Chemical diversity in angiosperms − monoterpene synthases control complex reactions that provide the precursors for ecologically and commercially important monoterpenoids
SUMMARY Monoterpene synthases (MTSs) catalyze the first committed step in the biosynthesis of monoterpenoids, a class of specialized metabolites with particularly high chemical diversity in angiosperms. In addition to accomplishing a rate enhancement, these enzymes manage the formation and turnover...
Saved in:
Published in | The Plant journal : for cell and molecular biology Vol. 119; no. 1; pp. 28 - 55 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.07.2024
Society for Experimental Biology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | SUMMARY
Monoterpene synthases (MTSs) catalyze the first committed step in the biosynthesis of monoterpenoids, a class of specialized metabolites with particularly high chemical diversity in angiosperms. In addition to accomplishing a rate enhancement, these enzymes manage the formation and turnover of highly reactive carbocation intermediates formed from a prenyl diphosphate substrate. At each step along the reaction path, a cationic intermediate can be subject to cyclization, migration of a proton, hydride, or alkyl group, or quenching to terminate the sequence. However, enzymatic control of ligand folding, stabilization of specific intermediates, and defined quenching chemistry can maintain the specificity for forming a signature product. This review article will discuss our current understanding of how angiosperm MTSs control the reaction environment. Such knowledge allows inferences about the origin and regulation of chemical diversity, which is pertinent for appreciating the role of monoterpenoids in plant ecology but also for aiding commercial efforts that harness the accumulation of these specialized metabolites for the food, cosmetic, and pharmaceutical industries.
Significance Statement
Terpenoids form the largest class of plant specialized metabolites and monoterpene synthases are enzymes that catalyze critical reactions that contribute to this chemical diversity. This foundational review provides an overview of the complex catalytic mechanism of these enzymes and discusses their relevance in the context of the roles of terpenoids in plant ecology and the food, cosmetic, and pharmaceutical industries. |
---|---|
AbstractList | Monoterpene synthases (MTSs) catalyze the first committed step in the biosynthesis of monoterpenoids, a class of specialized metabolites with particularly high chemical diversity in angiosperms. In addition to accomplishing a rate enhancement, these enzymes manage the formation and turnover of highly reactive carbocation intermediates formed from a prenyl diphosphate substrate. At each step along the reaction path, a cationic intermediate can be subject to cyclization, migration of a proton, hydride, or alkyl group, or quenching to terminate the sequence. However, enzymatic control of ligand folding, stabilization of specific intermediates, and defined quenching chemistry can maintain the specificity for forming a signature product. This review article will discuss our current understanding of how angiosperm MTSs control the reaction environment. Such knowledge allows inferences about the origin and regulation of chemical diversity, which is pertinent for appreciating the role of monoterpenoids in plant ecology but also for aiding commercial efforts that harness the accumulation of these specialized metabolites for the food, cosmetic, and pharmaceutical industries. Monoterpene synthases (MTSs) catalyze the first committed step in the biosynthesis of monoterpenoids, a class of specialized metabolites with particularly high chemical diversity in angiosperms. In addition to accomplishing a rate enhancement, these enzymes manage the formation and turnover of highly reactive carbocation intermediates formed from a prenyl diphosphate substrate. At each step along the reaction path, a cationic intermediate can be subject to cyclization, migration of a proton, hydride, or alkyl group, or quenching to terminate the sequence. However, enzymatic control of ligand folding, stabilization of specific intermediates, and defined quenching chemistry can maintain the specificity for forming a signature product. This review article will discuss our current understanding of how angiosperm MTSs control the reaction environment. Such knowledge allows inferences about the origin and regulation of chemical diversity, which is pertinent for appreciating the role of monoterpenoids in plant ecology but also for aiding commercial efforts that harness the accumulation of these specialized metabolites for the food, cosmetic, and pharmaceutical industries.Monoterpene synthases (MTSs) catalyze the first committed step in the biosynthesis of monoterpenoids, a class of specialized metabolites with particularly high chemical diversity in angiosperms. In addition to accomplishing a rate enhancement, these enzymes manage the formation and turnover of highly reactive carbocation intermediates formed from a prenyl diphosphate substrate. At each step along the reaction path, a cationic intermediate can be subject to cyclization, migration of a proton, hydride, or alkyl group, or quenching to terminate the sequence. However, enzymatic control of ligand folding, stabilization of specific intermediates, and defined quenching chemistry can maintain the specificity for forming a signature product. This review article will discuss our current understanding of how angiosperm MTSs control the reaction environment. Such knowledge allows inferences about the origin and regulation of chemical diversity, which is pertinent for appreciating the role of monoterpenoids in plant ecology but also for aiding commercial efforts that harness the accumulation of these specialized metabolites for the food, cosmetic, and pharmaceutical industries. SUMMARY Monoterpene synthases (MTSs) catalyze the first committed step in the biosynthesis of monoterpenoids, a class of specialized metabolites with particularly high chemical diversity in angiosperms. In addition to accomplishing a rate enhancement, these enzymes manage the formation and turnover of highly reactive carbocation intermediates formed from a prenyl diphosphate substrate. At each step along the reaction path, a cationic intermediate can be subject to cyclization, migration of a proton, hydride, or alkyl group, or quenching to terminate the sequence. However, enzymatic control of ligand folding, stabilization of specific intermediates, and defined quenching chemistry can maintain the specificity for forming a signature product. This review article will discuss our current understanding of how angiosperm MTSs control the reaction environment. Such knowledge allows inferences about the origin and regulation of chemical diversity, which is pertinent for appreciating the role of monoterpenoids in plant ecology but also for aiding commercial efforts that harness the accumulation of these specialized metabolites for the food, cosmetic, and pharmaceutical industries. Significance Statement Terpenoids form the largest class of plant specialized metabolites and monoterpene synthases are enzymes that catalyze critical reactions that contribute to this chemical diversity. This foundational review provides an overview of the complex catalytic mechanism of these enzymes and discusses their relevance in the context of the roles of terpenoids in plant ecology and the food, cosmetic, and pharmaceutical industries. SUMMARYMonoterpene synthases (MTSs) catalyze the first committed step in the biosynthesis of monoterpenoids, a class of specialized metabolites with particularly high chemical diversity in angiosperms. In addition to accomplishing a rate enhancement, these enzymes manage the formation and turnover of highly reactive carbocation intermediates formed from a prenyl diphosphate substrate. At each step along the reaction path, a cationic intermediate can be subject to cyclization, migration of a proton, hydride, or alkyl group, or quenching to terminate the sequence. However, enzymatic control of ligand folding, stabilization of specific intermediates, and defined quenching chemistry can maintain the specificity for forming a signature product. This review article will discuss our current understanding of how angiosperm MTSs control the reaction environment. Such knowledge allows inferences about the origin and regulation of chemical diversity, which is pertinent for appreciating the role of monoterpenoids in plant ecology but also for aiding commercial efforts that harness the accumulation of these specialized metabolites for the food, cosmetic, and pharmaceutical industries. |
Author | Srividya, Narayanan Kim, Hoshin Lange, Bernd Markus Simone, Raugei |
Author_xml | – sequence: 1 givenname: Narayanan orcidid: 0000-0001-7934-7987 surname: Srividya fullname: Srividya, Narayanan email: narayanan.srividya@wsu.edu organization: Washington State University – sequence: 2 givenname: Hoshin orcidid: 0000-0002-8866-2126 surname: Kim fullname: Kim, Hoshin organization: Physical and Computational Sciences Division, Pacific Northwest National Laboratory – sequence: 3 givenname: Raugei surname: Simone fullname: Simone, Raugei organization: Physical and Computational Sciences Division, Pacific Northwest National Laboratory – sequence: 4 givenname: Bernd Markus orcidid: 0000-0001-6565-9584 surname: Lange fullname: Lange, Bernd Markus email: lange-m@wsu.edu organization: Washington State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38565299$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/2332906$$D View this record in Osti.gov |
BookMark | eNqFks1u1DAUhS1URKeFBS-ALNjAIm0cxx5niUblT5VgUSR2lmPfdDxK7GA7hbxB1zwHT8WT4HQKQpUAb65tffccHd17hA6cd4DQY1KekHxO07g7IXxd03toRShnBSX00wFalQ0vi3VNqkN0FOOuLMma8voBOqSCcVY1zQp932xhsFr12NgrCNGmGVuHlbu0Po4Qhoh_XH_Dg3c-QRjBAY6zS1sVIWLtXQq-z3UYe_iKAyidrHcRZyDhMfgrayA_IN9BTyH6EHHnAwbte3-5-PZzNjOLxABB25sPO4w-JOXSH77emvgQ3e9UH-HRbT1GH1-dXWzeFOfvX7_dvDwvdF0LWphmTYzoCBMcaFdTRTtNWMmFWNeqaYk2nAqtW9EaoVvoWMUEA9p2uiLUNJQeo6d7XR-TlVHbBHqbwzrQSVaUVk3JM_R8D-WYnyeISQ42auh75cBPUVLCKOdVnTX_i5aUZFRUi-qzO-jOT8HltJnK0-MsJ8zUk1tqagcwcgx2UGGWv-aagRd7QAcfY4DuN0JKueyMzDsjb3Yms6d32BxYLXNMQdn-Xx1fbA_z36XlxYd3-46fabjX3g |
CitedBy_id | crossref_primary_10_1093_hr_uhae272 |
Cites_doi | 10.1016/j.phytochem.2014.02.016 10.3389/fpls.2023.1125065 10.1016/j.phytochem.2020.112573 10.1016/j.phytochem.2006.11.006 10.1016/0003-9861(88)90328-1 10.1105/tpc.011015 10.1104/pp.103.032946 10.1016/0003-9861(88)90447-X 10.1093/pcp/pcaa100 10.1016/j.phytochem.2022.113290 10.1093/jxb/ery224 10.1016/j.plantsci.2003.07.006 10.1248/bpb.24.373 10.1016/S0003-9861(02)00711-7 10.1016/j.phytochem.2014.03.020 10.1016/j.phytochem.2010.03.013 10.1002/anie.199316061 10.1016/j.plaphy.2018.03.009 10.3389/fpls.2021.700958 10.1186/s12870-023-04283-y 10.1039/j39690000264 10.1016/j.foodchem.2017.05.124 10.1021/acscatal.2c01836 10.1111/nph.14178 10.1016/j.tplants.2021.08.009 10.1073/pnas.1501203112 10.1007/s10529-014-1533-2 10.1073/pnas.0700915104 10.1007/s00425-002-0924-0 10.1021/cr00081a004 10.1248/bpb.27.1979 10.1002/jcc.21334 10.1093/jxb/err393 10.1016/j.synbio.2021.12.004 10.1248/bpb.25.661 10.1007/s11103-012-9920-3 10.1093/jxb/err456 10.3390/genes12040518 10.1016/S0031-9422(02)00674-X 10.1080/08927022.2018.1447106 10.1038/s41467-019-11290-x 10.1016/j.abb.2007.06.011 10.1073/pnas.232591099 10.1016/j.plaphy.2023.107969 10.1016/j.phytochem.2020.112610 10.1093/jxb/eraa353 10.1021/ja308295p 10.1016/j.plantsci.2014.09.008 10.3389/fpls.2019.01166 10.1016/j.pbi.2020.01.005 10.1105/tpc.106.047779 10.1111/pbi.12080 10.1016/j.phytochem.2017.01.015 10.1093/nar/gky427 10.1111/pbi.12914 10.1093/treephys/tpaa161 10.1016/j.tifs.2022.08.006 10.1007/s11103-017-0588-6 10.1002/cbic.202100688 10.1093/nar/gkab1061 10.1074/jbc.273.24.14891 10.1111/j.1365-313X.2008.03524.x 10.1021/ja00369a046 10.1016/j.jsb.2011.09.006 10.1104/pp.104.042929 10.29252/pgr.2.1.23 10.1104/pp.20.00593 10.1038/nmeth.3213 10.1111/tpj.14516 10.1016/j.molp.2018.06.002 10.1046/j.1432-1033.2002.02985.x 10.1016/j.copbio.2020.06.002 10.1093/gbe/evz142 10.1016/j.abb.2017.12.007 10.1038/s41438-020-00412-y 10.1016/j.phytochem.2011.03.014 10.3389/fpls.2016.00638 10.1007/s00425-014-2127-x 10.1021/acs.biochem.3c00217 10.1021/acs.biochem.7b00143 10.1021/acs.jafc.5b00546 10.1093/mp/ssr021 10.1111/pce.12959 10.1016/S0003-9861(03)00347-3 10.1105/tpc.8.7.1137 10.1016/S0021-9258(17)38384-9 10.1186/1758-2946-4-17 10.1007/s11103-007-9149-8 10.1016/j.jplph.2017.07.013 10.1007/s00425-013-1884-2 10.1111/j.1365-313X.2008.03496.x 10.1371/journal.pone.0173911 10.1071/FP09179 10.1271/bbb.100922 10.1007/s11103-022-01315-3 10.1038/s41598-021-96524-z 10.1006/abbi.1999.1466 10.1105/tpc.007989 10.1021/ja00725a079 10.1021/ja910134x 10.1016/0003-9861(79)90526-5 10.1055/s-0031-1282602 10.1007/s11295-011-0377-3 10.1104/pp.006544 10.3390/ijms151221992 10.3389/fpls.2015.01232 10.1104/pp.107.111088 10.1111/pce.13088 10.1007/s11103-007-9202-7 10.1016/S0021-9258(18)47551-5 10.1104/pp.104.051318 10.1186/s12870-017-1107-2 10.1021/acscatal.8b00692 10.1002/biof.552210115 10.1016/0003-9861(89)90134-3 10.1016/S0040-4039(00)90921-3 10.1371/journal.pone.0235416 10.1007/s00425-012-1704-0 10.1016/j.phytochem.2004.03.018 10.1007/s11103-010-9636-1 10.1007/s00425-018-3052-1 10.3389/fbioe.2021.631863 10.1107/S2053230X15023043 10.3390/ijms24087182 10.1177/1934578X0700200301 10.1021/acschembio.9b00514 10.1146/annurev-ento-020117-043507 10.3389/fpls.2022.1077229 10.1038/srep44126 10.3389/fpls.2016.01019 10.1016/j.abb.2012.12.003 10.1016/j.phytochem.2010.04.006 10.1016/j.plantsci.2020.110549 10.1016/j.plaphy.2023.107887 10.5650/jos.ess21172 10.1021/jo01332a030 10.1016/0003-9861(86)90390-5 10.1073/pnas.2100361119 10.1006/abbi.1993.1156 10.1105/tpc.104.023895 10.3389/fpls.2018.00846 10.1016/S0021-9258(18)67037-1 10.1016/S0021-9258(17)38661-1 10.1016/S0021-9258(18)88922-0 10.1007/s00425-018-3006-7 10.1111/ppl.12241 10.1073/pnas.0904113106 10.1021/acs.biochem.7b00144 10.1007/s10529-016-2098-z 10.1016/0040-4020(78)89026-7 10.1093/jxb/ery436 10.1016/j.jplph.2009.04.003 10.1021/bi980854k 10.1016/j.jplph.2015.12.008 10.1104/pp.18.01506 10.1021/acscatal.3c03047 10.1016/S0021-9258(19)49419-2 10.1016/j.plantsci.2004.11.012 10.3389/fpls.2022.869432 10.1016/j.bbrc.2017.06.147 10.1016/j.phytochem.2022.113318 10.1006/abbi.1996.0343 10.1006/abbi.1999.1669 10.1016/j.phytochem.2004.12.004 10.1104/pp.16.01378 10.1021/ja00369a045 10.3389/fpls.2023.1273648 10.1080/0972060X.2021.1977721 10.1007/s11101-023-09861-4 10.1016/0040-4020(68)89006-4 10.1021/acs.biochem.0c00206 10.1021/acscatal.7b01328 10.1039/c0ob00167h |
ContentType | Journal Article |
Copyright | 2024 The Authors. published by Society for Experimental Biology and John Wiley & Sons Ltd. 2024 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd. 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Authors. published by Society for Experimental Biology and John Wiley & Sons Ltd. – notice: 2024 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd. – notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
CorporateAuthor | Washington State Univ., Pullman, WA (United States) Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Environmental Molecular Sciences Laboratory (EMSL) |
CorporateAuthor_xml | – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Environmental Molecular Sciences Laboratory (EMSL) – name: Washington State Univ., Pullman, WA (United States) |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7TM 8FD FR3 M7N P64 RC3 7X8 7S9 L.6 OTOTI |
DOI | 10.1111/tpj.16743 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic OSTI.GOV |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic Genetics Abstracts MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany Chemistry |
EISSN | 1365-313X |
EndPage | 55 |
ExternalDocumentID | 2332906 38565299 10_1111_tpj_16743 TPJ16743 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: U.S. Department of Energy, Pacific Northwest National Laboratory funderid: DE‐AC05‐75RL01830 – fundername: U.S. Department of Energy, Physical Biosciences funderid: DE‐SC0001553 – fundername: U.S. Department of Energy, Pacific Northwest National Laboratory grantid: DE-AC05-75RL01830 – fundername: U.S. Department of Energy, Physical Biosciences grantid: DE-SC0001553 |
GroupedDBID | --- -DZ .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29O 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P FIJ G-S G.N GODZA H.T H.X HF~ HGLYW HZI HZ~ IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI TR2 UB1 W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 YFH YUY ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7TM 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 M7N P64 RC3 7X8 7S9 L.6 OTOTI |
ID | FETCH-LOGICAL-c4483-d971d8f1586e3f43a3fc15068874a9b1cd638ccb8bd8cbef52585e3bfc213d933 |
IEDL.DBID | DR2 |
ISSN | 0960-7412 1365-313X |
IngestDate | Mon Oct 21 03:31:27 EDT 2024 Fri Jul 11 18:29:57 EDT 2025 Fri Jul 11 16:03:18 EDT 2025 Fri Jul 25 10:43:19 EDT 2025 Thu Apr 03 07:00:32 EDT 2025 Thu Apr 24 23:06:00 EDT 2025 Tue Jul 01 01:40:36 EDT 2025 Wed Jan 22 17:18:33 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | carbocation mechanistic enzymology crystal structure quantum mechanics/molecular mechanics enzymatic control molecular dynamics monoterpene synthase |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2024 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4483-d971d8f1586e3f43a3fc15068874a9b1cd638ccb8bd8cbef52585e3bfc213d933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 USDOE PNNL-SA-193068 USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences & Biosciences Division (CSGB) SC0001553; AC05-75RL01830; DE‐SC0001553; DE‐AC05‐75RL01830; AC05-76RL01830 USDOE Office of Science (SC), Biological and Environmental Research (BER) |
ORCID | 0000-0001-6565-9584 0000-0002-8866-2126 0000-0001-7934-7987 0000000288662126 0000000165659584 0000000179347987 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.16743 |
PMID | 38565299 |
PQID | 3073665483 |
PQPubID | 31702 |
PageCount | 28 |
ParticipantIDs | osti_scitechconnect_2332906 proquest_miscellaneous_3153662421 proquest_miscellaneous_3031662826 proquest_journals_3073665483 pubmed_primary_38565299 crossref_primary_10_1111_tpj_16743 crossref_citationtrail_10_1111_tpj_16743 wiley_primary_10_1111_tpj_16743_TPJ16743 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2024 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: July 2024 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford – name: United States |
PublicationTitle | The Plant journal : for cell and molecular biology |
PublicationTitleAlternate | Plant J |
PublicationYear | 2024 |
Publisher | Blackwell Publishing Ltd Society for Experimental Biology |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Society for Experimental Biology |
References | 2004; 21 2007; 104 2004; 166 2007; 465 2004; 27 2019; 11 2013; 529 2019; 10 2019; 14 2002; 99 2022; 23 2020; 15 2018; 41 2000; 375 2018; 44 2016; 38 2022; 27 2005; 66 1982b; 104 2021; 70 2018; 46 1998; 273 2023; 62 2018; 9 2018; 8 2012; 134 1982a; 104 1993; 32 2011; 72 2013; 238 2014; 15 1977; 31 2002; 269 2020; 298 2007; 2 2007; 64 2007; 65 2014; 240 2007; 68 2022; 202 2010; 8 2007; 19 2018; 220 2010; 31 2010; 37 2003; 216 2002; 130 2023; 201 2011; 75 2017; 490 2011; 77 2023; 202 2008; 55 2011; 4 2022; 119 2014; 41 2021; 50 1985; 260 2001; 24 2017; 137 2011; 7 1967; 8 2016; 6 2016; 7 2019; 180 1970; 92 2022; 7 2015; 112 2015; 63 2017; 56 2022; 12 2022; 13 2014; 36 2018; 638 2018; 11 2012; 236 2018; 16 2016; 172 2009; 106 2004; 65 1987; 262 2021; 24 2017; 7 1968; 24 1978; 34 2018; 127 2020; 61 1986; 251 2003; 15 2020; 59 1988; 264 2016; 72 2019; 249 2020; 55 2008; 146 2017; 237 2004; 134 2020; 7 1979; 198 2023; 24 1987; 87 2004; 136 2023; 22 2004; 135 2023; 23 2014; 2 2012; 179 1988; 260 2013; 11 1989; 269 1986; 261 2009; 166 1999; 372 2021; 41 2022; 128 2016; 191 1996; 332 1996; 8 2010; 73 2012; 63 2010; 71 2017; 218 2015; 2 2021; 9 2015; 12 2003; 417 2023; 13 2019; 70 2023; 14 2020; 184 2021; 181 2021; 183 2018; 63 2020; 101 1993; 268 1993; 301 2012; 79 2003; 411 2018; 69 2014; 229 1998; 37 2002; 25 2017; 93 2021; 12 2021; 11 2004; 16 2017; 17 2005; 168 2020; 71 2023; 111 2015; 153 2017; 12 2010; 132 2020; 65 1979; 44 2012; 4 2003; 62 1969 2014; 102 e_1_2_13_120_1 e_1_2_13_143_1 e_1_2_13_166_1 e_1_2_13_24_1 e_1_2_13_47_1 e_1_2_13_20_1 e_1_2_13_66_1 e_1_2_13_101_1 e_1_2_13_147_1 e_1_2_13_43_1 e_1_2_13_124_1 e_1_2_13_85_1 e_1_2_13_8_1 e_1_2_13_62_1 e_1_2_13_81_1 e_1_2_13_162_1 e_1_2_13_92_1 e_1_2_13_96_1 e_1_2_13_117_1 Godtfredsen S. (e_1_2_13_52_1) 1977; 31 e_1_2_13_17_1 e_1_2_13_13_1 e_1_2_13_36_1 e_1_2_13_59_1 e_1_2_13_154_1 e_1_2_13_131_1 e_1_2_13_32_1 e_1_2_13_55_1 e_1_2_13_78_1 e_1_2_13_112_1 e_1_2_13_158_1 e_1_2_13_135_1 e_1_2_13_177_1 e_1_2_13_51_1 e_1_2_13_74_1 e_1_2_13_173_1 e_1_2_13_70_1 e_1_2_13_150_1 e_1_2_13_4_1 e_1_2_13_105_1 e_1_2_13_88_1 e_1_2_13_128_1 e_1_2_13_29_1 e_1_2_13_109_1 e_1_2_13_25_1 e_1_2_13_48_1 e_1_2_13_165_1 e_1_2_13_100_1 e_1_2_13_142_1 e_1_2_13_21_1 e_1_2_13_44_1 e_1_2_13_67_1 e_1_2_13_169_1 e_1_2_13_104_1 e_1_2_13_123_1 Jing‐Jing L. (e_1_2_13_77_1) 2014; 41 e_1_2_13_86_1 e_1_2_13_146_1 e_1_2_13_9_1 e_1_2_13_40_1 e_1_2_13_63_1 e_1_2_13_82_1 e_1_2_13_161_1 e_1_2_13_91_1 e_1_2_13_95_1 e_1_2_13_116_1 e_1_2_13_99_1 e_1_2_13_139_1 e_1_2_13_18_1 e_1_2_13_14_1 e_1_2_13_111_1 e_1_2_13_130_1 e_1_2_13_153_1 e_1_2_13_37_1 e_1_2_13_79_1 e_1_2_13_10_1 e_1_2_13_56_1 e_1_2_13_115_1 e_1_2_13_134_1 e_1_2_13_157_1 e_1_2_13_176_1 e_1_2_13_33_1 e_1_2_13_75_1 e_1_2_13_172_1 e_1_2_13_71_1 e_1_2_13_5_1 Wang L. (e_1_2_13_151_1) 2014; 2 e_1_2_13_108_1 e_1_2_13_127_1 e_1_2_13_49_1 e_1_2_13_122_1 e_1_2_13_141_1 e_1_2_13_164_1 e_1_2_13_26_1 e_1_2_13_68_1 e_1_2_13_45_1 e_1_2_13_126_1 e_1_2_13_87_1 e_1_2_13_145_1 e_1_2_13_168_1 e_1_2_13_22_1 e_1_2_13_64_1 e_1_2_13_103_1 e_1_2_13_41_1 e_1_2_13_60_1 e_1_2_13_83_1 e_1_2_13_6_1 e_1_2_13_160_1 e_1_2_13_90_1 e_1_2_13_94_1 e_1_2_13_98_1 e_1_2_13_119_1 e_1_2_13_138_1 e_1_2_13_19_1 e_1_2_13_133_1 e_1_2_13_15_1 e_1_2_13_38_1 e_1_2_13_57_1 e_1_2_13_110_1 e_1_2_13_152_1 e_1_2_13_137_1 e_1_2_13_175_1 e_1_2_13_11_1 e_1_2_13_34_1 e_1_2_13_53_1 e_1_2_13_76_1 e_1_2_13_114_1 e_1_2_13_156_1 e_1_2_13_171_1 e_1_2_13_30_1 e_1_2_13_72_1 e_1_2_13_2_1 e_1_2_13_107_1 e_1_2_13_149_1 e_1_2_13_121_1 e_1_2_13_144_1 e_1_2_13_27_1 e_1_2_13_46_1 e_1_2_13_69_1 e_1_2_13_163_1 e_1_2_13_102_1 e_1_2_13_125_1 e_1_2_13_148_1 e_1_2_13_23_1 e_1_2_13_42_1 e_1_2_13_65_1 e_1_2_13_167_1 e_1_2_13_84_1 e_1_2_13_7_1 e_1_2_13_61_1 e_1_2_13_80_1 e_1_2_13_140_1 e_1_2_13_93_1 e_1_2_13_97_1 e_1_2_13_118_1 e_1_2_13_39_1 e_1_2_13_132_1 e_1_2_13_155_1 e_1_2_13_35_1 e_1_2_13_16_1 e_1_2_13_58_1 e_1_2_13_113_1 e_1_2_13_136_1 e_1_2_13_159_1 e_1_2_13_174_1 e_1_2_13_31_1 e_1_2_13_12_1 e_1_2_13_54_1 e_1_2_13_170_1 e_1_2_13_73_1 e_1_2_13_50_1 e_1_2_13_3_1 e_1_2_13_106_1 e_1_2_13_129_1 e_1_2_13_89_1 e_1_2_13_28_1 |
References_xml | – volume: 236 start-page: 919 year: 2012 end-page: 929 article-title: Biosynthesis of wine aroma: transcript profiles of hydroxymethylbutenyl diphosphate reductase, geranyl diphosphate synthase, and linalool/nerolidol synthase parallel monoterpenol glycoside accumulation in Gewürztraminer grapes publication-title: Planta – volume: 136 start-page: 3724 year: 2004 end-page: 3736 article-title: The biochemical and molecular basis for the divergent patterns in the biosynthesis of terpenes and phenylpropenes in the peltate glands of three cultivars of basil publication-title: Plant Physiology – volume: 104 start-page: 1422 year: 1982b end-page: 1424 article-title: Model studies of terpene biosynthesis. A stepwise mechanism for cyclization of nerol to alpha‐terpineol publication-title: Journal of the American Chemical Society – volume: 168 start-page: 987 year: 2005 end-page: 995 article-title: Isolation and characterization of (E)‐beta‐ocimene and 1, 8 cineole synthases in Marc publication-title: Plant Science – volume: 8 start-page: 1137 year: 1996 end-page: 1148 article-title: Evolution of floral scent in clarkia: novel patterns of S‐linalool synthase gene expression in the flower publication-title: The Plant Cell – volume: 2 year: 2007 article-title: Functional expression and characterization of trichome‐specific (−)‐limonene synthase and (+)‐α‐pinene synthase from publication-title: Natural Product Communications – volume: 25 start-page: 661 year: 2002 end-page: 665 article-title: Molecular cloning, functional expression and characterization of (+)‐limonene synthase from publication-title: Biological and Pharmaceutical Bulletin – volume: 24 start-page: 910 year: 2021 end-page: 924 article-title: Identification and molecular characterization of geraniol and linalool synthase genes related to monoterpene biosynthesis in Damask rose ( Mill.), several genes for little scent publication-title: Journal of Essential Oil Bearing Plants – volume: 240 start-page: 745 year: 2014 end-page: 762 article-title: Characterization of two monoterpene synthases involved in floral scent formation in publication-title: Planta – volume: 7 start-page: 638 year: 2016 article-title: Isolation and characterization of three new monoterpene synthases from publication-title: Frontiers in Plant Science – volume: 46 start-page: W296 year: 2018 end-page: W303 article-title: SWISS‐MODEL: homology modelling of protein structures and complexes publication-title: Nucleic Acids Research – volume: 77 start-page: PI9 year: 2011 article-title: Genomic characterization of γ‐terpinene synthase from publication-title: Planta Medica – volume: 32 start-page: 1606 year: 1993 end-page: 1608 article-title: The classical 2‐norbornyl cation rigorously defined ab initio publication-title: Angewandte Chemie – volume: 41 start-page: 849 year: 2021 end-page: 864 article-title: Monoterpene synthases responsible for the terpene profile of anther glands in RT Baker (Myrtaceae) publication-title: Tree Physiology – volume: 191 start-page: 120 year: 2016 end-page: 126 article-title: Rice terpene synthase 24 (OsTPS24) encodes a jasmonate‐responsive monoterpene synthase that produces an antibacterial γ‐terpinene against rice pathogen publication-title: Journal of Plant Physiology – volume: 19 start-page: 1994 year: 2007 end-page: 2005 article-title: Rational conversion of substrate and product specificity in a salvia monoterpene synthase: structural insights into the evolution of terpene synthase function publication-title: The Plant Cell – volume: 99 start-page: 15375 year: 2002 end-page: 15380 article-title: Bornyl diphosphate synthase: structure and strategy for carbocation manipulation by a terpenoid cyclase publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 261 start-page: 13438 year: 1986 end-page: 13445 article-title: Biosynthesis of monoterpenes. Enantioselectivity in the enzymatic cyclization of (+)‐and (−)‐linalyl pyrophosphate to (+)‐and (−)‐bornyl pyrophosphate publication-title: Journal of Biological Chemistry – volume: 372 start-page: 143 year: 1999 end-page: 149 article-title: (3R)‐linalool synthase from L.: cDNA isolation, characterization, and wound induction publication-title: Archives of Biochemistry and Biophysics – volume: 112 start-page: 3332 year: 2015 end-page: 3337 article-title: Functional analysis of (4S)‐limonene synthase mutants reveals determinants of catalytic outcome in a model monoterpene synthase publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 16 start-page: 3110 year: 2004 end-page: 3131 article-title: Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species publication-title: Plant Cell – volume: 12 year: 2017 article-title: Terpene synthases from publication-title: PLoS One – volume: 301 start-page: 361 year: 1993 end-page: 366 article-title: Hydride shifts in the biosynthesis of the p‐Menthane monoterpenes α‐Terpinene, γ‐Terpinene, and β‐Phellandrene publication-title: Archives of Biochemistry and Biophysics – volume: 55 start-page: 224 year: 2008 end-page: 239 article-title: Two nearly identical terpene synthases catalyze the formation of nerolidol and linalool in snapdragon flowers publication-title: The Plant Journal – volume: 417 start-page: 203 year: 2003 end-page: 211 article-title: Alternative termination chemistries utilized by monoterpene cyclases: chimeric analysis of bornyl diphosphate, 1, 8‐cineole, and sabinene synthases publication-title: Archives of Biochemistry and Biophysics – volume: 262 start-page: 8213 year: 1987 end-page: 8219 article-title: Monoterpene cyclases. Stereoelectronic requirements for substrate binding and ionization publication-title: Journal of Biological Chemistry – volume: 11 start-page: 17094 year: 2021 article-title: Kinetic studies and homology modeling of a dual‐substrate linalool/nerolidol synthase from publication-title: Scientific Reports – volume: 7 start-page: 44126 year: 2017 article-title: Transcriptomic insight into terpenoid and carbazole alkaloid biosynthesis, and functional characterization of two terpene synthases in curry tree ( ) publication-title: Scientific Reports – volume: 64 start-page: 251 year: 2007 end-page: 263 article-title: Tomato linalool synthase is induced in trichomes by jasmonic acid publication-title: Plant Molecular Biology – volume: 179 start-page: 269 year: 2012 end-page: 278 article-title: UCSF chimera, MODELLER, and IMP: an integrated modeling system publication-title: Journal of Structural Biology – volume: 9 year: 2021 article-title: Bornyl diphosphate synthase from and its application for (+)‐borneol biosynthesis in yeast publication-title: Frontiers in Bioengineering and Biotechnology – volume: 249 start-page: 71 year: 2019 end-page: 93 article-title: Functional characterization and expression analysis of two terpene synthases involved in floral scent formation in Lilium ‘Siberia’ publication-title: Planta – volume: 7 start-page: 5461 year: 2017 end-page: 5465 article-title: Electrostatic control of chemistry in terpene cyclases publication-title: ACS Catalysis – volume: 638 start-page: 27 year: 2018 end-page: 34 article-title: Mutational analysis and dynamic simulation of S‐limonene synthase reveal the importance of Y573: insight into the cyclization mechanism in monoterpene synthases publication-title: Archives of Biochemistry and Biophysics – volume: 68 start-page: 446 year: 2007 end-page: 453 article-title: Geraniol synthases from perilla and their taxonomical significance publication-title: Phytochemistry – volume: 71 start-page: 6571 year: 2020 end-page: 6586 article-title: Origin and functional differentiation of (E)‐β‐ocimene synthases reflect the expansion of monoterpenes in angiosperms publication-title: Journal of Experimental Botany – volume: 260 start-page: 13901 year: 1985 end-page: 13908 article-title: Biosynthesis of monoterpenes. Enantioselectivity in the enzymatic cyclization of linalyl pyrophosphate to (−)‐endo‐fenchol publication-title: Journal of Biological Chemistry – volume: 62 start-page: 1081 year: 2003 end-page: 1086 article-title: A cDNA clone for 3‐carene synthase from Salvia stenophylla publication-title: Phytochemistry – volume: 102 start-page: 64 year: 2014 end-page: 73 article-title: Transcriptome profiling, and cloning and characterization of the main monoterpene synthases of L publication-title: Phytochemistry – volume: 24 start-page: 373 year: 2001 end-page: 377 article-title: Molecular cloning, functional expression and characterization of d‐limonene synthase from publication-title: Biological and Pharmaceutical Bulletin – volume: 11 start-page: 875 year: 2013 end-page: 882 article-title: Chrysanthemum expressing a linalool synthase gene ‘smells good’, but ‘tastes bad’ to western flower thrips publication-title: Plant Biotechnology Journal – volume: 11 start-page: 1084 year: 2018 end-page: 1096 article-title: Phylogenomic mining of the mints reveals multiple mechanisms contributing to the evolution of chemical diversity in Lamiaceae publication-title: Molecular Plant – volume: 260 start-page: 5956 year: 1985 end-page: 5962 article-title: Stereochemistry at C‐1 of geranyl pyrophosphate and neryl pyrophosphate in the cyclization to (+)‐and (−)‐bornyl pyrophosphate publication-title: Journal of Biological Chemistry – volume: 104 start-page: 1420 year: 1982a end-page: 1422 article-title: Model studies of terpene biosynthesis. Stereospecific cyclization of N‐methyl‐(S)‐4‐([1'‐2H] neryloxy) pyridinium methyl sulfate to. alpha.‐terpineol publication-title: Journal of the American Chemical Society – volume: 260 start-page: 250 year: 1988 end-page: 256 article-title: Monoterpene cyclases: physicochemical features required for pyrophosphate binding determined from inhibition by structural analogs publication-title: Archives of Biochemistry and Biophysics – volume: 70 start-page: 1095 year: 2019 end-page: 1108 article-title: Enzymology of monoterpene functionalization in glandular trichomes publication-title: Journal of Experimental Botany – volume: 132 start-page: 6349 year: 2010 end-page: 6360 article-title: Challenges posed to bornyl diphosphate synthase: diverging reaction mechanisms in monoterpenes publication-title: Journal of the American Chemical Society – volume: 15 start-page: 481 year: 2003 end-page: 494 article-title: Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers publication-title: The Plant Cell – volume: 134 start-page: 370 year: 2004 end-page: 379 article-title: Characterization of geraniol synthase from the peltate glands of sweet basil publication-title: Plant Physiology – volume: 106 start-page: 10865 year: 2009 end-page: 10870 article-title: Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 7 start-page: 835 year: 2011 end-page: 844 article-title: Molecular cloning and characterization of monoterpene synthases from (Lour.) Persoon publication-title: Tree Genetics & Genomes – volume: 268 start-page: 23016 year: 1993 end-page: 23024 article-title: 4S‐limonene synthase from the oil glands of spearmint ( ). cDNA isolation, characterization, and bacterial expression of the catalytically active monoterpene cyclase publication-title: Journal of Biological Chemistry – volume: 269 start-page: 507 year: 1989 end-page: 516 article-title: Monoterpene biosynthesis: mechanistic evaluation of the geranyl pyrophosphate:(−)‐endo‐fenchol cyclase from fennel ( ) publication-title: Archives of Biochemistry and Biophysics – volume: 4 start-page: 1 year: 2012 article-title: Avogadro: an advanced semantic chemical editor, visualization, and analysis platform publication-title: Journal of Cheminformatics – volume: 65 start-page: 248 year: 2020 end-page: 258 article-title: Enzymatic control of product distribution in terpene synthases: insights from multiscale simulations publication-title: Current Opinion in Biotechnology – volume: 128 start-page: 188 year: 2022 end-page: 201 article-title: Beyond natural aromas: the bioactive and technological potential of monoterpenes publication-title: Trends in Food Science and Technology – volume: 37 start-page: 12213 year: 1998 end-page: 12220 article-title: Truncation of limonene synthase preprotein provides a fully active ‘Pseudomature’ form of this monoterpene cyclase and reveals the function of the amino‐terminal arginine pair publication-title: Biochemistry – volume: 36 start-page: 1717 year: 2014 end-page: 1725 article-title: Tomato terpene synthases TPS5 and TPS39 account for a monoterpene linalool production in tomato fruits publication-title: Biotechnology Letters – volume: 10 start-page: 1166 year: 2019 article-title: Terpene synthases as metabolic gatekeepers in the evolution of plant terpenoid chemical diversity publication-title: Frontiers in Plant Science – volume: 13 start-page: 12774 year: 2023 end-page: 12802 article-title: Decoding catalysis by terpene synthases publication-title: ACS Catalysis – volume: 332 start-page: 280 year: 1996 end-page: 287 article-title: cDNA cloning, characterization, and functional expression of 4S‐(−)‐limonene synthase from publication-title: Archives of Biochemistry and Biophysics – volume: 135 start-page: 1976 year: 2004 end-page: 1983 article-title: Herbivore‐induced defense response in a model legume. Two‐spotted spider mites induce emission of (E)‐β‐ocimene and transcript accumulation of (E)‐β‐ocimene synthase in publication-title: Plant Physiology – volume: 153 start-page: 43 year: 2015 end-page: 57 article-title: Functional characterization of terpene synthases and chemotypic variation in three lavender species of section Stoechas publication-title: Physiologia Plantarum – volume: 101 start-page: 37 year: 2020 end-page: 56 article-title: Cannabis glandular trichomes alter morphology and metabolite content during flower maturation publication-title: The Plant Journal – volume: 71 start-page: 1068 year: 2010 end-page: 1075 article-title: Geraniol and linalool synthases from wild species of perilla publication-title: Phytochemistry – volume: 50 start-page: D439 year: 2021 end-page: D444 article-title: AlphaFold protein structure database: massively expanding the structural coverage of protein‐sequence space with high‐accuracy models publication-title: Nucleic Acids Research – volume: 375 start-page: 261 year: 2000 end-page: 269 article-title: Terpenoid secondary metabolism in : cDNA cloning, characterization, and functional expression of a myrcene/(E)‐β‐ocimene synthase publication-title: Archives of Biochemistry and Biophysics – volume: 59 start-page: 1661 year: 2020 end-page: 1664 article-title: Determinants of enantiospecificity in limonene synthases publication-title: Biochemistry – volume: 7 start-page: 1019 year: 2016 article-title: Multi‐substrate terpene synthases: their occurrence and physiological significance publication-title: Frontiers in Plant Science – volume: 10 start-page: 3799 year: 2019 article-title: Orthogonal monoterpenoid biosynthesis in yeast constructed on an isomeric substrate publication-title: Nature Communications – volume: 7 start-page: 490 year: 2022 end-page: 497 article-title: Identification of (−)‐bornyl diphosphate synthase from and its application for (−)‐borneol biosynthesis in publication-title: Synthetic and Systems Biotechnology – volume: 72 start-page: 16 year: 2016 end-page: 23 article-title: Expression, crystallization and structure elucidation of γ‐terpinene synthase from publication-title: Acta Crystallographica Section F: Structural Biology Communications – volume: 93 start-page: 641 year: 2017 end-page: 657 article-title: Isolation and functional characterization of a methyl jasmonate‐responsive 3‐carene synthase from × publication-title: Plant Molecular Biology – volume: 2 start-page: 23 year: 2015 end-page: 34 article-title: Isolation of linalool synthase and pinene synthase genes from yarrow ( L.) medicinal plant publication-title: Plant Genetic Researches – volume: 134 start-page: 19454 year: 2012 end-page: 19462 article-title: Electrostatically guided dynamics‐the root of fidelity in a promiscuous terpene synthase? publication-title: Journal of the American Chemical Society – volume: 21 start-page: 79 year: 2004 end-page: 82 article-title: Characterization of γ‐terpinene synthase from ( ) publication-title: BioFactors – volume: 16 start-page: 1778 year: 2018 end-page: 1787 article-title: The rice terpene synthase gene Os TPS 19 functions as an (S)‐limonene synthase in planta, and its overexpression leads to enhanced resistance to the blast fungus publication-title: Plant Biotechnology Journal – volume: 198 start-page: 512 year: 1979 end-page: 522 article-title: Biosynthesis of monoterpenes: preliminary characterization of bornyl pyrophosphate synthetase from sage ( ) and demonstration that geranyl pyrophosphate is the preferred substrate for cyclization publication-title: Archives of Biochemistry and Biophysics – volume: 56 start-page: 1706 year: 2017 end-page: 1715 article-title: Functional and structural characterization of a (+)‐limonene synthase from Citrus sinensis publication-title: Biochemistry – volume: 130 start-page: 477 year: 2002 end-page: 486 article-title: Cloning and functional characterization of a β‐pinene synthase from that shows a circadian pattern of expression publication-title: Plant Physiology – volume: 102 start-page: 46 year: 2014 end-page: 54 article-title: A domain swapping approach to elucidate differential regiospecific hydroxylation by geraniol and linalool synthases from perilla publication-title: Phytochemistry – volume: 65 start-page: 107 year: 2007 end-page: 124 article-title: Regulation of simultaneous synthesis of floral scent terpenoids by the 1, 8‐cineole synthase of publication-title: Plant Molecular Biology – volume: 14 year: 2023 article-title: Unraveling the evolutionary dynamics of the TPS gene family in land plants publication-title: Frontiers in Plant Science – volume: 63 start-page: 433 year: 2018 end-page: 452 article-title: Tritrophic interactions mediated by herbivore‐induced plant volatiles: mechanisms, ecological relevance, and application potential publication-title: Annual Review of Entomology – volume: 70 start-page: 1641 year: 2021 end-page: 1650 article-title: Functional characterization of a new bifunctional terpene synthase LpNES1 from a medicinal plant publication-title: Journal of Oleo Science – volume: 37 start-page: 232 year: 2010 end-page: 243 article-title: Characterisation of an (S)‐linalool synthase from kiwifruit ( ) that catalyses the first committed step in the production of floral lilac compounds publication-title: Functional Plant Biology – volume: 251 start-page: 777 year: 1986 end-page: 782 article-title: Evidence for the ionization steps in monoterpene cyclization reactions using 2‐fluorogeranyl and 2‐fluorolinalyl pyrophosphates as substrates publication-title: Archives of Biochemistry and Biophysics – volume: 15 start-page: 21992 year: 2014 end-page: 22010 article-title: Identification of a plastid‐localized bifunctional nerolidol/linalool synthase in relation to linalool biosynthesis in young grape berries publication-title: International Journal of Molecular Sciences – volume: 411 start-page: 196 year: 2003 end-page: 203 article-title: Domain swapping of monoterpene synthases: impact on enzymatic activity and product specificity publication-title: Archives of Biochemistry and Biophysics – volume: 237 start-page: 356 year: 2017 end-page: 363 article-title: Formation and emission of linalool in tea ( ) leaves infested by tea green leafhopper ( ( ) Matsuda) publication-title: Food Chemistry – volume: 15 year: 2020 article-title: Functional characterization of a new terpene synthase from publication-title: PLoS One – volume: 65 start-page: 1223 year: 2004 end-page: 1229 article-title: Identification of Vitis vinifera (−)‐α‐terpineol synthase by in silico screening of full‐length cDNA ESTs and functional characterization of recombinant terpene synthase publication-title: Phytochemistry – volume: 172 start-page: 2120 year: 2016 end-page: 2131 article-title: The α‐terpineol to 1, 8‐cineole cyclization reaction of tobacco terpene synthases publication-title: Plant Physiology – volume: 31 start-page: 455 year: 2010 end-page: 461 article-title: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading publication-title: Journal of Computational Chemistry – volume: 202 year: 2022 article-title: Identification and functional characterization of a γ‐terpinene synthase in L (black cumin) publication-title: Phytochemistry – volume: 27 start-page: 29 year: 2022 end-page: 38 article-title: How do plants sense volatiles sent by other plants? publication-title: Trends in Plant Science – volume: 166 start-page: 49 year: 2004 end-page: 58 article-title: Molecular cloning and functional characterization of four monoterpene synthase genes from Marc publication-title: Plant Science – volume: 66 start-page: 285 year: 2005 end-page: 293 article-title: A geraniol‐synthase gene from publication-title: Phytochemistry – volume: 92 start-page: 6691 year: 1970 end-page: 6693 article-title: Energy barriers for rotation about carbon‐carbon bonds in allyl cations publication-title: Journal of the American Chemical Society – volume: 127 start-page: 74 year: 2018 end-page: 87 article-title: Linalool and linalool nerolidol synthases in roses, several genes for little scent publication-title: Plant Physiology and Biochemistry – volume: 269 start-page: 3160 year: 2002 end-page: 3171 article-title: Monoterpene biosynthesis in lemon ( ) cDNA isolation and functional analysis of four monoterpene synthases publication-title: European Journal of Biochemistry – volume: 6 start-page: 1232 year: 2016 article-title: Emission and accumulation of monoterpene and the key terpene synthase (TPS) associated with monoterpene biosynthesis in Lour publication-title: Frontiers in Plant Science – volume: 56 start-page: 1716 year: 2017 end-page: 1725 article-title: Structural characterization of early Michaelis complexes in the reaction catalyzed by (+)‐limonene synthase from using fluorinated substrate analogues publication-title: Biochemistry – volume: 55 start-page: 491 year: 2008 end-page: 503 article-title: Molecular and genomic basis of volatile‐mediated indirect defense against insects in rice publication-title: The Plant Journal – volume: 2 start-page: 12 year: 2014 end-page: 18 article-title: A linalool synthase from Taiwanese publication-title: Journal of Pharmacognosy and Phytochemistry – volume: 44 start-page: 1158 year: 2018 end-page: 1167 article-title: QM/MM free energy simulations of the reaction catalysed by (4S)‐limonene synthase involving linalyl diphosphate (LPP) substrate publication-title: Molecular Simulation – volume: 23 start-page: 1 year: 2023 end-page: 15 article-title: The hops ( ) genome contains a mid‐sized terpene synthase family that shows wide functional and allelic diversity publication-title: BMC Plant Biology – volume: 34 start-page: 2195 year: 1978 end-page: 2199 article-title: Transformations of monoterpenoids in aqueous acids: the reactions of linalool. geraniol, nerol and their acetates in aqueous citric acid publication-title: Tetrahedron – volume: 490 start-page: 963 year: 2017 end-page: 968 article-title: Functional identification of a bornyl diphosphate synthase that contains a duplicated, inhibitory arginine‐rich motif publication-title: Biochemical and Biophysical Research Communications – volume: 146 start-page: 965 year: 2008 end-page: 973 article-title: Effects of feeding on lima bean leaves: IV. Diurnal and nocturnal damage differentially initiate plant volatile emission publication-title: Plant Physiology – volume: 104 start-page: 5360 year: 2007 end-page: 5365 article-title: Structure of limonene synthase, a simple model for terpenoid cyclase catalysis publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 24 start-page: 43 year: 1968 end-page: 52 article-title: Cyclization of nerol and linalool on solvolysis of their phosphate esters publication-title: Tetrahedron – volume: 13 year: 2022 article-title: Cloning and characterization of 1, 8‐cineole synthase (SgCINS) gene from the leaves of plant publication-title: Frontiers in Plant Science – volume: 55 start-page: 1 year: 2020 end-page: 10 article-title: More is better: the diversity of terpene metabolism in plants publication-title: Current Opinion in Plant Biology – volume: 61 start-page: 1733 year: 2020 end-page: 1749 article-title: Functional characterization of terpene synthases accounting for the volatilized‐terpene heterogeneity in cultivar flowers publication-title: Plant and Cell Physiology – volume: 8 start-page: 3089 year: 1967 end-page: 3094 article-title: Acid catalyzed hydrolysis of neryl pyrophosphate and geranyl pyrophosphate publication-title: Tetrahedron Letters – volume: 8 start-page: 3780 year: 2018 end-page: 3791 article-title: Experiment and simulation reveal how mutations in functional plasticity regions guide plant monoterpene synthase product outcome publication-title: ACS Catalysis – volume: 249 start-page: 9 year: 2019 end-page: 20 article-title: Isoprenyl diphosphate synthases: the chain length determining step in terpene biosynthesis publication-title: Planta – volume: 201 year: 2023 article-title: CsTPS21 encodes a jasmonate‐responsive monoterpene synthase producing β‐ocimene in citrus against Asian citrus psyllid publication-title: Plant Physiology and Biochemistry – volume: 4 start-page: 965 year: 2011 end-page: 984 article-title: Product variability of the ‘cineole cassette’ monoterpene synthases of related species publication-title: Molecular Plant – volume: 73 start-page: 587 year: 2010 end-page: 603 article-title: Terpene synthases of oregano ( L.) and their roles in the pathway and regulation of terpene biosynthesis publication-title: Plant Molecular Biology – volume: 137 start-page: 24 year: 2017 end-page: 33 article-title: Bornyl‐diphosphate synthase from : a major monoterpene synthase involved in essential oil quality publication-title: Phytochemistry – volume: 11 start-page: 2078 year: 2019 end-page: 2098 article-title: A comprehensive survey on the terpene synthase gene family provides new insight into its evolutionary patterns publication-title: Genome Biology and Evolution – volume: 7 start-page: 190 year: 2020 article-title: The carrot monoterpene synthase gene cluster on chromosome 4 harbours genes encoding flavour‐associated sabinene synthases publication-title: Horticulture Research – volume: 23 year: 2022 article-title: Molecular determinants of carbocation cyclisation in bacterial monoterpene synthases publication-title: Chembiochem – volume: 27 start-page: 1979 year: 2004 end-page: 1985 article-title: cDNA isolation and functional expression of myrcene synthase from publication-title: Biological and Pharmaceutical Bulletin – volume: 38 start-page: 1213 year: 2016 end-page: 1219 article-title: Characterization of a monoterpene synthase from producing α‐pinene as its single product publication-title: Biotechnology Letters – volume: 75 start-page: 1245 year: 2011 end-page: 1248 article-title: Molecular cloning and characterization of a linalool synthase from lemon myrtle publication-title: Bioscience, Biotechnology, and Biochemistry – volume: 15 start-page: 1227 year: 2003 end-page: 1241 article-title: (E)‐β‐Ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: function and expression of three terpene synthase genes of a new terpene synthase subfamily publication-title: The Plant Cell – volume: 12 start-page: 518 year: 2021 article-title: Genome‐wide analysis of terpene synthase gene family in and catalytic activity analysis of a single terpene synthase publication-title: Genes – volume: 62 start-page: 2472 year: 2023 end-page: 2479 article-title: Mutational analysis of (+)‐limonene synthase publication-title: Biochemistry – volume: 41 start-page: 2094 year: 2014 article-title: Correlation between spatiotemporal profiles of volatile terpenoids and relevant terpenoid synthase gene expression in publication-title: Acta Horticulturae Sinica – volume: 273 start-page: 14891 year: 1998 end-page: 14899 article-title: Monoterpene synthases from common sage ( ) ‐ cDNA isolation, characterization, and functional expression of (+)‐sabinene synthase, 1,8‐cineole synthase, and (+)‐bornyl diphosphate synthase publication-title: Journal of Biological Chemistry – volume: 44 start-page: 3238 year: 1979 end-page: 3244 article-title: Cyclization and allylic rearrangement in solvolyses of monoterpenoids publication-title: Journal of Organic Chemistry – volume: 111 start-page: 117 year: 2023 end-page: 130 article-title: Cloning, functional characterization and evaluating potential in metabolic engineering for lavender (+)‐bornyl diphosphate synthase publication-title: Plant Molecular Biology – volume: 63 start-page: 1951 year: 2012 end-page: 1967 article-title: Identification, functional characterization, and regulation of the enzyme responsible for floral (E)‐nerolidol biosynthesis in kiwifruit ( ) publication-title: Journal of Experimental Botany – volume: 229 start-page: 154 year: 2014 end-page: 166 article-title: Characterization of three linalool synthase genes from Marc. and analysis of linalool‐mediated resistance against subsp. citri and in citrus leaves and fruits publication-title: Plant Science – volume: 216 start-page: 745 year: 2003 end-page: 751 article-title: Functional identification of AtTPS03 as (E)‐β‐ocimene synthase: a monoterpene synthase catalyzing jasmonate‐and wound‐induced volatile formation in publication-title: Planta – volume: 41 start-page: 261 year: 2018 end-page: 274 article-title: The terpene synthase gene family in harbors a linalool synthase GhTPS12 implicated in direct defence responses against herbivores publication-title: Plant, Cell & Environment – volume: 17 start-page: 1 year: 2017 end-page: 14 article-title: Four terpene synthases contribute to the generation of chemotypes in tea tree ( ) publication-title: BMC Plant Biology – volume: 31 start-page: 62 year: 1977 article-title: The cyclization of linalool to alpha‐terpineol. Stereochemical course of the reaction publication-title: Chimia – volume: 9 start-page: 846 year: 2018 article-title: An integrative volatile terpenoid profiling and transcriptomics analysis for gene mining and functional characterization of AvBPPS and AvPS involved in the monoterpenoid biosynthesis in publication-title: Frontiers in Plant Science – volume: 264 start-page: 618 year: 1988 end-page: 631 article-title: Monoterpene biosynthesis: demonstration of a geranyl pyrophosphate: sabinene hydrate cyclase in soluble enzyme preparations from sweet marjoram ( ) publication-title: Archives of Biochemistry and Biophysics – volume: 166 start-page: 1700 year: 2009 end-page: 1704 article-title: Characterization of a sabinene synthase gene from rough lemon ( ) publication-title: Journal of Plant Physiology – volume: 63 start-page: 2739 year: 2012 end-page: 2752 article-title: Volatile emissions of scented Alstroemeria genotypes are dominated by terpenes, and a myrcene synthase gene is highly expressed in scented Alstroemeria flowers publication-title: Journal of Experimental Botany – volume: 465 start-page: 417 year: 2007 end-page: 429 article-title: Cloning and functional characterization of three terpene synthases from lavender ( ) publication-title: Archives of Biochemistry and Biophysics – volume: 218 start-page: 35 year: 2017 end-page: 44 article-title: Molecular cloning and functional characterization of a monoterpene synthase isolated from the aromatic wild shrub publication-title: Journal of Plant Physiology – volume: 72 start-page: 897 year: 2011 end-page: 908 article-title: Four terpene synthases produce major compounds of the gypsy moth feeding‐induced volatile blend of publication-title: Phytochemistry – volume: 13 year: 2022 article-title: Functional characterization of a terpene synthase responsible for (E)‐β‐ocimene biosynthesis identified in transcriptome after herbivory publication-title: Frontiers in Plant Science – volume: 202 year: 2023 article-title: Monoterpene synthases contribute to the volatile production in tana ( ) through indigenous cultivation practices publication-title: Plant Physiology and Biochemistry – volume: 181 year: 2021 article-title: Probing of the plasticity of the active site in pinene synthase elucidates its potential evolutionary mechanism publication-title: Phytochemistry – start-page: 264 year: 1969 end-page: 268 article-title: Phosphate esters. Part II. The formation of monoterpene hydrocarbons from geranyl and neryl diphenyl phosphates publication-title: Journal of the Chemical Society C: Organic – volume: 12 start-page: 7 year: 2015 end-page: 8 article-title: The I‐TASSER suite: protein structure and function prediction publication-title: Nature Methods – volume: 220 start-page: 692 year: 2018 end-page: 702 article-title: Why do plants produce so many terpenoid compounds? publication-title: New Phytologist – volume: 69 start-page: 4249 year: 2018 end-page: 4265 article-title: Identification and characterization of terpene synthase genes accounting for volatile terpene emissions in flowers of Freesia × hybrida publication-title: Journal of Experimental Botany – volume: 12 start-page: 7453 year: 2022 end-page: 7469 article-title: Determinants of selectivity for the formation of monocyclic and bicyclic products in monoterpene synthases publication-title: ACS Catalysis – volume: 22 start-page: 449 year: 2023 end-page: 465 article-title: Cannabis monoterpene synthases: evaluating structure–function relationships publication-title: Phytochemistry Reviews – volume: 12 year: 2021 article-title: Terpene synthase‐b and terpene synthase‐e/f genes produce monoterpenes for floral scent publication-title: Frontiers in Plant Science – volume: 529 start-page: 112 year: 2013 end-page: 121 article-title: Stereochemical mechanism of two sabinene hydrate synthases forming antipodal monoterpenes in thyme ( ) publication-title: Archives of Biochemistry and Biophysics – volume: 238 start-page: 191 year: 2013 end-page: 204 article-title: Genomic characterization, molecular cloning and expression analysis of two terpene synthases from (Lamiaceae) publication-title: Planta – volume: 183 year: 2021 article-title: Functional characterization of an Indian sandalwood ( L.) dual‐localized bifunctional nerolidol/linalool synthase gene involved in stress response publication-title: Phytochemistry – volume: 14 start-page: 2035 year: 2019 end-page: 2043 article-title: Direct evidence of an enzyme‐generated LPP intermediate in (+)‐limonene synthase using a fluorinated GPP substrate analog publication-title: ACS Chemical Biology – volume: 119 year: 2022 article-title: Origin and early evolution of the plant terpene synthase family publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 41 start-page: 111 year: 2018 end-page: 120 article-title: Expression of lima bean terpene synthases in rice enhances recruitment of a beneficial enemy of a major rice pest publication-title: Plant, Cell & Environment – volume: 71 start-page: 844 year: 2010 end-page: 852 article-title: Functional and evolutionary relationships between terpene synthases from Australian Myrtaceae publication-title: Phytochemistry – volume: 87 start-page: 929 year: 1987 end-page: 954 article-title: Biosynthesis and catabolism of monoterpenoids publication-title: Chemical Reviews – volume: 261 start-page: 7257 year: 1986 end-page: 7263 article-title: Inhibition of monoterpene cyclases by sulfonium analogs of presumptive carbocationic intermediates of the cyclization reaction publication-title: Journal of Biological Chemistry – volume: 14 year: 2023 article-title: Biochemical basis for the formation of organ‐specific volatile blends in mint publication-title: Frontiers in Plant Science – volume: 298 year: 2020 article-title: Characterization of terpene synthase genes potentially involved in black fig fly ( ) interactions with publication-title: Plant Science – volume: 202 year: 2022 article-title: Identification and characterization of three nearly identical linalool/nerolidol synthase from publication-title: Phytochemistry – volume: 180 start-page: 1877 year: 2019 end-page: 1897 article-title: Gene networks underlying cannabinoid and terpenoid accumulation in publication-title: Plant Physiology – volume: 63 start-page: 4870 year: 2015 end-page: 4878 article-title: Identification and characterization of terpene synthases potentially involved in the formation of volatile terpenes in carrot ( L.) roots publication-title: Journal of Agricultural and Food Chemistry – volume: 184 start-page: 130 year: 2020 end-page: 147 article-title: Terpene synthases and terpene variation in publication-title: Plant Physiology – volume: 79 start-page: 393 year: 2012 end-page: 411 article-title: Cloning, functional characterization and genomic organization of 1, 8‐cineole synthases from publication-title: Plant Molecular Biology – volume: 24 start-page: 7182 year: 2023 article-title: Functional characterization of a (E)‐β‐Ocimene synthase gene contributing to the defense against publication-title: International Journal of Molecular Sciences – volume: 8 start-page: 4589 year: 2010 end-page: 4600 article-title: Quantum chemical dissection of the classic terpinyl/pinyl/bornyl/camphyl cation conundrum‐the role of pyrophosphate in manipulating pathways to monoterpenes publication-title: Organic and Biomolecular Chemistry – ident: e_1_2_13_50_1 doi: 10.1016/j.phytochem.2014.02.016 – ident: e_1_2_13_89_1 doi: 10.3389/fpls.2023.1125065 – ident: e_1_2_13_160_1 doi: 10.1016/j.phytochem.2020.112573 – ident: e_1_2_13_72_1 doi: 10.1016/j.phytochem.2006.11.006 – ident: e_1_2_13_57_1 doi: 10.1016/0003-9861(88)90328-1 – ident: e_1_2_13_43_1 doi: 10.1105/tpc.011015 – ident: e_1_2_13_71_1 doi: 10.1104/pp.103.032946 – ident: e_1_2_13_155_1 doi: 10.1016/0003-9861(88)90447-X – ident: e_1_2_13_12_1 doi: 10.1093/pcp/pcaa100 – ident: e_1_2_13_45_1 doi: 10.1016/j.phytochem.2022.113290 – ident: e_1_2_13_51_1 doi: 10.1093/jxb/ery224 – ident: e_1_2_13_138_1 doi: 10.1016/j.plantsci.2003.07.006 – ident: e_1_2_13_107_1 doi: 10.1248/bpb.24.373 – ident: e_1_2_13_44_1 doi: 10.1016/S0003-9861(02)00711-7 – ident: e_1_2_13_132_1 doi: 10.1016/j.phytochem.2014.03.020 – ident: e_1_2_13_80_1 doi: 10.1016/j.phytochem.2010.03.013 – ident: e_1_2_13_149_1 doi: 10.1002/anie.199316061 – ident: e_1_2_13_102_1 doi: 10.1016/j.plaphy.2018.03.009 – ident: e_1_2_13_63_1 doi: 10.3389/fpls.2021.700958 – ident: e_1_2_13_25_1 doi: 10.1186/s12870-023-04283-y – ident: e_1_2_13_56_1 doi: 10.1039/j39690000264 – ident: e_1_2_13_111_1 doi: 10.1016/j.foodchem.2017.05.124 – ident: e_1_2_13_81_1 doi: 10.1021/acscatal.2c01836 – ident: e_1_2_13_122_1 doi: 10.1111/nph.14178 – ident: e_1_2_13_96_1 doi: 10.1016/j.tplants.2021.08.009 – ident: e_1_2_13_140_1 doi: 10.1073/pnas.1501203112 – ident: e_1_2_13_21_1 doi: 10.1007/s10529-014-1533-2 – ident: e_1_2_13_67_1 doi: 10.1073/pnas.0700915104 – ident: e_1_2_13_47_1 doi: 10.1007/s00425-002-0924-0 – ident: e_1_2_13_31_1 doi: 10.1021/cr00081a004 – ident: e_1_2_13_62_1 doi: 10.1248/bpb.27.1979 – ident: e_1_2_13_144_1 doi: 10.1002/jcc.21334 – ident: e_1_2_13_54_1 doi: 10.1093/jxb/err393 – ident: e_1_2_13_100_1 doi: 10.1016/j.synbio.2021.12.004 – ident: e_1_2_13_108_1 doi: 10.1248/bpb.25.661 – ident: e_1_2_13_38_1 doi: 10.1007/s11103-012-9920-3 – ident: e_1_2_13_9_1 doi: 10.1093/jxb/err456 – ident: e_1_2_13_27_1 doi: 10.3390/genes12040518 – ident: e_1_2_13_60_1 doi: 10.1016/S0031-9422(02)00674-X – ident: e_1_2_13_168_1 doi: 10.1080/08927022.2018.1447106 – ident: e_1_2_13_69_1 doi: 10.1038/s41467-019-11290-x – ident: e_1_2_13_86_1 doi: 10.1016/j.abb.2007.06.011 – ident: e_1_2_13_157_1 doi: 10.1073/pnas.232591099 – ident: e_1_2_13_48_1 doi: 10.1016/j.plaphy.2023.107969 – ident: e_1_2_13_175_1 doi: 10.1016/j.phytochem.2020.112610 – ident: e_1_2_13_41_1 doi: 10.1093/jxb/eraa353 – ident: e_1_2_13_104_1 doi: 10.1021/ja308295p – ident: e_1_2_13_139_1 doi: 10.1016/j.plantsci.2014.09.008 – ident: e_1_2_13_79_1 doi: 10.3389/fpls.2019.01166 – ident: e_1_2_13_176_1 doi: 10.1016/j.pbi.2020.01.005 – ident: e_1_2_13_78_1 doi: 10.1105/tpc.106.047779 – ident: e_1_2_13_166_1 doi: 10.1111/pbi.12080 – ident: e_1_2_13_40_1 doi: 10.1016/j.phytochem.2017.01.015 – ident: e_1_2_13_152_1 doi: 10.1093/nar/gky427 – ident: e_1_2_13_24_1 doi: 10.1111/pbi.12914 – ident: e_1_2_13_53_1 doi: 10.1093/treephys/tpaa161 – ident: e_1_2_13_119_1 doi: 10.1016/j.tifs.2022.08.006 – ident: e_1_2_13_4_1 doi: 10.1007/s11103-017-0588-6 – ident: e_1_2_13_90_1 doi: 10.1002/cbic.202100688 – ident: e_1_2_13_148_1 doi: 10.1093/nar/gkab1061 – ident: e_1_2_13_159_1 doi: 10.1074/jbc.273.24.14891 – ident: e_1_2_13_170_1 doi: 10.1111/j.1365-313X.2008.03524.x – ident: e_1_2_13_125_1 doi: 10.1021/ja00369a046 – ident: e_1_2_13_167_1 doi: 10.1016/j.jsb.2011.09.006 – ident: e_1_2_13_8_1 doi: 10.1104/pp.104.042929 – ident: e_1_2_13_73_1 doi: 10.29252/pgr.2.1.23 – ident: e_1_2_13_19_1 doi: 10.1104/pp.20.00593 – ident: e_1_2_13_164_1 doi: 10.1038/nmeth.3213 – ident: e_1_2_13_95_1 doi: 10.1111/tpj.14516 – ident: e_1_2_13_16_1 doi: 10.1016/j.molp.2018.06.002 – ident: e_1_2_13_98_1 doi: 10.1046/j.1432-1033.2002.02985.x – ident: e_1_2_13_126_1 doi: 10.1016/j.copbio.2020.06.002 – ident: e_1_2_13_76_1 doi: 10.1093/gbe/evz142 – ident: e_1_2_13_161_1 doi: 10.1016/j.abb.2017.12.007 – ident: e_1_2_13_127_1 doi: 10.1038/s41438-020-00412-y – ident: e_1_2_13_37_1 doi: 10.1016/j.phytochem.2011.03.014 – ident: e_1_2_13_130_1 doi: 10.3389/fpls.2016.00638 – ident: e_1_2_13_172_1 doi: 10.1007/s00425-014-2127-x – ident: e_1_2_13_134_1 doi: 10.1021/acs.biochem.3c00217 – ident: e_1_2_13_112_1 doi: 10.1021/acs.biochem.7b00143 – volume: 31 start-page: 62 year: 1977 ident: e_1_2_13_52_1 article-title: The cyclization of linalool to alpha‐terpineol. Stereochemical course of the reaction publication-title: Chimia – ident: e_1_2_13_162_1 doi: 10.1021/acs.jafc.5b00546 – ident: e_1_2_13_46_1 doi: 10.1093/mp/ssr021 – ident: e_1_2_13_92_1 doi: 10.1111/pce.12959 – ident: e_1_2_13_121_1 doi: 10.1016/S0003-9861(03)00347-3 – ident: e_1_2_13_42_1 doi: 10.1105/tpc.8.7.1137 – ident: e_1_2_13_36_1 doi: 10.1016/S0021-9258(17)38384-9 – ident: e_1_2_13_59_1 doi: 10.1186/1758-2946-4-17 – ident: e_1_2_13_147_1 doi: 10.1007/s11103-007-9149-8 – ident: e_1_2_13_49_1 doi: 10.1016/j.jplph.2017.07.013 – volume: 2 start-page: 12 year: 2014 ident: e_1_2_13_151_1 article-title: A linalool synthase from Taiwanese Perilla citriodora publication-title: Journal of Pharmacognosy and Phytochemistry – ident: e_1_2_13_94_1 doi: 10.1007/s00425-013-1884-2 – ident: e_1_2_13_114_1 doi: 10.1111/j.1365-313X.2008.03496.x – ident: e_1_2_13_18_1 doi: 10.1371/journal.pone.0173911 – ident: e_1_2_13_26_1 doi: 10.1071/FP09179 – ident: e_1_2_13_142_1 doi: 10.1271/bbb.100922 – ident: e_1_2_13_3_1 doi: 10.1007/s11103-022-01315-3 – ident: e_1_2_13_10_1 doi: 10.1038/s41598-021-96524-z – ident: e_1_2_13_74_1 doi: 10.1006/abbi.1999.1466 – volume: 41 start-page: 2094 year: 2014 ident: e_1_2_13_77_1 article-title: Correlation between spatiotemporal profiles of volatile terpenoids and relevant terpenoid synthase gene expression in Camellia sinensis publication-title: Acta Horticulturae Sinica – ident: e_1_2_13_23_1 doi: 10.1105/tpc.007989 – ident: e_1_2_13_39_1 doi: 10.1021/ja00725a079 – ident: e_1_2_13_153_1 doi: 10.1021/ja910134x – ident: e_1_2_13_33_1 doi: 10.1016/0003-9861(79)90526-5 – ident: e_1_2_13_93_1 doi: 10.1055/s-0031-1282602 – ident: e_1_2_13_22_1 doi: 10.1007/s11295-011-0377-3 – ident: e_1_2_13_97_1 doi: 10.1104/pp.006544 – ident: e_1_2_13_177_1 doi: 10.3390/ijms151221992 – ident: e_1_2_13_174_1 doi: 10.3389/fpls.2015.01232 – ident: e_1_2_13_7_1 doi: 10.1104/pp.107.111088 – ident: e_1_2_13_65_1 doi: 10.1111/pce.13088 – ident: e_1_2_13_129_1 doi: 10.1007/s11103-007-9202-7 – ident: e_1_2_13_154_1 doi: 10.1016/S0021-9258(18)47551-5 – ident: e_1_2_13_70_1 doi: 10.1104/pp.104.051318 – ident: e_1_2_13_118_1 doi: 10.1186/s12870-017-1107-2 – ident: e_1_2_13_91_1 doi: 10.1021/acscatal.8b00692 – ident: e_1_2_13_143_1 doi: 10.1002/biof.552210115 – ident: e_1_2_13_34_1 doi: 10.1016/0003-9861(89)90134-3 – ident: e_1_2_13_146_1 doi: 10.1016/S0040-4039(00)90921-3 – ident: e_1_2_13_11_1 doi: 10.1371/journal.pone.0235416 – ident: e_1_2_13_106_1 doi: 10.1007/s00425-012-1704-0 – ident: e_1_2_13_105_1 doi: 10.1016/j.phytochem.2004.03.018 – ident: e_1_2_13_29_1 doi: 10.1007/s11103-010-9636-1 – ident: e_1_2_13_115_1 doi: 10.1007/s00425-018-3052-1 – ident: e_1_2_13_99_1 doi: 10.3389/fbioe.2021.631863 – ident: e_1_2_13_131_1 doi: 10.1107/S2053230X15023043 – ident: e_1_2_13_58_1 doi: 10.3390/ijms24087182 – ident: e_1_2_13_55_1 doi: 10.1177/1934578X0700200301 – ident: e_1_2_13_113_1 doi: 10.1021/acschembio.9b00514 – ident: e_1_2_13_145_1 doi: 10.1146/annurev-ento-020117-043507 – ident: e_1_2_13_64_1 doi: 10.3389/fpls.2022.1077229 – ident: e_1_2_13_110_1 doi: 10.1038/srep44126 – ident: e_1_2_13_120_1 doi: 10.3389/fpls.2016.01019 – ident: e_1_2_13_83_1 doi: 10.1016/j.abb.2012.12.003 – ident: e_1_2_13_109_1 doi: 10.1016/j.phytochem.2010.04.006 – ident: e_1_2_13_116_1 doi: 10.1016/j.plantsci.2020.110549 – ident: e_1_2_13_15_1 doi: 10.1016/j.plaphy.2023.107887 – ident: e_1_2_13_136_1 doi: 10.5650/jos.ess21172 – ident: e_1_2_13_20_1 doi: 10.1021/jo01332a030 – ident: e_1_2_13_30_1 doi: 10.1016/0003-9861(86)90390-5 – ident: e_1_2_13_75_1 doi: 10.1073/pnas.2100361119 – ident: e_1_2_13_85_1 doi: 10.1006/abbi.1993.1156 – ident: e_1_2_13_5_1 doi: 10.1105/tpc.104.023895 – ident: e_1_2_13_150_1 doi: 10.3389/fpls.2018.00846 – ident: e_1_2_13_35_1 doi: 10.1016/S0021-9258(18)67037-1 – ident: e_1_2_13_133_1 doi: 10.1016/S0021-9258(17)38661-1 – ident: e_1_2_13_32_1 doi: 10.1016/S0021-9258(18)88922-0 – ident: e_1_2_13_2_1 doi: 10.1007/s00425-018-3006-7 – ident: e_1_2_13_14_1 doi: 10.1111/ppl.12241 – ident: e_1_2_13_135_1 doi: 10.1073/pnas.0904113106 – ident: e_1_2_13_84_1 doi: 10.1021/acs.biochem.7b00144 – ident: e_1_2_13_101_1 doi: 10.1007/s10529-016-2098-z – ident: e_1_2_13_13_1 doi: 10.1016/0040-4020(78)89026-7 – ident: e_1_2_13_87_1 doi: 10.1093/jxb/ery436 – ident: e_1_2_13_82_1 doi: 10.1016/j.jplph.2009.04.003 – ident: e_1_2_13_158_1 doi: 10.1021/bi980854k – ident: e_1_2_13_169_1 doi: 10.1016/j.jplph.2015.12.008 – ident: e_1_2_13_173_1 doi: 10.1104/pp.18.01506 – ident: e_1_2_13_156_1 doi: 10.1021/acscatal.3c03047 – ident: e_1_2_13_28_1 doi: 10.1016/S0021-9258(19)49419-2 – ident: e_1_2_13_137_1 doi: 10.1016/j.plantsci.2004.11.012 – ident: e_1_2_13_6_1 doi: 10.3389/fpls.2022.869432 – ident: e_1_2_13_66_1 doi: 10.1016/j.bbrc.2017.06.147 – ident: e_1_2_13_68_1 doi: 10.1016/j.phytochem.2022.113318 – ident: e_1_2_13_171_1 doi: 10.1006/abbi.1996.0343 – ident: e_1_2_13_17_1 doi: 10.1006/abbi.1999.1669 – ident: e_1_2_13_165_1 doi: 10.1016/j.phytochem.2004.12.004 – ident: e_1_2_13_123_1 doi: 10.1104/pp.16.01378 – ident: e_1_2_13_124_1 doi: 10.1021/ja00369a045 – ident: e_1_2_13_163_1 doi: 10.3389/fpls.2023.1273648 – ident: e_1_2_13_117_1 doi: 10.1080/0972060X.2021.1977721 – ident: e_1_2_13_88_1 doi: 10.1007/s11101-023-09861-4 – ident: e_1_2_13_128_1 doi: 10.1016/0040-4020(68)89006-4 – ident: e_1_2_13_141_1 doi: 10.1021/acs.biochem.0c00206 – ident: e_1_2_13_103_1 doi: 10.1021/acscatal.7b01328 – ident: e_1_2_13_61_1 doi: 10.1039/c0ob00167h |
SSID | ssj0017364 |
Score | 2.4621193 |
SecondaryResourceType | review_article |
Snippet | SUMMARY
Monoterpene synthases (MTSs) catalyze the first committed step in the biosynthesis of monoterpenoids, a class of specialized metabolites with... Monoterpene synthases (MTSs) catalyze the first committed step in the biosynthesis of monoterpenoids, a class of specialized metabolites with particularly high... SUMMARYMonoterpene synthases (MTSs) catalyze the first committed step in the biosynthesis of monoterpenoids, a class of specialized metabolites with... |
SourceID | osti proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 28 |
SubjectTerms | Angiospermae Angiosperms BASIC BIOLOGICAL SCIENCES Biosynthesis carbocation chemistry class crystal structure enzymatic control Food industry Food plants hydrides INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Intermediates Intramolecular Lyases ligands Magnoliopsida - enzymology Magnoliopsida - genetics Magnoliopsida - metabolism mechanistic enzymology Metabolites molecular dynamics monoterpene synthase Monoterpenes - metabolism Monoterpenoids Pharmaceutical industry Plant ecology Plant Proteins - genetics Plant Proteins - metabolism quantum mechanics/molecular mechanics Quenching Substrates |
Title | Chemical diversity in angiosperms − monoterpene synthases control complex reactions that provide the precursors for ecologically and commercially important monoterpenoids |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.16743 https://www.ncbi.nlm.nih.gov/pubmed/38565299 https://www.proquest.com/docview/3073665483 https://www.proquest.com/docview/3031662826 https://www.proquest.com/docview/3153662421 https://www.osti.gov/biblio/2332906 |
Volume | 119 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtRAEC2FEQcu7MuQEDWIAxdH6S5vI06AiKJIoAglUg5IlnsxGZGxo7RHyuQLOPMdfBVfQlV7UYICQtzscXnabVdVv7JfvwZ4qVym6EgSmW23HcUO00jbREXOpQTlUGobpJQ-fEx3D-O9o-RoDV4Pc2E6fYjxhRtHRsjXHOCl9peCvD2lMGcKPeVf5moxIPo0SkfJDDvpKELoEY2aqlcVYhbPeOaVsWjSUExdhzOvwtYw7uzcgc_DFXd0k69by1ZvmYvfxBz_s0t34XaPR8WbzoHuwZqr78PNtw1hxtUD-DHoCQg78DfEvBZl_WUeJMYXXvz89l2QKzfMXaS8Kfyqbo9paPSiZ8GLwFp354LgaZhE4QUZtKKfA0g7jrb5tb9vzrwgEC2cGVLyyYoas_wXC14aKvwwX4SaoW4vtdvMrX8IhzvvD97tRv36DpGhohAjO8ukzSuZ5KnDKsYSK8OCh5T34nKmpbGUHIzRuba50a5KFNU2DnVllEQ7Q3wEk7qp3RMQmJGXVTmVO6aKsywp81hSI1mVzKxEp6fwanjShenFz3kNjpNiKILo3hfh3k_hxWh62il-XGe0zu5SEExhrV3DpCTTFgqR5fOnsDF4UdGnBF9wMuWlnnM6-fl4mIKZv9CUtWuWbIMyTakKTv9iQ2NUyrN65BQedx46XifmhM8JYFB3g5_9uQPFwf5e2Hj676brcEsRpOvIyhswac-W7hlBslZvwg0V72-GCPwF7ys40w |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VgAQX3o_QAgviwMVV1-NXJC6AqEJpK4RSqRe08j4MEY1d1Y5E-AWc-R38Kn4JM-uHWlQQ4ubE46zXmcc369lvAJ6GLg3pTByYLbcVRA6TQNs4DJxLCMqh1NZTKe3tJ9ODaOcwPlyD5_1emJYfYlhwY8vw_poNnBekT1l5c0x2zjX0F-Aid_T2CdX7gTxKptiSRxFGDyhuhh2vENfxDJeeiUajiqzqPKR5Frj6yLN9DT7099wWnHzeXDZ603z9jc7xfyd1Ha52kFS8aHXoBqy58iZcelkRbFzdgh89pYCwfQmHmJciLz_OPcv4ohY_v30XpM0Vly-S6xT1qmw-UXSsRVcIL3zhuvsiCKH6fRS1IIFGdNsA6YOjY175r6uTWhCOFs70XvloRYNZ_okFd4fyX8wXPm0om1PjVnNb34aD7dezV9Oga_EQGMoLMbCTVNqskHGWOCwizLEwzHlIri_KJ1oaS_7BGJ1pmxntijik9MahLkwo0U4Q78CorEp3DwSmpGhFRhmPKaI0jfMskjRIWsQTK9HpMTzr_2plOv5zbsNxpPo8iJ698s9-DE8G0eOW9OM8oXXWF0VIhel2DdclmUaFiMygP4aNXo1U5xVqxf6Uuz1ndPHj4TTZM7-kyUtXLVkGZZJQIpz8RYbCVMIbe-QY7rYqOtwnZgTRCWPQdL2i_XkCavZuxx_c_3fRR3B5OtvbVbtv9t-uw5WQEF5bu7wBo-Zk6R4QQmv0Q2-IvwDjTjwX |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtRAEC2FASEuhC0wJECDOHBxNO320qOcgDAKAaIIJVIOSJZ7gxEZexR7JIYv4Mx35KvyJVS1FyUoIMTNS9nttmt51a5-DfA8tGmIZ-JAj-woiKxIAmXiMLA2QSgnuDKeSunDXrJzGO0exUcrsNXNhWn4IfoBN7IM76_JwOfGnTPyeo5mTiX0V-BqlIwkqfT2x547iqei4Y5CiB5g2AxbWiEq4-kvvRCMBiUa1WVA8yJu9YFnsgqfukdu6k2-bi5qtam__8bm-J99ugU3W0DKXjYadBtWbHEHrr0qETQu78JpRyjATFfAwaYFy4vPU88xPqvY2Y-fDHW5pOJFdJysWhb1F4yNFWvL4JkvW7ffGOJTP4uiYihQs3YSIO5Y3KZx_6o8qRiiaGZ155OPl9iYoVvMaG0of2A680lDUZ9rt5ya6h4cTt4cvN4J2gUeAo1ZoQjMOOVGOh7LxAoXiVw4TYyH6PiifKy4NugdtFZSGamVdXGIyY0VyumQCzMWYg0GRVnYB8BEimrmJOY72kVpGucy4thI6uKx4cKqIbzovnSmW_ZzWoTjOOuyIHz3mX_3Q3jWi84byo_LhNZJXTLEKUS2q6kqSddZKATx5w9ho9OirPUJVUbelNZ6lnjx0_40WjP9oskLWy5IRvAkwTQ4-YsMBqmEpvXwIdxvNLR_TiERoCPCwO56PftzB7KD_V2_8fDfRZ_A9f3tSfb-7d67dbgRIrxrCpc3YFCfLOwjhGe1euzN8BczPjrP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemical+diversity+in+angiosperms+%E2%88%92+monoterpene+synthases+control+complex+reactions+that+provide+the+precursors+for+ecologically+and+commercially+important+monoterpenoids&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Srividya%2C+Narayanan&rft.au=Kim%2C+Hoshin&rft.au=Simone%2C+Raugei&rft.au=Lange%2C+Bernd+Markus&rft.date=2024-07-01&rft.issn=0960-7412&rft.eissn=1365-313X&rft.volume=119&rft.issue=1&rft.spage=28&rft.epage=55&rft_id=info:doi/10.1111%2Ftpj.16743&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_tpj_16743 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon |