Deep learning in radiology: An overview of the concepts and a survey of the state of the art with focus on MRI

Deep learning is a branch of artificial intelligence where networks of simple interconnected units are used to extract patterns from data in order to solve complex problems. Deep‐learning algorithms have shown groundbreaking performance in a variety of sophisticated tasks, especially those related t...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetic resonance imaging Vol. 49; no. 4; pp. 939 - 954
Main Authors Mazurowski, Maciej A., Buda, Mateusz, Saha, Ashirbani, Bashir, Mustafa R.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deep learning is a branch of artificial intelligence where networks of simple interconnected units are used to extract patterns from data in order to solve complex problems. Deep‐learning algorithms have shown groundbreaking performance in a variety of sophisticated tasks, especially those related to images. They have often matched or exceeded human performance. Since the medical field of radiology mainly relies on extracting useful information from images, it is a very natural application area for deep learning, and research in this area has rapidly grown in recent years. In this article, we discuss the general context of radiology and opportunities for application of deep‐learning algorithms. We also introduce basic concepts of deep learning, including convolutional neural networks. Then, we present a survey of the research in deep learning applied to radiology. We organize the studies by the types of specific tasks that they attempt to solve and review a broad range of deep‐learning algorithms being utilized. Finally, we briefly discuss opportunities and challenges for incorporating deep learning in the radiology practice of the future. Level of Evidence: 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:939–954.
AbstractList Deep learning is a branch of artificial intelligence where networks of simple interconnected units are used to extract patterns from data in order to solve complex problems. Deep‐learning algorithms have shown groundbreaking performance in a variety of sophisticated tasks, especially those related to images. They have often matched or exceeded human performance. Since the medical field of radiology mainly relies on extracting useful information from images, it is a very natural application area for deep learning, and research in this area has rapidly grown in recent years. In this article, we discuss the general context of radiology and opportunities for application of deep‐learning algorithms. We also introduce basic concepts of deep learning, including convolutional neural networks. Then, we present a survey of the research in deep learning applied to radiology. We organize the studies by the types of specific tasks that they attempt to solve and review a broad range of deep‐learning algorithms being utilized. Finally, we briefly discuss opportunities and challenges for incorporating deep learning in the radiology practice of the future. Level of Evidence: 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:939–954.
Deep learning is a branch of artificial intelligence where networks of simple interconnected units are used to extract patterns from data in order to solve complex problems. Deep-learning algorithms have shown groundbreaking performance in a variety of sophisticated tasks, especially those related to images. They have often matched or exceeded human performance. Since the medical field of radiology mainly relies on extracting useful information from images, it is a very natural application area for deep learning, and research in this area has rapidly grown in recent years. In this article, we discuss the general context of radiology and opportunities for application of deep-learning algorithms. We also introduce basic concepts of deep learning, including convolutional neural networks. Then, we present a survey of the research in deep learning applied to radiology. We organize the studies by the types of specific tasks that they attempt to solve and review a broad range of deep-learning algorithms being utilized. Finally, we briefly discuss opportunities and challenges for incorporating deep learning in the radiology practice of the future. Level of Evidence: 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:939-954.
Deep learning is a branch of artificial intelligence where networks of simple interconnected units are used to extract patterns from data in order to solve complex problems. Deep learning algorithms have shown groundbreaking performance in a variety of sophisticated tasks, especially those related to images. They have often matched or exceeded human performance. Since the medical field of radiology mainly relies on extracting useful information from images, it is a very natural application area for deep learning, and research in this area has rapidly grown in recent years. In this article, we discuss the general context of radiology and opportunities for application of deep learning algorithms. We also introduce basic concepts of deep learning including convolutional neural networks. Then, we present a survey of the research in deep learning applied to radiology. We organize the studies by the types of specific tasks that that they attempt to solve and review a broad range of deep learning algorithms being utilized. Finally, we briefly discuss opportunities and challenges for incorporating deep learning in the radiology practice of the future.
Deep learning is a branch of artificial intelligence where networks of simple interconnected units are used to extract patterns from data in order to solve complex problems. Deep‐learning algorithms have shown groundbreaking performance in a variety of sophisticated tasks, especially those related to images. They have often matched or exceeded human performance. Since the medical field of radiology mainly relies on extracting useful information from images, it is a very natural application area for deep learning, and research in this area has rapidly grown in recent years. In this article, we discuss the general context of radiology and opportunities for application of deep‐learning algorithms. We also introduce basic concepts of deep learning, including convolutional neural networks. Then, we present a survey of the research in deep learning applied to radiology. We organize the studies by the types of specific tasks that they attempt to solve and review a broad range of deep‐learning algorithms being utilized. Finally, we briefly discuss opportunities and challenges for incorporating deep learning in the radiology practice of the future.Level of Evidence: 3Technical Efficacy: Stage 1J. Magn. Reson. Imaging 2019;49:939–954.
Deep learning is a branch of artificial intelligence where networks of simple interconnected units are used to extract patterns from data in order to solve complex problems. Deep-learning algorithms have shown groundbreaking performance in a variety of sophisticated tasks, especially those related to images. They have often matched or exceeded human performance. Since the medical field of radiology mainly relies on extracting useful information from images, it is a very natural application area for deep learning, and research in this area has rapidly grown in recent years. In this article, we discuss the general context of radiology and opportunities for application of deep-learning algorithms. We also introduce basic concepts of deep learning, including convolutional neural networks. Then, we present a survey of the research in deep learning applied to radiology. We organize the studies by the types of specific tasks that they attempt to solve and review a broad range of deep-learning algorithms being utilized. Finally, we briefly discuss opportunities and challenges for incorporating deep learning in the radiology practice of the future. Level of Evidence: 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:939-954.Deep learning is a branch of artificial intelligence where networks of simple interconnected units are used to extract patterns from data in order to solve complex problems. Deep-learning algorithms have shown groundbreaking performance in a variety of sophisticated tasks, especially those related to images. They have often matched or exceeded human performance. Since the medical field of radiology mainly relies on extracting useful information from images, it is a very natural application area for deep learning, and research in this area has rapidly grown in recent years. In this article, we discuss the general context of radiology and opportunities for application of deep-learning algorithms. We also introduce basic concepts of deep learning, including convolutional neural networks. Then, we present a survey of the research in deep learning applied to radiology. We organize the studies by the types of specific tasks that they attempt to solve and review a broad range of deep-learning algorithms being utilized. Finally, we briefly discuss opportunities and challenges for incorporating deep learning in the radiology practice of the future. Level of Evidence: 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:939-954.
Deep learning is a branch of artificial intelligence where networks of simple interconnected units are used to extract patterns from data in order to solve complex problems. Deep‐learning algorithms have shown groundbreaking performance in a variety of sophisticated tasks, especially those related to images. They have often matched or exceeded human performance. Since the medical field of radiology mainly relies on extracting useful information from images, it is a very natural application area for deep learning, and research in this area has rapidly grown in recent years. In this article, we discuss the general context of radiology and opportunities for application of deep‐learning algorithms. We also introduce basic concepts of deep learning, including convolutional neural networks. Then, we present a survey of the research in deep learning applied to radiology. We organize the studies by the types of specific tasks that they attempt to solve and review a broad range of deep‐learning algorithms being utilized. Finally, we briefly discuss opportunities and challenges for incorporating deep learning in the radiology practice of the future. Level of Evidence: 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:939–954.
Author Bashir, Mustafa R.
Buda, Mateusz
Saha, Ashirbani
Mazurowski, Maciej A.
AuthorAffiliation 1. Department of Radiology, Duke University, Durham, NC
2. Department of Electrical and Computer Engineering, Duke University, Durham, NC
4. Center for Advanced Magnetic Resonance Development, Duke University, Durham, NC
3. Duke Medical Physics Program, Duke University, Durham, NC
AuthorAffiliation_xml – name: 2. Department of Electrical and Computer Engineering, Duke University, Durham, NC
– name: 3. Duke Medical Physics Program, Duke University, Durham, NC
– name: 1. Department of Radiology, Duke University, Durham, NC
– name: 4. Center for Advanced Magnetic Resonance Development, Duke University, Durham, NC
Author_xml – sequence: 1
  givenname: Maciej A.
  surname: Mazurowski
  fullname: Mazurowski, Maciej A.
  email: maciej.mazurowski@duke.edu
  organization: Duke University
– sequence: 2
  givenname: Mateusz
  surname: Buda
  fullname: Buda, Mateusz
  organization: Duke University
– sequence: 3
  givenname: Ashirbani
  orcidid: 0000-0002-7650-1720
  surname: Saha
  fullname: Saha, Ashirbani
  organization: Duke University
– sequence: 4
  givenname: Mustafa R.
  surname: Bashir
  fullname: Bashir, Mustafa R.
  organization: Duke University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30575178$$D View this record in MEDLINE/PubMed
BookMark eNp9kd2LEzEUxYOsuB_64h8gAV9E6HrzNZPxQVjWr5UVQfQ5ZDJ32pRpUpOZlv73pnYruohPSbi_czg355ychBiQkKcMLhkAf7VcJX_JKyXkA3LGFOczrnR1Uu6gxIxpqE_Jec5LAGgaqR6RUwGqVqzWZyS8RVzTAW0KPsypDzTZzschznev6VWgcYNp43FLY0_HBVIXg8P1mKkNHbU0T2mDu-Mwj3bE48OmkW79uKB9dFOmMdDPX28ek4e9HTI-uTsvyPf3775df5zdfvlwc311O3NSajnTAK2oW6hUo13XVG0vGnCWQV87a3krWa1437cdAtO660RdYIusa1tplbbigrw5-K6ndoWdwzAmO5h18iubdiZab_6eBL8w87gxldRCgiwGL-4MUvwxYR7NymeHw2ADxikbzlTTaC6ruqDP76HLOKVQ1itUA1qAYLxQz_5M9DvKsYoCwAFwKeacsDfOl__0cR_QD4aB2bdt9m2bX20Xyct7kqPrP2F2gLd-wN1_SPOpFHXQ_AQtNrsU
CitedBy_id crossref_primary_10_1007_s10334_023_01127_6
crossref_primary_10_1002_mp_15182
crossref_primary_10_1007_s12539_022_00502_6
crossref_primary_10_1159_000527491
crossref_primary_10_1186_s12885_023_11456_3
crossref_primary_10_1109_ACCESS_2024_3394541
crossref_primary_10_1148_radiol_2019192471
crossref_primary_10_12998_wjcc_v11_i16_3725
crossref_primary_10_35377_saucis_5_69696_1019187
crossref_primary_10_1155_2022_3415603
crossref_primary_10_1186_s12880_024_01338_w
crossref_primary_10_3390_app12083773
crossref_primary_10_3390_diagnostics12092235
crossref_primary_10_1016_j_acra_2022_03_018
crossref_primary_10_1007_s00330_022_08708_4
crossref_primary_10_3389_fnins_2021_651920
crossref_primary_10_1007_s10278_023_00838_5
crossref_primary_10_1109_TRPMS_2024_3420742
crossref_primary_10_2214_AJR_22_28231
crossref_primary_10_1007_s10334_024_01179_2
crossref_primary_10_1016_j_media_2025_103469
crossref_primary_10_1038_s41746_021_00398_4
crossref_primary_10_1002_jmri_27078
crossref_primary_10_1063_5_0165485
crossref_primary_10_1148_radiol_2019181343
crossref_primary_10_1002_widm_1490
crossref_primary_10_3390_biomedinformatics2040049
crossref_primary_10_1067_j_cpradiol_2024_12_004
crossref_primary_10_1002_jmri_29126
crossref_primary_10_1016_S2213_2600_19_30081_5
crossref_primary_10_1007_s40042_023_00852_4
crossref_primary_10_1186_s40001_022_00883_w
crossref_primary_10_1016_j_compbiomed_2020_103758
crossref_primary_10_1016_j_arth_2022_10_003
crossref_primary_10_1016_j_acra_2021_09_025
crossref_primary_10_1155_2024_5574638
crossref_primary_10_36962_PAHTEI30072023_457
crossref_primary_10_1155_2022_3236305
crossref_primary_10_3390_electronics12030750
crossref_primary_10_1016_j_hlc_2023_06_703
crossref_primary_10_3390_diagnostics15030280
crossref_primary_10_1002_mrm_28738
crossref_primary_10_1016_j_asoc_2024_111909
crossref_primary_10_1186_s40658_021_00426_y
crossref_primary_10_1109_JBHI_2020_3025901
crossref_primary_10_1002_jmri_29710
crossref_primary_10_1111_exsy_13799
crossref_primary_10_3390_diagnostics13091571
crossref_primary_10_1007_s11042_021_10969_y
crossref_primary_10_1038_s41598_019_55439_6
crossref_primary_10_2214_AJR_23_29674
crossref_primary_10_1002_mp_14429
crossref_primary_10_1016_j_nicl_2021_102651
crossref_primary_10_1007_s11547_024_01791_1
crossref_primary_10_1016_j_clinimag_2023_04_010
crossref_primary_10_1007_s10278_022_00644_5
crossref_primary_10_3390_cancers13194740
crossref_primary_10_1007_s11831_023_09899_9
crossref_primary_10_1016_j_engappai_2023_106596
crossref_primary_10_1007_s00439_021_02387_9
crossref_primary_10_1002_widm_1379
crossref_primary_10_1111_bcpt_13828
crossref_primary_10_1109_ACCESS_2023_3345648
crossref_primary_10_1259_bjr_20210539
crossref_primary_10_2174_1573409920666230816090626
crossref_primary_10_3233_JIFS_210595
crossref_primary_10_3390_app13095261
crossref_primary_10_1002_aisy_202200184
crossref_primary_10_1111_rego_12331
crossref_primary_10_1111_exsy_13614
crossref_primary_10_1055_s_0041_1731060
crossref_primary_10_31893_multirev_2025218
crossref_primary_10_1007_s00247_021_05270_x
crossref_primary_10_1007_s40259_023_00611_8
crossref_primary_10_32604_cmc_2023_042493
crossref_primary_10_35712_aig_v2_i2_27
crossref_primary_10_1002_mp_13764
crossref_primary_10_1007_s00330_023_09483_6
crossref_primary_10_1016_j_bbe_2020_08_008
crossref_primary_10_1148_ryai_2019180050
crossref_primary_10_1007_s10334_024_01173_8
crossref_primary_10_1016_j_ejrad_2024_111677
crossref_primary_10_1109_ACCESS_2020_3016780
crossref_primary_10_3889_oamjms_2021_7806
crossref_primary_10_1055_s_0041_1730401
crossref_primary_10_1186_s40537_024_00989_4
crossref_primary_10_1177_17562872211044880
crossref_primary_10_1007_s00330_023_09713_x
crossref_primary_10_1016_j_jacr_2021_01_014
crossref_primary_10_1109_TII_2021_3051952
crossref_primary_10_1007_s00266_024_04076_0
crossref_primary_10_3390_bioengineering11121189
crossref_primary_10_15212_RADSCI_2023_0011
crossref_primary_10_3390_healthcare9020153
crossref_primary_10_3389_fmedt_2024_1469852
crossref_primary_10_1007_s42058_024_00142_3
crossref_primary_10_18231_j_ijpp_2021_018
crossref_primary_10_1109_ACCESS_2021_3071057
crossref_primary_10_1016_j_compbiomed_2019_05_002
crossref_primary_10_1148_radiol_211367
crossref_primary_10_3390_tomography9040115
crossref_primary_10_1038_s41598_023_47904_0
crossref_primary_10_1016_j_clinimag_2022_04_007
crossref_primary_10_1007_s10462_023_10556_7
crossref_primary_10_1016_j_joen_2019_03_016
crossref_primary_10_1109_ACCESS_2024_3354826
crossref_primary_10_1109_JBHI_2022_3179014
crossref_primary_10_3390_diagnostics11091557
crossref_primary_10_1148_ryai_220080
crossref_primary_10_1109_ACCESS_2022_3218444
crossref_primary_10_1186_s40798_024_00786_6
crossref_primary_10_1007_s12021_021_09520_z
crossref_primary_10_1148_ryai_2021200221
crossref_primary_10_1016_j_neucom_2024_127317
crossref_primary_10_1097_RCT_0000000000001418
crossref_primary_10_1016_j_zemedi_2018_11_002
crossref_primary_10_1038_s41598_023_31403_3
crossref_primary_10_1002_jmri_27331
crossref_primary_10_1007_s00530_024_01349_1
crossref_primary_10_1142_S0218843021500076
crossref_primary_10_1016_j_ejrad_2024_111572
crossref_primary_10_1002_jmri_29194
crossref_primary_10_1038_s41598_021_00018_x
crossref_primary_10_1177_00031348221101490
crossref_primary_10_24835_1607_0763_1243
crossref_primary_10_3390_jcm13216559
crossref_primary_10_3390_rs15194761
crossref_primary_10_1016_j_lungcan_2022_12_002
crossref_primary_10_1097_MD_0000000000035039
crossref_primary_10_1259_dmfr_20200172
crossref_primary_10_1155_2022_1614838
crossref_primary_10_1088_1361_6560_ac46dd
crossref_primary_10_1002_jmri_28899
crossref_primary_10_1007_s00371_019_01775_7
crossref_primary_10_1186_s12880_024_01493_0
crossref_primary_10_1016_j_ejro_2024_100588
crossref_primary_10_1109_ACCESS_2023_3257049
crossref_primary_10_1007_s00381_024_06400_0
crossref_primary_10_3389_fradi_2021_713681
crossref_primary_10_54691_j4ddc779
crossref_primary_10_1016_j_patrec_2024_11_023
crossref_primary_10_3390_s22239430
crossref_primary_10_3390_info16040262
crossref_primary_10_3390_s22010167
crossref_primary_10_1007_s00384_025_04809_w
crossref_primary_10_1007_s10462_025_11146_5
crossref_primary_10_1016_j_engappai_2022_105170
crossref_primary_10_3390_jimaging9110244
crossref_primary_10_2463_mrms_rev_2024_0077
crossref_primary_10_1007_s12553_022_00648_9
crossref_primary_10_3390_app13063850
crossref_primary_10_1007_s00264_023_05987_4
crossref_primary_10_1055_a_1775_8633
crossref_primary_10_1038_s41598_021_83271_4
crossref_primary_10_1111_exsy_13499
crossref_primary_10_3390_jcm9113579
crossref_primary_10_1002_mp_16676
crossref_primary_10_1002_nbm_4730
crossref_primary_10_1038_s41598_022_08020_7
crossref_primary_10_1016_j_imu_2024_101538
crossref_primary_10_1038_s41746_020_00376_2
crossref_primary_10_1002_jmri_27913
crossref_primary_10_1007_s00256_020_03410_2
crossref_primary_10_1016_j_inffus_2020_09_006
crossref_primary_10_1002_jsp2_1276
crossref_primary_10_1002_cam4_70574
crossref_primary_10_3389_fmolb_2020_614258
crossref_primary_10_1007_s00261_023_04124_4
crossref_primary_10_3390_medicina59111973
crossref_primary_10_1016_j_isci_2022_105692
crossref_primary_10_1186_s12903_024_05126_4
crossref_primary_10_1016_j_heliyon_2024_e31451
crossref_primary_10_2139_ssrn_4189440
crossref_primary_10_3390_diagnostics11081402
crossref_primary_10_1016_j_jseint_2023_05_008
crossref_primary_10_3390_cancers16234042
crossref_primary_10_1016_j_procs_2020_06_120
crossref_primary_10_3389_fonc_2023_1231497
crossref_primary_10_1073_pnas_2117203119
crossref_primary_10_1007_s11102_019_01026_x
crossref_primary_10_1080_0142159X_2023_2190483
crossref_primary_10_5582_bst_2020_03364
crossref_primary_10_1002_nbm_5014
crossref_primary_10_1155_2021_9066128
crossref_primary_10_1007_s11042_023_15029_1
crossref_primary_10_1097_RLI_0000000000000928
crossref_primary_10_1016_j_neucom_2019_06_113
crossref_primary_10_1007_s00330_020_07451_y
crossref_primary_10_1016_j_nic_2020_04_002
crossref_primary_10_1007_s11042_021_10707_4
crossref_primary_10_1109_ACCESS_2019_2947606
crossref_primary_10_1556_1647_2022_00104
crossref_primary_10_1007_s10334_019_00782_y
crossref_primary_10_3390_diagnostics15020168
crossref_primary_10_1097_WCO_0000000000001305
crossref_primary_10_17341_gazimmfd_762056
crossref_primary_10_1148_ryct_230419
crossref_primary_10_1016_j_bspc_2024_106154
crossref_primary_10_1371_journal_pone_0268430
crossref_primary_10_1038_s41598_020_72270_6
crossref_primary_10_1002_mrm_30324
crossref_primary_10_1259_bjr_20190812
crossref_primary_10_7717_peerj_cs_773
crossref_primary_10_2147_CMAR_S299020
crossref_primary_10_2186_jpr_JPR_D_22_00053
crossref_primary_10_15212_RADSCI_2023_0005
crossref_primary_10_1109_TNNLS_2021_3119071
crossref_primary_10_1016_j_clinimag_2022_11_003
crossref_primary_10_33808_clinexphealthsci_1466714
crossref_primary_10_1016_j_acra_2019_09_012
crossref_primary_10_3390_jcm14041296
crossref_primary_10_1177_2058460121990296
crossref_primary_10_1016_j_clinimag_2021_06_033
crossref_primary_10_1007_s00234_023_03271_1
crossref_primary_10_1007_s10278_024_01253_0
crossref_primary_10_1016_j_mric_2021_06_016
crossref_primary_10_1007_s00330_023_09823_6
crossref_primary_10_1002_mp_15359
crossref_primary_10_1016_j_bbe_2021_11_004
crossref_primary_10_3390_bioengineering10080950
crossref_primary_10_3390_info11120548
crossref_primary_10_1038_s41598_020_70159_y
crossref_primary_10_1016_j_tins_2021_01_008
crossref_primary_10_1016_j_cities_2023_104562
crossref_primary_10_1007_s00354_024_00278_x
crossref_primary_10_1016_j_clinimag_2020_04_025
crossref_primary_10_1097_BRS_0000000000003704
crossref_primary_10_1007_s13369_021_06127_z
crossref_primary_10_1038_s41598_024_56657_3
crossref_primary_10_1007_s10334_023_01129_4
crossref_primary_10_1016_j_clbc_2021_04_015
crossref_primary_10_48175_IJARSCT_23724
crossref_primary_10_3389_fonc_2022_839567
crossref_primary_10_1177_02841851231202323
crossref_primary_10_3390_app11062704
crossref_primary_10_1002_jmri_27957
crossref_primary_10_31159_ksmrt_2024_34_3_23
crossref_primary_10_1088_1361_6560_ab82e8
crossref_primary_10_1007_s40846_021_00631_1
crossref_primary_10_1093_ajcp_aqaa001
crossref_primary_10_3389_fphy_2024_1445204
crossref_primary_10_1002_jmri_28124
crossref_primary_10_1002_jmri_27035
crossref_primary_10_1016_j_injury_2020_11_037
crossref_primary_10_1016_j_eclinm_2023_101905
crossref_primary_10_1148_radiol_2019191293
crossref_primary_10_1016_j_compmedimag_2024_102387
crossref_primary_10_1016_j_jrras_2023_100549
crossref_primary_10_1186_s12880_021_00568_6
crossref_primary_10_4236_jcc_2024_126012
crossref_primary_10_3174_ajnr_A6070
crossref_primary_10_1515_bmt_2022_0142
crossref_primary_10_3390_diagnostics13020228
crossref_primary_10_3389_fonc_2021_632104
crossref_primary_10_1155_2024_5576859
crossref_primary_10_3389_fonc_2023_1117874
crossref_primary_10_1371_journal_pone_0313126
crossref_primary_10_7717_peerj_cs_2556
crossref_primary_10_3389_fonc_2023_1261080
crossref_primary_10_3390_electronics11010055
crossref_primary_10_1109_ACCESS_2023_3335196
crossref_primary_10_3390_diagnostics11122181
crossref_primary_10_1155_2021_7259414
crossref_primary_10_1186_s12880_025_01582_8
crossref_primary_10_35711_aimi_v1_i2_70
crossref_primary_10_2214_AJR_19_21346
crossref_primary_10_1007_s10334_024_01165_8
crossref_primary_10_1016_j_cmpb_2022_106874
crossref_primary_10_3390_healthcare8020107
crossref_primary_10_1093_radadv_umae035
crossref_primary_10_1016_j_job_2022_03_003
crossref_primary_10_1016_j_compmedimag_2021_101887
crossref_primary_10_1016_j_ejro_2024_100624
crossref_primary_10_1016_j_echo_2022_08_009
crossref_primary_10_3390_technologies11050128
crossref_primary_10_1186_s12903_023_03027_6
crossref_primary_10_3389_fneur_2022_1055437
crossref_primary_10_1049_ipr2_12045
crossref_primary_10_1002_jmri_26877
crossref_primary_10_3389_fcvm_2020_00025
crossref_primary_10_3389_fcvm_2021_654515
crossref_primary_10_1097_RCT_0000000000001247
crossref_primary_10_1097_MNM_0000000000001786
crossref_primary_10_3390_jcm13020344
crossref_primary_10_1016_j_compbiomed_2022_105357
crossref_primary_10_1109_TBME_2021_3117407
crossref_primary_10_1016_j_crad_2024_106756
crossref_primary_10_1016_j_neucom_2019_09_044
crossref_primary_10_2478_jaiscr_2022_0007
Cites_doi 10.7551/mitpress/7503.003.0024
10.1007/978-3-319-24574-4_28
10.1002/jmri.25970
10.1148/radiol.13130663
10.1007/978-3-319-46723-8_49
10.1016/S1361-8415(02)00056-7
10.1007/978-3-319-46448-0_2
10.1016/j.bspc.2016.02.006
10.1148/radiol.2351040699
10.1016/j.neuroimage.2017.04.034
10.1117/12.2253982
10.1007/s11604-018-0758-8
10.1007/978-3-319-46726-9_29
10.1002/mp.12344
10.1126/science.1127647
10.1038/nature22985
10.1016/j.media.2017.01.008
10.1038/s41598-017-05848-2
10.1080/17453674.2017.1344459
10.1007/978-3-319-60964-5_36
10.1007/s00586-017-4956-3
10.1364/BOE.8.000679
10.1007/978-3-319-10404-1_65
10.1007/978-3-642-40763-5_31
10.1111/j.1469-8137.1912.tb05611.x
10.1002/mp.12453
10.1118/1.4967345
10.1016/j.neucom.2016.12.038
10.1007/978-3-319-59876-5_12
10.1109/CVPR.2014.220
10.1002/mp.12399
10.1609/aaai.v31i1.11231
10.1109/42.563664
10.1038/s41598-017-15720-y
10.1148/rg.2017160130
10.1109/TMI.2016.2549918
10.1109/TCYB.2017.2671898
10.1002/jmri.25779
10.1109/CVPR.2017.367
10.1007/s10278-017-0009-z
10.1109/TMI.2016.2528129
10.18383/j.tom.2016.00211
10.1007/s10278-017-9984-3
10.1016/j.nicl.2017.10.015
10.1109/CVPR.2016.91
10.1007/978-3-319-67434-6_14
10.1148/radiol.14132641
10.1109/CVPR.2015.7298932
10.1109/CVPR.2015.7298594
10.1109/TMI.2016.2528162
10.1002/mp.12155
10.1109/TMI.2015.2482920
10.1016/j.media.2016.05.004
10.1109/CVPR.2016.90
10.1016/j.crad.2017.11.015
10.1109/3DV.2016.79
10.1007/978-3-319-52280-7_8
10.1109/CVPRW.2014.131
10.1093/neuonc/nos335
10.1109/EMBC.2017.8037243
10.1016/j.media.2016.07.007
10.1038/s41598-017-05728-9
10.1002/mrm.27178
10.1162/neco.1997.9.8.1735
10.1109/CVPR.2014.276
10.1109/TMI.2017.2690836
10.1109/CVPR.2015.7298965
10.1109/CVPR.2016.308
10.1109/CVPRW.2017.156
10.1016/j.jacr.2015.04.019
10.1109/ICCV.2015.123
10.1109/JBHI.2016.2635663
10.1007/978-3-319-55524-9_12
10.1109/EMBC.2017.8036887
10.1016/j.media.2017.07.006
10.1016/j.neuroimage.2017.02.035
10.1148/radiol.13120118
10.1145/3107411.3107484
10.1007/978-3-319-46726-9_2
10.1109/ISBI.2017.7950555
10.1007/978-3-319-67558-9_24
10.1109/TMI.2016.2535302
10.1016/j.cviu.2017.04.002
10.1016/j.media.2016.01.005
10.1016/j.neucom.2017.05.025
10.1016/j.media.2017.07.005
10.1007/s10278-017-9983-4
10.1007/978-3-319-67558-9_28
10.1016/j.ejrad.2015.07.012
ContentType Journal Article
Copyright 2018 International Society for Magnetic Resonance in Medicine
2018 International Society for Magnetic Resonance in Medicine.
2019 International Society for Magnetic Resonance in Medicine
Copyright_xml – notice: 2018 International Society for Magnetic Resonance in Medicine
– notice: 2018 International Society for Magnetic Resonance in Medicine.
– notice: 2019 International Society for Magnetic Resonance in Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
5PM
DOI 10.1002/jmri.26534
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE

ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-2586
EndPage 954
ExternalDocumentID PMC6483404
30575178
10_1002_jmri_26534
JMRI26534
Genre reviewArticle
Journal Article
Review
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Biomedical Imaging and Bioengineering
  funderid: 5 R01 EB021360
– fundername: NIBIB NIH HHS
  grantid: R01 EB021360
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
AAHHS
AAYXX
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c4484-800b37b06598cd96bf390ca10f7caa2b41752ffbde0188dd377b0ae1dbb4a58a3
IEDL.DBID DR2
ISSN 1053-1807
1522-2586
IngestDate Thu Aug 21 18:09:39 EDT 2025
Fri Jul 11 12:23:27 EDT 2025
Fri Jul 25 12:15:32 EDT 2025
Thu Apr 03 06:59:18 EDT 2025
Tue Jul 01 03:56:41 EDT 2025
Thu Apr 24 22:59:49 EDT 2025
Wed Aug 20 07:27:09 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords deep learning
convolutional neural networks
machine learning
radiology
artificial intelligence
medical imaging
Language English
License 2018 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4484-800b37b06598cd96bf390ca10f7caa2b41752ffbde0188dd377b0ae1dbb4a58a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-7650-1720
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6483404
PMID 30575178
PQID 2190830312
PQPubID 1006400
PageCount 24
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6483404
proquest_miscellaneous_2159982467
proquest_journals_2190830312
pubmed_primary_30575178
crossref_citationtrail_10_1002_jmri_26534
crossref_primary_10_1002_jmri_26534
wiley_primary_10_1002_jmri_26534_JMRI26534
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2019
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: April 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Nashville
PublicationSubtitle JMRI
PublicationTitle Journal of magnetic resonance imaging
PublicationTitleAlternate J Magn Reson Imaging
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 6
2017; 42
2017; 7
2017; 8
2017; 44
2017; PP
2017; 88
2017; 45
2016; 30
2017; 155
2017; 234
1997; 9
2016; 35
2018; 47
2017; 30
2013; 15
2018; 170
2017; 37
2017; 36
2015; 84
2017; 35
2016; 43
2018; 73
2014; 17
1912; 11
2017; 723
2017; 62
2015; 12
2012
2005; 235
2017; 21
2002; 6
1997
2007
2013; 267
2014; 270
2006; 313
2014; 273
2018; 17
2016; 2
2018
2017
2016
2015
2014
2013
2017; 266
2017; 542
2016; 27
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_71_1
Li R (e_1_2_9_106_1) 2014; 17
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_14_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
Chartsias A (e_1_2_9_101_1) 2017; 62
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_111_1
e_1_2_9_115_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_114_1
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_31_1
Yosinski J (e_1_2_9_23_1) 2014
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
Larson DB (e_1_2_9_123_1) 2017
e_1_2_9_105_1
e_1_2_9_124_1
e_1_2_9_39_1
e_1_2_9_120_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
Krizhevsky A (e_1_2_9_3_1) 2012
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
Ren S (e_1_2_9_11_1) 2015
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_113_1
e_1_2_9_117_1
Mazurowski MA (e_1_2_9_17_1) 2017
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_70_1
Umehara K (e_1_2_9_108_1) 2017
e_1_2_9_100_1
e_1_2_9_104_1
e_1_2_9_36_1
e_1_2_9_59_1
Kim DH (e_1_2_9_118_1) 2017
e_1_2_9_63_1
Lv J (e_1_2_9_96_1) 2017
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
Vos BD (e_1_2_9_90_1) 2016
e_1_2_9_112_1
e_1_2_9_116_1
e_1_2_9_25_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 17
  start-page: 305
  year: 2014
  end-page: 312
  article-title: Deep learning based imaging data completion for improved brain disease diagnosis
  publication-title: Med Image Comput Comput Assist Interv
– volume: 723
  start-page: 413
  year: 2017
  end-page: 424
  article-title: Learning longitudinal MRI patterns by SICE and deep learning: Assessing the Alzheimer's disease progression
  publication-title: In: Commun Comput Inf Sci
– start-page: 1026
  year: 2015
  end-page: 1034
– volume: 7
  start-page: 5467
  year: 2017
  article-title: Deep learning based radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma
  publication-title: Sci Rep
– start-page: 3320
  year: 2014
  end-page: 3328
  article-title: How transferable are features in deep neural networks?
  publication-title: Adv Neural Inf Process Syst
– start-page: 565
  year: 2016
  end-page: 571
– start-page: 1
  year: 2017
  end-page: 9
  article-title: Radiogenomics of lower‐grade glioma: algorithmically‐assessed tumor shape is associated with tumor genomic subtypes and patient outcomes in a multi‐institutional study with The Cancer Genome Atlas data
  publication-title: J Neurooncol
– volume: 44
  start-page: 5162
  year: 2017
  end-page: 5171
  article-title: A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets
  publication-title: Med Phys
– volume: 6
  start-page: 1374
  year: 2017
  end-page: 1383
  article-title: Automation of reading of radiological features from magnetic resonance images (MRIs) of the lumbar spine without human intervention is comparable with an expert radiologist
  publication-title: Eur Spine J
– volume: 12
  start-page: 862
  year: 2015
  end-page: 866
  article-title: Radiogenomics: What it is and why it is important
  publication-title: J Am Coll Radiol
– start-page: 3431
  year: 2015
  end-page: 3440
– start-page: 1097
  year: 2012
  end-page: 1105
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: In: Adv Neural Inf Process Syst
– year: 2017
  article-title: Deep learning for segmentation of deep brain regions in MRI and ultrasound
  publication-title: Comput Vis Image Underst
– volume: PP
  start-page: 1
  year: 2017
– year: 2014
– volume: 6
  start-page: 163
  year: 2002
  end-page: 179
  article-title: Automatic detection and segmentation of evolving processes in 3D medical images: Application to multiple sclerosis
  publication-title: Med Image Anal
– volume: 21
  start-page: 31
  year: 2017
  end-page: 40
  article-title: An ensemble of fine‐tuned convolutional neural networks for medical image classification
  publication-title: IEEE J Biomed Heal Informatics
– volume: 35
  start-page: 18
  year: 2017
  end-page: 31
  article-title: Brain tumor segmentation with deep neural networks
  publication-title: Med Image Anal
– volume: 35
  start-page: 2085
  year: 2016
  end-page: 2097
  article-title: Reconstruction of 7T‐like images from 3T MRI
  publication-title: IEEE Trans Med Imaging
– volume: 17
  start-page: 169
  year: 2018
  end-page: 178
  article-title: Deep learning of joint myelin and T1w MRI features in normal‐appearing brain tissue to distinguish between multiple sclerosis patients and healthy controls
  publication-title: NeuroImage Clin
– year: 2018
  article-title: Super‐resolution musculoskeletal MRI using deep learning
  publication-title: Magn Reson Med
– volume: 27
  start-page: 145
  year: 2016
  end-page: 154
  article-title: Review of medical image quality assessment
  publication-title: Biomed Signal Process Control
– volume: 8
  start-page: 679
  year: 2017
  end-page: 694
  article-title: Low‐dose CT via convolutional neural network
  publication-title: Biomed Opt Express
– volume: 542
  start-page: 686
  year: 2017
  article-title: Dermatologist‐level classification of skin cancer with deep neural networks
  publication-title: Nature
– start-page: 20170788
  year: 2017
  article-title: Respiratory motion correction for free‐breathing 3D abdominal MRI using CNN based image registration: a feasibility study
  publication-title: Br J Radiol
– volume: 44
  start-page: 1408
  year: 2017
  end-page: 1419
  article-title: MR‐based synthetic CT generation using a deep convolutional neural network method
  publication-title: Med Phys
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 62
  start-page: 1
  year: 2017
  end-page: 1
  article-title: Multimodal MR synthesis via modality‐invariant latent representation
  publication-title: IEEE Trans Med Imaging
– volume: 37
  start-page: 505
  year: 2017
  end-page: 515
  article-title: Machine learning for medical imaging
  publication-title: RadioGraphics
– volume: 7
  start-page: 5301
  year: 2017
  article-title: Deep learning for fully‐automated localization and segmentation of rectal cancer on multiparametric MR
  publication-title: Sci Rep
– volume: 30
  start-page: 469
  year: 2017
  end-page: 476
  article-title: Predicting deletion of chromosomal arms 1p/19q in low‐grade gliomas from MR images using machine intelligence
  publication-title: J Digit Imaging
– start-page: 240
  year: 2017
  end-page: 248
– volume: 235
  start-page: 31
  year: 2005
  end-page: 35
  article-title: Comparison of recall and cancer detection rates for immediate versus batch interpretation of screening mammograms
  publication-title: Radiology
– start-page: 153
  year: 2007
  end-page: 160
– start-page: 234
  year: 2015
  end-page: 241
– volume: 42
  start-page: 145
  year: 2017
  end-page: 159
  article-title: Ensemble of expert deep neural networks for spatio‐temporal denoising of contrast‐enhanced MRI sequences
  publication-title: Med Image Anal
– start-page: 1998
  year: 2017
  end-page: 2001
– volume: 37
  start-page: 101
  year: 2017
  end-page: 113
  article-title: Deep ensemble learning of sparse regression models for brain disease diagnosis
  publication-title: Med Image Anal
– start-page: 779
  year: 2016
  end-page: 788
– volume: 270
  start-page: 464
  year: 2014
  end-page: 471
  article-title: Radiogenomics of clear cell renal cell carcinoma: associations between CT imaging features and mutations
  publication-title: Radiology
– volume: 45
  start-page: 1336
  year: 2017
  end-page: 1349
  article-title: FUIQA: Fetal ultrasound image quality assessment with deep convolutional networks
  publication-title: IEEE Trans Cybern
– start-page: 119
  year: 2016
  end-page: 128
– volume: 35
  start-page: 1182
  year: 2016
  end-page: 1195
  article-title: Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks
  publication-title: IEEE Trans Med Imaging
– start-page: 564
  year: 2017
  end-page: 567
– start-page: 2818
  year: 2016
  end-page: 2826
– volume: 35
  start-page: 1170
  year: 2016
  end-page: 1181
  article-title: Improving computer‐aided detection using convolutional neural networks and random view aggregation
  publication-title: IEEE Trans Med Imaging
– start-page: 520
  year: 2014
  end-page: 527
– volume: 267
  start-page: 560
  year: 2013
  end-page: 569
  article-title: MR imaging predictors of molecular profile and survival: multi‐institutional study of the TCGA glioblastoma data set
  publication-title: Radiology
– year: 2016
– start-page: 101342E
  year: 2017
– start-page: 170236
  year: 2017
  article-title: Performance of a deep‐learning neural network model in assessing skeletal maturity on pediatric hand radiographs
  publication-title: Radiology
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  article-title: Long short‐term memory
  publication-title: Neural Comput
– start-page: 246
  year: 2013
  end-page: 253
– start-page: 806
  year: 2014
  end-page: 813
– start-page: 1
  year: 2015
  end-page: 9
– start-page: 204
  year: 2017
  end-page: 212
– start-page: 1175
  year: 2017
  end-page: 1183
– volume: 47
  start-page: 723
  year: 2018
  end-page: 728
  article-title: Automated image quality evaluation of T2‐weighted liver MRI utilizing deep learning architecture
  publication-title: J Magn Reson Imaging
– start-page: 437
  year: 2017
  end-page: 440
– year: 2018
  article-title: Deep learning enables reduced gadolinium dose for contrast‐enhanced brain MRI
  publication-title: J Magn Reson Imaging
– volume: 43
  start-page: 6654
  year: 2016
  end-page: 6666
  article-title: Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography
  publication-title: Med Phys
– start-page: 21
  year: 2016
  end-page: 37
– volume: 36
  start-page: 1221
  year: 2017
  end-page: 1230
  article-title: Automatic quality assessment of echocardiograms using convolutional neural networks: Feasibility on the apical four‐chamber view
  publication-title: IEEE Trans Med Imaging
– volume: 266
  start-page: 8
  year: 2017
  end-page: 20
  article-title: Medical image retrieval using deep convolutional neural network
  publication-title: Neurocomputing
– start-page: 770
  year: 2016
  end-page: 778
– volume: 155
  start-page: 159
  year: 2017
  end-page: 168
  article-title: Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach
  publication-title: Neuroimage
– start-page: 1701
  year: 2014
  end-page: 1708
– volume: 73
  start-page: 439
  year: 2018
  end-page: 445
  article-title: Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks
  publication-title: Clin Radiol
– start-page: 170
  year: 2016
  end-page: 178
– year: 2018
– start-page: 2147
  year: 2014
  end-page: 2154
– start-page: 16
  year: 1997
– volume: 88
  start-page: 581
  year: 2017
  end-page: 586
  article-title: Artificial intelligence for analyzing orthopedic trauma radiographs
  publication-title: Acta Orthop
– start-page: 536
  year: 2017
  end-page: 543
– volume: 11
  start-page: 37
  year: 1912
  end-page: 50
  article-title: The distribution of the flora in the alpine zone
  publication-title: New Phytol
– volume: 15
  start-page: 1389
  year: 2013
  end-page: 1394
  article-title: Imaging descriptors improve the predictive power of survival models for glioblastoma patients
  publication-title: Neuro Oncol
– start-page: 246
  year: 2016
  end-page: 254
– start-page: 1
  year: 2017
  end-page: 1
– volume: 2
  start-page: 388
  year: 2016
  end-page: 395
  article-title: Deep feature transfer learning in combination with traditional features predicts survival among patients with lung adenocarcinoma
  publication-title: Tomography
– year: 2015
– start-page: 83
  year: 2016
  end-page: 94
– volume: 30
  start-page: 622
  year: 2017
  end-page: 628
  article-title: Residual deep convolutional neural network predicts MGMT methylation status
  publication-title: J Digit Imaging
– start-page: 97
  year: 2017
  end-page: 104
– start-page: 91
  year: 2015
  end-page: 99
  article-title: Faster R‐CNN: Towards real‐time object detection with region proposal networks
  publication-title: Adv Neural Inf Process Syst
– volume: 44
  start-page: e360
  year: 2017
  end-page: e375
  article-title: A deep convolutional neural network using directional wavelets for low‐dose X‐ray CT reconstruction
  publication-title: Med Phys
– volume: 35
  start-page: 1285
  year: 2016
  end-page: 1298
  article-title: Deep convolutional neural networks for computer‐aided detection: CNN architectures, dataset characteristics and transfer learning
  publication-title: IEEE Trans Med Imaging
– volume: 30
  start-page: 449
  year: 2017
  end-page: 459
  article-title: Deep learning for brain MRI segmentation: state of the art and future directions
  publication-title: J Digit Imaging
– volume: 84
  start-page: 2117
  year: 2015
  end-page: 2122
  article-title: Recurrence‐free survival in breast cancer is associated with MRI tumor enhancement dynamics quantified using computer algorithms
  publication-title: Eur J Radiol
– volume: 7
  start-page: 15415
  year: 2017
  article-title: Searching for prostate cancer by fully automated magnetic resonance imaging classification: Deep learning versus non‐deep learning
  publication-title: Sci Rep
– start-page: 424
  year: 2016
  end-page: 432
– start-page: 4278
  year: 2017
  end-page: 4284
– start-page: 3444
  year: 2017
  end-page: 3453
– volume: 234
  start-page: 11
  year: 2017
  end-page: 26
  article-title: A survey of deep neural network architectures and their applications
  publication-title: Neurocomputing
– volume: 30
  start-page: 108
  year: 2016
  end-page: 119
  article-title: A combined deep‐learning and deformable‐model approach to fully automatic segmentation of the left ventricle in cardiac MRI
  publication-title: Med Image Anal
– volume: 42
  start-page: 60
  year: 2017
  end-page: 88
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med Image Anal
– volume: 35
  start-page: 303
  year: 2017
  end-page: 312
  article-title: Large scale deep learning for computer aided detection of mammographic lesions
  publication-title: Med Image Anal
– volume: 44
  start-page: 4630
  year: 2017
  end-page: 4642
  article-title: detection and diagnosis of colitis on computed tomography using deep convolutional neural networks
  publication-title: Med Phys
– start-page: 10
  year: 2016
  end-page: 18
– volume: 35
  start-page: 1299
  year: 2016
  end-page: 1312
  article-title: Convolutional neural networks for medical image analysis: Full training or fine tuning?
  publication-title: IEEE Trans Med Imaging
– start-page: 1
  year: 2017
  end-page: 10
  article-title: Application of super‐resolution convolutional neural network for enhancing image resolution in chest CT
  publication-title: J Digit Imaging
– start-page: 3128
  year: 2015
  end-page: 3137
– start-page: 121
  year: 2017
  end-page: 128
  article-title: Breast tumor detection in ultrasound images using deep learning
  publication-title: Int Work Patch‐based Tech Med Imaging
– year: 2017
– volume: 273
  start-page: 365
  year: 2014
  end-page: 372
  article-title: Radiogenomic analysis of breast cancer: Luminal B molecular subtype is associated with enhancement dynamics at MR imaging
  publication-title: Radiology
– volume: 170
  start-page: 434
  year: 2018
  end-page: 445
  article-title: DeepNAT: Deep convolutional neural network for segmenting neuroanatomy
  publication-title: Neuroimage
– start-page: 97841Y
  year: 2016
  article-title: 2D image classification for 3D anatomy localization: employing deep convolutional neural networks
  publication-title: Med Imaging Image Process
– ident: e_1_2_9_44_1
  doi: 10.7551/mitpress/7503.003.0024
– start-page: 91
  year: 2015
  ident: e_1_2_9_11_1
  article-title: Faster R‐CNN: Towards real‐time object detection with region proposal networks
  publication-title: Adv Neural Inf Process Syst
– ident: e_1_2_9_56_1
  doi: 10.1007/978-3-319-24574-4_28
– ident: e_1_2_9_112_1
  doi: 10.1002/jmri.25970
– ident: e_1_2_9_18_1
  doi: 10.1148/radiol.13130663
– ident: e_1_2_9_67_1
  doi: 10.1007/978-3-319-46723-8_49
– ident: e_1_2_9_75_1
  doi: 10.1016/S1361-8415(02)00056-7
– ident: e_1_2_9_86_1
  doi: 10.1007/978-3-319-46448-0_2
– ident: e_1_2_9_114_1
  doi: 10.1016/j.bspc.2016.02.006
– ident: e_1_2_9_13_1
  doi: 10.1148/radiol.2351040699
– ident: e_1_2_9_52_1
  doi: 10.1016/j.neuroimage.2017.04.034
– ident: e_1_2_9_25_1
  doi: 10.1117/12.2253982
– ident: e_1_2_9_111_1
  doi: 10.1007/s11604-018-0758-8
– ident: e_1_2_9_35_1
– start-page: 170236
  year: 2017
  ident: e_1_2_9_123_1
  article-title: Performance of a deep‐learning neural network model in assessing skeletal maturity on pediatric hand radiographs
  publication-title: Radiology
– ident: e_1_2_9_107_1
  doi: 10.1007/978-3-319-46726-9_29
– ident: e_1_2_9_103_1
  doi: 10.1002/mp.12344
– ident: e_1_2_9_43_1
  doi: 10.1126/science.1127647
– volume: 62
  start-page: 1
  year: 2017
  ident: e_1_2_9_101_1
  article-title: Multimodal MR synthesis via modality‐invariant latent representation
  publication-title: IEEE Trans Med Imaging
– ident: e_1_2_9_8_1
– ident: e_1_2_9_26_1
  doi: 10.1038/nature22985
– ident: e_1_2_9_36_1
  doi: 10.1016/j.media.2017.01.008
– ident: e_1_2_9_48_1
  doi: 10.1038/s41598-017-05848-2
– ident: e_1_2_9_126_1
– ident: e_1_2_9_124_1
  doi: 10.1080/17453674.2017.1344459
– ident: e_1_2_9_22_1
– ident: e_1_2_9_45_1
  doi: 10.1007/978-3-319-60964-5_36
– ident: e_1_2_9_125_1
  doi: 10.1007/s00586-017-4956-3
– ident: e_1_2_9_102_1
  doi: 10.1364/BOE.8.000679
– ident: e_1_2_9_76_1
  doi: 10.1007/978-3-319-10404-1_65
– ident: e_1_2_9_91_1
  doi: 10.1007/978-3-642-40763-5_31
– ident: e_1_2_9_73_1
  doi: 10.1111/j.1469-8137.1912.tb05611.x
– start-page: 97841Y
  year: 2016
  ident: e_1_2_9_90_1
  article-title: 2D image classification for 3D anatomy localization: employing deep convolutional neural networks
  publication-title: Med Imaging Image Process
– ident: e_1_2_9_119_1
– ident: e_1_2_9_30_1
  doi: 10.1002/mp.12453
– ident: e_1_2_9_81_1
  doi: 10.1118/1.4967345
– ident: e_1_2_9_2_1
  doi: 10.1016/j.neucom.2016.12.038
– ident: e_1_2_9_62_1
  doi: 10.1007/978-3-319-59876-5_12
– ident: e_1_2_9_7_1
  doi: 10.1109/CVPR.2014.220
– ident: e_1_2_9_84_1
  doi: 10.1002/mp.12399
– ident: e_1_2_9_39_1
  doi: 10.1609/aaai.v31i1.11231
– ident: e_1_2_9_95_1
  doi: 10.1109/42.563664
– ident: e_1_2_9_32_1
  doi: 10.1038/s41598-017-15720-y
– ident: e_1_2_9_21_1
  doi: 10.1148/rg.2017160130
– ident: e_1_2_9_122_1
– ident: e_1_2_9_98_1
  doi: 10.1109/TMI.2016.2549918
– ident: e_1_2_9_115_1
  doi: 10.1109/TCYB.2017.2671898
– ident: e_1_2_9_12_1
– ident: e_1_2_9_117_1
  doi: 10.1002/jmri.25779
– ident: e_1_2_9_9_1
  doi: 10.1109/CVPR.2017.367
– ident: e_1_2_9_41_1
  doi: 10.1007/s10278-017-0009-z
– ident: e_1_2_9_79_1
  doi: 10.1109/TMI.2016.2528129
– ident: e_1_2_9_31_1
  doi: 10.18383/j.tom.2016.00211
– ident: e_1_2_9_37_1
– ident: e_1_2_9_34_1
– ident: e_1_2_9_100_1
– ident: e_1_2_9_47_1
  doi: 10.1007/s10278-017-9984-3
– ident: e_1_2_9_46_1
  doi: 10.1016/j.nicl.2017.10.015
– ident: e_1_2_9_85_1
  doi: 10.1109/CVPR.2016.91
– ident: e_1_2_9_88_1
  doi: 10.1007/978-3-319-67434-6_14
– ident: e_1_2_9_15_1
  doi: 10.1148/radiol.14132641
– ident: e_1_2_9_10_1
  doi: 10.1109/CVPR.2015.7298932
– ident: e_1_2_9_82_1
  doi: 10.1109/CVPR.2015.7298594
– ident: e_1_2_9_80_1
  doi: 10.1109/TMI.2016.2528162
– ident: e_1_2_9_105_1
  doi: 10.1002/mp.12155
– ident: e_1_2_9_4_1
– ident: e_1_2_9_69_1
– start-page: 3320
  year: 2014
  ident: e_1_2_9_23_1
  article-title: How transferable are features in deep neural networks?
  publication-title: Adv Neural Inf Process Syst
– ident: e_1_2_9_92_1
  doi: 10.1109/TMI.2015.2482920
– ident: e_1_2_9_60_1
– ident: e_1_2_9_5_1
– ident: e_1_2_9_49_1
  doi: 10.1016/j.media.2016.05.004
– ident: e_1_2_9_38_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_9_42_1
  doi: 10.1016/j.crad.2017.11.015
– ident: e_1_2_9_71_1
– ident: e_1_2_9_66_1
  doi: 10.1109/3DV.2016.79
– ident: e_1_2_9_70_1
  doi: 10.1007/978-3-319-52280-7_8
– ident: e_1_2_9_57_1
– ident: e_1_2_9_24_1
  doi: 10.1109/CVPRW.2014.131
– ident: e_1_2_9_19_1
  doi: 10.1093/neuonc/nos335
– ident: e_1_2_9_51_1
  doi: 10.1109/EMBC.2017.8037243
– ident: e_1_2_9_120_1
  doi: 10.1016/j.media.2016.07.007
– ident: e_1_2_9_54_1
  doi: 10.1038/s41598-017-05728-9
– ident: e_1_2_9_68_1
– ident: e_1_2_9_109_1
  doi: 10.1002/mrm.27178
– ident: e_1_2_9_72_1
  doi: 10.1162/neco.1997.9.8.1735
– ident: e_1_2_9_78_1
  doi: 10.1109/CVPR.2014.276
– ident: e_1_2_9_116_1
  doi: 10.1109/TMI.2017.2690836
– ident: e_1_2_9_55_1
  doi: 10.1109/CVPR.2015.7298965
– start-page: 1097
  year: 2012
  ident: e_1_2_9_3_1
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: In: Adv Neural Inf Process Syst
– ident: e_1_2_9_40_1
  doi: 10.1109/CVPR.2016.308
– start-page: 1
  year: 2017
  ident: e_1_2_9_108_1
  article-title: Application of super‐resolution convolutional neural network for enhancing image resolution in chest CT
  publication-title: J Digit Imaging
– volume: 17
  start-page: 305
  year: 2014
  ident: e_1_2_9_106_1
  article-title: Deep learning based imaging data completion for improved brain disease diagnosis
  publication-title: Med Image Comput Comput Assist Interv
– ident: e_1_2_9_59_1
  doi: 10.1109/CVPRW.2017.156
– ident: e_1_2_9_14_1
  doi: 10.1016/j.jacr.2015.04.019
– ident: e_1_2_9_104_1
– ident: e_1_2_9_6_1
  doi: 10.1109/ICCV.2015.123
– ident: e_1_2_9_33_1
  doi: 10.1109/JBHI.2016.2635663
– ident: e_1_2_9_63_1
  doi: 10.1007/978-3-319-55524-9_12
– ident: e_1_2_9_83_1
  doi: 10.1109/EMBC.2017.8036887
– ident: e_1_2_9_93_1
– ident: e_1_2_9_110_1
  doi: 10.1016/j.media.2017.07.006
– ident: e_1_2_9_89_1
– ident: e_1_2_9_99_1
– ident: e_1_2_9_53_1
  doi: 10.1016/j.neuroimage.2017.02.035
– start-page: 1
  year: 2017
  ident: e_1_2_9_17_1
  article-title: Radiogenomics of lower‐grade glioma: algorithmically‐assessed tumor shape is associated with tumor genomic subtypes and patient outcomes in a multi‐institutional study with The Cancer Genome Atlas data
  publication-title: J Neurooncol
– ident: e_1_2_9_58_1
– ident: e_1_2_9_16_1
  doi: 10.1148/radiol.13120118
– ident: e_1_2_9_87_1
  doi: 10.1145/3107411.3107484
– ident: e_1_2_9_77_1
– ident: e_1_2_9_121_1
– ident: e_1_2_9_94_1
  doi: 10.1007/978-3-319-46726-9_2
– start-page: 20170788
  year: 2017
  ident: e_1_2_9_96_1
  article-title: Respiratory motion correction for free‐breathing 3D abdominal MRI using CNN based image registration: a feasibility study
  publication-title: Br J Radiol
– ident: e_1_2_9_65_1
  doi: 10.1109/ISBI.2017.7950555
– ident: e_1_2_9_97_1
  doi: 10.1007/978-3-319-67558-9_24
– ident: e_1_2_9_29_1
  doi: 10.1109/TMI.2016.2535302
– ident: e_1_2_9_50_1
  doi: 10.1016/j.cviu.2017.04.002
– ident: e_1_2_9_74_1
  doi: 10.1016/j.media.2016.01.005
– ident: e_1_2_9_113_1
  doi: 10.1016/j.neucom.2017.05.025
– ident: e_1_2_9_27_1
  doi: 10.1016/j.media.2017.07.005
– ident: e_1_2_9_28_1
  doi: 10.1007/s10278-017-9983-4
– ident: e_1_2_9_64_1
  doi: 10.1007/978-3-319-67558-9_28
– volume-title: Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks
  year: 2017
  ident: e_1_2_9_118_1
– ident: e_1_2_9_20_1
  doi: 10.1016/j.ejrad.2015.07.012
– ident: e_1_2_9_61_1
SSID ssj0009945
Score 2.6689823
SecondaryResourceType review_article
Snippet Deep learning is a branch of artificial intelligence where networks of simple interconnected units are used to extract patterns from data in order to solve...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 939
SubjectTerms Algorithms
Artificial Intelligence
Artificial neural networks
convolutional neural networks
Data processing
Deep Learning
Diagnostic Tests, Routine
Human performance
Humans
Image Processing, Computer-Assisted
Learning algorithms
Machine Learning
Magnetic Resonance Imaging
Medical imaging
Neural networks
Neural Networks, Computer
Radiography
Radiology
Radiology - methods
Title Deep learning in radiology: An overview of the concepts and a survey of the state of the art with focus on MRI
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.26534
https://www.ncbi.nlm.nih.gov/pubmed/30575178
https://www.proquest.com/docview/2190830312
https://www.proquest.com/docview/2159982467
https://pubmed.ncbi.nlm.nih.gov/PMC6483404
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VPSAuvB-BgozgAlK2efgVxKUCqlJpOVRU6gVFduzAtuBUmw1S--vxxEmWpQgJbok8kR17xvPZnvkM8ELIPPUogMeKURNTrpJYUeYnQ8a0NghIGGYjzz_yg2N6eMJOtuDNmAsT-CGmDTe0jH6-RgNXut1dk4aefl8uZhlnOZKBYrAWIqKjNXdUUfQ3FHv8kMepTMTETZrtrj_d9EZXIObVSMlfEWzvgvZvwuex8SHy5GzWrfSsuvyN1_F__-4W3BiwKdkLynQbtqy7A9fmw-n7XXDvrD0nwz0TX8jCkaUyId3lNdlzBKNB8aSBNDXxuJJUISWyJcoZokjbLX_Yi7Gwz2QaX7z-EtwRJnVTdS1pHJkffbgHx_vvP709iIf7GuLKL_Kod3aJzoXGk1pZmYLrOi-SSqVJLSqlMk09VMnqWhubpFIakwsvrGxqtKaKSZXfh23XOPsQSK2EstLwwkpODUXSf-9rpdW6sFrwNIKX47iV1UBmjndqfCsDDXNWYgeWfQdG8HySPQ8UHn-U2hmHvxzMuC39dJ5gxWkWwbOp2BsgnqooZ5sOZZhfsmbe4UTwIGjLVE2OaDgVMgKxoUeTAJJ7b5a4xdee5JvjLm_im_WqV5O_tLw89EPSPz36F-HHcN2DvyJEIe3A9mrZ2SceYK30096QfgLsxSJ1
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSMCFdyG0BSO4gJRtHn6FW1WotqXbQ9VKvUV27MC24FSbDRL8-nrsbJalCAluiTxREnvG89me-QahN1zkqUMBLJaU6JgwmcSSUDcZUqqUBkBCIRt5csTGp-TgjJ71sTmQCxP4IYYNN7AMP1-DgcOG9PaSNfT822w6yhjNyU10C0p6-xXV8ZI9qih8jWKHIPI4FQkf2Emz7eWzq_7oGsi8Hiv5K4b1Tmjvfqi02nruQog9uRh1czWqfv7G7Pjf__cA3evhKd4J-vQQ3TD2Ebo96Q_gHyP7wZhL3Jea-IynFs-kDhkv7_GOxRAQCocNuKmxg5a4ClmRLZZWY4nbbvbd_Fg0-mSmxY1TYQybwrhuqq7FjcWT4_0n6HTv48nuOO5LNsSVW-cR5-8SlXMFh7Wi0gVTdV4klUyTmldSZoo4tJLVtdImSYXQOudOWJpUK0UkFTJfR2u2seYZwrXk0gjNCiMY0QR4_527FUapwijO0gi9XQxcWfV85lBW42sZmJizEjqw9B0YodeD7GVg8fij1OZi_MvektvSzegJvDjNIvRqaHY2CAcr0pqmAxnqVq2Z8zkRehrUZXhNDoA45SJCfEWRBgHg915tsdMvnuebwUZv4j7rndeTv3x5eeCGxF89_xfhl-jO-GRyWB7uH33aQHcdFixCUNImWpvPOrPl8NZcvfBWdQXxKiaQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VIlW8cB-BAkbwAlK2TuIriJeKZdUWtkIVlfqCIjt2YDmc1e4GCX49tnMsSxESvCXyRHbsGc9ne-YzwBMussShABZLSnRMmMSxJNRNhpQqpT0goT4beXrMDk7J0Rk924IXfS5Myw8xbLh5ywjztTfwua721qShn74uZqOU0YxcgIuEYeF1enyyJo_K83BFsQMQWZwIzAdy0nRv_e2mOzqHMc-HSv4KYYMPmlyB933r29CTz6NmpUblj9-IHf_3967C5Q6cov1Wm67BlrHXYWfaHb_fADs2Zo66iyY-oJlFC6nbfJfnaN8iHw7qjxpQXSEHLFHZ5kQukbQaSbRsFt_M974wpDL1L06Bkd8SRlVdNktUWzQ9ObwJp5NX714exN2FDXHpVnnEeTusMq78Ua0odc5UleW4lAmueCllqojDKmlVKW1wIoTWGXfC0iRaKSKpkNkt2La1NXcAVZJLIzTLjWBEE8_675ytMErlRnGWRPC0H7ei7NjM_aUaX4qWhzktfAcWoQMjeDzIzlsOjz9K7fbDX3R2vCzcfI59xUkawaOh2FmgP1aR1tSNl6FuzZo6jxPB7VZbhmoyD4cTLiLgG3o0CHh2780SO_sYWL6Z3-bFrlnPgpr8peXFkRuS8HT3X4Qfws7b8aR4c3j8-h5cckAwbyOSdmF7tWjMfQe2VupBsKmfhy4lSA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+in+radiology%3A+An+overview+of+the+concepts+and+a+survey+of+the+state+of+the+art+with+focus+on+MRI&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Mazurowski%2C+Maciej+A.&rft.au=Buda%2C+Mateusz&rft.au=Saha%2C+Ashirbani&rft.au=Bashir%2C+Mustafa+R.&rft.date=2019-04-01&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=49&rft.issue=4&rft.spage=939&rft.epage=954&rft_id=info:doi/10.1002%2Fjmri.26534&rft.externalDBID=10.1002%252Fjmri.26534&rft.externalDocID=JMRI26534
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon