Spatial multiplexing in near field MIMO channels with reconfigurable intelligent surfaces

We consider a multiple‐input multiple‐output (MIMO) channel in the presence of a reconfigurable intelligent surface (RIS). Specifically, our focus is on analysing the spatial multiplexing gains in line‐of‐sight and low‐scattering MIMO channels in the near field. We prove that the channel capacity is...

Full description

Saved in:
Bibliographic Details
Published inIET signal processing Vol. 17; no. 3
Main Authors Bartoli, Giulio, Abrardo, Andrea, Decarli, Nicolo, Dardari, Davide, Di Renzo, Marco
Format Journal Article
LanguageEnglish
Published John Wiley & Sons, Inc 01.03.2023
Institution of Engineering and Technology
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We consider a multiple‐input multiple‐output (MIMO) channel in the presence of a reconfigurable intelligent surface (RIS). Specifically, our focus is on analysing the spatial multiplexing gains in line‐of‐sight and low‐scattering MIMO channels in the near field. We prove that the channel capacity is achieved by diagonalising the end‐to‐end transmitter‐RIS‐receiver channel, and applying the water‐filling power allocation to the ordered product of the singular values of the transmitter‐RIS and RIS‐receiver channels. The obtained capacity‐achieving solution requires an RIS with a non‐diagonal matrix of reflection coefficients. Under the assumption of nearly‐passive RIS, that is, no power amplification is needed at the RIS, the water‐filling power allocation is necessary only at the transmitter. We refer to this design of RIS as a linear, nearly‐passive, reconfigurable electromagnetic object (EMO). In addition, we introduce a closed‐form and low‐complexity design for RIS, whose matrix of reflection coefficients is diagonal with unit‐modulus entries. The reflection coefficients are given by the product of two focusing functions: one steering the RIS‐aided signal towards the mid‐point of the MIMO transmitter and one steering the RIS‐aided signal towards the mid‐point of the MIMO receiver. We prove that this solution is exact in line‐of‐sight channels under the paraxial setup. With the aid of extensive numerical simulations in line‐of‐sight (free‐space) channels, we show that the proposed approach offers performance (rate and degrees of freedom) close to that obtained by numerically solving non‐convex optimization problems at a high computational complexity. Also, we show that it provides performance close to that achieved by the EMO (non‐diagonal RIS) in most of the considered case studies. In this paper, we have analysed the spatial multiplexing gains of RIS‐aided MIMO channels in the near field. We have proved that the best design for nearly‐passive RIS results in a non‐diagonal matrix of reflection coefficients. Due to the non‐negligible complexity of non‐diagonal designs for RIS, we have proposed a closed‐form diagonal design that is motivated and is proved to be optimal, from the end‐to‐end channel capacity standpoint, in line‐of‐sight channels and when the MIMO transmitter, RIS, and MIMO receiver are deployed according to the paraxial setup. In different network typologies and over fading channels, the proposed design is sub‐optimal. However, extensive simulation results in line‐of‐sight (free‐space) channels have confirmed that it provides good performance in non‐paraxial setups as well. Specifically, we have shown that the proposed diagonal design provides rates that are close to those obtained by numerically solving non‐convex optimization problems at a high computational complexity, as well as to those attained, in several considered network setups, by capacity‐achieving non‐diagonal RIS designs.
AbstractList We consider a multiple-input multiple-output (MIMO) channel in the presence of a reconfigurable intelligent surface (RIS). Specifically, our focus is on analysing the spatial multiplexing gains in line-of-sight and low-scattering MIMO channels in the near field. We prove that the channel capacity is achieved by diagonalising the end-to-end transmitter-RIS-receiver channel, and applying the water-filling power allocation to the ordered product of the singular values of the transmitter-RIS and RIS-receiver channels. The obtained capacity-achieving solution requires an RIS with a non-diagonal matrix of reflection coefficients. Under the assumption of nearly-passive RIS, that is, no power amplification is needed at the RIS, the water-filling power allocation is necessary only at the transmitter. We refer to this design of RIS as a linear, nearly-passive, reconfigurable electromagnetic object (EMO). In addition, we introduce a closed-form and low-complexity design for RIS, whose matrix of reflection coefficients is diagonal with unit-modulus entries. The reflection coefficients are given by the product of two focusing functions: one steering the RIS-aided signal towards the mid-point of the MIMO transmitter and one steering the RIS-aided signal towards the mid-point of the MIMO receiver. We prove that this solution is exact in line-of-sight channels under the paraxial setup. With the aid of extensive numerical simulations in line-of-sight (free-space) channels, we show that the proposed approach offers performance (rate and degrees of freedom) close to that obtained by numerically solving non-convex optimization problems at a high computational complexity. Also, we show that it provides performance close to that achieved by the EMO (non-diagonal RIS) in most of the considered case studies.
Abstract We consider a multiple‐input multiple‐output (MIMO) channel in the presence of a reconfigurable intelligent surface (RIS). Specifically, our focus is on analysing the spatial multiplexing gains in line‐of‐sight and low‐scattering MIMO channels in the near field. We prove that the channel capacity is achieved by diagonalising the end‐to‐end transmitter‐RIS‐receiver channel, and applying the water‐filling power allocation to the ordered product of the singular values of the transmitter‐RIS and RIS‐receiver channels. The obtained capacity‐achieving solution requires an RIS with a non‐diagonal matrix of reflection coefficients. Under the assumption of nearly‐passive RIS, that is, no power amplification is needed at the RIS, the water‐filling power allocation is necessary only at the transmitter. We refer to this design of RIS as a linear, nearly‐passive, reconfigurable electromagnetic object (EMO). In addition, we introduce a closed‐form and low‐complexity design for RIS, whose matrix of reflection coefficients is diagonal with unit‐modulus entries. The reflection coefficients are given by the product of two focusing functions: one steering the RIS‐aided signal towards the mid‐point of the MIMO transmitter and one steering the RIS‐aided signal towards the mid‐point of the MIMO receiver. We prove that this solution is exact in line‐of‐sight channels under the paraxial setup. With the aid of extensive numerical simulations in line‐of‐sight (free‐space) channels, we show that the proposed approach offers performance (rate and degrees of freedom) close to that obtained by numerically solving non‐convex optimization problems at a high computational complexity. Also, we show that it provides performance close to that achieved by the EMO (non‐diagonal RIS) in most of the considered case studies.
We consider a multiple‐input multiple‐output (MIMO) channel in the presence of a reconfigurable intelligent surface (RIS). Specifically, our focus is on analysing the spatial multiplexing gains in line‐of‐sight and low‐scattering MIMO channels in the near field. We prove that the channel capacity is achieved by diagonalising the end‐to‐end transmitter‐RIS‐receiver channel, and applying the water‐filling power allocation to the ordered product of the singular values of the transmitter‐RIS and RIS‐receiver channels. The obtained capacity‐achieving solution requires an RIS with a non‐diagonal matrix of reflection coefficients. Under the assumption of nearly‐passive RIS, that is, no power amplification is needed at the RIS, the water‐filling power allocation is necessary only at the transmitter. We refer to this design of RIS as a linear, nearly‐passive, reconfigurable electromagnetic object (EMO). In addition, we introduce a closed‐form and low‐complexity design for RIS, whose matrix of reflection coefficients is diagonal with unit‐modulus entries. The reflection coefficients are given by the product of two focusing functions: one steering the RIS‐aided signal towards the mid‐point of the MIMO transmitter and one steering the RIS‐aided signal towards the mid‐point of the MIMO receiver. We prove that this solution is exact in line‐of‐sight channels under the paraxial setup. With the aid of extensive numerical simulations in line‐of‐sight (free‐space) channels, we show that the proposed approach offers performance (rate and degrees of freedom) close to that obtained by numerically solving non‐convex optimization problems at a high computational complexity. Also, we show that it provides performance close to that achieved by the EMO (non‐diagonal RIS) in most of the considered case studies. In this paper, we have analysed the spatial multiplexing gains of RIS‐aided MIMO channels in the near field. We have proved that the best design for nearly‐passive RIS results in a non‐diagonal matrix of reflection coefficients. Due to the non‐negligible complexity of non‐diagonal designs for RIS, we have proposed a closed‐form diagonal design that is motivated and is proved to be optimal, from the end‐to‐end channel capacity standpoint, in line‐of‐sight channels and when the MIMO transmitter, RIS, and MIMO receiver are deployed according to the paraxial setup. In different network typologies and over fading channels, the proposed design is sub‐optimal. However, extensive simulation results in line‐of‐sight (free‐space) channels have confirmed that it provides good performance in non‐paraxial setups as well. Specifically, we have shown that the proposed diagonal design provides rates that are close to those obtained by numerically solving non‐convex optimization problems at a high computational complexity, as well as to those attained, in several considered network setups, by capacity‐achieving non‐diagonal RIS designs.
Abstract We consider a multiple‐input multiple‐output (MIMO) channel in the presence of a reconfigurable intelligent surface (RIS). Specifically, our focus is on analysing the spatial multiplexing gains in line‐of‐sight and low‐scattering MIMO channels in the near field. We prove that the channel capacity is achieved by diagonalising the end‐to‐end transmitter‐RIS‐receiver channel, and applying the water‐filling power allocation to the ordered product of the singular values of the transmitter‐RIS and RIS‐receiver channels. The obtained capacity‐achieving solution requires an RIS with a non‐diagonal matrix of reflection coefficients. Under the assumption of nearly‐passive RIS, that is, no power amplification is needed at the RIS, the water‐filling power allocation is necessary only at the transmitter. We refer to this design of RIS as a linear, nearly‐passive, reconfigurable electromagnetic object (EMO). In addition, we introduce a closed‐form and low‐complexity design for RIS, whose matrix of reflection coefficients is diagonal with unit‐modulus entries. The reflection coefficients are given by the product of two focusing functions: one steering the RIS‐aided signal towards the mid‐point of the MIMO transmitter and one steering the RIS‐aided signal towards the mid‐point of the MIMO receiver. We prove that this solution is exact in line‐of‐sight channels under the paraxial setup. With the aid of extensive numerical simulations in line‐of‐sight (free‐space) channels, we show that the proposed approach offers performance (rate and degrees of freedom) close to that obtained by numerically solving non‐convex optimization problems at a high computational complexity. Also, we show that it provides performance close to that achieved by the EMO (non‐diagonal RIS) in most of the considered case studies.
Audience Academic
Author Dardari, Davide
Di Renzo, Marco
Decarli, Nicolo
Bartoli, Giulio
Abrardo, Andrea
Author_xml – sequence: 1
  givenname: Giulio
  orcidid: 0000-0003-1666-228X
  surname: Bartoli
  fullname: Bartoli, Giulio
  organization: University of Siena
– sequence: 2
  givenname: Andrea
  surname: Abrardo
  fullname: Abrardo, Andrea
  organization: University of Siena
– sequence: 3
  givenname: Nicolo
  surname: Decarli
  fullname: Decarli, Nicolo
  organization: Italian Research Council
– sequence: 4
  givenname: Davide
  surname: Dardari
  fullname: Dardari, Davide
  organization: University of Bologna
– sequence: 5
  givenname: Marco
  orcidid: 0000-0003-0772-8793
  surname: Di Renzo
  fullname: Di Renzo, Marco
  email: marco.di-renzo@universite-paris-saclay.fr
  organization: CentraleSupélec, Laboratoire des Signaux et Systèmes
BackLink https://hal.science/hal-04261262$$DView record in HAL
BookMark eNp9kU9PHCEYh0ljk6r10k_AtU125d8wcNyYtm6yxoPtwRNhmJdZDMtsYLbqty_rGBMvhgPkl-f3EHjP0EkaEyD0jZIlJUJflhDZkjKqm0_olLYNXWip-MnbuW2-oLNSHghpZEPZKbq_29sp2Ih3hziFfYSnkAYcEk5gM_YBYo9v1je32G1tShALfgzTFmdwY_JhOGTbRaj8BDGGAdKEyyF766B8RZ-9jQUuXvdz9PfXzz9X14vN7e_11WqzcEKoZiGBdExyKaEj3OvOeUWk7ihTtJdO6JZoIjvfgfeyYdR7InlLlOitBU4d4-doPXv70T6YfQ47m5_NaIN5CcY8GJun4CIY2kmmHXjLJQgFTnvagKKKsx5k2_Pq-j67tja-U12vNuaYEcEkZZL9o5VdzuxgqzokP07Zurp62IX6O-BDzVdtfaRgSpBa-DEXXB5LyeDfbqDEHKdnjtMzL9OrMJ3hx2p5_oA0d-sNmzv_ATgKnZw
CitedBy_id crossref_primary_10_1109_MCOM_001_2300019
crossref_primary_10_3390_electronics12214489
Cites_doi 10.1109/MCOM.2018.1700928
10.1002/ett.4460100604
10.1109/WCNC.2005.1424539
10.1109/TCCN.2020.2992604
10.1364/AO.39.001681
10.1109/TWC.2022.3224035
10.1109/ACCESS.2021.3133707
10.1109/TAP.2022.3151978
10.1109/JSAC.2020.3007036
10.1109/MCOM.001.2001156
10.1137/1.9781611976465.32
10.1109/LWC.2021.3050826
10.1109/MCOM.011.2100195
10.1017/CBO9780511807213
10.1109/JSTSP.2022.3195671
10.1109/JSAC.2020.3000814
10.1109/MCOM.001.201097
10.1109/JSAC.2020.3007211
10.1109/LWC.2020.3025030
10.1109/OJCOMS.2020.3002955
10.1109/TWC.2021.3103256
10.1109/MCOM.001.2000714
10.1109/TWC.2021.3054121
10.1109/TCOMM.2021.3096549
10.1002/j.1538-7305.1961.tb03976.x
10.1109/TVT.2022.3160364
10.1109/JIOT.2022.3142674
10.1109/LWC.2021.3109017
10.1109/ALLERTON.2010.5707050
10.1126/sciadv.1602714
10.1109/COMST.2022.3182539
10.1109/JPROC.2022.3195536
10.1109/TWC.2007.348336
10.1109/SAM.2006.1706129
10.1109/MWC.001.1900534
10.1109/TCOMM.2022.3168284
10.1109/TSP.2022.3183445
10.1088/1464-4258/5/3/301
10.1109/TCOMM.2022.3151893
10.1109/MCOM.001.1900107
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
COPYRIGHT 2023 John Wiley & Sons, Inc.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
– notice: COPYRIGHT 2023 John Wiley & Sons, Inc.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 24P
WIN
AAYXX
CITATION
1XC
VOOES
DOA
DOI 10.1049/sil2.12195
DatabaseName Wiley-Blackwell Open Access Collection
Wiley Online Library (Open Access Collection)
CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList



CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley-Blackwell Titles (Open access)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-9683
EndPage n/a
ExternalDocumentID oai_doaj_org_article_1b629cefa36e48ec9f15e81832de67d3
oai_HAL_hal_04261262v1
A748542840
10_1049_sil2_12195
SIL212195
Genre article
GrantInformation_xml – fundername: The European Commission through the H2020 ARIADNE project
  funderid: 871464
– fundername: The European Commission through the H2020 RISE‐6G project
  funderid: 101017011
– fundername: The Fulbright Foundation
– fundername: Theory Lab, Central Research Institute, 2012 Labs, Huawei Technologies Co., Ltd.
– fundername: The European Commission through the HE TIMES project
  funderid: 101096307
GroupedDBID .DC
0R~
0ZK
1OC
24P
29I
4.4
5GY
6IK
8FE
8FG
AAHHS
AAHJG
AAJGR
ABJCF
ABMDY
ABQXS
ACCFJ
ACESK
ACGFO
ACGFS
ACIWK
ACXQS
ADEYR
ADZOD
AEEZP
AEGXH
AENEX
AEQDE
AFKRA
AIAGR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
CS3
DU5
EBS
EJD
GROUPED_DOAJ
HCIFZ
HZ~
IAO
IFIPE
IGS
IPLJI
J9A
JAVBF
K6V
K7-
L6V
LAI
LXU
M43
M7S
MCNEO
NADUK
NXXTH
O9-
OCL
OK1
P2P
P62
PTHSS
RIE
RNS
RUI
S0W
UNMZH
WIN
~ZZ
AAYXX
CITATION
ITC
1XC
VOOES
ID FETCH-LOGICAL-c4485-6e0b26366eb03f9bcf8069b1281d6c4970906bfbeff6521ff0637084daae31c23
IEDL.DBID 24P
ISSN 1751-9675
IngestDate Tue Oct 22 15:07:12 EDT 2024
Tue Oct 15 15:46:38 EDT 2024
Tue Oct 15 04:50:18 EDT 2024
Thu Sep 26 18:54:31 EDT 2024
Sat Aug 24 01:07:02 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords modulation
MIMO communication
Language English
License Attribution-NonCommercial-NoDerivs
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4485-6e0b26366eb03f9bcf8069b1281d6c4970906bfbeff6521ff0637084daae31c23
ORCID 0000-0003-1666-228X
0000-0003-0772-8793
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fsil2.12195
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_1b629cefa36e48ec9f15e81832de67d3
hal_primary_oai_HAL_hal_04261262v1
gale_infotracacademiconefile_A748542840
crossref_primary_10_1049_sil2_12195
wiley_primary_10_1049_sil2_12195_SIL212195
PublicationCentury 2000
PublicationDate March 2023
2023-03-00
20230301
2023-03
2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationTitle IET signal processing
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Institution of Engineering and Technology
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Institution of Engineering and Technology
– name: Wiley
References 2021; 9
2021; 69
2022; 110
2021; 20
2017; 3
2022; 70
2022; 71
2010
2022; 24
2020; 38
2007
2020; 58
2006
2005
2022; 21
2020; 6
2021; 59
2021; 10
2020; 1
2000; 39
2023
2022
2022; 60
2021
2020
2022; 9
2020; 27
2007; 6
2003; 5
1999; 10
1961; 40
2022; 1
2018; 56
2022; 16
e_1_2_11_32_1
e_1_2_11_30_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_11_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_2_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_47_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_17_1
e_1_2_11_38_1
Sanguinetti L. (e_1_2_11_18_1) 2022; 1
e_1_2_11_50_1
e_1_2_11_10_1
Di Renzo M. (e_1_2_11_19_1) 2023
e_1_2_11_31_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_12_1
e_1_2_11_33_1
e_1_2_11_54_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
Perovic N.S. (e_1_2_11_37_1) 2023
e_1_2_11_21_1
e_1_2_11_44_1
Li H. (e_1_2_11_40_1) 2022
e_1_2_11_46_1
e_1_2_11_25_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
Roy O. (e_1_2_11_53_1) 2007
e_1_2_11_16_1
Di Renzo M. (e_1_2_11_29_1) 2023
e_1_2_11_39_1
Ruiz‐Sicilia J.C. (e_1_2_11_52_1) 2023
Di Renzo M. (e_1_2_11_15_1) 2023
References_xml – volume: 1
  start-page: 798
  year: 2020
  end-page: 807
  article-title: Reconfigurable intelligent surfaces vs. relaying: differences, similarities, and performance comparison
  publication-title: IEEE Open J. Commun. Soc
– volume: 10
  start-page: 2624
  issue: 12
  year: 2021
  end-page: 2628
  article-title: MIMO interference channels assisted by reconfigurable intelligent surfaces: mutual coupling aware sum‐rate optimization based on a mutual impedance channel model
  publication-title: IEEE Wirel. Commun. Lett.
– volume: 59
  start-page: 104
  issue: 3
  year: 2021
  end-page: 109
  article-title: Terahertz line‐of‐sight MIMO communication: theory and practical challenges
  publication-title: IEEE Commun. Mag.
– volume: 58
  start-page: 106
  issue: 1
  year: 2020
  end-page: 112
  article-title: Towards smart and reconfigurable environment: intelligent reflecting surface aided wireless network
  publication-title: IEEE Commun. Mag
– year: 2005
– volume: 71
  start-page: 6367
  issue: 6
  year: 2022
  end-page: 6383
  article-title: Reconfigurable intelligent surfaces relying on non‐diagonal phase shift matrices
  publication-title: IEEE Trans. Veh. Technol.
– volume: 70
  start-page: 8898
  issue: 10
  year: 2022
  end-page: 8910
  article-title: Toward a heterogeneous smart electromagnetic environment for millimeter‐wave communications: an industrial viewpoint
  publication-title: IEEE Trans. Antenn. Propag
– volume: 69
  start-page: 7121
  issue: 10
  year: 2021
  end-page: 7136
  article-title: Intelligent reflecting surfaces: sum‐rate optimization based on statistical position information
  publication-title: IEEE Trans. Commun
– volume: 6
  start-page: 1398
  issue: 4
  year: 2007
  end-page: 1407
  article-title: Optimal design of non‐regenerative MIMO wireless relays
  publication-title: IEEE Trans. Wirel. Commun
– year: 2021
– volume: 9
  start-page: 9712
  issue: 12
  year: 2022
  end-page: 9729
  article-title: Can terahertz provide high‐rate reliable low‐latency communications for wireless VR?
  publication-title: IEEE Internet Things J
– volume: 9
  start-page: 165648
  year: 2021
  end-page: 165666
  article-title: Communication modes with large intelligent surfaces in the near field
  publication-title: IEEE Access
– start-page: 1196
  year: 2010
  end-page: 1203
– start-page: 522
  year: 2021
  end-page: 539
– start-page: 239
  year: 2006
  end-page: 243
– year: 2022
  article-title: Beyond diagonal reconfigurable intelligent surfaces: from transmitting and reflecting modes to single‐, group‐, and fully‐connected architectures
  publication-title: IEEE Trans. Wireless Commun.
– start-page: 606
  year: 2007
  end-page: 610
– volume: 70
  start-page: 4146
  issue: 6
  year: 2022
  end-page: 4161
  article-title: Joint precoder, reflection coefficients, and equalizer design for IRS‐assisted MIMO systems
  publication-title: IEEE Trans. Commun.
– year: 2023
  article-title: On the achievable sum‐rate of the RIS‐aided MIMO broadcast channel
  publication-title: IEEE Trans. Sig. Process.
– volume: 38
  start-page: 2450
  issue: 11
  year: 2020
  end-page: 2525
  article-title: Smart radio environments empowered by reconfigurable intelligent surfaces: how it works, state of research, and the road ahead
  publication-title: IEEE J. Sel. Areas Commun
– year: 2022
  article-title: Line‐of‐sight MIMO via intelligent reflecting surface
  publication-title: IEEE Trans. Wireless Commun
– volume: 40
  start-page: 43
  issue: 1
  year: 1961
  end-page: 63
  article-title: Prolate spheroidal wave functions, Fourier analysis and uncertainty
  publication-title: Bell Syst. Techn. J
– volume: 6
  start-page: 990
  issue: 3
  year: 2020
  end-page: 1002
  article-title: Reconfigurable intelligent surfaces for wireless communications: principles, challenges, and opportunities
  publication-title: IEEE Trans. Cogn.e Commun. Netw.
– volume: 21
  start-page: 1229
  issue: 2
  year: 2022
  end-page: 1243
  article-title: Modeling and architecture design of reconfigurable intelligent surfaces using scattering parameter network analysis
  publication-title: IEEE Trans. Wirel. Commun.
– volume: 56
  start-page: 102
  issue: 6
  year: 2018
  end-page: 108
  article-title: Combating the distance problem in the millimeter wave and terahertz frequency bands
  publication-title: IEEE Commun. Mag
– volume: 27
  start-page: 118
  issue: 5
  year: 2020
  end-page: 125
  article-title: Holographic MIMO surfaces for 6G wireless networks: opportunities, challenges, and trends
  publication-title: IEEE Wirel. Commun.
– volume: 10
  start-page: 585
  issue: 6
  year: 1999
  end-page: 595
  article-title: Capacity of multi‐antenna Gaussian channels
  publication-title: Eur. Trans. Telecommun
– start-page: 432
  year: 2005
  end-page: 437
– volume: 3
  issue: 8
  year: 2017
  article-title: From the generalized reflection law to the realization of perfect anomalous reflectors
  publication-title: Sci. Adv.
– volume: 10
  start-page: 938
  issue: 5
  year: 2021
  end-page: 942
  article-title: End‐to‐end mutual coupling aware communication model for reconfigurable intelligent surfaces: an electromagnetic‐compliant approach based on mutual impedances
  publication-title: IEEE Wirel. Commun. Lett
– volume: 20
  start-page: 3865
  issue: 6
  year: 2021
  end-page: 3882
  article-title: Achievable rate optimization for MIMO systems with reconfigurable intelligent surfaces
  publication-title: IEEE Trans. Wirel. Commun.
– volume: 70
  start-page: 3935
  year: 2022
  end-page: 3947
  article-title: Nyquist sampling and degrees of freedom of electromagnetic fields
  publication-title: IEEE Trans. Signal Process
– volume: 60
  start-page: 39
  issue: 2
  year: 2022
  end-page: 45
  article-title: Intelligent omni‐surfaces for full‐dimensional wireless communications: principles, technology, and implementation
  publication-title: IEEE Commun. Mag.
– year: 2022
– year: 2020
– year: 2023
– volume: 1
  year: 2022
  article-title: Wavenumber‐division multiplexing in line‐of‐sight holographic MIMO communications
  publication-title: IEEE Trans. Wirel. Commun
– volume: 59
  start-page: 66
  issue: 11
  year: 2021
  end-page: 72
  article-title: Terahertz wireless communications for 2030 and beyond: a cutting‐edge frontier
  publication-title: IEEE Commun. Mag
– volume: 38
  start-page: 1823
  issue: 8
  year: 2020
  end-page: 1838
  article-title: Capacity characterization for intelligent reflecting surface aided MIMO communication
  publication-title: IEEE J. Sel. Areas Commun
– volume: 38
  start-page: 2526
  issue: 11
  year: 2020
  end-page: 2537
  article-title: Communicating with large intelligent surfaces: fundamental limits and models
  publication-title: IEEE J. Sel. Areas Commun.
– volume: 5
  start-page: 153
  issue: 3
  year: 2003
  article-title: Limits of diffractive optics by communication modes
  publication-title: J. Opt. Pure Appl. Opt.
– volume: 24
  start-page: 1670
  issue: 3
  year: 2022
  end-page: 1707
  article-title: Terahertz wireless channels: a holistic survey on measurement, modeling, and analysis
  publication-title: IEEE Commun. Surv. Tutor
– volume: 16
  start-page: 883
  issue: 5
  year: 2022
  end-page: 917
  article-title: An overview of signal processing techniques for RIS/IRS‐aided wireless systems
  publication-title: IEEE J. Sel. Top. Signal Process
– volume: 39
  start-page: 1681
  issue: 11
  year: 2000
  end-page: 1699
  article-title: Communicating with waves between volumes: evaluating orthogonal spatial channels and limits on coupling strengths
  publication-title: Appl. Opt.
– volume: 59
  start-page: 35
  issue: 6
  year: 2021
  end-page: 41
  article-title: Holographic communication using intelligent surfaces
  publication-title: IEEE Commun. Mag
– volume: 70
  start-page: 2820
  issue: 4
  year: 2022
  end-page: 2837
  article-title: Double‐IRS aided MIMO communication under LoS channels: capacity maximization and scaling
  publication-title: IEEE Trans. Commun
– volume: 10
  start-page: 226
  issue: 2
  year: 2021
  end-page: 230
  article-title: On spatial multiplexing using reconfigurable intelligent surfaces
  publication-title: IEEE Wireless Commun. Lett
– volume: 110
  start-page: 1164
  issue: 9
  year: 2022
  end-page: 1209
  article-title: Communication models for reconfigurable intelligent surfaces: from surface electromagnetics to wireless networks optimization
  publication-title: Proc. IEEE
– ident: e_1_2_11_7_1
  doi: 10.1109/MCOM.2018.1700928
– ident: e_1_2_11_44_1
  doi: 10.1002/ett.4460100604
– ident: e_1_2_11_21_1
  doi: 10.1109/WCNC.2005.1424539
– ident: e_1_2_11_30_1
  doi: 10.1109/TCCN.2020.2992604
– volume-title: Reconfigurable Surfaces for Wireless Communications [online]
  year: 2023
  ident: e_1_2_11_15_1
  contributor:
    fullname: Di Renzo M.
– ident: e_1_2_11_23_1
  doi: 10.1364/AO.39.001681
– ident: e_1_2_11_41_1
  doi: 10.1109/TWC.2022.3224035
– ident: e_1_2_11_10_1
– ident: e_1_2_11_27_1
  doi: 10.1109/ACCESS.2021.3133707
– ident: e_1_2_11_16_1
  doi: 10.1109/TAP.2022.3151978
– volume-title: Modeling the Mutual Coupling of Reconfigurable Metaurfaces [online]
  year: 2023
  ident: e_1_2_11_29_1
  contributor:
    fullname: Di Renzo M.
– ident: e_1_2_11_25_1
  doi: 10.1109/JSAC.2020.3007036
– year: 2023
  ident: e_1_2_11_37_1
  article-title: On the achievable sum‐rate of the RIS‐aided MIMO broadcast channel
  publication-title: IEEE Trans. Sig. Process.
  contributor:
    fullname: Perovic N.S.
– ident: e_1_2_11_14_1
  doi: 10.1109/MCOM.001.2001156
– ident: e_1_2_11_54_1
  doi: 10.1137/1.9781611976465.32
– ident: e_1_2_11_45_1
  doi: 10.1109/LWC.2021.3050826
– ident: e_1_2_11_4_1
  doi: 10.1109/MCOM.011.2100195
– ident: e_1_2_11_26_1
  doi: 10.1017/CBO9780511807213
– ident: e_1_2_11_51_1
  doi: 10.1109/JSTSP.2022.3195671
– ident: e_1_2_11_9_1
– ident: e_1_2_11_32_1
  doi: 10.1109/JSAC.2020.3000814
– ident: e_1_2_11_48_1
  doi: 10.1109/MCOM.001.201097
– ident: e_1_2_11_11_1
  doi: 10.1109/JSAC.2020.3007211
– volume-title: On the Degrees of Freedom of RIS‐Aided Holographic MIMO Systems [online]
  year: 2023
  ident: e_1_2_11_52_1
  contributor:
    fullname: Ruiz‐Sicilia J.C.
– ident: e_1_2_11_31_1
  doi: 10.1109/LWC.2020.3025030
– ident: e_1_2_11_3_1
– ident: e_1_2_11_8_1
  doi: 10.1109/OJCOMS.2020.3002955
– ident: e_1_2_11_38_1
  doi: 10.1109/TWC.2021.3103256
– ident: e_1_2_11_22_1
  doi: 10.1109/MCOM.001.2000714
– ident: e_1_2_11_33_1
  doi: 10.1109/TWC.2021.3054121
– start-page: 606
  volume-title: 15th European Signal Processing Conference, EUSIPCO 2007, Poznan, Poland, 3–7 September 2007
  year: 2007
  ident: e_1_2_11_53_1
  contributor:
    fullname: Roy O.
– ident: e_1_2_11_50_1
  doi: 10.1109/TCOMM.2021.3096549
– ident: e_1_2_11_49_1
  doi: 10.1002/j.1538-7305.1961.tb03976.x
– ident: e_1_2_11_2_1
– ident: e_1_2_11_39_1
  doi: 10.1109/TVT.2022.3160364
– ident: e_1_2_11_6_1
  doi: 10.1109/JIOT.2022.3142674
– year: 2022
  ident: e_1_2_11_40_1
  article-title: Beyond diagonal reconfigurable intelligent surfaces: from transmitting and reflecting modes to single‐, group‐, and fully‐connected architectures
  publication-title: IEEE Trans. Wireless Commun.
  contributor:
    fullname: Li H.
– ident: e_1_2_11_34_1
  doi: 10.1109/LWC.2021.3109017
– ident: e_1_2_11_17_1
  doi: 10.1109/ALLERTON.2010.5707050
– ident: e_1_2_11_42_1
  doi: 10.1126/sciadv.1602714
– ident: e_1_2_11_5_1
  doi: 10.1109/COMST.2022.3182539
– ident: e_1_2_11_43_1
  doi: 10.1109/JPROC.2022.3195536
– ident: e_1_2_11_47_1
  doi: 10.1109/TWC.2007.348336
– volume: 1
  year: 2022
  ident: e_1_2_11_18_1
  article-title: Wavenumber‐division multiplexing in line‐of‐sight holographic MIMO communications
  publication-title: IEEE Trans. Wirel. Commun
  contributor:
    fullname: Sanguinetti L.
– ident: e_1_2_11_46_1
  doi: 10.1109/SAM.2006.1706129
– ident: e_1_2_11_20_1
– ident: e_1_2_11_13_1
  doi: 10.1109/MWC.001.1900534
– ident: e_1_2_11_36_1
  doi: 10.1109/TCOMM.2022.3168284
– ident: e_1_2_11_28_1
  doi: 10.1109/TSP.2022.3183445
– ident: e_1_2_11_24_1
  doi: 10.1088/1464-4258/5/3/301
– ident: e_1_2_11_35_1
  doi: 10.1109/TCOMM.2022.3151893
– volume-title: LoS MIMO‐Arrays vs. LoS MIMO‐Surfaces [online]
  year: 2023
  ident: e_1_2_11_19_1
  contributor:
    fullname: Di Renzo M.
– ident: e_1_2_11_12_1
  doi: 10.1109/MCOM.001.1900107
SSID ssj0056512
Score 2.409066
Snippet We consider a multiple‐input multiple‐output (MIMO) channel in the presence of a reconfigurable intelligent surface (RIS). Specifically, our focus is on...
Abstract We consider a multiple‐input multiple‐output (MIMO) channel in the presence of a reconfigurable intelligent surface (RIS). Specifically, our focus is...
We consider a multiple-input multiple-output (MIMO) channel in the presence of a reconfigurable intelligent surface (RIS). Specifically, our focus is on...
Abstract We consider a multiple‐input multiple‐output (MIMO) channel in the presence of a reconfigurable intelligent surface (RIS). Specifically, our focus is...
SourceID doaj
hal
gale
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Publisher
SubjectTerms Communications equipment
Electromagnetism
Engineering Sciences
MIMO communication
MIMO communications
modulation
Numerical analysis
Signal and Image processing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fSxwxEA6tT-1DUWtx6w9CKwjCYi6bTTaPpyhn8exDFfQpbLITPSirnHfin-9M9u44X_TFtyUsJJlvNjOzM_mGsb1ooKy9gFxZL3MVrchtI8u8AFmALk0TE4Hp8EIPrtSf6_J6qdUX1YR19MCd4A57XksbINaFBlVBsLFXQkWK2IA2TcfzKew8mOrOYPRSujynoSby6BPPiUmVPXwc_ZfEqUAdJZZMUWLsX5zLn--oLHLZXU325nSVfZs5irzfLXCNfYJ2nX1dog_8zm6onzDqD59XBT7jMB-1vEX15ak2jQ_Phn853e5t0Qhy-uvKUwwcR7fTMV2b4qMFKeeEP07HkWq0NtjV6cnl8SCftUrIA8ZXZa5BeKkLrcGLIlofYiW09ZQma3RQ1ggrtI8eYtRosGNEz8SISjV1DUUvyOIHW2nvW9hkXJkqKG-D0SaqqtB1IxFmVeOpaQDj5Yz9nkvNPXSMGC5lspV1JFuXZJuxIxLo4g1isU4DiK2bYevewzZj-wSHo29tMq5DPbsygAsl1irXN7h3jJ-UyNgvROzVbIP-uaOxFCRKLZ96GTtIgL6xbPfv7Fymp58fsYEt9oXa03c1a9tsZTKewg46MRO_m_T1BTk67Ec
  priority: 102
  providerName: Directory of Open Access Journals
Title Spatial multiplexing in near field MIMO channels with reconfigurable intelligent surfaces
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fsil2.12195
https://hal.science/hal-04261262
https://doaj.org/article/1b629cefa36e48ec9f15e81832de67d3
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB_a-qIP4ieutSWoIAiLe0k22UBfTrFcpaeCFupTSLJJeyBb2d6V_vmdyd6e7Yvg2xJ22WS-MpPM_AbgbdKxdr6KpTSelzKZqjQtr0sRuYiq1m3KAKbzr2p2Ir-c1qdbcDDWwgz4EJsDN9KMbK9JwZ0fupCgU0tFr4vfnLARTL0N9wgyhuSby--jHUZPZbjr1NRIHv3iEZxUmg9_v72zHWXU_o1t3j6n1MjbLmvecw4fwcO1s8imA3cfw1bsnsCDWxCCT-EX9RRGGWJjZuA1DrNFxzoUYZbz09j8aP6NUYUvLvmS0ckry3FwWpyteiqdYosNMOeSXa76RHlaz-Dk8PPPT7Ny3S6hDBhj1aWKledKKBV9JZLxITWVMp6uyloVpNGVqZRPPqakcNNOCb0TXTWydS6KSeDiOex0F118AUzqJkhvglY6yUYo13JktXRoOXXEmLmANyPV7J8BFcPm22xpLNHWZtoW8JEIunmDkKzzwEV_ZteKYSdecRNickJF2cRg0qSODRmaNirdigLeETss6duyd8GtywZwooRcZaca144xlKwKeI0cu_O32fTY0lgOFLniV5MC3meG_mPa9sfRMc9PL__n5V24T63oh_y0V7Cz7FdxDx2Wpd_Pcrmfw_0b8Jjk_A
link.rule.ids 230,315,783,787,867,888,2109,11576,27938,27939,46066,46490,50828,50937
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-x7QF4QHxq2fiwAAkJKcK1HTt-LIiphXY8sKLBixUn9qiEMpS2iD-fOyct2wsSb5GVKPad78u--x3Ay2hCUXkecmW9yFW0PLeNKHIZhAy6ME1MAKbzUz1ZqA_nxfmQm0O1MD0-xO7AjSQj6WsScDqQ7gNORSCZq-UPQeAIttiDA7R7EmOvg_GXxbfFVhWjs9JfdxrqJY-u8RafVNk3f7--ZpEScP9OPe99p-zIq15rMjsnd-HO4C-ycc_ge3AjtPfh9hUUwQfwldoK4zZi2-TA3zjMli1rcRezlKLG5tP5J0ZFvrjqFaPDV5ZC4bi82HRUPcWWO2zONVttukipWg9hcfL-7N0kHzom5DWGWUWuA_dCS62D5zJaX8eSa-vptqzRtbKGW6599CFGjXY7RnRQDC9VU1VBjmohH8F-e9mGQ2DKlLXytjbaRFVKXTUCua0qVJ4mYNicwYst1dzPHhjDpQttZR3R1iXaZvCWCLp7g8Cs08Bld-EG2XAjr4WtQ6ykDqoMtY2jIpSka5qgTSMzeEXscCRy666qq6FyACdK4FVubHDtGEYpnsFz5Ni1v03GM0djKVYUWvwaZfA6MfQf03afpzORno7-5-VncHNyNp-52fT04zHcos70fbraY9hfd5vwBP2XtX867NI_awzpQQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB_6AaIPYv2g60cbqiAIi7kkm2zAl1N73NW7WtBCfQqbbFIPZFv27qR_vpns7dm-CL4tIWGTmcxkJpn5DcCboHxRWepzoS3LRdA01zUrcu4Z97JQdUgAprNTOT4XJxfFxRZ86HNhOnyIzYUbSkbS1yjg13Xo_E2BGJmL-S-G2Ai62IZdgXY44jqLs14PR0ule-tUWEg-2sU9OKnQ7_-OvXMcJdT-jW7e_omhkbdN1nTmjB7Bw7WxSIYdd_dgyzeP4cEtCMEn8ANrCsc9RPrIwJvYTOYNaeIWJik-jcwms68EM3zjkhcEb15J8oPD_HLVYuoUmW-AOZdksWoDxmk9hfPR8fdP43xdLiF30ccqcumpZZJL6S3lQVsXSiq1xaeyWjqhFdVU2mB9CDIe2iFE60TRUtRV5fnAMf4Mdpqrxu8DEap0wmqnpAqi5LKqWWS1qKLmVD76zBm87qlmrjtUDJNes4U2SFuTaJvBRyTopgciWaeGq_bSrAXDDKxk2vlQcelF6Z0Og8KXqGhqL1XNM3iL7DAob8u2ctU6bSBOFJGrzFDFtUcfStAMjiLH7vxtPJwabEuOIpPs9yCDd4mh_5i2-TaZsvT1_H86H8K9s88jM52cfnkB97EqfReq9hJ2lu3Kv4q2y9IepC36B42B5ps
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+multiplexing+in+near+field+MIMO+channels+with+reconfigurable+intelligent+surfaces&rft.jtitle=IET+signal+processing&rft.au=Bartoli%2C+Giulio&rft.au=Abrardo%2C+Andrea&rft.au=Decarli%2C+Nicolo&rft.au=Dardari%2C+Davide&rft.date=2023-03-01&rft.pub=Institution+of+Engineering+and+Technology&rft.issn=1751-9675&rft.eissn=1751-9683&rft.volume=17&rft.issue=3&rft_id=info:doi/10.1049%2Fsil2.12195&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_04261262v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9675&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9675&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9675&client=summon