Improving Sensitivity of Arterial Spin Labeling Perfusion MRI in Alzheimer's Disease Using Transfer Learning of Deep Learning‐Based ASL Denoising

Background Arterial spin labeling (ASL) perfusion magnetic resonance imaging (MRI) denoising through deep learning (DL) often faces insufficient training data from patients. One solution is to train DL models using healthy subjects' data which are more widely available and transfer them to pati...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetic resonance imaging Vol. 55; no. 6; pp. 1710 - 1722
Main Authors Zhang, Lei, Xie, Danfeng, Li, Yiran, Camargo, Aldo, Song, Donghui, Lu, Tong, Jeudy, Jean, Dreizin, David, Melhem, Elias R., Wang, Ze
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.06.2022
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background Arterial spin labeling (ASL) perfusion magnetic resonance imaging (MRI) denoising through deep learning (DL) often faces insufficient training data from patients. One solution is to train DL models using healthy subjects' data which are more widely available and transfer them to patients' data. Purpose To evaluate the transferability of a DL‐based ASL MRI denoising method (DLASL). Study Type Retrospective. Subjects Four hundred and twenty‐eight subjects (189 females) from three cohorts. Field Strength/Sequence 3 T two‐dimensional (2D) echo‐planar imaging (EPI)‐based pseudo‐continuous ASL (PCASL) and 2D EPI‐based pulsed ASL (PASL) sequences. Assessment DLASL was trained using young healthy adults' PCASL data (Dataset 1: 250/30 subjects as training/validation set) and was directly transferred (DTF) to PCASL data from Dataset 2 (45 subjects test set) of normal controls (NC) and Alzheimer's disease (AD) groups. DLASL was fine‐tuned (DLASLFT) and tested on PASL data from Dataset 3 (103 subjects test set) of NC and AD. An existing non‐DL method (NonDL) was used for comparison. Cerebral blood flow (CBF) images from ASL MRI were compared between NC and AD to assess characteristic hypoperfusion (lower CBF) patterns in AD. CBF image quality and CBF map sensitivity for detecting hypoperfusion using peak t‐value and suprathreshold cluster size are outcome measures. Statistical Tests Paired t‐test, two‐sample t‐test, one‐way analysis of variance, and Tukey honestly significant difference, and linear mixed‐effects models were used. P < 0.05 was considered statistically significant. Results Mean contrast‐to‐noise ratio (CNR) of Dataset 2 showed that DTF outperformed NonDL (AD: 3.38 vs. 2.64, NC: 3.80 vs. 3.36). On Dataset 3, DLASLFT outperformed NonDL measured by mean CNR (AD: 2.45 vs. 1.87, NC: 2.54 vs. 2.17) and mean radiologic score (2.86 vs. 2.44). Image quality improvement was significant on both test sets. DTF and DLASLFT improved sensitivity for detecting AD‐related hypoperfusion patterns compared with NonDL. Data Conclusion We demonstrated the DLASL's transferability across different ASL sequences and different populations. Level of Evidence 3 Technical Efficacy Stage 2
AbstractList Arterial spin labeling (ASL) perfusion magnetic resonance imaging (MRI) denoising through deep learning (DL) often faces insufficient training data from patients. One solution is to train DL models using healthy subjects' data which are more widely available and transfer them to patients' data.BACKGROUNDArterial spin labeling (ASL) perfusion magnetic resonance imaging (MRI) denoising through deep learning (DL) often faces insufficient training data from patients. One solution is to train DL models using healthy subjects' data which are more widely available and transfer them to patients' data.To evaluate the transferability of a DL-based ASL MRI denoising method (DLASL).PURPOSETo evaluate the transferability of a DL-based ASL MRI denoising method (DLASL).Retrospective.STUDY TYPERetrospective.Four hundred and twenty-eight subjects (189 females) from three cohorts.SUBJECTSFour hundred and twenty-eight subjects (189 females) from three cohorts.3 T two-dimensional (2D) echo-planar imaging (EPI)-based pseudo-continuous ASL (PCASL) and 2D EPI-based pulsed ASL (PASL) sequences.FIELD STRENGTH/SEQUENCE3 T two-dimensional (2D) echo-planar imaging (EPI)-based pseudo-continuous ASL (PCASL) and 2D EPI-based pulsed ASL (PASL) sequences.DLASL was trained using young healthy adults' PCASL data (Dataset 1: 250/30 subjects as training/validation set) and was directly transferred (DTF) to PCASL data from Dataset 2 (45 subjects test set) of normal controls (NC) and Alzheimer's disease (AD) groups. DLASL was fine-tuned (DLASLFT) and tested on PASL data from Dataset 3 (103 subjects test set) of NC and AD. An existing non-DL method (NonDL) was used for comparison. Cerebral blood flow (CBF) images from ASL MRI were compared between NC and AD to assess characteristic hypoperfusion (lower CBF) patterns in AD. CBF image quality and CBF map sensitivity for detecting hypoperfusion using peak t-value and suprathreshold cluster size are outcome measures.ASSESSMENTDLASL was trained using young healthy adults' PCASL data (Dataset 1: 250/30 subjects as training/validation set) and was directly transferred (DTF) to PCASL data from Dataset 2 (45 subjects test set) of normal controls (NC) and Alzheimer's disease (AD) groups. DLASL was fine-tuned (DLASLFT) and tested on PASL data from Dataset 3 (103 subjects test set) of NC and AD. An existing non-DL method (NonDL) was used for comparison. Cerebral blood flow (CBF) images from ASL MRI were compared between NC and AD to assess characteristic hypoperfusion (lower CBF) patterns in AD. CBF image quality and CBF map sensitivity for detecting hypoperfusion using peak t-value and suprathreshold cluster size are outcome measures.Paired t-test, two-sample t-test, one-way analysis of variance, and Tukey honestly significant difference, and linear mixed-effects models were used. P < 0.05 was considered statistically significant.STATISTICAL TESTSPaired t-test, two-sample t-test, one-way analysis of variance, and Tukey honestly significant difference, and linear mixed-effects models were used. P < 0.05 was considered statistically significant.Mean contrast-to-noise ratio (CNR) of Dataset 2 showed that DTF outperformed NonDL (AD: 3.38 vs. 2.64, NC: 3.80 vs. 3.36). On Dataset 3, DLASLFT outperformed NonDL measured by mean CNR (AD: 2.45 vs. 1.87, NC: 2.54 vs. 2.17) and mean radiologic score (2.86 vs. 2.44). Image quality improvement was significant on both test sets. DTF and DLASLFT improved sensitivity for detecting AD-related hypoperfusion patterns compared with NonDL.RESULTSMean contrast-to-noise ratio (CNR) of Dataset 2 showed that DTF outperformed NonDL (AD: 3.38 vs. 2.64, NC: 3.80 vs. 3.36). On Dataset 3, DLASLFT outperformed NonDL measured by mean CNR (AD: 2.45 vs. 1.87, NC: 2.54 vs. 2.17) and mean radiologic score (2.86 vs. 2.44). Image quality improvement was significant on both test sets. DTF and DLASLFT improved sensitivity for detecting AD-related hypoperfusion patterns compared with NonDL.We demonstrated the DLASL's transferability across different ASL sequences and different populations.DATA CONCLUSIONWe demonstrated the DLASL's transferability across different ASL sequences and different populations.3 TECHNICAL EFFICACY: Stage 2.LEVEL OF EVIDENCE3 TECHNICAL EFFICACY: Stage 2.
Arterial spin labeling (ASL) perfusion magnetic resonance imaging (MRI) denoising through deep learning (DL) often faces insufficient training data from patients. One solution is to train DL models using healthy subjects' data which are more widely available and transfer them to patients' data. To evaluate the transferability of a DL-based ASL MRI denoising method (DLASL). Retrospective. Four hundred and twenty-eight subjects (189 females) from three cohorts. 3 T two-dimensional (2D) echo-planar imaging (EPI)-based pseudo-continuous ASL (PCASL) and 2D EPI-based pulsed ASL (PASL) sequences. DLASL was trained using young healthy adults' PCASL data (Dataset 1: 250/30 subjects as training/validation set) and was directly transferred (DTF) to PCASL data from Dataset 2 (45 subjects test set) of normal controls (NC) and Alzheimer's disease (AD) groups. DLASL was fine-tuned (DLASLFT) and tested on PASL data from Dataset 3 (103 subjects test set) of NC and AD. An existing non-DL method (NonDL) was used for comparison. Cerebral blood flow (CBF) images from ASL MRI were compared between NC and AD to assess characteristic hypoperfusion (lower CBF) patterns in AD. CBF image quality and CBF map sensitivity for detecting hypoperfusion using peak t-value and suprathreshold cluster size are outcome measures. Paired t-test, two-sample t-test, one-way analysis of variance, and Tukey honestly significant difference, and linear mixed-effects models were used. P < 0.05 was considered statistically significant. Mean contrast-to-noise ratio (CNR) of Dataset 2 showed that DTF outperformed NonDL (AD: 3.38 vs. 2.64, NC: 3.80 vs. 3.36). On Dataset 3, DLASLFT outperformed NonDL measured by mean CNR (AD: 2.45 vs. 1.87, NC: 2.54 vs. 2.17) and mean radiologic score (2.86 vs. 2.44). Image quality improvement was significant on both test sets. DTF and DLASLFT improved sensitivity for detecting AD-related hypoperfusion patterns compared with NonDL. We demonstrated the DLASL's transferability across different ASL sequences and different populations. 3 TECHNICAL EFFICACY: Stage 2.
Background Arterial spin labeling (ASL) perfusion magnetic resonance imaging (MRI) denoising through deep learning (DL) often faces insufficient training data from patients. One solution is to train DL models using healthy subjects' data which are more widely available and transfer them to patients' data. Purpose To evaluate the transferability of a DL‐based ASL MRI denoising method (DLASL). Study Type Retrospective. Subjects Four hundred and twenty‐eight subjects (189 females) from three cohorts. Field Strength/Sequence 3 T two‐dimensional (2D) echo‐planar imaging (EPI)‐based pseudo‐continuous ASL (PCASL) and 2D EPI‐based pulsed ASL (PASL) sequences. Assessment DLASL was trained using young healthy adults' PCASL data (Dataset 1: 250/30 subjects as training/validation set) and was directly transferred (DTF) to PCASL data from Dataset 2 (45 subjects test set) of normal controls (NC) and Alzheimer's disease (AD) groups. DLASL was fine‐tuned (DLASLFT) and tested on PASL data from Dataset 3 (103 subjects test set) of NC and AD. An existing non‐DL method (NonDL) was used for comparison. Cerebral blood flow (CBF) images from ASL MRI were compared between NC and AD to assess characteristic hypoperfusion (lower CBF) patterns in AD. CBF image quality and CBF map sensitivity for detecting hypoperfusion using peak t‐value and suprathreshold cluster size are outcome measures. Statistical Tests Paired t‐test, two‐sample t‐test, one‐way analysis of variance, and Tukey honestly significant difference, and linear mixed‐effects models were used. P < 0.05 was considered statistically significant. Results Mean contrast‐to‐noise ratio (CNR) of Dataset 2 showed that DTF outperformed NonDL (AD: 3.38 vs. 2.64, NC: 3.80 vs. 3.36). On Dataset 3, DLASLFT outperformed NonDL measured by mean CNR (AD: 2.45 vs. 1.87, NC: 2.54 vs. 2.17) and mean radiologic score (2.86 vs. 2.44). Image quality improvement was significant on both test sets. DTF and DLASLFT improved sensitivity for detecting AD‐related hypoperfusion patterns compared with NonDL. Data Conclusion We demonstrated the DLASL's transferability across different ASL sequences and different populations. Level of Evidence 3 Technical Efficacy Stage 2
BackgroundArterial spin labeling (ASL) perfusion magnetic resonance imaging (MRI) denoising through deep learning (DL) often faces insufficient training data from patients. One solution is to train DL models using healthy subjects' data which are more widely available and transfer them to patients' data.PurposeTo evaluate the transferability of a DL‐based ASL MRI denoising method (DLASL).Study TypeRetrospective.SubjectsFour hundred and twenty‐eight subjects (189 females) from three cohorts.Field Strength/Sequence3 T two‐dimensional (2D) echo‐planar imaging (EPI)‐based pseudo‐continuous ASL (PCASL) and 2D EPI‐based pulsed ASL (PASL) sequences.AssessmentDLASL was trained using young healthy adults' PCASL data (Dataset 1: 250/30 subjects as training/validation set) and was directly transferred (DTF) to PCASL data from Dataset 2 (45 subjects test set) of normal controls (NC) and Alzheimer's disease (AD) groups. DLASL was fine‐tuned (DLASLFT) and tested on PASL data from Dataset 3 (103 subjects test set) of NC and AD. An existing non‐DL method (NonDL) was used for comparison. Cerebral blood flow (CBF) images from ASL MRI were compared between NC and AD to assess characteristic hypoperfusion (lower CBF) patterns in AD. CBF image quality and CBF map sensitivity for detecting hypoperfusion using peak t‐value and suprathreshold cluster size are outcome measures.Statistical TestsPaired t‐test, two‐sample t‐test, one‐way analysis of variance, and Tukey honestly significant difference, and linear mixed‐effects models were used. P < 0.05 was considered statistically significant.ResultsMean contrast‐to‐noise ratio (CNR) of Dataset 2 showed that DTF outperformed NonDL (AD: 3.38 vs. 2.64, NC: 3.80 vs. 3.36). On Dataset 3, DLASLFT outperformed NonDL measured by mean CNR (AD: 2.45 vs. 1.87, NC: 2.54 vs. 2.17) and mean radiologic score (2.86 vs. 2.44). Image quality improvement was significant on both test sets. DTF and DLASLFT improved sensitivity for detecting AD‐related hypoperfusion patterns compared with NonDL.Data ConclusionWe demonstrated the DLASL's transferability across different ASL sequences and different populations.Level of Evidence3Technical EfficacyStage 2
Author Dreizin, David
Melhem, Elias R.
Lu, Tong
Song, Donghui
Jeudy, Jean
Wang, Ze
Camargo, Aldo
Zhang, Lei
Xie, Danfeng
Li, Yiran
AuthorAffiliation 1 Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 670 W. Baltimore Street, Baltimore, MD 21201, USA
2 Department of Mathematics, University of Maryland, College Park, 4176 Campus Dr, College Park, MD 20742, USA
AuthorAffiliation_xml – name: 1 Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 670 W. Baltimore Street, Baltimore, MD 21201, USA
– name: 2 Department of Mathematics, University of Maryland, College Park, 4176 Campus Dr, College Park, MD 20742, USA
Author_xml – sequence: 1
  givenname: Lei
  orcidid: 0000-0002-4424-4942
  surname: Zhang
  fullname: Zhang, Lei
  organization: University of Maryland School of Medicine
– sequence: 2
  givenname: Danfeng
  surname: Xie
  fullname: Xie, Danfeng
  organization: University of Maryland School of Medicine
– sequence: 3
  givenname: Yiran
  surname: Li
  fullname: Li, Yiran
  organization: University of Maryland School of Medicine
– sequence: 4
  givenname: Aldo
  orcidid: 0000-0001-5672-6028
  surname: Camargo
  fullname: Camargo, Aldo
  organization: University of Maryland School of Medicine
– sequence: 5
  givenname: Donghui
  surname: Song
  fullname: Song, Donghui
  organization: University of Maryland School of Medicine
– sequence: 6
  givenname: Tong
  surname: Lu
  fullname: Lu, Tong
  organization: University of Maryland, College Park
– sequence: 7
  givenname: Jean
  surname: Jeudy
  fullname: Jeudy, Jean
  organization: University of Maryland School of Medicine
– sequence: 8
  givenname: David
  surname: Dreizin
  fullname: Dreizin, David
  organization: University of Maryland School of Medicine
– sequence: 9
  givenname: Elias R.
  surname: Melhem
  fullname: Melhem, Elias R.
  organization: University of Maryland School of Medicine
– sequence: 10
  givenname: Ze
  surname: Wang
  fullname: Wang, Ze
  email: ze.wang@som.umaryland.edu
  organization: University of Maryland School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34741576$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1DAUhiNURC-w4QGQJRYgpBTf4jibSkPLZVAQiGnXlpM5aT1K7GAnU01XPAISb8iT4DBlBBViZeuc7_91bofJnnUWkuQxwccEY_py1XlzTPNC8nvJAckoTWkmxV7844ylROJ8PzkMYYUxLgqePUj2Gc85yXJxkHyfd713a2Mv0QJsMINZm2GDXINmfgBvdIsWvbGo1BW0E_UJfDMG4yz68HmOYmbW3lyB6cA_C-jMBNAB0EWY0HOvbWjAoxK0t1Mk2p4B9LvAj6_fXkV-iWaLMmasM5PwYXK_0W2AR7fvUXLx5vX56bu0_Ph2fjor05pzyVOupRCCkYoDY5xhChqY1FgWDQDLm0IyWRPZ8LohIo4FlrpeYiErWRGaUc2OkpOtbz9WHSxrsIPXreq96bTfKKeN-jtjzZW6dGtV4JwKTKPB81sD776MEAbVmVBD22oLbgyKZgWnBRZ5FtGnd9CVG72N7SkqBCVMckEi9eTPinal_N5XBF5sgdq7EDw0O4RgNR2Dmo5B_TqGCOM7cG0GPcTdxW5M-28J2UquTQub_5ir93H9W81PfGnJZA
CitedBy_id crossref_primary_10_3390_a17050215
crossref_primary_10_13104_imri_2022_26_4_220
crossref_primary_10_3390_bioengineering10101120
crossref_primary_10_13104_imri_2022_26_4_246
crossref_primary_10_3389_frai_2022_780405
crossref_primary_10_3390_app12010114
crossref_primary_10_1002_mrm_29674
crossref_primary_10_1002_mrm_29763
crossref_primary_10_1186_s40001_024_02172_0
crossref_primary_10_1109_JBHI_2023_3312662
crossref_primary_10_1007_s12194_024_00842_6
crossref_primary_10_1016_j_brainres_2024_149021
crossref_primary_10_1038_s41598_024_57419_x
crossref_primary_10_3390_app12157355
crossref_primary_10_1002_alz_14310
crossref_primary_10_1002_mrm_29887
crossref_primary_10_1016_j_bspc_2025_107729
crossref_primary_10_1111_jon_70035
crossref_primary_10_1088_1361_6560_ad94c7
crossref_primary_10_1002_hbm_70161
Cites_doi 10.3174/ajnr.A5543
10.1016/j.mri.2007.07.003
10.1002/hbm.22445
10.1016/j.neuroimage.2019.07.002
10.1002/mrm.1910230106
10.1016/j.neuroimage.2017.05.054
10.3233/JAD-141419
10.1007/978-3-030-32248-9_2
10.1089/brain.2014.0290
10.1002/mrm.21403
10.1016/j.jneumeth.2017.11.017
10.1016/j.neuroimage.2020.117165
10.1007/3-540-49430-8_3
10.1109/TMI.2016.2528129
10.1016/j.mri.2020.01.005
10.1002/mrm.25197
10.1002/jmri.22345
10.1007/978-3-030-00928-1_4
10.1016/S1053-8119(09)70884-5
10.1002/(SICI)1522-2594(199906)41:6<1246::AID-MRM22>3.0.CO;2-N
10.1016/j.mri.2012.05.004
10.1016/j.neuroimage.2010.07.033
10.1007/978-1-4612-4380-9_35
10.1212/WNL.0b013e3181f11e35
10.1002/jmri.23581
10.3233/JAD-2010-091699
10.1016/j.jneumeth.2018.06.007
10.1371/journal.pone.0077089
ContentType Journal Article
Copyright 2021 International Society for Magnetic Resonance in Medicine.
2022 International Society for Magnetic Resonance in Medicine
Copyright_xml – notice: 2021 International Society for Magnetic Resonance in Medicine.
– notice: 2022 International Society for Magnetic Resonance in Medicine
CorporateAuthor Alzheimer's Disease Neuroimaging Initiative
CorporateAuthor_xml – name: Alzheimer's Disease Neuroimaging Initiative
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
5PM
DOI 10.1002/jmri.27984
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-2586
EndPage 1722
ExternalDocumentID PMC9072602
34741576
10_1002_jmri_27984
JMRI27984
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: BioClinica, Inc.
– fundername: Janssen Research & Development, LLC
– fundername: Johnson and Johnson Pharmaceutical Research & Development LLC
– fundername: Cogstate
– fundername: Araclon Biotech
– fundername: CereSpir, Inc.
– fundername: Eli Lilly and Company
– fundername: Northern California Institute for Research and Education
– fundername: NIA
  funderid: R01AG060054
– fundername: AbbVie
– fundername: NIA NIH HHS
  grantid: R01 AG070227
– fundername: NIBIB NIH HHS
  grantid: R01 EB031080
– fundername: NIA NIH HHS
  grantid: R01 AG060054
– fundername: NIA NIH HHS
  grantid: U01 AG024904
– fundername: NIBIB NIH HHS
  grantid: P41 EB029460
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c4484-4a866631b4e334302eae38a089fee37f9838c18f4cf16152edacd068b8b1252a3
IEDL.DBID DR2
ISSN 1053-1807
1522-2586
IngestDate Thu Aug 21 18:37:15 EDT 2025
Fri Jul 11 08:23:10 EDT 2025
Fri Jul 25 12:03:44 EDT 2025
Wed Feb 19 02:05:13 EST 2025
Tue Jul 01 03:56:51 EDT 2025
Thu Apr 24 22:53:18 EDT 2025
Wed Jan 22 16:24:11 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords denoising
deep learning
transfer learning
Alzheimer's disease
arterial spin labeling perfusion MRI
Language English
License 2021 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4484-4a866631b4e334302eae38a089fee37f9838c18f4cf16152edacd068b8b1252a3
Notes Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in the analysis or writing of this report. A complete listing of ADNI investigators can be found at
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
The first two authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
these authors contributed equally.
ORCID 0000-0001-5672-6028
0000-0002-4424-4942
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/9072602
PMID 34741576
PQID 2662138461
PQPubID 1006400
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9072602
proquest_miscellaneous_2594290675
proquest_journals_2662138461
pubmed_primary_34741576
crossref_primary_10_1002_jmri_27984
crossref_citationtrail_10_1002_jmri_27984
wiley_primary_10_1002_jmri_27984_JMRI27984
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2022
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Nashville
PublicationSubtitle JMRI
PublicationTitle Journal of magnetic resonance imaging
PublicationTitleAlternate J Magn Reson Imaging
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2009; 47
2010; 75
2015; 5
2015; 73
1998
2011; 33
2011; 54
2020; 221
1999; 41
2018; 307
1992
2012; 35
2013; 8
2017; 157
2019; 200
2007; 58
2016; 35
2012; 30
2014; 42
1999
2018; 295
2018; 39
2010; 20
2020
2019
2008; 26
2018
2017
2020; 68
2016
2015
2014
1992; 23
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_21_1
Wong EC (e_1_2_6_38_1) 1999
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 73
  start-page: 102
  issue: 1
  year: 2015
  end-page: 116
  article-title: Recommended implementation of arterial spin‐labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia
  publication-title: Magn Reson Med
– volume: 5
  start-page: 543
  issue: 9
  year: 2015
  end-page: 553
  article-title: Voxel‐wise functional connectomics using arterial spin labeling functional magnetic resonance imaging: The role of denoising
  publication-title: Brain Connect
– volume: 58
  start-page: 1020
  issue: 5
  year: 2007
  end-page: 1027
  article-title: A theoretical and experimental investigation of the tagging efficiency of pseudocontinuous arterial spin labeling
  publication-title: Magn Reson Med
– start-page: 265
  year: 2016
  end-page: 283
– volume: 41
  start-page: 1246
  issue: 6
  year: 1999
  end-page: 1254
  article-title: QUIPSS II with thin‐slice TI1 periodic saturation: a method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labeling. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic
  publication-title: Resonance in Medicine
– volume: 23
  start-page: 37
  issue: 1
  year: 1992
  end-page: 45
  article-title: Perfusion imaging
  publication-title: Magn Reson Med
– volume: 47
  start-page: S102
  year: 2009
  article-title: Unbiased nonlinear average age‐appropriate brain templates from birth to adulthood
  publication-title: Neuroimage
– volume: 68
  start-page: 95
  year: 2020
  end-page: 105
  article-title: Denoising arterial spin labeling perfusion MRI with deep machine learning
  publication-title: Magn Reson Imaging
– volume: 39
  start-page: 1776
  issue: 10
  year: 2018
  end-page: 1784
  article-title: Deep learning in neuroradiology
  publication-title: Am J Neuroradiol
– volume: 35
  start-page: 1026
  issue: 5
  year: 2012
  end-page: 1037
  article-title: Applications of arterial spin labeled MRI in the brain
  publication-title: J Magn Reson Imaging
– volume: 307
  start-page: 248
  year: 2018
  end-page: 253
  article-title: Priors‐guided slice‐wise adaptive outlier cleaning for arterial spin labeling perfusion MRI
  publication-title: J Neurosci Methods
– year: 2016
– year: 2018
– year: 2014
– volume: 54
  start-page: 313
  issue: 1
  year: 2011
  end-page: 327
  article-title: Unbiased average age‐appropriate atlases for pediatric studies
  publication-title: Neuroimage
– volume: 42
  start-page: S495
  issue: s4
  year: 2014
  end-page: S502
  article-title: Characterizing early Alzheimer's disease and disease progression using hippocampal volume and arterial spin labeling perfusion MRI
  publication-title: J Alzheimers Dis
– volume: 8
  issue: 11
  year: 2013
  article-title: On the definition of signal‐to‐noise ratio and contrast‐to‐noise ratio for fMRI data
  publication-title: PLoS One
– volume: 200
  start-page: 363
  year: 2019
  end-page: 372
  article-title: ICA‐based denoising for ASL perfusion imaging
  publication-title: Neuroimage
– volume: 157
  start-page: 81
  year: 2017
  end-page: 96
  article-title: Spatio‐temporal TGV denoising for ASL perfusion imaging
  publication-title: Neuroimage
– volume: 20
  start-page: 871
  issue: 3
  year: 2010
  end-page: 880
  article-title: Arterial spin labeling blood flow MRI: Its role in the early characterization of Alzheimer's disease
  publication-title: J Alzheimers Dis
– volume: 33
  start-page: 940
  issue: 4
  year: 2011
  end-page: 949
  article-title: Test–retest reliability of arterial spin labeling with common labeling strategies
  publication-title: J Magn Reson Imaging
– start-page: 63
  year: 1999
  end-page: 69
– start-page: 55
  year: 1998
  end-page: 69
– year: 2020
– volume: 295
  start-page: 10
  year: 2018
  end-page: 19
  article-title: Arterial spin labeling perfusion MRI signal denoising using robust principal component analysis
  publication-title: J Neurosci Methods
– volume: 30
  start-page: 1409
  issue: 10
  year: 2012
  end-page: 1415
  article-title: Improving cerebral blood flow quantification for arterial spin labeled perfusion MRI by removing residual motion artifacts and global signal fluctuations
  publication-title: Magn Reson Imaging
– volume: 26
  start-page: 261
  issue: 2
  year: 2008
  end-page: 269
  article-title: Empirical optimization of ASL data analysis using an ASL data processing toolbox: ASLtbx
  publication-title: Magn Reson Imaging
– year: 2017
– start-page: 492
  year: 1992
  end-page: 518
– volume: 35
  start-page: 1182
  issue: 5
  year: 2016
  end-page: 1195
  article-title: Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks
  publication-title: IEEE Trans Med Imaging
– volume: 221
  year: 2020
  article-title: A deep learning approach for magnetization transfer contrast MR fingerprinting and chemical exchange saturation transfer imaging
  publication-title: Neuroimage
– volume: 75
  start-page: 881
  issue: 10
  year: 2010
  end-page: 888
  article-title: Distinct cerebral perfusion patterns in FTLD and AD
  publication-title: Neurology
– start-page: 12
  year: 2019
  end-page: 20
– year: 2015
– start-page: 30
  year: 2018
  end-page: 38
– ident: e_1_2_6_15_1
  doi: 10.3174/ajnr.A5543
– ident: e_1_2_6_26_1
  doi: 10.1016/j.mri.2007.07.003
– ident: e_1_2_6_34_1
– ident: e_1_2_6_11_1
  doi: 10.1002/hbm.22445
– ident: e_1_2_6_18_1
– ident: e_1_2_6_10_1
  doi: 10.1016/j.neuroimage.2019.07.002
– ident: e_1_2_6_29_1
– ident: e_1_2_6_2_1
  doi: 10.1002/mrm.1910230106
– ident: e_1_2_6_12_1
  doi: 10.1016/j.neuroimage.2017.05.054
– ident: e_1_2_6_23_1
  doi: 10.3233/JAD-141419
– ident: e_1_2_6_21_1
  doi: 10.1007/978-3-030-32248-9_2
– ident: e_1_2_6_8_1
  doi: 10.1089/brain.2014.0290
– ident: e_1_2_6_24_1
  doi: 10.1002/mrm.21403
– ident: e_1_2_6_36_1
– ident: e_1_2_6_7_1
  doi: 10.1016/j.jneumeth.2017.11.017
– ident: e_1_2_6_14_1
  doi: 10.1016/j.neuroimage.2020.117165
– ident: e_1_2_6_17_1
– ident: e_1_2_6_33_1
– ident: e_1_2_6_35_1
  doi: 10.1007/3-540-49430-8_3
– ident: e_1_2_6_19_1
– ident: e_1_2_6_39_1
  doi: 10.1109/TMI.2016.2528129
– ident: e_1_2_6_5_1
  doi: 10.1016/j.mri.2020.01.005
– ident: e_1_2_6_4_1
  doi: 10.1002/mrm.25197
– ident: e_1_2_6_32_1
  doi: 10.1002/jmri.22345
– ident: e_1_2_6_20_1
  doi: 10.1007/978-3-030-00928-1_4
– ident: e_1_2_6_13_1
– ident: e_1_2_6_16_1
– start-page: 63
  volume-title: Functional MRI
  year: 1999
  ident: e_1_2_6_38_1
– ident: e_1_2_6_27_1
  doi: 10.1016/S1053-8119(09)70884-5
– ident: e_1_2_6_25_1
  doi: 10.1002/(SICI)1522-2594(199906)41:6<1246::AID-MRM22>3.0.CO;2-N
– ident: e_1_2_6_6_1
  doi: 10.1016/j.mri.2012.05.004
– ident: e_1_2_6_28_1
  doi: 10.1016/j.neuroimage.2010.07.033
– ident: e_1_2_6_30_1
  doi: 10.1007/978-1-4612-4380-9_35
– ident: e_1_2_6_9_1
  doi: 10.1212/WNL.0b013e3181f11e35
– ident: e_1_2_6_3_1
  doi: 10.1002/jmri.23581
– ident: e_1_2_6_22_1
  doi: 10.3233/JAD-2010-091699
– ident: e_1_2_6_31_1
  doi: 10.1016/j.jneumeth.2018.06.007
– ident: e_1_2_6_37_1
  doi: 10.1371/journal.pone.0077089
SSID ssj0009945
Score 2.4831908
Snippet Background Arterial spin labeling (ASL) perfusion magnetic resonance imaging (MRI) denoising through deep learning (DL) often faces insufficient training data...
Arterial spin labeling (ASL) perfusion magnetic resonance imaging (MRI) denoising through deep learning (DL) often faces insufficient training data from...
BackgroundArterial spin labeling (ASL) perfusion magnetic resonance imaging (MRI) denoising through deep learning (DL) often faces insufficient training data...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1710
SubjectTerms Adult
Alzheimer Disease - diagnostic imaging
Alzheimer Disease - pathology
Alzheimer's disease
arterial spin labeling perfusion MRI
Blood flow
Brain - pathology
Cerebral blood flow
Cerebrovascular Circulation - physiology
Datasets
Deep Learning
denoising
Female
Field strength
Humans
Image quality
Labeling
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Mean
Medical imaging
Neurodegenerative diseases
Noise reduction
Perfusion
Quality control
Retrospective Studies
Sensitivity
Spin labeling
Spin Labels
Statistical analysis
Statistical tests
Test sets
Training
Transfer learning
Variance analysis
Title Improving Sensitivity of Arterial Spin Labeling Perfusion MRI in Alzheimer's Disease Using Transfer Learning of Deep Learning‐Based ASL Denoising
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.27984
https://www.ncbi.nlm.nih.gov/pubmed/34741576
https://www.proquest.com/docview/2662138461
https://www.proquest.com/docview/2594290675
https://pubmed.ncbi.nlm.nih.gov/PMC9072602
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqHhAX3o9AQUYgIZCyTWwncSQuC6UqVRehLpV6QZHtjNtAm11ldy898ROQ-If8EsZONstShAS3JB4nfszE39jjz4Q8MyLTTJVpmMrEhiLlcajTxGCHlBISlRvrV89H79O9I7F_nBxvkFfLvTAtP0Q_4eYsw_-vnYErPdtekYZ-Pm-qActy6chAXbCWQ0SHK-6oPPcnFCN-4GEso6znJmXbq6zro9EliHk5UvJXBOuHoN3r5NOy8G3kyZfBYq4H5uI3Xsf_rd0Ncq3DpnTYKtNNsgH1LXJl1K2-3ybf-xkIOnZx7-3BE3RiXRavyXQ8rWp6oLTf5U4_QGMXbjqOjg7fUUwZnl2cQnUOzfMZ3WmXhqgPWqB-zLTQ0I7w9cS9dgdg2j_48fXba5Qv6XB8gCn1pHIZ75Cj3bcf3-yF3aEOoUFPUIRCSfSYeKwFcC54xEABlyqSuQXgGaoGlyaWVhjrwCiDUpkySqWWGrEYU_wu2awnNdwnFKTVpgSlbWRFJnMl8IYpZdHhB5unAXmx7NzCdIzn7uCNs6LlamaFa-XCt3JAnvay05bn449SW0sdKTpbnxUIcVjMEcfFAXnSJ6OVuqUXVcNkgTJJLhyxfpYE5F6rUv1nuHCoLsPiZmvK1gs4BvD1lLo69UzgWFH0R1lAXnpd-kvJi33saH_14F-EH5KrzO338NNOW2Rz3izgEaKwuX7sre0nTmgy8g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELdgSMAL__8EBhiBhEBKl9hO4jwWxtSNdkLrJu0tspPzlrGlVdq-7ImPgMQ35JNwdrKUMoQEb2l8bp34rv7d-fw7Ql7nItFMFbEfy8j4Iuahr-MoxwkpJEQqzY3bPR_txoMDsXMYHba5OfYsTMMP0QXcrGW4_2tr4DYgvbFkDT05q8seS1IprpJrtqS386j2luxRaepqFCOC4H4og6RjJ2Uby76r69ElkHk5V_JXDOsWoa3bTaXVmeMutLknX3qLue7l578xO_73890ht1p4SvuNPt0lV6C6R66P2g34--R7F4SgY5v63tSeoBNjuzhlpuNpWdGh0u6gO_0MtVnYiBwd7W1TbOmfnh9DeQb1mxndbHaHqMtboG7ZNFDTlvP1yH7tJsC0u_Hj67f3KF_Q_niILdWktB0fkIOtj_sfBn5b18HP0RkUvlASnSYeagGcCx4wUMClCmRqAHiC2sFlHkojcmPxKINC5UUQSy01wjGm-EOyVk0qeEwoSKPzApQ2gRGJTJXAD0wpgz4_mDT2yNuL2c3ylvTc1t44zRq6ZpbZt5y5t-yRV53stKH6-KPU-oWSZK25zzJEOSzkCOVCj7zsmtFQ7e6LqmCyQJkoFZZbP4k88qjRqe5nuLDALsHhJiva1glYEvDVlqo8dmTg-KDokjKPvHPK9JeRZzs40e7qyb8IvyA3BvujYTbc3v30lNxk9viHi0Ktk7V5vYBnCMrm-rkzvZ9HYTcN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4aQ5p44X4JDDACCYGULrGdxJF4KZRqG-00rUzayxQ5js0CW1p17cue-AlI_EN-CcdOmlKGkOAtiY8T2-ec-PPtOwAvFE9yKovYj0VkfB6z0M_jSKFCCqEjmSrjVs-He_H2Id89io7W4M3iLEzND9FOuFnPcP9r6-CTwmwtSUM_n03LDk1Swa_AVR4Hwtp072BJHpWmLkQxAgjmhyJIWnJSurXMu9odXcKYl7dK_gphXR_UvwHHi9LXW0--dOazvKMufiN2_N_q3YTrDTgl3dqabsGarm7DxrBZfr8D39spCDKyG9_ryBNkbGwWZ8pkNCkrMpC5O-ZO9vXUzO18HBke7BBM6Z5enOjyTE9fnpNevTZE3K4F4jpNo6ekYXz9ZF_b03rSPvjx9dtblC9IdzTAlGpc2ox34bD__uO7bb-J6uArHApyn0uBQyYW5lwzxllAtdRMSNSf0ZolaBtMqFAYroxFo1QXUhVBLHKRIxijkt2D9Wpc6QdAtDC5KrTMTWB4IlLJ8YZKaXDEr00ae_BqodxMNZTnNvLGaVaTNdPMtnLmWtmD563spCb6-KPU5sJGssbZzzPEODRkCORCD561yeimdu1FVno8R5ko5ZZZP4k8uF-bVPsZxi2sS7C4yYqxtQKWAnw1pSpPHBU4VhQHpNSD186W_lLybBcV7a4e_ovwU9jY7_Wzwc7eh0dwjdqzH24KahPWZ9O5foyIbJY_cY73E6khNcU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Sensitivity+of+Arterial+Spin+Labeling+Perfusion+MRI+in+Alzheimer%27s+Disease+Using+Transfer+Learning+of+Deep+Learning%E2%80%90Based+ASL+Denoising&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Zhang%2C+Lei&rft.au=Xie%2C+Danfeng&rft.au=Li%2C+Yiran&rft.au=Camargo%2C+Aldo&rft.date=2022-06-01&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=55&rft.issue=6&rft.spage=1710&rft.epage=1722&rft_id=info:doi/10.1002%2Fjmri.27984&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jmri_27984
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon