Nonparametric Estimation of Transition Probabilities for a General Progressive Multi-State Model Under Cross-Sectional Sampling
Nonparametric estimation of the transition probability matrix of a progressive multi-state model is considered under cross-sectional sampling. Two different estimators adapted to possibly right-censored and left-truncated data are proposed. The estimators require full retrospective information befor...
Saved in:
Published in | Biometrics Vol. 74; no. 4; pp. 1203 - 1212 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley-Blackwell
01.12.2018
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0006-341X 1541-0420 1541-0420 |
DOI | 10.1111/biom.12874 |
Cover
Abstract | Nonparametric estimation of the transition probability matrix of a progressive multi-state model is considered under cross-sectional sampling. Two different estimators adapted to possibly right-censored and left-truncated data are proposed. The estimators require full retrospective information before the truncation time, which, when exploited, increases efficiency. They are obtained as differences between two survival functions constructed for sub-samples of subjects occupying specific states at a certain time point. Both estimators correct the oversampling of relatively large survival times by using the left-truncation times associated with the cross-sectional observation. Asymptotic results are established, and finite sample performance is investigated through simulations. One of the proposed estimators performs better when there is no censoring, while the second one is strongly recommended with censored data. The new estimators are applied to data on patients in intensive care units (ICUs). |
---|---|
AbstractList | Nonparametric estimation of the transition probability matrix of a progressive multi-state model is considered under cross-sectional sampling. Two different estimators adapted to possibly right-censored and left-truncated data are proposed. The estimators require full retrospective information before the truncation time, which, when exploited, increases efficiency. They are obtained as differences between two survival functions constructed for sub-samples of subjects occupying specific states at a certain time point. Both estimators correct the oversampling of relatively large survival times by using the left-truncation times associated with the cross-sectional observation. Asymptotic results are established, and finite sample performance is investigated through simulations. One of the proposed estimators performs better when there is no censoring, while the second one is strongly recommended with censored data. The new estimators are applied to data on patients in intensive care units (ICUs).Nonparametric estimation of the transition probability matrix of a progressive multi-state model is considered under cross-sectional sampling. Two different estimators adapted to possibly right-censored and left-truncated data are proposed. The estimators require full retrospective information before the truncation time, which, when exploited, increases efficiency. They are obtained as differences between two survival functions constructed for sub-samples of subjects occupying specific states at a certain time point. Both estimators correct the oversampling of relatively large survival times by using the left-truncation times associated with the cross-sectional observation. Asymptotic results are established, and finite sample performance is investigated through simulations. One of the proposed estimators performs better when there is no censoring, while the second one is strongly recommended with censored data. The new estimators are applied to data on patients in intensive care units (ICUs). Summary Nonparametric estimation of the transition probability matrix of a progressive multi‐state model is considered under cross‐sectional sampling. Two different estimators adapted to possibly right‐censored and left‐truncated data are proposed. The estimators require full retrospective information before the truncation time, which, when exploited, increases efficiency. They are obtained as differences between two survival functions constructed for sub‐samples of subjects occupying specific states at a certain time point. Both estimators correct the oversampling of relatively large survival times by using the left‐truncation times associated with the cross‐sectional observation. Asymptotic results are established, and finite sample performance is investigated through simulations. One of the proposed estimators performs better when there is no censoring, while the second one is strongly recommended with censored data. The new estimators are applied to data on patients in intensive care units (ICUs). Nonparametric estimation of the transition probability matrix of a progressive multi-state model is considered under cross-sectional sampling. Two different estimators adapted to possibly right-censored and left-truncated data are proposed. The estimators require full retrospective information before the truncation time, which, when exploited, increases efficiency. They are obtained as differences between two survival functions constructed for sub-samples of subjects occupying specific states at a certain time point. Both estimators correct the oversampling of relatively large survival times by using the left-truncation times associated with the cross-sectional observation. Asymptotic results are established, and finite sample performance is investigated through simulations. One of the proposed estimators performs better when there is no censoring, while the second one is strongly recommended with censored data. The new estimators are applied to data on patients in intensive care units (ICUs). |
Author | Mandel, Micha de Uña-Álvarez, Jacobo |
Author_xml | – sequence: 1 givenname: Jacobo surname: de Uña-Álvarez fullname: de Uña-Álvarez, Jacobo – sequence: 2 givenname: Micha surname: Mandel fullname: Mandel, Micha |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29603718$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFLHDEYxUOx1FV76b1lwEspjE0yyWxyrIu1glZhFXoLycw3kiUz2SaZFk_915vZdXsQsbkkj_zeg-97B2hv8AMg9I7gE5LPZ2N9f0KomLNXaEY4IyVmFO-hGca4LitGfuyjgxhXWUqO6Ru0T2WNqzkRM_Tnux_WOugeUrBNcRaT7XWyfih8V9wGPUS7UTfBG22sywpi0flQ6OIcBgjaTX_3AWK0v6C4Gl2y5TLplN--BVfcDS2EYhF8jOUSmikte5a6Xzs73B-h1512Ed4-3ofo7uvZ7eJbeXl9frH4clk2jAlWGmhpBY1geM4o57xlwEVHO8KN0J2pDDUNlw3pGK4kr5k0uha0o9hIkC2l1SH6uM1dB_9zhJhUb2MDzukB_BgVpZRgKohg_0cxxUzImpKMHj9BV34Meb5MkTlnXGDMM_XhkRpND61ah7zj8KB2LWQAb4Fm2lKATjU2bVpIQVunCFZT0WoqWm2KzpZPTyy71GdhsoV_WwcPL5Dq9OL6aud5v_WsYvLhn4dxLKkUvPoL8eTCeg |
CitedBy_id | crossref_primary_10_1007_s10463_021_00819_x crossref_primary_10_1016_j_ecosta_2021_09_008 crossref_primary_10_1111_sjos_12443 |
Cites_doi | 10.1111/biom.12288 10.1007/978-3-319-50986-0_4 10.18637/jss.v038.i07 10.1007/s10985-013-9269-1 10.1007/978-1-4612-1304-8 10.1006/jmva.1998.1806 10.1111/biom.12349 10.1002/sim.6796 10.1111/j.1467-9469.2005.00453.x 10.1093/biomet/74.4.883 10.1007/s10985-006-9009-x 10.1214/aos/1176324528 10.1080/01621459.1991.10475108 10.1016/S0167-7152(01)00155-9 10.1007/978-1-4612-4348-9 10.1080/02331888.2016.1274898 10.1007/s10985-016-9373-0 10.1093/biostatistics/kxp048 10.3150/07-BEJ116 10.1007/s10985-005-7220-9 10.1111/j.0006-341X.2005.031209.x |
ContentType | Journal Article |
Copyright | Copyright © 2018 International Biometric Society 2018, The International Biometric Society 2018, The International Biometric Society. |
Copyright_xml | – notice: Copyright © 2018 International Biometric Society – notice: 2018, The International Biometric Society – notice: 2018, The International Biometric Society. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM JQ2 7X8 7S9 L.6 |
DOI | 10.1111/biom.12874 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Computer Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Computer Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef ProQuest Computer Science Collection MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Biology Mathematics |
EISSN | 1541-0420 |
EndPage | 1212 |
ExternalDocumentID | 29603718 10_1111_biom_12874 BIOM12874 45092985 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .3N .4S .DC .GA 05W 0R~ 10A 1OC 23N 2AX 2QV 33P 36B 3SF 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 A8Z AAESR AAEVG AAHBH AAMMB AANLZ AAONW AASGY AAUAY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABDBF ABDFA ABEJV ABEML ABFAN ABGNP ABJNI ABLJU ABMNT ABPPZ ABPVW ABXSQ ABXVV ABYWD ACAHQ ACCZN ACFBH ACGFO ACGFS ACGOD ACIWK ACMTB ACNCT ACPOU ACPRK ACSCC ACTMH ACUHS ACXBN ACXQS ADBBV ADEOM ADIPN ADIZJ ADKYN ADMGS ADNBA ADODI ADOZA ADVOB ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEOTA AEUPB AEUYR AFBPY AFDVO AFEBI AFGKR AFVYC AFWVQ AFZJQ AGORE AGTJU AGXDD AHMBA AIAGR AIDQK AIDYY AIURR AJAOE AJNCP AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALRMG ALUQN AMBMR AMYDB APXXL ARCSS ATUGU AUFTA AZBYB AZVAB BAFTC BCRHZ BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC DXH EAD EAP EBC EBD EBS ECEWR EDO EJD EMB EMK EMOBN EST ESX F00 F01 F04 F5P FD6 G-S G.N GODZA GS5 H.T H.X HQ6 HZI HZ~ IPSME IX1 J0M JAAYA JAC JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K48 KOP LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NU- O66 O9- OIG OJZSN OWPYF P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL ROX RX1 RXW SA0 SUPJJ SV3 TN5 TUS UB1 V8K W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WYISQ X6Y XBAML XG1 XSW ZZTAW ~02 ~IA ~KM ~WT .GJ .Y3 3-9 31~ 3V. 7X7 88E 88I 8AF 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAHHS AANHP AAZSN ABJCF ABTAH ABUWG ACBWZ ACCFJ ACKIV ACRPL ACYXJ ADNMO ADULT ADZOD AEEZP AELPN AEQDE AEUQT AFFTP AFKRA AFPWT AIBGX AIWBW AJBDE ALEEW ARAPS ASPBG AS~ AVWKF AZFZN AZQEC BBNVY BGLVJ BHPHI BPHCQ BVXVI CAG CCPQU COF DWQXO FEDTE FXEWX FYUFA GNUQQ HCIFZ HF~ HGD HMCUK HVGLF IHE JSODD K6V K7- L6V LK8 M1P M2P M7P M7S NHB P0- P62 PROAC PSQYO PTHSS Q2X RNS RWL TAE UAP UKHRP VQA WRC ZGI ZXP ZY4 AAYXX CITATION AAWIL ABAWQ ACHJO AGLNM AIHAF CGR CUY CVF ECM EIF NPM PHGZT H13 JQ2 7X8 ESTFP 7S9 L.6 |
ID | FETCH-LOGICAL-c4484-bed23ec840742555d4e58f2f15b8afb3b2bc59c1f40395649ba682f20b9e9d223 |
IEDL.DBID | DR2 |
ISSN | 0006-341X 1541-0420 |
IngestDate | Fri Sep 05 17:26:15 EDT 2025 Mon Sep 08 03:28:27 EDT 2025 Wed Aug 13 08:39:11 EDT 2025 Thu Apr 03 06:59:22 EDT 2025 Tue Jul 01 00:58:08 EDT 2025 Thu Apr 24 23:08:23 EDT 2025 Wed Jan 22 17:10:54 EST 2025 Thu Jul 03 21:54:24 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Left truncation Multi-state models Biased data Illness-death model Inverse weighting |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model 2018, The International Biometric Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4484-bed23ec840742555d4e58f2f15b8afb3b2bc59c1f40395649ba682f20b9e9d223 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4270-9777 |
OpenAccessLink | http://hdl.handle.net/11093/1227 |
PMID | 29603718 |
PQID | 2175458005 |
PQPubID | 35366 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2221028184 proquest_miscellaneous_2020489621 proquest_journals_2175458005 pubmed_primary_29603718 crossref_citationtrail_10_1111_biom_12874 crossref_primary_10_1111_biom_12874 wiley_primary_10_1111_biom_12874_BIOM12874 jstor_primary_45092985 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20181201 December 2018 2018-12-01 2018-12-00 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 20181201 day: 1 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Biometrics |
PublicationTitleAlternate | Biometrics |
PublicationYear | 2018 |
Publisher | Wiley-Blackwell Blackwell Publishing Ltd |
Publisher_xml | – name: Wiley-Blackwell – name: Blackwell Publishing Ltd |
References | 2017; 83 2010; 11 1987; 74 2006; 12 2015; 71 2012 2017; 23 1999; 69 2008; 14 1978; 5 1993 2005; 61 2011; 38 2016; 35 2014; 20 2017; 51 2017; 36 2000 2015; 61 1991; 86 1995; 23 2017 2005; 32 2016 2001; 55 Aalen (2024011509370124900_biom12874-bib-0001) 1978; 5 Hougaard (2024011509370124900_biom12874-bib-0012) 2000 Vakulenko-Lagun (2024011509370124900_biom12874-bib-0023) 2016; 35 Titman (2024011509370124900_biom12874-bib-0021) 2015; 71 de Uña-Álvarez (2024011509370124900_biom12874-bib-0010) 2017; 51 de Uña-Álvarez (2024011509370124900_biom12874-bib-0009) 2015; 61 Balboa (2024011509370124900_biom12874-bib-0005) 2017; 83 Stute (2024011509370124900_biom12874-bib-0019) 1995; 23 Klein (2024011509370124900_biom12874-bib-0013) 2005; 61 Azarang (2024011509370124900_biom12874-bib-0004) 2017; 36 Putter (2024011509370124900_biom12874-bib-0017) 2016 Pepe (2024011509370124900_biom12874-bib-0016) 1991; 86 Tsai (2024011509370124900_biom12874-bib-0022) 1987; 74 Chang (2024011509370124900_biom12874-bib-0006) 2006; 12 Sánchez-Sellero (2024011509370124900_biom12874-bib-0018) 2005; 32 Allignol (2024011509370124900_biom12874-bib-0002) 2014; 20 Andersen (2024011509370124900_biom12874-bib-0003) 1993 Stute (2024011509370124900_biom12874-bib-0020) 2008; 14 Datta (2024011509370124900_biom12874-bib-0007) 2001; 55 de Wreede (2024011509370124900_biom12874-bib-0011) 2011; 38 Meira-Machado (2024011509370124900_biom12874-bib-0015) 2006; 12 de Uña-Álvarez (2024011509370124900_biom12874-bib-0008) 2017 Zhou (2024011509370124900_biom12874-bib-0026) 1999; 69 Mandel (2024011509370124900_biom12874-bib-0014) 2010; 11 Vakulenko-Lagun (2024011509370124900_biom12874-bib-0024) 2017; 23 van Houwelingen (2024011509370124900_biom12874-bib-0025) 2012 |
References_xml | – year: 2016 article-title: Non‐parametric estimation of transition probabilities in non‐Markov multi‐state models: The landmark Aalen–Johansen estimator publication-title: Statistical Methods in Medical Research – volume: 74 start-page: 883 year: 1987 end-page: 886 article-title: A note on the product‐limit estimator under right censoring and left truncation publication-title: Biometrika – volume: 61 start-page: 364 year: 2015 end-page: 375 article-title: Nonparametric estimation of transition probabilities in the non‐Markov illness‐death model: A comparative study publication-title: Biometrics – volume: 12 start-page: 325 year: 2006 end-page: 344 article-title: Nonparametric estimation of transition probabilities in a non‐Markov illness‐death model publication-title: Lifetime Data Analysis – volume: 38 start-page: 1 year: 2011 end-page: 30 article-title: mstate: An R Package for the Analysis of Competing Risks and Multi‐State Models publication-title: Journal of Statistical Software – volume: 5 start-page: 141 year: 1978 end-page: 150 article-title: An empirical transition matrix for nonhomogeneous Markov chains based on censored observations publication-title: Scandinavian Journal of Statistics – volume: 71 start-page: 1034 year: 2015 end-page: 1041 article-title: Transition probability estimates for non‐Markov multi‐state models publication-title: Biometrics – volume: 86 start-page: 770 year: 1991 end-page: 778 article-title: Inference for events with dependent risks in multiple end‐point studies publication-title: Journal of the American Statistical Association – start-page: 55 year: 2017 end-page: 67 article-title: Nonparametric estimation of an event‐free survival distribution under cross‐sectional sampling publication-title: From Statistics to Mathematical Finance Festscrhift in honor of Winfried Stute – volume: 11 start-page: 209 year: 2010 end-page: 303 article-title: The competing risks illness‐death model under cross‐sectional sampling publication-title: Biostatistics – volume: 55 start-page: 403 year: 2001 end-page: 411 article-title: Validity of the Aalen–Johansen estimators of stage occupancy probabilities and Nelson Aalen estimators of integrated transition hazards for non‐Markov models publication-title: Statistics & Probability Letters – volume: 32 start-page: 563 year: 2005 end-page: 581 article-title: Uniform representation of product‐limit integrals with applications publication-title: Scandinavian Journal of Statistics – volume: 35 start-page: 1533 year: 2016 end-page: 1548 article-title: Comparing estimation approaches for the illness–death model under left truncation and right censoring publication-title: Statistics in Medicine – volume: 23 start-page: 25 year: 2017 end-page: 56 article-title: Nonparametric estimation in the illness‐death model using prevalent data publication-title: Lifetime Data Analysis – volume: 51 start-page: 387 year: 2017 end-page: 403 article-title: Copula‐graphic estimation with left‐truncated and right‐censored data publication-title: Statistics – volume: 14 start-page: 604 year: 2008 end-page: 622 article-title: The central limit theorem under random truncation publication-title: Bernoulli – volume: 69 start-page: 261 year: 1999 end-page: 280 article-title: A strong representation of the product‐limit estimator for left truncated and right censored data publication-title: Journal of Multivariate Analysis – year: 2012 publication-title: Dynamic Prediction in Clinical Survival Analysis – volume: 20 start-page: 495 year: 2014 end-page: 513 article-title: A competing risks approach for nonparametric estimation of transition probabilities in a non‐Markov illness‐death model publication-title: Lifetime Data Analysis – volume: 23 start-page: 422 year: 1995 end-page: 439 article-title: The central limit under random censorship publication-title: Annals of Statistics – volume: 83 start-page: 1 year: 2017 end-page: 19 article-title: Estimation of transition probabilities for the illness‐death model: Package TP.idm publication-title: Journal of Statistical Software – year: 2000 publication-title: Analysis of Multivariate Survival Data – year: 1993 publication-title: Statistical Models based on Counting Processes – volume: 36 start-page: 1964 year: 2017 end-page: 1976 article-title: Direct modeling of regression effects for transition probabilities in the progressive illness–death model publication-title: Statistics in Medicine – volume: 12 start-page: 53 year: 2006 end-page: 67 article-title: Nonparametric estimation of sojourn time distributions for truncated serial event data—a weighted‐adjusted approach publication-title: Lifetime Data Analysis – volume: 61 start-page: 223 year: 2005 end-page: 229 article-title: Regression modeling of competing risks data based on pseudo values of the cumulative incidence function publication-title: Biometrics – volume: 61 start-page: 364 year: 2015 ident: 2024011509370124900_biom12874-bib-0009 article-title: Nonparametric estimation of transition probabilities in the non-Markov illness-death model: A comparative study publication-title: Biometrics doi: 10.1111/biom.12288 – start-page: 55 volume-title: From Statistics to Mathematical Finance Festscrhift in honor of Winfried Stute year: 2017 ident: 2024011509370124900_biom12874-bib-0008 article-title: Nonparametric estimation of an event-free survival distribution under cross-sectional sampling doi: 10.1007/978-3-319-50986-0_4 – volume: 38 start-page: 1 year: 2011 ident: 2024011509370124900_biom12874-bib-0011 article-title: mstate: An R Package for the Analysis of Competing Risks and Multi-State Models publication-title: Journal of Statistical Software doi: 10.18637/jss.v038.i07 – volume: 20 start-page: 495 year: 2014 ident: 2024011509370124900_biom12874-bib-0002 article-title: A competing risks approach for nonparametric estimation of transition probabilities in a non-Markov illness-death model publication-title: Lifetime Data Analysis doi: 10.1007/s10985-013-9269-1 – volume-title: Analysis of Multivariate Survival Data year: 2000 ident: 2024011509370124900_biom12874-bib-0012 doi: 10.1007/978-1-4612-1304-8 – volume: 69 start-page: 261 year: 1999 ident: 2024011509370124900_biom12874-bib-0026 article-title: A strong representation of the product-limit estimator for left truncated and right censored data publication-title: Journal of Multivariate Analysis doi: 10.1006/jmva.1998.1806 – volume: 71 start-page: 1034 year: 2015 ident: 2024011509370124900_biom12874-bib-0021 article-title: Transition probability estimates for non-Markov multi-state models publication-title: Biometrics doi: 10.1111/biom.12349 – volume: 35 start-page: 1533 year: 2016 ident: 2024011509370124900_biom12874-bib-0023 article-title: Comparing estimation approaches for the illness–death model under left truncation and right censoring publication-title: Statistics in Medicine doi: 10.1002/sim.6796 – volume: 32 start-page: 563 year: 2005 ident: 2024011509370124900_biom12874-bib-0018 article-title: Uniform representation of product-limit integrals with applications publication-title: Scandinavian Journal of Statistics doi: 10.1111/j.1467-9469.2005.00453.x – volume: 74 start-page: 883 year: 1987 ident: 2024011509370124900_biom12874-bib-0022 article-title: A note on the product-limit estimator under right censoring and left truncation publication-title: Biometrika doi: 10.1093/biomet/74.4.883 – volume: 12 start-page: 325 year: 2006 ident: 2024011509370124900_biom12874-bib-0015 article-title: Nonparametric estimation of transition probabilities in a non-Markov illness-death model publication-title: Lifetime Data Analysis doi: 10.1007/s10985-006-9009-x – volume: 23 start-page: 422 year: 1995 ident: 2024011509370124900_biom12874-bib-0019 article-title: The central limit under random censorship publication-title: Annals of Statistics doi: 10.1214/aos/1176324528 – volume: 86 start-page: 770 year: 1991 ident: 2024011509370124900_biom12874-bib-0016 article-title: Inference for events with dependent risks in multiple end-point studies publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1991.10475108 – volume: 55 start-page: 403 year: 2001 ident: 2024011509370124900_biom12874-bib-0007 article-title: Validity of the Aalen–Johansen estimators of stage occupancy probabilities and Nelson Aalen estimators of integrated transition hazards for non-Markov models publication-title: Statistics & Probability Letters doi: 10.1016/S0167-7152(01)00155-9 – year: 2016 ident: 2024011509370124900_biom12874-bib-0017 article-title: Non-parametric estimation of transition probabilities in non-Markov multi-state models: The landmark Aalen–Johansen estimator publication-title: Statistical Methods in Medical Research – volume: 36 start-page: 1964 year: 2017 ident: 2024011509370124900_biom12874-bib-0004 article-title: Direct modeling of regression effects for transition probabilities in the progressive illness–death model publication-title: Statistics in Medicine – volume-title: Statistical Models based on Counting Processes year: 1993 ident: 2024011509370124900_biom12874-bib-0003 doi: 10.1007/978-1-4612-4348-9 – volume: 83 start-page: 1 year: 2017 ident: 2024011509370124900_biom12874-bib-0005 article-title: Estimation of transition probabilities for the illness-death model: Package TP.idm publication-title: Journal of Statistical Software – volume: 51 start-page: 387 year: 2017 ident: 2024011509370124900_biom12874-bib-0010 article-title: Copula-graphic estimation with left-truncated and right-censored data publication-title: Statistics doi: 10.1080/02331888.2016.1274898 – volume-title: Dynamic Prediction in Clinical Survival Analysis year: 2012 ident: 2024011509370124900_biom12874-bib-0025 – volume: 23 start-page: 25 year: 2017 ident: 2024011509370124900_biom12874-bib-0024 article-title: Nonparametric estimation in the illness-death model using prevalent data publication-title: Lifetime Data Analysis doi: 10.1007/s10985-016-9373-0 – volume: 11 start-page: 209 year: 2010 ident: 2024011509370124900_biom12874-bib-0014 article-title: The competing risks illness-death model under cross-sectional sampling publication-title: Biostatistics doi: 10.1093/biostatistics/kxp048 – volume: 5 start-page: 141 year: 1978 ident: 2024011509370124900_biom12874-bib-0001 article-title: An empirical transition matrix for nonhomogeneous Markov chains based on censored observations publication-title: Scandinavian Journal of Statistics – volume: 14 start-page: 604 year: 2008 ident: 2024011509370124900_biom12874-bib-0020 article-title: The central limit theorem under random truncation publication-title: Bernoulli doi: 10.3150/07-BEJ116 – volume: 12 start-page: 53 year: 2006 ident: 2024011509370124900_biom12874-bib-0006 article-title: Nonparametric estimation of sojourn time distributions for truncated serial event data—a weighted-adjusted approach publication-title: Lifetime Data Analysis doi: 10.1007/s10985-005-7220-9 – volume: 61 start-page: 223 year: 2005 ident: 2024011509370124900_biom12874-bib-0013 article-title: Regression modeling of competing risks data based on pseudo values of the cumulative incidence function publication-title: Biometrics doi: 10.1111/j.0006-341X.2005.031209.x |
SSID | ssj0009502 |
Score | 2.2574513 |
Snippet | Nonparametric estimation of the transition probability matrix of a progressive multi-state model is considered under cross-sectional sampling. Two different... Summary Nonparametric estimation of the transition probability matrix of a progressive multi‐state model is considered under cross‐sectional sampling. Two... Nonparametric estimation of the transition probability matrix of a progressive multi‐state model is considered under cross‐sectional sampling. Two different... |
SourceID | proquest pubmed crossref wiley jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1203 |
SubjectTerms | Acute Disease - mortality Acute Disease - therapy Biased data BIOMETRIC METHODOLOGY biometry Biometry - methods Computer Simulation Cross-Sectional Studies Estimators Humans Illness‐death model Intensive Care Units Inverse weighting Left truncation Monte Carlo simulation Multi‐state models Nonparametric statistics Oversampling patients probability Regression analysis Sampling Statistics as Topic - methods Survival Time Factors Transition probabilities |
Title | Nonparametric Estimation of Transition Probabilities for a General Progressive Multi-State Model Under Cross-Sectional Sampling |
URI | https://www.jstor.org/stable/45092985 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbiom.12874 https://www.ncbi.nlm.nih.gov/pubmed/29603718 https://www.proquest.com/docview/2175458005 https://www.proquest.com/docview/2020489621 https://www.proquest.com/docview/2221028184 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEB5KRagPVU9ro7Ws6ItCjmR_5LLgS896VOEqiIV7kbC7t-mDmpPenaBPgv-Af6N_iTO7SWylFPTtIBOytzcz-83lm28AnmDeLYTXJs2EcalUuUktAtF05LTn3nkxMlQoTo-LoxP5eqZmG_C864WJ-hD9H24UGSFfU4AbuzwX5NSePsxJrh0TcC4KEs4_fMvPKe5mUSqcyF0yn7XapETj-XPrhdMoEhIvg5oXkWs4eiY34X236Mg4-TBcr-zQfftLz_F_v9Ut2G4xKTuITnQbNnwzgOtxSuXXAdyY9tKuywFsETyN6s534MfxoiHx8E80l8sxUuyIrZBsUbMVHYOBEcZobE0UBMfCnCFOZoadRsFrFhhiRMb94lmgN_76_jO0ObEwpYdRl9sZC_tHVwJ1jJa7NESGb07vwsnk5bsXR2k71iF1WAvK1Po5F95hZYlluVJqLr0qa17nypamtsJy65R2eS0zgdWb1NYUJa95ZrXXc4QzO7DZLBq_C2wkqAelyLytjVSlK60WrvBzbdAzhdUJPO1-3sq1muc0euNj1dU-tN9V2O8EHve2n6PSx6VWO8FLehOJiIvrUiWw17lN1aaBZYX1Hr2YxEyXwKP-MgYwvZUxjV-s0Ybak0td8PwKG06VOWIrfP696JL9AjjWoAIRRgLPgmNdsfhq_OrNNHy6_y_GD2ALYWIZSTx7sLk6W_uHCMVWdh-uHYwPx5P9EHq_Ad8zNWQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEB1BEaIc-AgUXAosgguVHNn74XiPfFUpNEFCrZSbtbtZ9wA4qEmQ4ITUP9Df2F_CzK5jWlRVglskT5TNenb3PfvNG4AXuO8WwmuTZsK4VKrcpBaBaDpw2nPvvBgYIoqjcTE8kO8natJqc6gWJvpDdA_caGWE_ZoWOD2QPrPKqT69n5Nf-1W4JhFpEPd6-4mf8dzNolk4ybtkPmndSUnI8-e7586jKEm8CGyex67h8Nm5HTuszoNnIWlOPveXC9t3P_9ydPzv_3UHbrWwlL2KeXQXrvimB9djo8ofPbg56txd5z1YJ4QaDZ7vwfF41pB_-FdqzeUYmXbEakg2q9mCTsIgCmPUuSZ6giM3ZwiVmWGH0fOaBZEY6XG_exYUjqe_TkKlEwuNehgVuh2xMIF0JajHaLhzQ3r45vA-HOy8238zTNvODqlDOihT66dceIfkEpm5UmoqvSprXufKlqa2wnLrlHZ5LTOBBE5qa4qS1zyz2uspIpoNWGtmjX8IbCCoDKXIvK2NVKUrrRau8FNtMDmF1Qm8XN3fyrW259R940u1oj8031WY7wSed7HfotnHhVEbIU26EImgi-tSJbC1ypuq3QnmFVI-ejeJm10Cz7rLuIbpxYxp_GyJMVShXOqC55fEcCLnCK_w9x_EnOwGwJGGCgQZCWyHzLpk8NXr3Y-j8GnzX4Kfwo3h_miv2tsdf3gE64gay6jp2YK1xdHSP0ZktrBPwvr7DVQqOBE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL0aQ6DxwEdhIzDACF5ASpXYcRpLvPBVbUALQkzqC4psx9kDI53WFgmekPgD_EZ-CffaSdjQNAneKuVGcd1r-5zm3HMBHuK-mwundJwIbeNMpjo2CETjkVWOO-vESBNRnEzznb3s1UzO1uBJVwsT_CH6P9xoZfj9mhb4YVUfW-RUnj5Mya79HJzPcoQSBIne82OWu0nwCid1V5bOWnNS0vH8uffEcRQUiadhzZPQ1Z894yvwsRt1kJx8Gq6WZmi__WXo-L9f6ypcbkEpexqy6BqsuWYAF0Kbyq8DuDTpvV0XA9ggfBrsna_Dj-m8Iffwz9SYyzKy7Ai1kGxesyWdg14SxqhvTXAER2bOECgzzfaD4zXzEjFS435xzOsbf33_6eucmG_Tw6jM7Yj5-aMrXjtGw11oUsM3-zdgb_zyw_OduO3rEFskg1lsXMWFs0gtkZdLKavMyaLmdSpNoWsjDDdWKpvWWSKQvmXK6LzgNU-McqpCPLMJ6828cTeBjQQVoeSJM7XOZGELo4TNXaU0pqYwKoJH3c9b2tb0nHpvHJQd-aH5Lv18R_Cgjz0MVh-nRm36LOlDMoRcXBUygu0ubcp2H1iUSPjozSRudRHc7y_jCqbXMrpx8xXGUH1yoXKenhHDiZojuMLnb4WU7AfAkYQKhBgRPPaJdcbgy2e7byf-061_Cb4HF9-9GJdvdqevb8MGQsYiCHq2YX15tHJ3EJYtzV2_-n4Djyk2wA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonparametric+estimation+of+transition+probabilities+for+a+general+progressive+multi%E2%80%90state+model+under+cross%E2%80%90sectional+sampling&rft.jtitle=Biometrics&rft.au=U%C3%B1a%E2%80%90%C3%81lvarez%2C+Jacobo&rft.au=Mandel%2C+Micha&rft.date=2018-12-01&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=74&rft.issue=4&rft.spage=1203&rft.epage=1212&rft_id=info:doi/10.1111%2Fbiom.12874&rft.externalDBID=10.1111%252Fbiom.12874&rft.externalDocID=BIOM12874 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon |