Nonparametric Estimation of Transition Probabilities for a General Progressive Multi-State Model Under Cross-Sectional Sampling

Nonparametric estimation of the transition probability matrix of a progressive multi-state model is considered under cross-sectional sampling. Two different estimators adapted to possibly right-censored and left-truncated data are proposed. The estimators require full retrospective information befor...

Full description

Saved in:
Bibliographic Details
Published inBiometrics Vol. 74; no. 4; pp. 1203 - 1212
Main Authors de Uña-Álvarez, Jacobo, Mandel, Micha
Format Journal Article
LanguageEnglish
Published United States Wiley-Blackwell 01.12.2018
Blackwell Publishing Ltd
Subjects
Online AccessGet full text
ISSN0006-341X
1541-0420
1541-0420
DOI10.1111/biom.12874

Cover

Abstract Nonparametric estimation of the transition probability matrix of a progressive multi-state model is considered under cross-sectional sampling. Two different estimators adapted to possibly right-censored and left-truncated data are proposed. The estimators require full retrospective information before the truncation time, which, when exploited, increases efficiency. They are obtained as differences between two survival functions constructed for sub-samples of subjects occupying specific states at a certain time point. Both estimators correct the oversampling of relatively large survival times by using the left-truncation times associated with the cross-sectional observation. Asymptotic results are established, and finite sample performance is investigated through simulations. One of the proposed estimators performs better when there is no censoring, while the second one is strongly recommended with censored data. The new estimators are applied to data on patients in intensive care units (ICUs).
AbstractList Nonparametric estimation of the transition probability matrix of a progressive multi-state model is considered under cross-sectional sampling. Two different estimators adapted to possibly right-censored and left-truncated data are proposed. The estimators require full retrospective information before the truncation time, which, when exploited, increases efficiency. They are obtained as differences between two survival functions constructed for sub-samples of subjects occupying specific states at a certain time point. Both estimators correct the oversampling of relatively large survival times by using the left-truncation times associated with the cross-sectional observation. Asymptotic results are established, and finite sample performance is investigated through simulations. One of the proposed estimators performs better when there is no censoring, while the second one is strongly recommended with censored data. The new estimators are applied to data on patients in intensive care units (ICUs).Nonparametric estimation of the transition probability matrix of a progressive multi-state model is considered under cross-sectional sampling. Two different estimators adapted to possibly right-censored and left-truncated data are proposed. The estimators require full retrospective information before the truncation time, which, when exploited, increases efficiency. They are obtained as differences between two survival functions constructed for sub-samples of subjects occupying specific states at a certain time point. Both estimators correct the oversampling of relatively large survival times by using the left-truncation times associated with the cross-sectional observation. Asymptotic results are established, and finite sample performance is investigated through simulations. One of the proposed estimators performs better when there is no censoring, while the second one is strongly recommended with censored data. The new estimators are applied to data on patients in intensive care units (ICUs).
Summary Nonparametric estimation of the transition probability matrix of a progressive multi‐state model is considered under cross‐sectional sampling. Two different estimators adapted to possibly right‐censored and left‐truncated data are proposed. The estimators require full retrospective information before the truncation time, which, when exploited, increases efficiency. They are obtained as differences between two survival functions constructed for sub‐samples of subjects occupying specific states at a certain time point. Both estimators correct the oversampling of relatively large survival times by using the left‐truncation times associated with the cross‐sectional observation. Asymptotic results are established, and finite sample performance is investigated through simulations. One of the proposed estimators performs better when there is no censoring, while the second one is strongly recommended with censored data. The new estimators are applied to data on patients in intensive care units (ICUs).
Nonparametric estimation of the transition probability matrix of a progressive multi-state model is considered under cross-sectional sampling. Two different estimators adapted to possibly right-censored and left-truncated data are proposed. The estimators require full retrospective information before the truncation time, which, when exploited, increases efficiency. They are obtained as differences between two survival functions constructed for sub-samples of subjects occupying specific states at a certain time point. Both estimators correct the oversampling of relatively large survival times by using the left-truncation times associated with the cross-sectional observation. Asymptotic results are established, and finite sample performance is investigated through simulations. One of the proposed estimators performs better when there is no censoring, while the second one is strongly recommended with censored data. The new estimators are applied to data on patients in intensive care units (ICUs).
Author Mandel, Micha
de Uña-Álvarez, Jacobo
Author_xml – sequence: 1
  givenname: Jacobo
  surname: de Uña-Álvarez
  fullname: de Uña-Álvarez, Jacobo
– sequence: 2
  givenname: Micha
  surname: Mandel
  fullname: Mandel, Micha
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29603718$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFLHDEYxUOx1FV76b1lwEspjE0yyWxyrIu1glZhFXoLycw3kiUz2SaZFk_915vZdXsQsbkkj_zeg-97B2hv8AMg9I7gE5LPZ2N9f0KomLNXaEY4IyVmFO-hGca4LitGfuyjgxhXWUqO6Ru0T2WNqzkRM_Tnux_WOugeUrBNcRaT7XWyfih8V9wGPUS7UTfBG22sywpi0flQ6OIcBgjaTX_3AWK0v6C4Gl2y5TLplN--BVfcDS2EYhF8jOUSmikte5a6Xzs73B-h1512Ed4-3ofo7uvZ7eJbeXl9frH4clk2jAlWGmhpBY1geM4o57xlwEVHO8KN0J2pDDUNlw3pGK4kr5k0uha0o9hIkC2l1SH6uM1dB_9zhJhUb2MDzukB_BgVpZRgKohg_0cxxUzImpKMHj9BV34Meb5MkTlnXGDMM_XhkRpND61ah7zj8KB2LWQAb4Fm2lKATjU2bVpIQVunCFZT0WoqWm2KzpZPTyy71GdhsoV_WwcPL5Dq9OL6aud5v_WsYvLhn4dxLKkUvPoL8eTCeg
CitedBy_id crossref_primary_10_1007_s10463_021_00819_x
crossref_primary_10_1016_j_ecosta_2021_09_008
crossref_primary_10_1111_sjos_12443
Cites_doi 10.1111/biom.12288
10.1007/978-3-319-50986-0_4
10.18637/jss.v038.i07
10.1007/s10985-013-9269-1
10.1007/978-1-4612-1304-8
10.1006/jmva.1998.1806
10.1111/biom.12349
10.1002/sim.6796
10.1111/j.1467-9469.2005.00453.x
10.1093/biomet/74.4.883
10.1007/s10985-006-9009-x
10.1214/aos/1176324528
10.1080/01621459.1991.10475108
10.1016/S0167-7152(01)00155-9
10.1007/978-1-4612-4348-9
10.1080/02331888.2016.1274898
10.1007/s10985-016-9373-0
10.1093/biostatistics/kxp048
10.3150/07-BEJ116
10.1007/s10985-005-7220-9
10.1111/j.0006-341X.2005.031209.x
ContentType Journal Article
Copyright Copyright © 2018 International Biometric Society
2018, The International Biometric Society
2018, The International Biometric Society.
Copyright_xml – notice: Copyright © 2018 International Biometric Society
– notice: 2018, The International Biometric Society
– notice: 2018, The International Biometric Society.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7X8
7S9
L.6
DOI 10.1111/biom.12874
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic


CrossRef
ProQuest Computer Science Collection
MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
EndPage 1212
ExternalDocumentID 29603718
10_1111_biom_12874
BIOM12874
45092985
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
05W
0R~
10A
1OC
23N
2AX
2QV
33P
36B
3SF
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHBH
AAMMB
AANLZ
AAONW
AASGY
AAUAY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABDBF
ABDFA
ABEJV
ABEML
ABFAN
ABGNP
ABJNI
ABLJU
ABMNT
ABPPZ
ABPVW
ABXSQ
ABXVV
ABYWD
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACPOU
ACPRK
ACSCC
ACTMH
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADNBA
ADODI
ADOZA
ADVOB
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEOTA
AEUPB
AEUYR
AFBPY
AFDVO
AFEBI
AFGKR
AFVYC
AFWVQ
AFZJQ
AGORE
AGTJU
AGXDD
AHMBA
AIAGR
AIDQK
AIDYY
AIURR
AJAOE
AJNCP
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALUQN
AMBMR
AMYDB
APXXL
ARCSS
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BCRHZ
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DXH
EAD
EAP
EBC
EBD
EBS
ECEWR
EDO
EJD
EMB
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FD6
G-S
G.N
GODZA
GS5
H.T
H.X
HQ6
HZI
HZ~
IPSME
IX1
J0M
JAAYA
JAC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K48
KOP
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NU-
O66
O9-
OIG
OJZSN
OWPYF
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
ROX
RX1
RXW
SA0
SUPJJ
SV3
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WYISQ
X6Y
XBAML
XG1
XSW
ZZTAW
~02
~IA
~KM
~WT
.GJ
.Y3
3-9
31~
3V.
7X7
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAHHS
AANHP
AAZSN
ABJCF
ABTAH
ABUWG
ACBWZ
ACCFJ
ACKIV
ACRPL
ACYXJ
ADNMO
ADULT
ADZOD
AEEZP
AELPN
AEQDE
AEUQT
AFFTP
AFKRA
AFPWT
AIBGX
AIWBW
AJBDE
ALEEW
ARAPS
ASPBG
AS~
AVWKF
AZFZN
AZQEC
BBNVY
BGLVJ
BHPHI
BPHCQ
BVXVI
CAG
CCPQU
COF
DWQXO
FEDTE
FXEWX
FYUFA
GNUQQ
HCIFZ
HF~
HGD
HMCUK
HVGLF
IHE
JSODD
K6V
K7-
L6V
LK8
M1P
M2P
M7P
M7S
NHB
P0-
P62
PROAC
PSQYO
PTHSS
Q2X
RNS
RWL
TAE
UAP
UKHRP
VQA
WRC
ZGI
ZXP
ZY4
AAYXX
CITATION
AAWIL
ABAWQ
ACHJO
AGLNM
AIHAF
CGR
CUY
CVF
ECM
EIF
NPM
PHGZT
H13
JQ2
7X8
ESTFP
7S9
L.6
ID FETCH-LOGICAL-c4484-bed23ec840742555d4e58f2f15b8afb3b2bc59c1f40395649ba682f20b9e9d223
IEDL.DBID DR2
ISSN 0006-341X
1541-0420
IngestDate Fri Sep 05 17:26:15 EDT 2025
Mon Sep 08 03:28:27 EDT 2025
Wed Aug 13 08:39:11 EDT 2025
Thu Apr 03 06:59:22 EDT 2025
Tue Jul 01 00:58:08 EDT 2025
Thu Apr 24 23:08:23 EDT 2025
Wed Jan 22 17:10:54 EST 2025
Thu Jul 03 21:54:24 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Left truncation
Multi-state models
Biased data
Illness-death model
Inverse weighting
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
2018, The International Biometric Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4484-bed23ec840742555d4e58f2f15b8afb3b2bc59c1f40395649ba682f20b9e9d223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4270-9777
OpenAccessLink http://hdl.handle.net/11093/1227
PMID 29603718
PQID 2175458005
PQPubID 35366
PageCount 10
ParticipantIDs proquest_miscellaneous_2221028184
proquest_miscellaneous_2020489621
proquest_journals_2175458005
pubmed_primary_29603718
crossref_citationtrail_10_1111_biom_12874
crossref_primary_10_1111_biom_12874
wiley_primary_10_1111_biom_12874_BIOM12874
jstor_primary_45092985
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20181201
December 2018
2018-12-01
2018-12-00
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 20181201
  day: 1
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Biometrics
PublicationTitleAlternate Biometrics
PublicationYear 2018
Publisher Wiley-Blackwell
Blackwell Publishing Ltd
Publisher_xml – name: Wiley-Blackwell
– name: Blackwell Publishing Ltd
References 2017; 83
2010; 11
1987; 74
2006; 12
2015; 71
2012
2017; 23
1999; 69
2008; 14
1978; 5
1993
2005; 61
2011; 38
2016; 35
2014; 20
2017; 51
2017; 36
2000
2015; 61
1991; 86
1995; 23
2017
2005; 32
2016
2001; 55
Aalen (2024011509370124900_biom12874-bib-0001) 1978; 5
Hougaard (2024011509370124900_biom12874-bib-0012) 2000
Vakulenko-Lagun (2024011509370124900_biom12874-bib-0023) 2016; 35
Titman (2024011509370124900_biom12874-bib-0021) 2015; 71
de Uña-Álvarez (2024011509370124900_biom12874-bib-0010) 2017; 51
de Uña-Álvarez (2024011509370124900_biom12874-bib-0009) 2015; 61
Balboa (2024011509370124900_biom12874-bib-0005) 2017; 83
Stute (2024011509370124900_biom12874-bib-0019) 1995; 23
Klein (2024011509370124900_biom12874-bib-0013) 2005; 61
Azarang (2024011509370124900_biom12874-bib-0004) 2017; 36
Putter (2024011509370124900_biom12874-bib-0017) 2016
Pepe (2024011509370124900_biom12874-bib-0016) 1991; 86
Tsai (2024011509370124900_biom12874-bib-0022) 1987; 74
Chang (2024011509370124900_biom12874-bib-0006) 2006; 12
Sánchez-Sellero (2024011509370124900_biom12874-bib-0018) 2005; 32
Allignol (2024011509370124900_biom12874-bib-0002) 2014; 20
Andersen (2024011509370124900_biom12874-bib-0003) 1993
Stute (2024011509370124900_biom12874-bib-0020) 2008; 14
Datta (2024011509370124900_biom12874-bib-0007) 2001; 55
de Wreede (2024011509370124900_biom12874-bib-0011) 2011; 38
Meira-Machado (2024011509370124900_biom12874-bib-0015) 2006; 12
de Uña-Álvarez (2024011509370124900_biom12874-bib-0008) 2017
Zhou (2024011509370124900_biom12874-bib-0026) 1999; 69
Mandel (2024011509370124900_biom12874-bib-0014) 2010; 11
Vakulenko-Lagun (2024011509370124900_biom12874-bib-0024) 2017; 23
van Houwelingen (2024011509370124900_biom12874-bib-0025) 2012
References_xml – year: 2016
  article-title: Non‐parametric estimation of transition probabilities in non‐Markov multi‐state models: The landmark Aalen–Johansen estimator
  publication-title: Statistical Methods in Medical Research
– volume: 74
  start-page: 883
  year: 1987
  end-page: 886
  article-title: A note on the product‐limit estimator under right censoring and left truncation
  publication-title: Biometrika
– volume: 61
  start-page: 364
  year: 2015
  end-page: 375
  article-title: Nonparametric estimation of transition probabilities in the non‐Markov illness‐death model: A comparative study
  publication-title: Biometrics
– volume: 12
  start-page: 325
  year: 2006
  end-page: 344
  article-title: Nonparametric estimation of transition probabilities in a non‐Markov illness‐death model
  publication-title: Lifetime Data Analysis
– volume: 38
  start-page: 1
  year: 2011
  end-page: 30
  article-title: mstate: An R Package for the Analysis of Competing Risks and Multi‐State Models
  publication-title: Journal of Statistical Software
– volume: 5
  start-page: 141
  year: 1978
  end-page: 150
  article-title: An empirical transition matrix for nonhomogeneous Markov chains based on censored observations
  publication-title: Scandinavian Journal of Statistics
– volume: 71
  start-page: 1034
  year: 2015
  end-page: 1041
  article-title: Transition probability estimates for non‐Markov multi‐state models
  publication-title: Biometrics
– volume: 86
  start-page: 770
  year: 1991
  end-page: 778
  article-title: Inference for events with dependent risks in multiple end‐point studies
  publication-title: Journal of the American Statistical Association
– start-page: 55
  year: 2017
  end-page: 67
  article-title: Nonparametric estimation of an event‐free survival distribution under cross‐sectional sampling
  publication-title: From Statistics to Mathematical Finance Festscrhift in honor of Winfried Stute
– volume: 11
  start-page: 209
  year: 2010
  end-page: 303
  article-title: The competing risks illness‐death model under cross‐sectional sampling
  publication-title: Biostatistics
– volume: 55
  start-page: 403
  year: 2001
  end-page: 411
  article-title: Validity of the Aalen–Johansen estimators of stage occupancy probabilities and Nelson Aalen estimators of integrated transition hazards for non‐Markov models
  publication-title: Statistics & Probability Letters
– volume: 32
  start-page: 563
  year: 2005
  end-page: 581
  article-title: Uniform representation of product‐limit integrals with applications
  publication-title: Scandinavian Journal of Statistics
– volume: 35
  start-page: 1533
  year: 2016
  end-page: 1548
  article-title: Comparing estimation approaches for the illness–death model under left truncation and right censoring
  publication-title: Statistics in Medicine
– volume: 23
  start-page: 25
  year: 2017
  end-page: 56
  article-title: Nonparametric estimation in the illness‐death model using prevalent data
  publication-title: Lifetime Data Analysis
– volume: 51
  start-page: 387
  year: 2017
  end-page: 403
  article-title: Copula‐graphic estimation with left‐truncated and right‐censored data
  publication-title: Statistics
– volume: 14
  start-page: 604
  year: 2008
  end-page: 622
  article-title: The central limit theorem under random truncation
  publication-title: Bernoulli
– volume: 69
  start-page: 261
  year: 1999
  end-page: 280
  article-title: A strong representation of the product‐limit estimator for left truncated and right censored data
  publication-title: Journal of Multivariate Analysis
– year: 2012
  publication-title: Dynamic Prediction in Clinical Survival Analysis
– volume: 20
  start-page: 495
  year: 2014
  end-page: 513
  article-title: A competing risks approach for nonparametric estimation of transition probabilities in a non‐Markov illness‐death model
  publication-title: Lifetime Data Analysis
– volume: 23
  start-page: 422
  year: 1995
  end-page: 439
  article-title: The central limit under random censorship
  publication-title: Annals of Statistics
– volume: 83
  start-page: 1
  year: 2017
  end-page: 19
  article-title: Estimation of transition probabilities for the illness‐death model: Package TP.idm
  publication-title: Journal of Statistical Software
– year: 2000
  publication-title: Analysis of Multivariate Survival Data
– year: 1993
  publication-title: Statistical Models based on Counting Processes
– volume: 36
  start-page: 1964
  year: 2017
  end-page: 1976
  article-title: Direct modeling of regression effects for transition probabilities in the progressive illness–death model
  publication-title: Statistics in Medicine
– volume: 12
  start-page: 53
  year: 2006
  end-page: 67
  article-title: Nonparametric estimation of sojourn time distributions for truncated serial event data—a weighted‐adjusted approach
  publication-title: Lifetime Data Analysis
– volume: 61
  start-page: 223
  year: 2005
  end-page: 229
  article-title: Regression modeling of competing risks data based on pseudo values of the cumulative incidence function
  publication-title: Biometrics
– volume: 61
  start-page: 364
  year: 2015
  ident: 2024011509370124900_biom12874-bib-0009
  article-title: Nonparametric estimation of transition probabilities in the non-Markov illness-death model: A comparative study
  publication-title: Biometrics
  doi: 10.1111/biom.12288
– start-page: 55
  volume-title: From Statistics to Mathematical Finance Festscrhift in honor of Winfried Stute
  year: 2017
  ident: 2024011509370124900_biom12874-bib-0008
  article-title: Nonparametric estimation of an event-free survival distribution under cross-sectional sampling
  doi: 10.1007/978-3-319-50986-0_4
– volume: 38
  start-page: 1
  year: 2011
  ident: 2024011509370124900_biom12874-bib-0011
  article-title: mstate: An R Package for the Analysis of Competing Risks and Multi-State Models
  publication-title: Journal of Statistical Software
  doi: 10.18637/jss.v038.i07
– volume: 20
  start-page: 495
  year: 2014
  ident: 2024011509370124900_biom12874-bib-0002
  article-title: A competing risks approach for nonparametric estimation of transition probabilities in a non-Markov illness-death model
  publication-title: Lifetime Data Analysis
  doi: 10.1007/s10985-013-9269-1
– volume-title: Analysis of Multivariate Survival Data
  year: 2000
  ident: 2024011509370124900_biom12874-bib-0012
  doi: 10.1007/978-1-4612-1304-8
– volume: 69
  start-page: 261
  year: 1999
  ident: 2024011509370124900_biom12874-bib-0026
  article-title: A strong representation of the product-limit estimator for left truncated and right censored data
  publication-title: Journal of Multivariate Analysis
  doi: 10.1006/jmva.1998.1806
– volume: 71
  start-page: 1034
  year: 2015
  ident: 2024011509370124900_biom12874-bib-0021
  article-title: Transition probability estimates for non-Markov multi-state models
  publication-title: Biometrics
  doi: 10.1111/biom.12349
– volume: 35
  start-page: 1533
  year: 2016
  ident: 2024011509370124900_biom12874-bib-0023
  article-title: Comparing estimation approaches for the illness–death model under left truncation and right censoring
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.6796
– volume: 32
  start-page: 563
  year: 2005
  ident: 2024011509370124900_biom12874-bib-0018
  article-title: Uniform representation of product-limit integrals with applications
  publication-title: Scandinavian Journal of Statistics
  doi: 10.1111/j.1467-9469.2005.00453.x
– volume: 74
  start-page: 883
  year: 1987
  ident: 2024011509370124900_biom12874-bib-0022
  article-title: A note on the product-limit estimator under right censoring and left truncation
  publication-title: Biometrika
  doi: 10.1093/biomet/74.4.883
– volume: 12
  start-page: 325
  year: 2006
  ident: 2024011509370124900_biom12874-bib-0015
  article-title: Nonparametric estimation of transition probabilities in a non-Markov illness-death model
  publication-title: Lifetime Data Analysis
  doi: 10.1007/s10985-006-9009-x
– volume: 23
  start-page: 422
  year: 1995
  ident: 2024011509370124900_biom12874-bib-0019
  article-title: The central limit under random censorship
  publication-title: Annals of Statistics
  doi: 10.1214/aos/1176324528
– volume: 86
  start-page: 770
  year: 1991
  ident: 2024011509370124900_biom12874-bib-0016
  article-title: Inference for events with dependent risks in multiple end-point studies
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1991.10475108
– volume: 55
  start-page: 403
  year: 2001
  ident: 2024011509370124900_biom12874-bib-0007
  article-title: Validity of the Aalen–Johansen estimators of stage occupancy probabilities and Nelson Aalen estimators of integrated transition hazards for non-Markov models
  publication-title: Statistics & Probability Letters
  doi: 10.1016/S0167-7152(01)00155-9
– year: 2016
  ident: 2024011509370124900_biom12874-bib-0017
  article-title: Non-parametric estimation of transition probabilities in non-Markov multi-state models: The landmark Aalen–Johansen estimator
  publication-title: Statistical Methods in Medical Research
– volume: 36
  start-page: 1964
  year: 2017
  ident: 2024011509370124900_biom12874-bib-0004
  article-title: Direct modeling of regression effects for transition probabilities in the progressive illness–death model
  publication-title: Statistics in Medicine
– volume-title: Statistical Models based on Counting Processes
  year: 1993
  ident: 2024011509370124900_biom12874-bib-0003
  doi: 10.1007/978-1-4612-4348-9
– volume: 83
  start-page: 1
  year: 2017
  ident: 2024011509370124900_biom12874-bib-0005
  article-title: Estimation of transition probabilities for the illness-death model: Package TP.idm
  publication-title: Journal of Statistical Software
– volume: 51
  start-page: 387
  year: 2017
  ident: 2024011509370124900_biom12874-bib-0010
  article-title: Copula-graphic estimation with left-truncated and right-censored data
  publication-title: Statistics
  doi: 10.1080/02331888.2016.1274898
– volume-title: Dynamic Prediction in Clinical Survival Analysis
  year: 2012
  ident: 2024011509370124900_biom12874-bib-0025
– volume: 23
  start-page: 25
  year: 2017
  ident: 2024011509370124900_biom12874-bib-0024
  article-title: Nonparametric estimation in the illness-death model using prevalent data
  publication-title: Lifetime Data Analysis
  doi: 10.1007/s10985-016-9373-0
– volume: 11
  start-page: 209
  year: 2010
  ident: 2024011509370124900_biom12874-bib-0014
  article-title: The competing risks illness-death model under cross-sectional sampling
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxp048
– volume: 5
  start-page: 141
  year: 1978
  ident: 2024011509370124900_biom12874-bib-0001
  article-title: An empirical transition matrix for nonhomogeneous Markov chains based on censored observations
  publication-title: Scandinavian Journal of Statistics
– volume: 14
  start-page: 604
  year: 2008
  ident: 2024011509370124900_biom12874-bib-0020
  article-title: The central limit theorem under random truncation
  publication-title: Bernoulli
  doi: 10.3150/07-BEJ116
– volume: 12
  start-page: 53
  year: 2006
  ident: 2024011509370124900_biom12874-bib-0006
  article-title: Nonparametric estimation of sojourn time distributions for truncated serial event data—a weighted-adjusted approach
  publication-title: Lifetime Data Analysis
  doi: 10.1007/s10985-005-7220-9
– volume: 61
  start-page: 223
  year: 2005
  ident: 2024011509370124900_biom12874-bib-0013
  article-title: Regression modeling of competing risks data based on pseudo values of the cumulative incidence function
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2005.031209.x
SSID ssj0009502
Score 2.2574513
Snippet Nonparametric estimation of the transition probability matrix of a progressive multi-state model is considered under cross-sectional sampling. Two different...
Summary Nonparametric estimation of the transition probability matrix of a progressive multi‐state model is considered under cross‐sectional sampling. Two...
Nonparametric estimation of the transition probability matrix of a progressive multi‐state model is considered under cross‐sectional sampling. Two different...
SourceID proquest
pubmed
crossref
wiley
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1203
SubjectTerms Acute Disease - mortality
Acute Disease - therapy
Biased data
BIOMETRIC METHODOLOGY
biometry
Biometry - methods
Computer Simulation
Cross-Sectional Studies
Estimators
Humans
Illness‐death model
Intensive Care Units
Inverse weighting
Left truncation
Monte Carlo simulation
Multi‐state models
Nonparametric statistics
Oversampling
patients
probability
Regression analysis
Sampling
Statistics as Topic - methods
Survival
Time Factors
Transition probabilities
Title Nonparametric Estimation of Transition Probabilities for a General Progressive Multi-State Model Under Cross-Sectional Sampling
URI https://www.jstor.org/stable/45092985
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbiom.12874
https://www.ncbi.nlm.nih.gov/pubmed/29603718
https://www.proquest.com/docview/2175458005
https://www.proquest.com/docview/2020489621
https://www.proquest.com/docview/2221028184
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEB5KRagPVU9ro7Ws6ItCjmR_5LLgS896VOEqiIV7kbC7t-mDmpPenaBPgv-Af6N_iTO7SWylFPTtIBOytzcz-83lm28AnmDeLYTXJs2EcalUuUktAtF05LTn3nkxMlQoTo-LoxP5eqZmG_C864WJ-hD9H24UGSFfU4AbuzwX5NSePsxJrh0TcC4KEs4_fMvPKe5mUSqcyF0yn7XapETj-XPrhdMoEhIvg5oXkWs4eiY34X236Mg4-TBcr-zQfftLz_F_v9Ut2G4xKTuITnQbNnwzgOtxSuXXAdyY9tKuywFsETyN6s534MfxoiHx8E80l8sxUuyIrZBsUbMVHYOBEcZobE0UBMfCnCFOZoadRsFrFhhiRMb94lmgN_76_jO0ObEwpYdRl9sZC_tHVwJ1jJa7NESGb07vwsnk5bsXR2k71iF1WAvK1Po5F95hZYlluVJqLr0qa17nypamtsJy65R2eS0zgdWb1NYUJa95ZrXXc4QzO7DZLBq_C2wkqAelyLytjVSlK60WrvBzbdAzhdUJPO1-3sq1muc0euNj1dU-tN9V2O8EHve2n6PSx6VWO8FLehOJiIvrUiWw17lN1aaBZYX1Hr2YxEyXwKP-MgYwvZUxjV-s0Ybak0td8PwKG06VOWIrfP696JL9AjjWoAIRRgLPgmNdsfhq_OrNNHy6_y_GD2ALYWIZSTx7sLk6W_uHCMVWdh-uHYwPx5P9EHq_Ad8zNWQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEB1BEaIc-AgUXAosgguVHNn74XiPfFUpNEFCrZSbtbtZ9wA4qEmQ4ITUP9Df2F_CzK5jWlRVglskT5TNenb3PfvNG4AXuO8WwmuTZsK4VKrcpBaBaDpw2nPvvBgYIoqjcTE8kO8natJqc6gWJvpDdA_caGWE_ZoWOD2QPrPKqT69n5Nf-1W4JhFpEPd6-4mf8dzNolk4ybtkPmndSUnI8-e7586jKEm8CGyex67h8Nm5HTuszoNnIWlOPveXC9t3P_9ydPzv_3UHbrWwlL2KeXQXrvimB9djo8ofPbg56txd5z1YJ4QaDZ7vwfF41pB_-FdqzeUYmXbEakg2q9mCTsIgCmPUuSZ6giM3ZwiVmWGH0fOaBZEY6XG_exYUjqe_TkKlEwuNehgVuh2xMIF0JajHaLhzQ3r45vA-HOy8238zTNvODqlDOihT66dceIfkEpm5UmoqvSprXufKlqa2wnLrlHZ5LTOBBE5qa4qS1zyz2uspIpoNWGtmjX8IbCCoDKXIvK2NVKUrrRau8FNtMDmF1Qm8XN3fyrW259R940u1oj8031WY7wSed7HfotnHhVEbIU26EImgi-tSJbC1ypuq3QnmFVI-ejeJm10Cz7rLuIbpxYxp_GyJMVShXOqC55fEcCLnCK_w9x_EnOwGwJGGCgQZCWyHzLpk8NXr3Y-j8GnzX4Kfwo3h_miv2tsdf3gE64gay6jp2YK1xdHSP0ZktrBPwvr7DVQqOBE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL0aQ6DxwEdhIzDACF5ASpXYcRpLvPBVbUALQkzqC4psx9kDI53WFgmekPgD_EZ-CffaSdjQNAneKuVGcd1r-5zm3HMBHuK-mwundJwIbeNMpjo2CETjkVWOO-vESBNRnEzznb3s1UzO1uBJVwsT_CH6P9xoZfj9mhb4YVUfW-RUnj5Mya79HJzPcoQSBIne82OWu0nwCid1V5bOWnNS0vH8uffEcRQUiadhzZPQ1Z894yvwsRt1kJx8Gq6WZmi__WXo-L9f6ypcbkEpexqy6BqsuWYAF0Kbyq8DuDTpvV0XA9ggfBrsna_Dj-m8Iffwz9SYyzKy7Ai1kGxesyWdg14SxqhvTXAER2bOECgzzfaD4zXzEjFS435xzOsbf33_6eucmG_Tw6jM7Yj5-aMrXjtGw11oUsM3-zdgb_zyw_OduO3rEFskg1lsXMWFs0gtkZdLKavMyaLmdSpNoWsjDDdWKpvWWSKQvmXK6LzgNU-McqpCPLMJ6828cTeBjQQVoeSJM7XOZGELo4TNXaU0pqYwKoJH3c9b2tb0nHpvHJQd-aH5Lv18R_Cgjz0MVh-nRm36LOlDMoRcXBUygu0ubcp2H1iUSPjozSRudRHc7y_jCqbXMrpx8xXGUH1yoXKenhHDiZojuMLnb4WU7AfAkYQKhBgRPPaJdcbgy2e7byf-061_Cb4HF9-9GJdvdqevb8MGQsYiCHq2YX15tHJ3EJYtzV2_-n4Djyk2wA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonparametric+estimation+of+transition+probabilities+for+a+general+progressive+multi%E2%80%90state+model+under+cross%E2%80%90sectional+sampling&rft.jtitle=Biometrics&rft.au=U%C3%B1a%E2%80%90%C3%81lvarez%2C+Jacobo&rft.au=Mandel%2C+Micha&rft.date=2018-12-01&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=74&rft.issue=4&rft.spage=1203&rft.epage=1212&rft_id=info:doi/10.1111%2Fbiom.12874&rft.externalDBID=10.1111%252Fbiom.12874&rft.externalDocID=BIOM12874
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon