ident: e_1_2_7_20_2
  doi: 10.1063/1.1562731
– ident: e_1_2_7_167_2
  doi: 10.1002/adma.200901141
– ident: e_1_2_7_32_2
  doi: 10.1016/S0009-2614(98)01277-9
– ident: e_1_2_7_112_2
  doi: 10.1063/1.2737418
– ident: e_1_2_7_69_2
  doi: 10.1016/j.orgel.2011.03.007
– volume-title: Handbook of Nanofabrication
  year: 2009
  ident: e_1_2_7_166_2
– ident: e_1_2_7_5_2
  doi: 10.1016/j.progpolymsci.2008.08.001
– ident: e_1_2_7_159_2
  doi: 10.1016/S0379-6779(97)03864-2
– ident: e_1_2_7_23_2
  doi: 10.1039/b902492c
– ident: e_1_2_7_179_2
  doi: 10.1063/1.2402349
– ident: e_1_2_7_124_2
  doi: 10.1002/adma.201001402
– ident: e_1_2_7_64_2
  doi: 10.1063/1.1639945
– ident: e_1_2_7_172_2
  doi: 10.1063/1.3276913
– ident: e_1_2_7_53_2
  doi: 10.1063/1.1558998
– start-page: 281
  volume-title: Organic Electronics II: More Materials and Applications
  year: 2011
  ident: e_1_2_7_16_2
– ident: e_1_2_7_106_2
  doi: 10.1063/1.3115826
– ident: e_1_2_7_130_2
  doi: 10.1002/cphc.200900472
– ident: e_1_2_7_31_2
  doi: 10.1103/PhysRevB.59.7507
– ident: e_1_2_7_78_2
  doi: 10.1063/1.3204655
– ident: e_1_2_7_75_2
  doi: 10.1063/1.3424792
– ident: e_1_2_7_173_2
  doi: 10.1109/LED.2011.2162483
– ident: e_1_2_7_201_2
  doi: 10.1063/1.1611278
– ident: e_1_2_7_128_2
  doi: 10.1002/adfm.201000785
– ident: e_1_2_7_189_2
  doi: 10.1002/adfm.200801019
– ident: e_1_2_7_152_2
  doi: 10.1021/nn100728p
– ident: e_1_2_7_129_2
  doi: 10.1063/1.3049616
– ident: e_1_2_7_121_2
  doi: 10.1103/PhysRevLett.99.256801
– ident: e_1_2_7_81_2
  doi: 10.1002/adfm.201002651
– ident: e_1_2_7_160_2
  doi: 10.1002/1521-4095(20020705)14:13/14<961::AID-ADMA961>3.0.CO;2-X
– ident: e_1_2_7_82_2
  doi: 10.1021/cm1029744
– ident: e_1_2_7_213_2
  doi: 10.1021/am200143g
– ident: e_1_2_7_164_2
  doi: 10.1021/cm071018c
– ident: e_1_2_7_193_2
  doi: 10.1063/1.2917523
– ident: e_1_2_7_149_2
  doi: 10.1126/science.1102896
– ident: e_1_2_7_142_2
  doi: 10.1063/1.2496249
– ident: e_1_2_7_62_2
  doi: 10.1103/PhysRevB.72.155206
– ident: e_1_2_7_171_2
  doi: 10.1021/la104136w
– ident: e_1_2_7_126_2
  doi: 10.1002/adma.200903628
– ident: e_1_2_7_162_2
  doi: 10.1063/1.2357155
– ident: e_1_2_7_182_2
  doi: 10.1103/PhysRevB.57.12964
– ident: e_1_2_7_186_2
  doi: 10.1016/j.sse.2007.11.007
– ident: e_1_2_7_187_2
  doi: 10.1109/LED.2010.2044137
– ident: e_1_2_7_90_2
  doi: 10.1109/LED.2010.2052092
– ident: e_1_2_7_104_2
  doi: 10.1088/0268-1242/24/11/115012
– ident: e_1_2_7_95_2
  doi: 10.1002/adma.200803455
– ident: e_1_2_7_148_2
  doi: 10.1021/am1008826
– ident: e_1_2_7_77_2
  doi: 10.1038/nature03376
– ident: e_1_2_7_45_2
  doi: 10.1109/TED.2009.2035540
– ident: e_1_2_7_60_2
  doi: 10.1063/1.1527983
– ident: e_1_2_7_93_2
  doi: 10.1063/1.2767235
– ident: e_1_2_7_39_2
– ident: e_1_2_7_57_2
  doi: 10.1063/1.1806533
– volume-title: Concepts in photoconductivity and allied problems
  year: 1963
  ident: e_1_2_7_27_2
– ident: e_1_2_7_223_2
  doi: 10.1063/1.2955515
– ident: e_1_2_7_212_2
  doi: 10.1063/1.3518075
– ident: e_1_2_7_214_2
  doi: 10.1063/1.1581389
– ident: e_1_2_7_91_2
  doi: 10.1088/0268-1242/26/3/034003
– ident: e_1_2_7_113_2
  doi: 10.1063/1.1760838
– ident: e_1_2_7_174_2
  doi: 10.1021/nn9014664
– ident: e_1_2_7_1_2
  doi: 10.1002/adma.200903559
– ident: e_1_2_7_3_2
  doi: 10.1039/c0cs00194e
– ident: e_1_2_7_47_2
  doi: 10.1063/1.3058640
– ident: e_1_2_7_102_2
  doi: 10.1063/1.2535741
– ident: e_1_2_7_131_2
  doi: 10.1063/1.3488817
– ident: e_1_2_7_156_2
  doi: 10.1002/adfm.201000346
– ident: e_1_2_7_220_2
  doi: 10.1002/adma.201000232
– ident: e_1_2_7_14_2
  doi: 10.1073/pnas.0708340105
– ident: e_1_2_7_163_2
  doi: 10.1016/j.synthmet.2009.08.020
– ident: e_1_2_7_108_2
  doi: 10.1002/adfm.201002696
– ident: e_1_2_7_50_2
  doi: 10.1063/1.3339877
– ident: e_1_2_7_147_2
  doi: 10.1016/j.orgel.2009.09.001
– ident: e_1_2_7_12_2
  doi: 10.1038/nmat2825
– ident: e_1_2_7_217_2
  doi: 10.1021/ma200864s
– ident: e_1_2_7_195_2
  doi: 10.1109/55.596930
– ident: e_1_2_7_211_2
  doi: 10.1038/nmat2291
– ident: e_1_2_7_127_2
  doi: 10.1002/adma.201004588
– ident: e_1_2_7_84_2
  doi: 10.1103/PhysRevB.54.R14321
– ident: e_1_2_7_68_2
  doi: 10.1109/TED.2010.2044272
– ident: e_1_2_7_7_2
  doi: 10.1889/1.2759555
– ident: e_1_2_7_170_2
  doi: 10.1002/adma.200701876
– ident: e_1_2_7_117_2
  doi: 10.1021/ja066092v
– ident: e_1_2_7_151_2
  doi: 10.1002/adma.200803812
– volume: 135
  start-page: 162
  year: 1988
  ident: e_1_2_7_184_2
  publication-title: IEE Proc.‐I
– ident: e_1_2_7_209_2
  doi: 10.1063/1.3490716
– ident: e_1_2_7_37_2
  doi: 10.1103/PhysRevB.64.085201
– ident: e_1_2_7_122_2
  doi: 10.1016/j.orgel.2009.08.008
– ident: e_1_2_7_52_2
  doi: 10.1063/1.3479531
– ident: e_1_2_7_135_2
  doi: 10.1021/cm1029744
– volume: 93
  start-page: 3
  year: 2008
  ident: e_1_2_7_177_2
  publication-title: Appl. Phys. Lett.
– ident: e_1_2_7_33_2
  doi: 10.1103/PhysRevLett.86.3867
– ident: e_1_2_7_125_2
  doi: 10.1002/adma.200901454
– ident: e_1_2_7_183_2
  doi: 10.1049/el:19880369
– ident: e_1_2_7_34_2
  doi: 10.1103/PhysRevB.78.153312
– ident: e_1_2_7_204_2
  doi: 10.1103/PhysRevLett.103.256803
– ident: e_1_2_7_58_2
  doi: 10.1109/JPROC.2005.850301
– ident: e_1_2_7_202_2
  doi: 10.1063/1.1637443
– ident: e_1_2_7_146_2
  doi: 10.1063/1.2771532
– ident: e_1_2_7_180_2
  doi: 10.1063/1.3479476
– ident: e_1_2_7_188_2
  doi: 10.1063/1.2999590
– ident: e_1_2_7_94_2
  doi: 10.1063/1.1858874
– ident: e_1_2_7_137_2
  doi: 10.1143/JJAP.49.101601
– ident: e_1_2_7_216_2
  doi: 10.1063/1.3072669
– ident: e_1_2_7_203_2
  doi: 10.1063/1.1470702
– ident: e_1_2_7_208_2
  doi: 10.1016/j.orgel.2011.09.023
– ident: e_1_2_7_141_2
  doi: 10.1002/adfm.201002290
– ident: e_1_2_7_59_2
  doi: 10.1002/pssa.200510027
– ident: e_1_2_7_86_2
  doi: 10.1016/j.orgel.2009.11.008
– ident: e_1_2_7_44_2
  doi: 10.1016/j.orgel.2009.03.012
– ident: e_1_2_7_169_2
  doi: 10.1149/1.1582466
– ident: e_1_2_7_54_2
  doi: 10.1016/j.tsf.2006.10.074
– ident: e_1_2_7_119_2
  doi: 10.1063/1.2186367
– ident: e_1_2_7_18_2
  doi: 10.1016/j.mser.2008.12.001
– ident: e_1_2_7_35_2
  doi: 10.1103/PhysRevLett.98.066101
– ident: e_1_2_7_38_2
  doi: 10.1063/1.1290697
– ident: e_1_2_7_42_2
  doi: 10.1063/1.2776235
– ident: e_1_2_7_176_2
  doi: 10.1016/j.orgel.2011.12.001
– ident: e_1_2_7_49_2
  doi: 10.1103/PhysRevB.72.235302
– ident: e_1_2_7_140_2
  doi: 10.1016/j.orgel.2010.12.022
– ident: e_1_2_7_219_2
  doi: 10.1021/ma102451b
– ident: e_1_2_7_36_2
  doi: 10.1002/pssc.200777576
– volume: 92
  year: 2008
  ident: e_1_2_7_92_2
  publication-title: Appl. Phys. Lett.
– volume: 91
  year: 2007
  ident: e_1_2_7_194_2
  publication-title: Appl. Phys. Lett.
– ident: e_1_2_7_116_2
  doi: 10.1016/j.ssc.2009.07.006
– ident: e_1_2_7_199_2
  doi: 10.1021/jp004519t
– ident: e_1_2_7_51_2
  doi: 10.1016/j.orgel.2010.01.002
– ident: e_1_2_7_40_2
  doi: 10.1063/1.2215132
– ident: e_1_2_7_55_2
– ident: e_1_2_7_85_2
  doi: 10.1016/j.orgel.2008.01.004
– ident: e_1_2_7_67_2
  doi: 10.1063/1.2804288
– ident: e_1_2_7_118_2
  doi: 10.1103/PhysRevB.79.165306
– ident: e_1_2_7_132_2
  doi: 10.1016/j.orgel.2008.06.008
– ident: e_1_2_7_10_2
  doi: 10.1039/b909902f
– ident: e_1_2_7_155_2
  doi: 10.1063/1.1639937
– ident: e_1_2_7_210_2
  doi: 10.1002/adma.201102410
– ident: e_1_2_7_83_2
  doi: 10.1021/am200705j
– ident: e_1_2_7_150_2
  doi: 10.1002/adma.201100304
– ident: e_1_2_7_103_2
  doi: 10.1063/1.2126140
– ident: e_1_2_7_107_2
  doi: 10.1063/1.3231928
– ident: e_1_2_7_79_2
  doi: 10.1002/adma.201101134
– ident: e_1_2_7_158_2
  doi: 10.1016/0379-6779(95)03375-0
– ident: e_1_2_7_96_2
  doi: 10.1088/0268-1242/26/3/034003
– ident: e_1_2_7_76_2
  doi: 10.1063/1.1431691
– ident: e_1_2_7_41_2
  doi: 10.1063/1.1453509
– ident: e_1_2_7_70_2
  doi: 10.1088/0268-1242/23/12/125027
– ident: e_1_2_7_24_2
  doi: 10.1021/cm1023426
– ident: e_1_2_7_73_2
– ident: e_1_2_7_74_2
  doi: 10.1109/TED.2008.2010579
– ident: e_1_2_7_197_2
  doi: 10.1021/jp046246y
– ident: e_1_2_7_196_2
  doi: 10.1063/1.1645316
– ident: e_1_2_7_198_2
  doi: 10.1063/1.3488607
– ident: e_1_2_7_181_2
  doi: 10.1063/1.373091
– ident: e_1_2_7_71_2
  doi: 10.1143/JJAP.47.3174
– ident: e_1_2_7_19_2
  doi: 10.1116/1.1885021
– ident: e_1_2_7_21_2
  doi: 10.1063/1.3187787
– ident: e_1_2_7_98_2
  doi: 10.1038/nature04699
– ident: e_1_2_7_225_2
  doi: 10.1126/science.290.5499.2123
– ident: e_1_2_7_8_2
  doi: 10.1889/1.2835023
– ident: e_1_2_7_87_2
  doi: 10.1038/nnano.2007.365
– ident: e_1_2_7_206_2
  doi: 10.1002/1521-4095(200105)13:9<631::AID-ADMA631>3.0.CO;2-F
– ident: e_1_2_7_134_2
  doi: 10.1002/adma.200802934
– ident: e_1_2_7_168_2
  doi: 10.1063/1.2857461
– ident: e_1_2_7_190_2
  doi: 10.1016/j.sse.2007.10.027
– ident: e_1_2_7_110_2
  doi: 10.1021/ar9000873
– ident: e_1_2_7_161_2
  doi: 10.1063/1.1849845
– ident: e_1_2_7_114_2
  doi: 10.1103/PhysRevLett.95.237601
– ident: e_1_2_7_22_2
  doi: 10.1103/PhysRevLett.106.216402
– ident: e_1_2_7_224_2
  doi: 10.1021/jp111677x
– ident: e_1_2_7_80_2
  doi: 10.1002/adma.200903711
– ident: e_1_2_7_115_2
  doi: 10.1063/1.2738382
– ident: e_1_2_7_143_2
  doi: 10.1063/1.2168669
– ident: e_1_2_7_17_2
  doi: 10.1002/adma.200802893
– ident: e_1_2_7_105_2
  doi: 10.1016/j.synthmet.2009.11.008
– ident: e_1_2_7_48_2
  doi: 10.1063/1.2197033
– ident: e_1_2_7_89_2
  doi: 10.1002/adfm.200900315
– ident: e_1_2_7_43_2
  doi: 10.1063/1.2112189
– ident: e_1_2_7_4_2
  doi: 10.3390/s7030267
– ident: e_1_2_7_99_2
  doi: 10.1016/S0927-796X(02)00093-1
– ident: e_1_2_7_120_2
  doi: 10.1039/b718935d
– ident: e_1_2_7_192_2
  doi: 10.1063/1.3247195
– ident: e_1_2_7_185_2
  doi: 10.1049/el:19950481
SSID ssj0009606
Score 2.5565372
SecondaryResourceType review_article
Snippet A high‐mobility organic semiconductor employed as the active material in a field‐effect transistor does not guarantee per se that expectations of high...
A high-mobility organic semiconductor employed as the active material in a field-effect transistor does not guarantee per se that expectations of high...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1357
SubjectTerms Chemistry, Physical
contact resistance
Flow Injection Analysis
interfaces
Materials Testing
Models, Chemical
Organic Chemicals - chemistry
organic electronics
organic field-effect transistor
organic semiconductors
Transistors, Electronic
Title Charge Injection in Solution-Processed Organic Field-Effect Transistors: Physics, Models and Characterization Methods
URI https://api.istex.fr/ark:/67375/WNG-ZMV1FJ6N-8/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201104206
https://www.ncbi.nlm.nih.gov/pubmed/22354535
https://www.proquest.com/docview/927830602
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL1CZQMLypvwkhcINqTN2LEnZjcqDKXSzAJRqNhYfiJolVbNjASs-AS-kS_B156kHQRCgl2i2InjXPue2OeeC_BoXHkfNOelDlqWdZCuNMYj2UEKGRpuWEgE2bnY3a_3DvjBuSj-rA8xLLjhyEjzNQ5wbbrtM9FQ7ZJuUHRfNU2a20jYQlT0-kw_CuF5EttjvJSibnrVxopur1df80oXsYM__w5yriPY5IKmm6D7xmfmyeHWcmG27NdfdB3_5-2uwpUVPiWTbFDX4IJvr8Plc6qFN-ALbtF_8ORV-ynxuFrysSX98tqPb99XsQfekRzoackUaXLxSpZKJsk_JnmS7hlJFFTbPSWYle2oI7p1ZGdQkc5BomSW8lx3N2F_-uLNzm65yuBQ2vjbJ0prx6ZufM2oDxFoeeGc0NElusaGumGNHY-kodY66ivPNI1THo_mwRA4sJFx7BZstMetvwPECcllpQ3HWFgqtKl9CCE-RXuHabMLKPsvqOxK3hyzbBypLMxMFXapGrq0gCdD-ZMs7PHHko-TQQzF9Okh0uHGXL2bv1TvZ29H0z0xV00BpLcYFQcp7rzo1h8vOyUxn0klKlrA7WxJw80iPIsglvECaLKHvzRGTZ7PJsPZ3X-pdA8uxWOKRLoRvw8bi9OlfxCR1cI8TKPnJ_39HAE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL1C7QJY8H6EpxcINqTN2LEnZjcqDNPSmQVqAbGx_ER9KEXNjASs-AS-kS_B15mkDAIhwTKJnTjOde6xfe65AI-GhfdBc57roGVeBulyYzySHaSQoeKGhUSQnYnJfrnzjndsQoyFafUh-gU3HBnpf40DHBekN89UQ7VLwkHRf5UURbfXMa13mlW9PlOQQoCe5PYYz6Uoq063saCbq_VX_NI6dvGn34HOVQybnND4Mpiu-S335GhjMTcb9ssvyo7_9X5X4NISopJRa1NX4Zyvr8HFn4QLr8Nn3KX_4Ml2fZioXDU5qEm3wvb967dl-IF3pI31tGSMTLl4pVVLJslFJoWS5hlJLFTbPCWYmO24Ibp2ZKsXkm7jRMk0pbpubsD--MXe1iRfJnHIbZz5idzaoSkrXzLqQ8RaXjgndPSKrrKhrFhlhwNpqLWO-sIzTeNfj0cLYYgd2MA4dhPW6pPa3wbihOSy0IZjOCwV2pQ-hBCfor3DzNkZ5N0nVHapcI6JNo5Vq81MFXap6rs0gyd9-Y-ttscfSz5OFtEX06dHyIgbcvV29lK9n74ZjHfETFUZkM5kVBynuPmia3-yaJTElCaFKGgGt1pT6m8WEVrEsYxnQJNB_KUxavR8OuqP7vxLpYdwfrI33VW727NXd-FCPE-RVzfg92Btfrrw9yPQmpsHaSj9AK6tIBw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVQKyFY8H6EpxcINqTNOLYnZjfqENrCjBCiUHVj-Yn6UFo1MxKw4hP4Rr4EX3uSdhAICZZJ7MRxrn1P7HPPRejJsHDOK8Zy5ZXIqRc219oB2UFw4SumSx8JslO-uUO3d9nuuSj-pA_RL7jByIjzNQzwE-vXz0RDlY26QcF9UQKa26uUFxXY9fjdmYAU4POotleyXHBadbKNBVlfrr_kllahhz__DnMuQ9jog-qrSHWtT9STw7X5TK-Zr78IO_7P611DVxYAFY-SRV1HF1xzA10-J1t4E32BPfpPDm81B5HI1eD9Bnfraz--fV8EHziLU6SnwTXw5MKVpJWMo4OM-iTtCxw5qKZ9jiEt21GLVWPxRi8jnaJE8SQmum5voZ365fuNzXyRwiE34b-P58YMNa0cLYnzAWk5bi1XwSfaynhalZUZDoQmxljiClcqEuY8FuyjBORQDrQtb6OV5rhxdxG2XDBRKM0gGJZwpanz3oenKGchb3aG8u4LSrPQN4c0G0cyKTMTCV0q-y7N0LO-_ElS9vhjyafRIPpi6vQQ-HBDJj9OX8m9yYdBvc2nssoQ7ixGhlEKWy-qccfzVgpIaFLwgmToTrKk_mYBnwUUW7IMkWgPf2mMHI0no_7o3r9Ueowuvh3X8s3W9PV9dCmcJkCqG7AHaGV2OncPA8qa6UdxIP0EUK4e1A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Charge+injection+in+solution-processed+organic+field-effect+transistors%3A+physics%2C+models+and+characterization+methods&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Natali%2C+Dario&rft.au=Caironi%2C+Mario&rft.date=2012-03-15&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=24&rft.issue=11&rft.spage=1357&rft_id=info:doi/10.1002%2Fadma.201104206&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon