Deep learning in radiology: An overview of the concepts and a survey of the state of the art with focus on MRI
Deep learning is a branch of artificial intelligence where networks of simple interconnected units are used to extract patterns from data in order to solve complex problems. Deep‐learning algorithms have shown groundbreaking performance in a variety of sophisticated tasks, especially those related t...
Saved in:
Published in | Journal of magnetic resonance imaging Vol. 49; no. 4; pp. 939 - 954 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Deep learning is a branch of artificial intelligence where networks of simple interconnected units are used to extract patterns from data in order to solve complex problems. Deep‐learning algorithms have shown groundbreaking performance in a variety of sophisticated tasks, especially those related to images. They have often matched or exceeded human performance. Since the medical field of radiology mainly relies on extracting useful information from images, it is a very natural application area for deep learning, and research in this area has rapidly grown in recent years. In this article, we discuss the general context of radiology and opportunities for application of deep‐learning algorithms. We also introduce basic concepts of deep learning, including convolutional neural networks. Then, we present a survey of the research in deep learning applied to radiology. We organize the studies by the types of specific tasks that they attempt to solve and review a broad range of deep‐learning algorithms being utilized. Finally, we briefly discuss opportunities and challenges for incorporating deep learning in the radiology practice of the future.
Level of Evidence: 3
Technical Efficacy: Stage 1
J. Magn. Reson. Imaging 2019;49:939–954. |
---|---|
AbstractList | Deep learning is a branch of artificial intelligence where networks of simple interconnected units are used to extract patterns from data in order to solve complex problems. Deep‐learning algorithms have shown groundbreaking performance in a variety of sophisticated tasks, especially those related to images. They have often matched or exceeded human performance. Since the medical field of radiology mainly relies on extracting useful information from images, it is a very natural application area for deep learning, and research in this area has rapidly grown in recent years. In this article, we discuss the general context of radiology and opportunities for application of deep‐learning algorithms. We also introduce basic concepts of deep learning, including convolutional neural networks. Then, we present a survey of the research in deep learning applied to radiology. We organize the studies by the types of specific tasks that they attempt to solve and review a broad range of deep‐learning algorithms being utilized. Finally, we briefly discuss opportunities and challenges for incorporating deep learning in the radiology practice of the future.
Level of Evidence: 3
Technical Efficacy: Stage 1
J. Magn. Reson. Imaging 2019;49:939–954. Deep learning is a branch of artificial intelligence where networks of simple interconnected units are used to extract patterns from data in order to solve complex problems. Deep-learning algorithms have shown groundbreaking performance in a variety of sophisticated tasks, especially those related to images. They have often matched or exceeded human performance. Since the medical field of radiology mainly relies on extracting useful information from images, it is a very natural application area for deep learning, and research in this area has rapidly grown in recent years. In this article, we discuss the general context of radiology and opportunities for application of deep-learning algorithms. We also introduce basic concepts of deep learning, including convolutional neural networks. Then, we present a survey of the research in deep learning applied to radiology. We organize the studies by the types of specific tasks that they attempt to solve and review a broad range of deep-learning algorithms being utilized. Finally, we briefly discuss opportunities and challenges for incorporating deep learning in the radiology practice of the future. Level of Evidence: 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:939-954. Deep learning is a branch of artificial intelligence where networks of simple interconnected units are used to extract patterns from data in order to solve complex problems. Deep learning algorithms have shown groundbreaking performance in a variety of sophisticated tasks, especially those related to images. They have often matched or exceeded human performance. Since the medical field of radiology mainly relies on extracting useful information from images, it is a very natural application area for deep learning, and research in this area has rapidly grown in recent years. In this article, we discuss the general context of radiology and opportunities for application of deep learning algorithms. We also introduce basic concepts of deep learning including convolutional neural networks. Then, we present a survey of the research in deep learning applied to radiology. We organize the studies by the types of specific tasks that that they attempt to solve and review a broad range of deep learning algorithms being utilized. Finally, we briefly discuss opportunities and challenges for incorporating deep learning in the radiology practice of the future. Deep learning is a branch of artificial intelligence where networks of simple interconnected units are used to extract patterns from data in order to solve complex problems. Deep‐learning algorithms have shown groundbreaking performance in a variety of sophisticated tasks, especially those related to images. They have often matched or exceeded human performance. Since the medical field of radiology mainly relies on extracting useful information from images, it is a very natural application area for deep learning, and research in this area has rapidly grown in recent years. In this article, we discuss the general context of radiology and opportunities for application of deep‐learning algorithms. We also introduce basic concepts of deep learning, including convolutional neural networks. Then, we present a survey of the research in deep learning applied to radiology. We organize the studies by the types of specific tasks that they attempt to solve and review a broad range of deep‐learning algorithms being utilized. Finally, we briefly discuss opportunities and challenges for incorporating deep learning in the radiology practice of the future.Level of Evidence: 3Technical Efficacy: Stage 1J. Magn. Reson. Imaging 2019;49:939–954. Deep learning is a branch of artificial intelligence where networks of simple interconnected units are used to extract patterns from data in order to solve complex problems. Deep-learning algorithms have shown groundbreaking performance in a variety of sophisticated tasks, especially those related to images. They have often matched or exceeded human performance. Since the medical field of radiology mainly relies on extracting useful information from images, it is a very natural application area for deep learning, and research in this area has rapidly grown in recent years. In this article, we discuss the general context of radiology and opportunities for application of deep-learning algorithms. We also introduce basic concepts of deep learning, including convolutional neural networks. Then, we present a survey of the research in deep learning applied to radiology. We organize the studies by the types of specific tasks that they attempt to solve and review a broad range of deep-learning algorithms being utilized. Finally, we briefly discuss opportunities and challenges for incorporating deep learning in the radiology practice of the future. Level of Evidence: 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:939-954.Deep learning is a branch of artificial intelligence where networks of simple interconnected units are used to extract patterns from data in order to solve complex problems. Deep-learning algorithms have shown groundbreaking performance in a variety of sophisticated tasks, especially those related to images. They have often matched or exceeded human performance. Since the medical field of radiology mainly relies on extracting useful information from images, it is a very natural application area for deep learning, and research in this area has rapidly grown in recent years. In this article, we discuss the general context of radiology and opportunities for application of deep-learning algorithms. We also introduce basic concepts of deep learning, including convolutional neural networks. Then, we present a survey of the research in deep learning applied to radiology. We organize the studies by the types of specific tasks that they attempt to solve and review a broad range of deep-learning algorithms being utilized. Finally, we briefly discuss opportunities and challenges for incorporating deep learning in the radiology practice of the future. Level of Evidence: 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:939-954. Deep learning is a branch of artificial intelligence where networks of simple interconnected units are used to extract patterns from data in order to solve complex problems. Deep‐learning algorithms have shown groundbreaking performance in a variety of sophisticated tasks, especially those related to images. They have often matched or exceeded human performance. Since the medical field of radiology mainly relies on extracting useful information from images, it is a very natural application area for deep learning, and research in this area has rapidly grown in recent years. In this article, we discuss the general context of radiology and opportunities for application of deep‐learning algorithms. We also introduce basic concepts of deep learning, including convolutional neural networks. Then, we present a survey of the research in deep learning applied to radiology. We organize the studies by the types of specific tasks that they attempt to solve and review a broad range of deep‐learning algorithms being utilized. Finally, we briefly discuss opportunities and challenges for incorporating deep learning in the radiology practice of the future. Level of Evidence: 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:939–954. |
Author | Bashir, Mustafa R. Buda, Mateusz Saha, Ashirbani Mazurowski, Maciej A. |
AuthorAffiliation | 1. Department of Radiology, Duke University, Durham, NC 2. Department of Electrical and Computer Engineering, Duke University, Durham, NC 4. Center for Advanced Magnetic Resonance Development, Duke University, Durham, NC 3. Duke Medical Physics Program, Duke University, Durham, NC |
AuthorAffiliation_xml | – name: 2. Department of Electrical and Computer Engineering, Duke University, Durham, NC – name: 3. Duke Medical Physics Program, Duke University, Durham, NC – name: 1. Department of Radiology, Duke University, Durham, NC – name: 4. Center for Advanced Magnetic Resonance Development, Duke University, Durham, NC |
Author_xml | – sequence: 1 givenname: Maciej A. surname: Mazurowski fullname: Mazurowski, Maciej A. email: maciej.mazurowski@duke.edu organization: Duke University – sequence: 2 givenname: Mateusz surname: Buda fullname: Buda, Mateusz organization: Duke University – sequence: 3 givenname: Ashirbani orcidid: 0000-0002-7650-1720 surname: Saha fullname: Saha, Ashirbani organization: Duke University – sequence: 4 givenname: Mustafa R. surname: Bashir fullname: Bashir, Mustafa R. organization: Duke University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30575178$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kd2LEzEUxYOsuB_64h8gAV9E6HrzNZPxQVjWr5UVQfQ5ZDJ32pRpUpOZlv73pnYruohPSbi_czg355ychBiQkKcMLhkAf7VcJX_JKyXkA3LGFOczrnR1Uu6gxIxpqE_Jec5LAGgaqR6RUwGqVqzWZyS8RVzTAW0KPsypDzTZzschznev6VWgcYNp43FLY0_HBVIXg8P1mKkNHbU0T2mDu-Mwj3bE48OmkW79uKB9dFOmMdDPX28ek4e9HTI-uTsvyPf3775df5zdfvlwc311O3NSajnTAK2oW6hUo13XVG0vGnCWQV87a3krWa1437cdAtO660RdYIusa1tplbbigrw5-K6ndoWdwzAmO5h18iubdiZab_6eBL8w87gxldRCgiwGL-4MUvwxYR7NymeHw2ADxikbzlTTaC6ruqDP76HLOKVQ1itUA1qAYLxQz_5M9DvKsYoCwAFwKeacsDfOl__0cR_QD4aB2bdt9m2bX20Xyct7kqPrP2F2gLd-wN1_SPOpFHXQ_AQtNrsU |
CitedBy_id | crossref_primary_10_1007_s10334_023_01127_6 crossref_primary_10_1002_mp_15182 crossref_primary_10_1007_s12539_022_00502_6 crossref_primary_10_1159_000527491 crossref_primary_10_1186_s12885_023_11456_3 crossref_primary_10_1109_ACCESS_2024_3394541 crossref_primary_10_1148_radiol_2019192471 crossref_primary_10_12998_wjcc_v11_i16_3725 crossref_primary_10_35377_saucis_5_69696_1019187 crossref_primary_10_1155_2022_3415603 crossref_primary_10_1186_s12880_024_01338_w crossref_primary_10_3390_app12083773 crossref_primary_10_3390_diagnostics12092235 crossref_primary_10_1016_j_acra_2022_03_018 crossref_primary_10_1007_s00330_022_08708_4 crossref_primary_10_3389_fnins_2021_651920 crossref_primary_10_1007_s10278_023_00838_5 crossref_primary_10_1109_TRPMS_2024_3420742 crossref_primary_10_2214_AJR_22_28231 crossref_primary_10_1007_s10334_024_01179_2 crossref_primary_10_1016_j_media_2025_103469 crossref_primary_10_1038_s41746_021_00398_4 crossref_primary_10_1002_jmri_27078 crossref_primary_10_1063_5_0165485 crossref_primary_10_1148_radiol_2019181343 crossref_primary_10_1002_widm_1490 crossref_primary_10_3390_biomedinformatics2040049 crossref_primary_10_1067_j_cpradiol_2024_12_004 crossref_primary_10_1002_jmri_29126 crossref_primary_10_1016_S2213_2600_19_30081_5 crossref_primary_10_1007_s40042_023_00852_4 crossref_primary_10_1186_s40001_022_00883_w crossref_primary_10_1016_j_compbiomed_2020_103758 crossref_primary_10_1016_j_arth_2022_10_003 crossref_primary_10_1016_j_acra_2021_09_025 crossref_primary_10_1155_2024_5574638 crossref_primary_10_36962_PAHTEI30072023_457 crossref_primary_10_1155_2022_3236305 crossref_primary_10_3390_electronics12030750 crossref_primary_10_1016_j_hlc_2023_06_703 crossref_primary_10_3390_diagnostics15030280 crossref_primary_10_1002_mrm_28738 crossref_primary_10_1016_j_asoc_2024_111909 crossref_primary_10_1186_s40658_021_00426_y crossref_primary_10_1109_JBHI_2020_3025901 crossref_primary_10_1002_jmri_29710 crossref_primary_10_1111_exsy_13799 crossref_primary_10_3390_diagnostics13091571 crossref_primary_10_1007_s11042_021_10969_y crossref_primary_10_1038_s41598_019_55439_6 crossref_primary_10_2214_AJR_23_29674 crossref_primary_10_1002_mp_14429 crossref_primary_10_1016_j_nicl_2021_102651 crossref_primary_10_1007_s11547_024_01791_1 crossref_primary_10_1016_j_clinimag_2023_04_010 crossref_primary_10_1007_s10278_022_00644_5 crossref_primary_10_3390_cancers13194740 crossref_primary_10_1007_s11831_023_09899_9 crossref_primary_10_1016_j_engappai_2023_106596 crossref_primary_10_1007_s00439_021_02387_9 crossref_primary_10_1002_widm_1379 crossref_primary_10_1111_bcpt_13828 crossref_primary_10_1109_ACCESS_2023_3345648 crossref_primary_10_1259_bjr_20210539 crossref_primary_10_2174_1573409920666230816090626 crossref_primary_10_3233_JIFS_210595 crossref_primary_10_3390_app13095261 crossref_primary_10_1002_aisy_202200184 crossref_primary_10_1111_rego_12331 crossref_primary_10_1111_exsy_13614 crossref_primary_10_1055_s_0041_1731060 crossref_primary_10_31893_multirev_2025218 crossref_primary_10_1007_s00247_021_05270_x crossref_primary_10_1007_s40259_023_00611_8 crossref_primary_10_32604_cmc_2023_042493 crossref_primary_10_35712_aig_v2_i2_27 crossref_primary_10_1002_mp_13764 crossref_primary_10_1007_s00330_023_09483_6 crossref_primary_10_1016_j_bbe_2020_08_008 crossref_primary_10_1148_ryai_2019180050 crossref_primary_10_1007_s10334_024_01173_8 crossref_primary_10_1016_j_ejrad_2024_111677 crossref_primary_10_1109_ACCESS_2020_3016780 crossref_primary_10_3889_oamjms_2021_7806 crossref_primary_10_1055_s_0041_1730401 crossref_primary_10_1186_s40537_024_00989_4 crossref_primary_10_1177_17562872211044880 crossref_primary_10_1007_s00330_023_09713_x crossref_primary_10_1016_j_jacr_2021_01_014 crossref_primary_10_1109_TII_2021_3051952 crossref_primary_10_1007_s00266_024_04076_0 crossref_primary_10_3390_bioengineering11121189 crossref_primary_10_15212_RADSCI_2023_0011 crossref_primary_10_3390_healthcare9020153 crossref_primary_10_3389_fmedt_2024_1469852 crossref_primary_10_1007_s42058_024_00142_3 crossref_primary_10_18231_j_ijpp_2021_018 crossref_primary_10_1109_ACCESS_2021_3071057 crossref_primary_10_1016_j_compbiomed_2019_05_002 crossref_primary_10_1148_radiol_211367 crossref_primary_10_3390_tomography9040115 crossref_primary_10_1038_s41598_023_47904_0 crossref_primary_10_1016_j_clinimag_2022_04_007 crossref_primary_10_1007_s10462_023_10556_7 crossref_primary_10_1016_j_joen_2019_03_016 crossref_primary_10_1109_ACCESS_2024_3354826 crossref_primary_10_1109_JBHI_2022_3179014 crossref_primary_10_3390_diagnostics11091557 crossref_primary_10_1148_ryai_220080 crossref_primary_10_1109_ACCESS_2022_3218444 crossref_primary_10_1186_s40798_024_00786_6 crossref_primary_10_1007_s12021_021_09520_z crossref_primary_10_1148_ryai_2021200221 crossref_primary_10_1016_j_neucom_2024_127317 crossref_primary_10_1097_RCT_0000000000001418 crossref_primary_10_1016_j_zemedi_2018_11_002 crossref_primary_10_1038_s41598_023_31403_3 crossref_primary_10_1002_jmri_27331 crossref_primary_10_1007_s00530_024_01349_1 crossref_primary_10_1142_S0218843021500076 crossref_primary_10_1016_j_ejrad_2024_111572 crossref_primary_10_1002_jmri_29194 crossref_primary_10_1038_s41598_021_00018_x crossref_primary_10_1177_00031348221101490 crossref_primary_10_24835_1607_0763_1243 crossref_primary_10_3390_jcm13216559 crossref_primary_10_3390_rs15194761 crossref_primary_10_1016_j_lungcan_2022_12_002 crossref_primary_10_1097_MD_0000000000035039 crossref_primary_10_1259_dmfr_20200172 crossref_primary_10_1155_2022_1614838 crossref_primary_10_1088_1361_6560_ac46dd crossref_primary_10_1002_jmri_28899 crossref_primary_10_1007_s00371_019_01775_7 crossref_primary_10_1186_s12880_024_01493_0 crossref_primary_10_1016_j_ejro_2024_100588 crossref_primary_10_1109_ACCESS_2023_3257049 crossref_primary_10_1007_s00381_024_06400_0 crossref_primary_10_3389_fradi_2021_713681 crossref_primary_10_54691_j4ddc779 crossref_primary_10_1016_j_patrec_2024_11_023 crossref_primary_10_3390_s22239430 crossref_primary_10_3390_info16040262 crossref_primary_10_3390_s22010167 crossref_primary_10_1007_s00384_025_04809_w crossref_primary_10_1007_s10462_025_11146_5 crossref_primary_10_1016_j_engappai_2022_105170 crossref_primary_10_3390_jimaging9110244 crossref_primary_10_2463_mrms_rev_2024_0077 crossref_primary_10_1007_s12553_022_00648_9 crossref_primary_10_3390_app13063850 crossref_primary_10_1007_s00264_023_05987_4 crossref_primary_10_1055_a_1775_8633 crossref_primary_10_1038_s41598_021_83271_4 crossref_primary_10_1111_exsy_13499 crossref_primary_10_3390_jcm9113579 crossref_primary_10_1002_mp_16676 crossref_primary_10_1002_nbm_4730 crossref_primary_10_1038_s41598_022_08020_7 crossref_primary_10_1016_j_imu_2024_101538 crossref_primary_10_1038_s41746_020_00376_2 crossref_primary_10_1002_jmri_27913 crossref_primary_10_1007_s00256_020_03410_2 crossref_primary_10_1016_j_inffus_2020_09_006 crossref_primary_10_1002_jsp2_1276 crossref_primary_10_1002_cam4_70574 crossref_primary_10_3389_fmolb_2020_614258 crossref_primary_10_1007_s00261_023_04124_4 crossref_primary_10_3390_medicina59111973 crossref_primary_10_1016_j_isci_2022_105692 crossref_primary_10_1186_s12903_024_05126_4 crossref_primary_10_1016_j_heliyon_2024_e31451 crossref_primary_10_2139_ssrn_4189440 crossref_primary_10_3390_diagnostics11081402 crossref_primary_10_1016_j_jseint_2023_05_008 crossref_primary_10_3390_cancers16234042 crossref_primary_10_1016_j_procs_2020_06_120 crossref_primary_10_3389_fonc_2023_1231497 crossref_primary_10_1073_pnas_2117203119 crossref_primary_10_1007_s11102_019_01026_x crossref_primary_10_1080_0142159X_2023_2190483 crossref_primary_10_5582_bst_2020_03364 crossref_primary_10_1002_nbm_5014 crossref_primary_10_1155_2021_9066128 crossref_primary_10_1007_s11042_023_15029_1 crossref_primary_10_1097_RLI_0000000000000928 crossref_primary_10_1016_j_neucom_2019_06_113 crossref_primary_10_1007_s00330_020_07451_y crossref_primary_10_1016_j_nic_2020_04_002 crossref_primary_10_1007_s11042_021_10707_4 crossref_primary_10_1109_ACCESS_2019_2947606 crossref_primary_10_1556_1647_2022_00104 crossref_primary_10_1007_s10334_019_00782_y crossref_primary_10_3390_diagnostics15020168 crossref_primary_10_1097_WCO_0000000000001305 crossref_primary_10_17341_gazimmfd_762056 crossref_primary_10_1148_ryct_230419 crossref_primary_10_1016_j_bspc_2024_106154 crossref_primary_10_1371_journal_pone_0268430 crossref_primary_10_1038_s41598_020_72270_6 crossref_primary_10_1002_mrm_30324 crossref_primary_10_1259_bjr_20190812 crossref_primary_10_7717_peerj_cs_773 crossref_primary_10_2147_CMAR_S299020 crossref_primary_10_2186_jpr_JPR_D_22_00053 crossref_primary_10_15212_RADSCI_2023_0005 crossref_primary_10_1109_TNNLS_2021_3119071 crossref_primary_10_1016_j_clinimag_2022_11_003 crossref_primary_10_33808_clinexphealthsci_1466714 crossref_primary_10_1016_j_acra_2019_09_012 crossref_primary_10_3390_jcm14041296 crossref_primary_10_1177_2058460121990296 crossref_primary_10_1016_j_clinimag_2021_06_033 crossref_primary_10_1007_s00234_023_03271_1 crossref_primary_10_1007_s10278_024_01253_0 crossref_primary_10_1016_j_mric_2021_06_016 crossref_primary_10_1007_s00330_023_09823_6 crossref_primary_10_1002_mp_15359 crossref_primary_10_1016_j_bbe_2021_11_004 crossref_primary_10_3390_bioengineering10080950 crossref_primary_10_3390_info11120548 crossref_primary_10_1038_s41598_020_70159_y crossref_primary_10_1016_j_tins_2021_01_008 crossref_primary_10_1016_j_cities_2023_104562 crossref_primary_10_1007_s00354_024_00278_x crossref_primary_10_1016_j_clinimag_2020_04_025 crossref_primary_10_1097_BRS_0000000000003704 crossref_primary_10_1007_s13369_021_06127_z crossref_primary_10_1038_s41598_024_56657_3 crossref_primary_10_1007_s10334_023_01129_4 crossref_primary_10_1016_j_clbc_2021_04_015 crossref_primary_10_48175_IJARSCT_23724 crossref_primary_10_3389_fonc_2022_839567 crossref_primary_10_1177_02841851231202323 crossref_primary_10_3390_app11062704 crossref_primary_10_1002_jmri_27957 crossref_primary_10_31159_ksmrt_2024_34_3_23 crossref_primary_10_1088_1361_6560_ab82e8 crossref_primary_10_1007_s40846_021_00631_1 crossref_primary_10_1093_ajcp_aqaa001 crossref_primary_10_3389_fphy_2024_1445204 crossref_primary_10_1002_jmri_28124 crossref_primary_10_1002_jmri_27035 crossref_primary_10_1016_j_injury_2020_11_037 crossref_primary_10_1016_j_eclinm_2023_101905 crossref_primary_10_1148_radiol_2019191293 crossref_primary_10_1016_j_compmedimag_2024_102387 crossref_primary_10_1016_j_jrras_2023_100549 crossref_primary_10_1186_s12880_021_00568_6 crossref_primary_10_4236_jcc_2024_126012 crossref_primary_10_3174_ajnr_A6070 crossref_primary_10_1515_bmt_2022_0142 crossref_primary_10_3390_diagnostics13020228 crossref_primary_10_3389_fonc_2021_632104 crossref_primary_10_1155_2024_5576859 crossref_primary_10_3389_fonc_2023_1117874 crossref_primary_10_1371_journal_pone_0313126 crossref_primary_10_7717_peerj_cs_2556 crossref_primary_10_3389_fonc_2023_1261080 crossref_primary_10_3390_electronics11010055 crossref_primary_10_1109_ACCESS_2023_3335196 crossref_primary_10_3390_diagnostics11122181 crossref_primary_10_1155_2021_7259414 crossref_primary_10_1186_s12880_025_01582_8 crossref_primary_10_35711_aimi_v1_i2_70 crossref_primary_10_2214_AJR_19_21346 crossref_primary_10_1007_s10334_024_01165_8 crossref_primary_10_1016_j_cmpb_2022_106874 crossref_primary_10_3390_healthcare8020107 crossref_primary_10_1093_radadv_umae035 crossref_primary_10_1016_j_job_2022_03_003 crossref_primary_10_1016_j_compmedimag_2021_101887 crossref_primary_10_1016_j_ejro_2024_100624 crossref_primary_10_1016_j_echo_2022_08_009 crossref_primary_10_3390_technologies11050128 crossref_primary_10_1186_s12903_023_03027_6 crossref_primary_10_3389_fneur_2022_1055437 crossref_primary_10_1049_ipr2_12045 crossref_primary_10_1002_jmri_26877 crossref_primary_10_3389_fcvm_2020_00025 crossref_primary_10_3389_fcvm_2021_654515 crossref_primary_10_1097_RCT_0000000000001247 crossref_primary_10_1097_MNM_0000000000001786 crossref_primary_10_3390_jcm13020344 crossref_primary_10_1016_j_compbiomed_2022_105357 crossref_primary_10_1109_TBME_2021_3117407 crossref_primary_10_1016_j_crad_2024_106756 crossref_primary_10_1016_j_neucom_2019_09_044 crossref_primary_10_2478_jaiscr_2022_0007 |
Cites_doi | 10.7551/mitpress/7503.003.0024 10.1007/978-3-319-24574-4_28 10.1002/jmri.25970 10.1148/radiol.13130663 10.1007/978-3-319-46723-8_49 10.1016/S1361-8415(02)00056-7 10.1007/978-3-319-46448-0_2 10.1016/j.bspc.2016.02.006 10.1148/radiol.2351040699 10.1016/j.neuroimage.2017.04.034 10.1117/12.2253982 10.1007/s11604-018-0758-8 10.1007/978-3-319-46726-9_29 10.1002/mp.12344 10.1126/science.1127647 10.1038/nature22985 10.1016/j.media.2017.01.008 10.1038/s41598-017-05848-2 10.1080/17453674.2017.1344459 10.1007/978-3-319-60964-5_36 10.1007/s00586-017-4956-3 10.1364/BOE.8.000679 10.1007/978-3-319-10404-1_65 10.1007/978-3-642-40763-5_31 10.1111/j.1469-8137.1912.tb05611.x 10.1002/mp.12453 10.1118/1.4967345 10.1016/j.neucom.2016.12.038 10.1007/978-3-319-59876-5_12 10.1109/CVPR.2014.220 10.1002/mp.12399 10.1609/aaai.v31i1.11231 10.1109/42.563664 10.1038/s41598-017-15720-y 10.1148/rg.2017160130 10.1109/TMI.2016.2549918 10.1109/TCYB.2017.2671898 10.1002/jmri.25779 10.1109/CVPR.2017.367 10.1007/s10278-017-0009-z 10.1109/TMI.2016.2528129 10.18383/j.tom.2016.00211 10.1007/s10278-017-9984-3 10.1016/j.nicl.2017.10.015 10.1109/CVPR.2016.91 10.1007/978-3-319-67434-6_14 10.1148/radiol.14132641 10.1109/CVPR.2015.7298932 10.1109/CVPR.2015.7298594 10.1109/TMI.2016.2528162 10.1002/mp.12155 10.1109/TMI.2015.2482920 10.1016/j.media.2016.05.004 10.1109/CVPR.2016.90 10.1016/j.crad.2017.11.015 10.1109/3DV.2016.79 10.1007/978-3-319-52280-7_8 10.1109/CVPRW.2014.131 10.1093/neuonc/nos335 10.1109/EMBC.2017.8037243 10.1016/j.media.2016.07.007 10.1038/s41598-017-05728-9 10.1002/mrm.27178 10.1162/neco.1997.9.8.1735 10.1109/CVPR.2014.276 10.1109/TMI.2017.2690836 10.1109/CVPR.2015.7298965 10.1109/CVPR.2016.308 10.1109/CVPRW.2017.156 10.1016/j.jacr.2015.04.019 10.1109/ICCV.2015.123 10.1109/JBHI.2016.2635663 10.1007/978-3-319-55524-9_12 10.1109/EMBC.2017.8036887 10.1016/j.media.2017.07.006 10.1016/j.neuroimage.2017.02.035 10.1148/radiol.13120118 10.1145/3107411.3107484 10.1007/978-3-319-46726-9_2 10.1109/ISBI.2017.7950555 10.1007/978-3-319-67558-9_24 10.1109/TMI.2016.2535302 10.1016/j.cviu.2017.04.002 10.1016/j.media.2016.01.005 10.1016/j.neucom.2017.05.025 10.1016/j.media.2017.07.005 10.1007/s10278-017-9983-4 10.1007/978-3-319-67558-9_28 10.1016/j.ejrad.2015.07.012 |
ContentType | Journal Article |
Copyright | 2018 International Society for Magnetic Resonance in Medicine 2018 International Society for Magnetic Resonance in Medicine. 2019 International Society for Magnetic Resonance in Medicine |
Copyright_xml | – notice: 2018 International Society for Magnetic Resonance in Medicine – notice: 2018 International Society for Magnetic Resonance in Medicine. – notice: 2019 International Society for Magnetic Resonance in Medicine |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD FR3 K9. P64 7X8 5PM |
DOI | 10.1002/jmri.26534 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1522-2586 |
EndPage | 954 |
ExternalDocumentID | PMC6483404 30575178 10_1002_jmri_26534 JMRI26534 |
Genre | reviewArticle Journal Article Review Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Biomedical Imaging and Bioengineering funderid: 5 R01 EB021360 – fundername: NIBIB NIH HHS grantid: R01 EB021360 |
GroupedDBID | --- -DZ .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TWZ UB1 V2E V8K V9Y W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR XG1 XV2 ZXP ZZTAW ~IA ~WT AAHHS AAYXX ACCFJ AEEZP AEQDE AIWBW AJBDE CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD FR3 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c4484-800b37b06598cd96bf390ca10f7caa2b41752ffbde0188dd377b0ae1dbb4a58a3 |
IEDL.DBID | DR2 |
ISSN | 1053-1807 1522-2586 |
IngestDate | Thu Aug 21 18:09:39 EDT 2025 Fri Jul 11 12:23:27 EDT 2025 Fri Jul 25 12:15:32 EDT 2025 Thu Apr 03 06:59:18 EDT 2025 Tue Jul 01 03:56:41 EDT 2025 Thu Apr 24 22:59:49 EDT 2025 Wed Aug 20 07:27:09 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | deep learning convolutional neural networks machine learning radiology artificial intelligence medical imaging |
Language | English |
License | 2018 International Society for Magnetic Resonance in Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4484-800b37b06598cd96bf390ca10f7caa2b41752ffbde0188dd377b0ae1dbb4a58a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-7650-1720 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6483404 |
PMID | 30575178 |
PQID | 2190830312 |
PQPubID | 1006400 |
PageCount | 24 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6483404 proquest_miscellaneous_2159982467 proquest_journals_2190830312 pubmed_primary_30575178 crossref_citationtrail_10_1002_jmri_26534 crossref_primary_10_1002_jmri_26534 wiley_primary_10_1002_jmri_26534_JMRI26534 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2019 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: April 2019 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Nashville |
PublicationSubtitle | JMRI |
PublicationTitle | Journal of magnetic resonance imaging |
PublicationTitleAlternate | J Magn Reson Imaging |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 6 2017; 42 2017; 7 2017; 8 2017; 44 2017; PP 2017; 88 2017; 45 2016; 30 2017; 155 2017; 234 1997; 9 2016; 35 2018; 47 2017; 30 2013; 15 2018; 170 2017; 37 2017; 36 2015; 84 2017; 35 2016; 43 2018; 73 2014; 17 1912; 11 2017; 723 2017; 62 2015; 12 2012 2005; 235 2017; 21 2002; 6 1997 2007 2013; 267 2014; 270 2006; 313 2014; 273 2018; 17 2016; 2 2018 2017 2016 2015 2014 2013 2017; 266 2017; 542 2016; 27 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_71_1 Li R (e_1_2_9_106_1) 2014; 17 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_14_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 Chartsias A (e_1_2_9_101_1) 2017; 62 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_111_1 e_1_2_9_115_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_114_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_31_1 Yosinski J (e_1_2_9_23_1) 2014 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 Larson DB (e_1_2_9_123_1) 2017 e_1_2_9_105_1 e_1_2_9_124_1 e_1_2_9_39_1 e_1_2_9_120_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 Krizhevsky A (e_1_2_9_3_1) 2012 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 Ren S (e_1_2_9_11_1) 2015 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_113_1 e_1_2_9_117_1 Mazurowski MA (e_1_2_9_17_1) 2017 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_70_1 Umehara K (e_1_2_9_108_1) 2017 e_1_2_9_100_1 e_1_2_9_104_1 e_1_2_9_36_1 e_1_2_9_59_1 Kim DH (e_1_2_9_118_1) 2017 e_1_2_9_63_1 Lv J (e_1_2_9_96_1) 2017 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 Vos BD (e_1_2_9_90_1) 2016 e_1_2_9_112_1 e_1_2_9_116_1 e_1_2_9_25_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 17 start-page: 305 year: 2014 end-page: 312 article-title: Deep learning based imaging data completion for improved brain disease diagnosis publication-title: Med Image Comput Comput Assist Interv – volume: 723 start-page: 413 year: 2017 end-page: 424 article-title: Learning longitudinal MRI patterns by SICE and deep learning: Assessing the Alzheimer's disease progression publication-title: In: Commun Comput Inf Sci – start-page: 1026 year: 2015 end-page: 1034 – volume: 7 start-page: 5467 year: 2017 article-title: Deep learning based radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma publication-title: Sci Rep – start-page: 3320 year: 2014 end-page: 3328 article-title: How transferable are features in deep neural networks? publication-title: Adv Neural Inf Process Syst – start-page: 565 year: 2016 end-page: 571 – start-page: 1 year: 2017 end-page: 9 article-title: Radiogenomics of lower‐grade glioma: algorithmically‐assessed tumor shape is associated with tumor genomic subtypes and patient outcomes in a multi‐institutional study with The Cancer Genome Atlas data publication-title: J Neurooncol – volume: 44 start-page: 5162 year: 2017 end-page: 5171 article-title: A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets publication-title: Med Phys – volume: 6 start-page: 1374 year: 2017 end-page: 1383 article-title: Automation of reading of radiological features from magnetic resonance images (MRIs) of the lumbar spine without human intervention is comparable with an expert radiologist publication-title: Eur Spine J – volume: 12 start-page: 862 year: 2015 end-page: 866 article-title: Radiogenomics: What it is and why it is important publication-title: J Am Coll Radiol – start-page: 3431 year: 2015 end-page: 3440 – start-page: 1097 year: 2012 end-page: 1105 article-title: Imagenet classification with deep convolutional neural networks publication-title: In: Adv Neural Inf Process Syst – year: 2017 article-title: Deep learning for segmentation of deep brain regions in MRI and ultrasound publication-title: Comput Vis Image Underst – volume: PP start-page: 1 year: 2017 – year: 2014 – volume: 6 start-page: 163 year: 2002 end-page: 179 article-title: Automatic detection and segmentation of evolving processes in 3D medical images: Application to multiple sclerosis publication-title: Med Image Anal – volume: 21 start-page: 31 year: 2017 end-page: 40 article-title: An ensemble of fine‐tuned convolutional neural networks for medical image classification publication-title: IEEE J Biomed Heal Informatics – volume: 35 start-page: 18 year: 2017 end-page: 31 article-title: Brain tumor segmentation with deep neural networks publication-title: Med Image Anal – volume: 35 start-page: 2085 year: 2016 end-page: 2097 article-title: Reconstruction of 7T‐like images from 3T MRI publication-title: IEEE Trans Med Imaging – volume: 17 start-page: 169 year: 2018 end-page: 178 article-title: Deep learning of joint myelin and T1w MRI features in normal‐appearing brain tissue to distinguish between multiple sclerosis patients and healthy controls publication-title: NeuroImage Clin – year: 2018 article-title: Super‐resolution musculoskeletal MRI using deep learning publication-title: Magn Reson Med – volume: 27 start-page: 145 year: 2016 end-page: 154 article-title: Review of medical image quality assessment publication-title: Biomed Signal Process Control – volume: 8 start-page: 679 year: 2017 end-page: 694 article-title: Low‐dose CT via convolutional neural network publication-title: Biomed Opt Express – volume: 542 start-page: 686 year: 2017 article-title: Dermatologist‐level classification of skin cancer with deep neural networks publication-title: Nature – start-page: 20170788 year: 2017 article-title: Respiratory motion correction for free‐breathing 3D abdominal MRI using CNN based image registration: a feasibility study publication-title: Br J Radiol – volume: 44 start-page: 1408 year: 2017 end-page: 1419 article-title: MR‐based synthetic CT generation using a deep convolutional neural network method publication-title: Med Phys – volume: 313 start-page: 504 year: 2006 end-page: 507 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – volume: 62 start-page: 1 year: 2017 end-page: 1 article-title: Multimodal MR synthesis via modality‐invariant latent representation publication-title: IEEE Trans Med Imaging – volume: 37 start-page: 505 year: 2017 end-page: 515 article-title: Machine learning for medical imaging publication-title: RadioGraphics – volume: 7 start-page: 5301 year: 2017 article-title: Deep learning for fully‐automated localization and segmentation of rectal cancer on multiparametric MR publication-title: Sci Rep – volume: 30 start-page: 469 year: 2017 end-page: 476 article-title: Predicting deletion of chromosomal arms 1p/19q in low‐grade gliomas from MR images using machine intelligence publication-title: J Digit Imaging – start-page: 240 year: 2017 end-page: 248 – volume: 235 start-page: 31 year: 2005 end-page: 35 article-title: Comparison of recall and cancer detection rates for immediate versus batch interpretation of screening mammograms publication-title: Radiology – start-page: 153 year: 2007 end-page: 160 – start-page: 234 year: 2015 end-page: 241 – volume: 42 start-page: 145 year: 2017 end-page: 159 article-title: Ensemble of expert deep neural networks for spatio‐temporal denoising of contrast‐enhanced MRI sequences publication-title: Med Image Anal – start-page: 1998 year: 2017 end-page: 2001 – volume: 37 start-page: 101 year: 2017 end-page: 113 article-title: Deep ensemble learning of sparse regression models for brain disease diagnosis publication-title: Med Image Anal – start-page: 779 year: 2016 end-page: 788 – volume: 270 start-page: 464 year: 2014 end-page: 471 article-title: Radiogenomics of clear cell renal cell carcinoma: associations between CT imaging features and mutations publication-title: Radiology – volume: 45 start-page: 1336 year: 2017 end-page: 1349 article-title: FUIQA: Fetal ultrasound image quality assessment with deep convolutional networks publication-title: IEEE Trans Cybern – start-page: 119 year: 2016 end-page: 128 – volume: 35 start-page: 1182 year: 2016 end-page: 1195 article-title: Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks publication-title: IEEE Trans Med Imaging – start-page: 564 year: 2017 end-page: 567 – start-page: 2818 year: 2016 end-page: 2826 – volume: 35 start-page: 1170 year: 2016 end-page: 1181 article-title: Improving computer‐aided detection using convolutional neural networks and random view aggregation publication-title: IEEE Trans Med Imaging – start-page: 520 year: 2014 end-page: 527 – volume: 267 start-page: 560 year: 2013 end-page: 569 article-title: MR imaging predictors of molecular profile and survival: multi‐institutional study of the TCGA glioblastoma data set publication-title: Radiology – year: 2016 – start-page: 101342E year: 2017 – start-page: 170236 year: 2017 article-title: Performance of a deep‐learning neural network model in assessing skeletal maturity on pediatric hand radiographs publication-title: Radiology – volume: 9 start-page: 1735 year: 1997 end-page: 1780 article-title: Long short‐term memory publication-title: Neural Comput – start-page: 246 year: 2013 end-page: 253 – start-page: 806 year: 2014 end-page: 813 – start-page: 1 year: 2015 end-page: 9 – start-page: 204 year: 2017 end-page: 212 – start-page: 1175 year: 2017 end-page: 1183 – volume: 47 start-page: 723 year: 2018 end-page: 728 article-title: Automated image quality evaluation of T2‐weighted liver MRI utilizing deep learning architecture publication-title: J Magn Reson Imaging – start-page: 437 year: 2017 end-page: 440 – year: 2018 article-title: Deep learning enables reduced gadolinium dose for contrast‐enhanced brain MRI publication-title: J Magn Reson Imaging – volume: 43 start-page: 6654 year: 2016 end-page: 6666 article-title: Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography publication-title: Med Phys – start-page: 21 year: 2016 end-page: 37 – volume: 36 start-page: 1221 year: 2017 end-page: 1230 article-title: Automatic quality assessment of echocardiograms using convolutional neural networks: Feasibility on the apical four‐chamber view publication-title: IEEE Trans Med Imaging – volume: 266 start-page: 8 year: 2017 end-page: 20 article-title: Medical image retrieval using deep convolutional neural network publication-title: Neurocomputing – start-page: 770 year: 2016 end-page: 778 – volume: 155 start-page: 159 year: 2017 end-page: 168 article-title: Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach publication-title: Neuroimage – start-page: 1701 year: 2014 end-page: 1708 – volume: 73 start-page: 439 year: 2018 end-page: 445 article-title: Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks publication-title: Clin Radiol – start-page: 170 year: 2016 end-page: 178 – year: 2018 – start-page: 2147 year: 2014 end-page: 2154 – start-page: 16 year: 1997 – volume: 88 start-page: 581 year: 2017 end-page: 586 article-title: Artificial intelligence for analyzing orthopedic trauma radiographs publication-title: Acta Orthop – start-page: 536 year: 2017 end-page: 543 – volume: 11 start-page: 37 year: 1912 end-page: 50 article-title: The distribution of the flora in the alpine zone publication-title: New Phytol – volume: 15 start-page: 1389 year: 2013 end-page: 1394 article-title: Imaging descriptors improve the predictive power of survival models for glioblastoma patients publication-title: Neuro Oncol – start-page: 246 year: 2016 end-page: 254 – start-page: 1 year: 2017 end-page: 1 – volume: 2 start-page: 388 year: 2016 end-page: 395 article-title: Deep feature transfer learning in combination with traditional features predicts survival among patients with lung adenocarcinoma publication-title: Tomography – year: 2015 – start-page: 83 year: 2016 end-page: 94 – volume: 30 start-page: 622 year: 2017 end-page: 628 article-title: Residual deep convolutional neural network predicts MGMT methylation status publication-title: J Digit Imaging – start-page: 97 year: 2017 end-page: 104 – start-page: 91 year: 2015 end-page: 99 article-title: Faster R‐CNN: Towards real‐time object detection with region proposal networks publication-title: Adv Neural Inf Process Syst – volume: 44 start-page: e360 year: 2017 end-page: e375 article-title: A deep convolutional neural network using directional wavelets for low‐dose X‐ray CT reconstruction publication-title: Med Phys – volume: 35 start-page: 1285 year: 2016 end-page: 1298 article-title: Deep convolutional neural networks for computer‐aided detection: CNN architectures, dataset characteristics and transfer learning publication-title: IEEE Trans Med Imaging – volume: 30 start-page: 449 year: 2017 end-page: 459 article-title: Deep learning for brain MRI segmentation: state of the art and future directions publication-title: J Digit Imaging – volume: 84 start-page: 2117 year: 2015 end-page: 2122 article-title: Recurrence‐free survival in breast cancer is associated with MRI tumor enhancement dynamics quantified using computer algorithms publication-title: Eur J Radiol – volume: 7 start-page: 15415 year: 2017 article-title: Searching for prostate cancer by fully automated magnetic resonance imaging classification: Deep learning versus non‐deep learning publication-title: Sci Rep – start-page: 424 year: 2016 end-page: 432 – start-page: 4278 year: 2017 end-page: 4284 – start-page: 3444 year: 2017 end-page: 3453 – volume: 234 start-page: 11 year: 2017 end-page: 26 article-title: A survey of deep neural network architectures and their applications publication-title: Neurocomputing – volume: 30 start-page: 108 year: 2016 end-page: 119 article-title: A combined deep‐learning and deformable‐model approach to fully automatic segmentation of the left ventricle in cardiac MRI publication-title: Med Image Anal – volume: 42 start-page: 60 year: 2017 end-page: 88 article-title: A survey on deep learning in medical image analysis publication-title: Med Image Anal – volume: 35 start-page: 303 year: 2017 end-page: 312 article-title: Large scale deep learning for computer aided detection of mammographic lesions publication-title: Med Image Anal – volume: 44 start-page: 4630 year: 2017 end-page: 4642 article-title: detection and diagnosis of colitis on computed tomography using deep convolutional neural networks publication-title: Med Phys – start-page: 10 year: 2016 end-page: 18 – volume: 35 start-page: 1299 year: 2016 end-page: 1312 article-title: Convolutional neural networks for medical image analysis: Full training or fine tuning? publication-title: IEEE Trans Med Imaging – start-page: 1 year: 2017 end-page: 10 article-title: Application of super‐resolution convolutional neural network for enhancing image resolution in chest CT publication-title: J Digit Imaging – start-page: 3128 year: 2015 end-page: 3137 – start-page: 121 year: 2017 end-page: 128 article-title: Breast tumor detection in ultrasound images using deep learning publication-title: Int Work Patch‐based Tech Med Imaging – year: 2017 – volume: 273 start-page: 365 year: 2014 end-page: 372 article-title: Radiogenomic analysis of breast cancer: Luminal B molecular subtype is associated with enhancement dynamics at MR imaging publication-title: Radiology – volume: 170 start-page: 434 year: 2018 end-page: 445 article-title: DeepNAT: Deep convolutional neural network for segmenting neuroanatomy publication-title: Neuroimage – start-page: 97841Y year: 2016 article-title: 2D image classification for 3D anatomy localization: employing deep convolutional neural networks publication-title: Med Imaging Image Process – ident: e_1_2_9_44_1 doi: 10.7551/mitpress/7503.003.0024 – start-page: 91 year: 2015 ident: e_1_2_9_11_1 article-title: Faster R‐CNN: Towards real‐time object detection with region proposal networks publication-title: Adv Neural Inf Process Syst – ident: e_1_2_9_56_1 doi: 10.1007/978-3-319-24574-4_28 – ident: e_1_2_9_112_1 doi: 10.1002/jmri.25970 – ident: e_1_2_9_18_1 doi: 10.1148/radiol.13130663 – ident: e_1_2_9_67_1 doi: 10.1007/978-3-319-46723-8_49 – ident: e_1_2_9_75_1 doi: 10.1016/S1361-8415(02)00056-7 – ident: e_1_2_9_86_1 doi: 10.1007/978-3-319-46448-0_2 – ident: e_1_2_9_114_1 doi: 10.1016/j.bspc.2016.02.006 – ident: e_1_2_9_13_1 doi: 10.1148/radiol.2351040699 – ident: e_1_2_9_52_1 doi: 10.1016/j.neuroimage.2017.04.034 – ident: e_1_2_9_25_1 doi: 10.1117/12.2253982 – ident: e_1_2_9_111_1 doi: 10.1007/s11604-018-0758-8 – ident: e_1_2_9_35_1 – start-page: 170236 year: 2017 ident: e_1_2_9_123_1 article-title: Performance of a deep‐learning neural network model in assessing skeletal maturity on pediatric hand radiographs publication-title: Radiology – ident: e_1_2_9_107_1 doi: 10.1007/978-3-319-46726-9_29 – ident: e_1_2_9_103_1 doi: 10.1002/mp.12344 – ident: e_1_2_9_43_1 doi: 10.1126/science.1127647 – volume: 62 start-page: 1 year: 2017 ident: e_1_2_9_101_1 article-title: Multimodal MR synthesis via modality‐invariant latent representation publication-title: IEEE Trans Med Imaging – ident: e_1_2_9_8_1 – ident: e_1_2_9_26_1 doi: 10.1038/nature22985 – ident: e_1_2_9_36_1 doi: 10.1016/j.media.2017.01.008 – ident: e_1_2_9_48_1 doi: 10.1038/s41598-017-05848-2 – ident: e_1_2_9_126_1 – ident: e_1_2_9_124_1 doi: 10.1080/17453674.2017.1344459 – ident: e_1_2_9_22_1 – ident: e_1_2_9_45_1 doi: 10.1007/978-3-319-60964-5_36 – ident: e_1_2_9_125_1 doi: 10.1007/s00586-017-4956-3 – ident: e_1_2_9_102_1 doi: 10.1364/BOE.8.000679 – ident: e_1_2_9_76_1 doi: 10.1007/978-3-319-10404-1_65 – ident: e_1_2_9_91_1 doi: 10.1007/978-3-642-40763-5_31 – ident: e_1_2_9_73_1 doi: 10.1111/j.1469-8137.1912.tb05611.x – start-page: 97841Y year: 2016 ident: e_1_2_9_90_1 article-title: 2D image classification for 3D anatomy localization: employing deep convolutional neural networks publication-title: Med Imaging Image Process – ident: e_1_2_9_119_1 – ident: e_1_2_9_30_1 doi: 10.1002/mp.12453 – ident: e_1_2_9_81_1 doi: 10.1118/1.4967345 – ident: e_1_2_9_2_1 doi: 10.1016/j.neucom.2016.12.038 – ident: e_1_2_9_62_1 doi: 10.1007/978-3-319-59876-5_12 – ident: e_1_2_9_7_1 doi: 10.1109/CVPR.2014.220 – ident: e_1_2_9_84_1 doi: 10.1002/mp.12399 – ident: e_1_2_9_39_1 doi: 10.1609/aaai.v31i1.11231 – ident: e_1_2_9_95_1 doi: 10.1109/42.563664 – ident: e_1_2_9_32_1 doi: 10.1038/s41598-017-15720-y – ident: e_1_2_9_21_1 doi: 10.1148/rg.2017160130 – ident: e_1_2_9_122_1 – ident: e_1_2_9_98_1 doi: 10.1109/TMI.2016.2549918 – ident: e_1_2_9_115_1 doi: 10.1109/TCYB.2017.2671898 – ident: e_1_2_9_12_1 – ident: e_1_2_9_117_1 doi: 10.1002/jmri.25779 – ident: e_1_2_9_9_1 doi: 10.1109/CVPR.2017.367 – ident: e_1_2_9_41_1 doi: 10.1007/s10278-017-0009-z – ident: e_1_2_9_79_1 doi: 10.1109/TMI.2016.2528129 – ident: e_1_2_9_31_1 doi: 10.18383/j.tom.2016.00211 – ident: e_1_2_9_37_1 – ident: e_1_2_9_34_1 – ident: e_1_2_9_100_1 – ident: e_1_2_9_47_1 doi: 10.1007/s10278-017-9984-3 – ident: e_1_2_9_46_1 doi: 10.1016/j.nicl.2017.10.015 – ident: e_1_2_9_85_1 doi: 10.1109/CVPR.2016.91 – ident: e_1_2_9_88_1 doi: 10.1007/978-3-319-67434-6_14 – ident: e_1_2_9_15_1 doi: 10.1148/radiol.14132641 – ident: e_1_2_9_10_1 doi: 10.1109/CVPR.2015.7298932 – ident: e_1_2_9_82_1 doi: 10.1109/CVPR.2015.7298594 – ident: e_1_2_9_80_1 doi: 10.1109/TMI.2016.2528162 – ident: e_1_2_9_105_1 doi: 10.1002/mp.12155 – ident: e_1_2_9_4_1 – ident: e_1_2_9_69_1 – start-page: 3320 year: 2014 ident: e_1_2_9_23_1 article-title: How transferable are features in deep neural networks? publication-title: Adv Neural Inf Process Syst – ident: e_1_2_9_92_1 doi: 10.1109/TMI.2015.2482920 – ident: e_1_2_9_60_1 – ident: e_1_2_9_5_1 – ident: e_1_2_9_49_1 doi: 10.1016/j.media.2016.05.004 – ident: e_1_2_9_38_1 doi: 10.1109/CVPR.2016.90 – ident: e_1_2_9_42_1 doi: 10.1016/j.crad.2017.11.015 – ident: e_1_2_9_71_1 – ident: e_1_2_9_66_1 doi: 10.1109/3DV.2016.79 – ident: e_1_2_9_70_1 doi: 10.1007/978-3-319-52280-7_8 – ident: e_1_2_9_57_1 – ident: e_1_2_9_24_1 doi: 10.1109/CVPRW.2014.131 – ident: e_1_2_9_19_1 doi: 10.1093/neuonc/nos335 – ident: e_1_2_9_51_1 doi: 10.1109/EMBC.2017.8037243 – ident: e_1_2_9_120_1 doi: 10.1016/j.media.2016.07.007 – ident: e_1_2_9_54_1 doi: 10.1038/s41598-017-05728-9 – ident: e_1_2_9_68_1 – ident: e_1_2_9_109_1 doi: 10.1002/mrm.27178 – ident: e_1_2_9_72_1 doi: 10.1162/neco.1997.9.8.1735 – ident: e_1_2_9_78_1 doi: 10.1109/CVPR.2014.276 – ident: e_1_2_9_116_1 doi: 10.1109/TMI.2017.2690836 – ident: e_1_2_9_55_1 doi: 10.1109/CVPR.2015.7298965 – start-page: 1097 year: 2012 ident: e_1_2_9_3_1 article-title: Imagenet classification with deep convolutional neural networks publication-title: In: Adv Neural Inf Process Syst – ident: e_1_2_9_40_1 doi: 10.1109/CVPR.2016.308 – start-page: 1 year: 2017 ident: e_1_2_9_108_1 article-title: Application of super‐resolution convolutional neural network for enhancing image resolution in chest CT publication-title: J Digit Imaging – volume: 17 start-page: 305 year: 2014 ident: e_1_2_9_106_1 article-title: Deep learning based imaging data completion for improved brain disease diagnosis publication-title: Med Image Comput Comput Assist Interv – ident: e_1_2_9_59_1 doi: 10.1109/CVPRW.2017.156 – ident: e_1_2_9_14_1 doi: 10.1016/j.jacr.2015.04.019 – ident: e_1_2_9_104_1 – ident: e_1_2_9_6_1 doi: 10.1109/ICCV.2015.123 – ident: e_1_2_9_33_1 doi: 10.1109/JBHI.2016.2635663 – ident: e_1_2_9_63_1 doi: 10.1007/978-3-319-55524-9_12 – ident: e_1_2_9_83_1 doi: 10.1109/EMBC.2017.8036887 – ident: e_1_2_9_93_1 – ident: e_1_2_9_110_1 doi: 10.1016/j.media.2017.07.006 – ident: e_1_2_9_89_1 – ident: e_1_2_9_99_1 – ident: e_1_2_9_53_1 doi: 10.1016/j.neuroimage.2017.02.035 – start-page: 1 year: 2017 ident: e_1_2_9_17_1 article-title: Radiogenomics of lower‐grade glioma: algorithmically‐assessed tumor shape is associated with tumor genomic subtypes and patient outcomes in a multi‐institutional study with The Cancer Genome Atlas data publication-title: J Neurooncol – ident: e_1_2_9_58_1 – ident: e_1_2_9_16_1 doi: 10.1148/radiol.13120118 – ident: e_1_2_9_87_1 doi: 10.1145/3107411.3107484 – ident: e_1_2_9_77_1 – ident: e_1_2_9_121_1 – ident: e_1_2_9_94_1 doi: 10.1007/978-3-319-46726-9_2 – start-page: 20170788 year: 2017 ident: e_1_2_9_96_1 article-title: Respiratory motion correction for free‐breathing 3D abdominal MRI using CNN based image registration: a feasibility study publication-title: Br J Radiol – ident: e_1_2_9_65_1 doi: 10.1109/ISBI.2017.7950555 – ident: e_1_2_9_97_1 doi: 10.1007/978-3-319-67558-9_24 – ident: e_1_2_9_29_1 doi: 10.1109/TMI.2016.2535302 – ident: e_1_2_9_50_1 doi: 10.1016/j.cviu.2017.04.002 – ident: e_1_2_9_74_1 doi: 10.1016/j.media.2016.01.005 – ident: e_1_2_9_113_1 doi: 10.1016/j.neucom.2017.05.025 – ident: e_1_2_9_27_1 doi: 10.1016/j.media.2017.07.005 – ident: e_1_2_9_28_1 doi: 10.1007/s10278-017-9983-4 – ident: e_1_2_9_64_1 doi: 10.1007/978-3-319-67558-9_28 – volume-title: Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks year: 2017 ident: e_1_2_9_118_1 – ident: e_1_2_9_20_1 doi: 10.1016/j.ejrad.2015.07.012 – ident: e_1_2_9_61_1 |
SSID | ssj0009945 |
Score | 2.6689823 |
SecondaryResourceType | review_article |
Snippet | Deep learning is a branch of artificial intelligence where networks of simple interconnected units are used to extract patterns from data in order to solve... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 939 |
SubjectTerms | Algorithms Artificial Intelligence Artificial neural networks convolutional neural networks Data processing Deep Learning Diagnostic Tests, Routine Human performance Humans Image Processing, Computer-Assisted Learning algorithms Machine Learning Magnetic Resonance Imaging Medical imaging Neural networks Neural Networks, Computer Radiography Radiology Radiology - methods |
Title | Deep learning in radiology: An overview of the concepts and a survey of the state of the art with focus on MRI |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.26534 https://www.ncbi.nlm.nih.gov/pubmed/30575178 https://www.proquest.com/docview/2190830312 https://www.proquest.com/docview/2159982467 https://pubmed.ncbi.nlm.nih.gov/PMC6483404 |
Volume | 49 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VPSAuvB-BgozgAlK2efgVxKUCqlJpOVRU6gVFduzAtuBUmw1S--vxxEmWpQgJbok8kR17xvPZnvkM8ELIPPUogMeKURNTrpJYUeYnQ8a0NghIGGYjzz_yg2N6eMJOtuDNmAsT-CGmDTe0jH6-RgNXut1dk4aefl8uZhlnOZKBYrAWIqKjNXdUUfQ3FHv8kMepTMTETZrtrj_d9EZXIObVSMlfEWzvgvZvwuex8SHy5GzWrfSsuvyN1_F__-4W3BiwKdkLynQbtqy7A9fmw-n7XXDvrD0nwz0TX8jCkaUyId3lNdlzBKNB8aSBNDXxuJJUISWyJcoZokjbLX_Yi7Gwz2QaX7z-EtwRJnVTdS1pHJkffbgHx_vvP709iIf7GuLKL_Kod3aJzoXGk1pZmYLrOi-SSqVJLSqlMk09VMnqWhubpFIakwsvrGxqtKaKSZXfh23XOPsQSK2EstLwwkpODUXSf-9rpdW6sFrwNIKX47iV1UBmjndqfCsDDXNWYgeWfQdG8HySPQ8UHn-U2hmHvxzMuC39dJ5gxWkWwbOp2BsgnqooZ5sOZZhfsmbe4UTwIGjLVE2OaDgVMgKxoUeTAJJ7b5a4xdee5JvjLm_im_WqV5O_tLw89EPSPz36F-HHcN2DvyJEIe3A9mrZ2SceYK30096QfgLsxSJ1 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSMCFdyG0BSO4gJRtHn6FW1WotqXbQ9VKvUV27MC24FSbDRL8-nrsbJalCAluiTxREnvG89me-QahN1zkqUMBLJaU6JgwmcSSUDcZUqqUBkBCIRt5csTGp-TgjJ71sTmQCxP4IYYNN7AMP1-DgcOG9PaSNfT822w6yhjNyU10C0p6-xXV8ZI9qih8jWKHIPI4FQkf2Emz7eWzq_7oGsi8Hiv5K4b1Tmjvfqi02nruQog9uRh1czWqfv7G7Pjf__cA3evhKd4J-vQQ3TD2Ebo96Q_gHyP7wZhL3Jea-IynFs-kDhkv7_GOxRAQCocNuKmxg5a4ClmRLZZWY4nbbvbd_Fg0-mSmxY1TYQybwrhuqq7FjcWT4_0n6HTv48nuOO5LNsSVW-cR5-8SlXMFh7Wi0gVTdV4klUyTmldSZoo4tJLVtdImSYXQOudOWJpUK0UkFTJfR2u2seYZwrXk0gjNCiMY0QR4_527FUapwijO0gi9XQxcWfV85lBW42sZmJizEjqw9B0YodeD7GVg8fij1OZi_MvektvSzegJvDjNIvRqaHY2CAcr0pqmAxnqVq2Z8zkRehrUZXhNDoA45SJCfEWRBgHg915tsdMvnuebwUZv4j7rndeTv3x5eeCGxF89_xfhl-jO-GRyWB7uH33aQHcdFixCUNImWpvPOrPl8NZcvfBWdQXxKiaQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VIlW8cB-BAkbwAlK2TuIriJeKZdUWtkIVlfqCIjt2YDmc1e4GCX49tnMsSxESvCXyRHbsGc9ne-YzwBMussShABZLSnRMmMSxJNRNhpQqpT0goT4beXrMDk7J0Rk924IXfS5Myw8xbLh5ywjztTfwua721qShn74uZqOU0YxcgIuEYeF1enyyJo_K83BFsQMQWZwIzAdy0nRv_e2mOzqHMc-HSv4KYYMPmlyB933r29CTz6NmpUblj9-IHf_3967C5Q6cov1Wm67BlrHXYWfaHb_fADs2Zo66iyY-oJlFC6nbfJfnaN8iHw7qjxpQXSEHLFHZ5kQukbQaSbRsFt_M974wpDL1L06Bkd8SRlVdNktUWzQ9ObwJp5NX714exN2FDXHpVnnEeTusMq78Ua0odc5UleW4lAmueCllqojDKmlVKW1wIoTWGXfC0iRaKSKpkNkt2La1NXcAVZJLIzTLjWBEE8_675ytMErlRnGWRPC0H7ei7NjM_aUaX4qWhzktfAcWoQMjeDzIzlsOjz9K7fbDX3R2vCzcfI59xUkawaOh2FmgP1aR1tSNl6FuzZo6jxPB7VZbhmoyD4cTLiLgG3o0CHh2780SO_sYWL6Z3-bFrlnPgpr8peXFkRuS8HT3X4Qfws7b8aR4c3j8-h5cckAwbyOSdmF7tWjMfQe2VupBsKmfhy4lSA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+in+radiology%3A+An+overview+of+the+concepts+and+a+survey+of+the+state+of+the+art+with+focus+on+MRI&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Mazurowski%2C+Maciej+A.&rft.au=Buda%2C+Mateusz&rft.au=Saha%2C+Ashirbani&rft.au=Bashir%2C+Mustafa+R.&rft.date=2019-04-01&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=49&rft.issue=4&rft.spage=939&rft.epage=954&rft_id=info:doi/10.1002%2Fjmri.26534&rft.externalDBID=10.1002%252Fjmri.26534&rft.externalDocID=JMRI26534 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon |