Chemical diversity in angiosperms − monoterpene synthases control complex reactions that provide the precursors for ecologically and commercially important monoterpenoids

SUMMARY Monoterpene synthases (MTSs) catalyze the first committed step in the biosynthesis of monoterpenoids, a class of specialized metabolites with particularly high chemical diversity in angiosperms. In addition to accomplishing a rate enhancement, these enzymes manage the formation and turnover...

Full description

Saved in:
Bibliographic Details
Published inThe Plant journal : for cell and molecular biology Vol. 119; no. 1; pp. 28 - 55
Main Authors Srividya, Narayanan, Kim, Hoshin, Simone, Raugei, Lange, Bernd Markus
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.07.2024
Society for Experimental Biology
Subjects
Online AccessGet full text

Cover

Loading…
Abstract SUMMARY Monoterpene synthases (MTSs) catalyze the first committed step in the biosynthesis of monoterpenoids, a class of specialized metabolites with particularly high chemical diversity in angiosperms. In addition to accomplishing a rate enhancement, these enzymes manage the formation and turnover of highly reactive carbocation intermediates formed from a prenyl diphosphate substrate. At each step along the reaction path, a cationic intermediate can be subject to cyclization, migration of a proton, hydride, or alkyl group, or quenching to terminate the sequence. However, enzymatic control of ligand folding, stabilization of specific intermediates, and defined quenching chemistry can maintain the specificity for forming a signature product. This review article will discuss our current understanding of how angiosperm MTSs control the reaction environment. Such knowledge allows inferences about the origin and regulation of chemical diversity, which is pertinent for appreciating the role of monoterpenoids in plant ecology but also for aiding commercial efforts that harness the accumulation of these specialized metabolites for the food, cosmetic, and pharmaceutical industries. Significance Statement Terpenoids form the largest class of plant specialized metabolites and monoterpene synthases are enzymes that catalyze critical reactions that contribute to this chemical diversity. This foundational review provides an overview of the complex catalytic mechanism of these enzymes and discusses their relevance in the context of the roles of terpenoids in plant ecology and the food, cosmetic, and pharmaceutical industries.
AbstractList Monoterpene synthases (MTSs) catalyze the first committed step in the biosynthesis of monoterpenoids, a class of specialized metabolites with particularly high chemical diversity in angiosperms. In addition to accomplishing a rate enhancement, these enzymes manage the formation and turnover of highly reactive carbocation intermediates formed from a prenyl diphosphate substrate. At each step along the reaction path, a cationic intermediate can be subject to cyclization, migration of a proton, hydride, or alkyl group, or quenching to terminate the sequence. However, enzymatic control of ligand folding, stabilization of specific intermediates, and defined quenching chemistry can maintain the specificity for forming a signature product. This review article will discuss our current understanding of how angiosperm MTSs control the reaction environment. Such knowledge allows inferences about the origin and regulation of chemical diversity, which is pertinent for appreciating the role of monoterpenoids in plant ecology but also for aiding commercial efforts that harness the accumulation of these specialized metabolites for the food, cosmetic, and pharmaceutical industries.
Monoterpene synthases (MTSs) catalyze the first committed step in the biosynthesis of monoterpenoids, a class of specialized metabolites with particularly high chemical diversity in angiosperms. In addition to accomplishing a rate enhancement, these enzymes manage the formation and turnover of highly reactive carbocation intermediates formed from a prenyl diphosphate substrate. At each step along the reaction path, a cationic intermediate can be subject to cyclization, migration of a proton, hydride, or alkyl group, or quenching to terminate the sequence. However, enzymatic control of ligand folding, stabilization of specific intermediates, and defined quenching chemistry can maintain the specificity for forming a signature product. This review article will discuss our current understanding of how angiosperm MTSs control the reaction environment. Such knowledge allows inferences about the origin and regulation of chemical diversity, which is pertinent for appreciating the role of monoterpenoids in plant ecology but also for aiding commercial efforts that harness the accumulation of these specialized metabolites for the food, cosmetic, and pharmaceutical industries.Monoterpene synthases (MTSs) catalyze the first committed step in the biosynthesis of monoterpenoids, a class of specialized metabolites with particularly high chemical diversity in angiosperms. In addition to accomplishing a rate enhancement, these enzymes manage the formation and turnover of highly reactive carbocation intermediates formed from a prenyl diphosphate substrate. At each step along the reaction path, a cationic intermediate can be subject to cyclization, migration of a proton, hydride, or alkyl group, or quenching to terminate the sequence. However, enzymatic control of ligand folding, stabilization of specific intermediates, and defined quenching chemistry can maintain the specificity for forming a signature product. This review article will discuss our current understanding of how angiosperm MTSs control the reaction environment. Such knowledge allows inferences about the origin and regulation of chemical diversity, which is pertinent for appreciating the role of monoterpenoids in plant ecology but also for aiding commercial efforts that harness the accumulation of these specialized metabolites for the food, cosmetic, and pharmaceutical industries.
SUMMARY Monoterpene synthases (MTSs) catalyze the first committed step in the biosynthesis of monoterpenoids, a class of specialized metabolites with particularly high chemical diversity in angiosperms. In addition to accomplishing a rate enhancement, these enzymes manage the formation and turnover of highly reactive carbocation intermediates formed from a prenyl diphosphate substrate. At each step along the reaction path, a cationic intermediate can be subject to cyclization, migration of a proton, hydride, or alkyl group, or quenching to terminate the sequence. However, enzymatic control of ligand folding, stabilization of specific intermediates, and defined quenching chemistry can maintain the specificity for forming a signature product. This review article will discuss our current understanding of how angiosperm MTSs control the reaction environment. Such knowledge allows inferences about the origin and regulation of chemical diversity, which is pertinent for appreciating the role of monoterpenoids in plant ecology but also for aiding commercial efforts that harness the accumulation of these specialized metabolites for the food, cosmetic, and pharmaceutical industries. Significance Statement Terpenoids form the largest class of plant specialized metabolites and monoterpene synthases are enzymes that catalyze critical reactions that contribute to this chemical diversity. This foundational review provides an overview of the complex catalytic mechanism of these enzymes and discusses their relevance in the context of the roles of terpenoids in plant ecology and the food, cosmetic, and pharmaceutical industries.
SUMMARYMonoterpene synthases (MTSs) catalyze the first committed step in the biosynthesis of monoterpenoids, a class of specialized metabolites with particularly high chemical diversity in angiosperms. In addition to accomplishing a rate enhancement, these enzymes manage the formation and turnover of highly reactive carbocation intermediates formed from a prenyl diphosphate substrate. At each step along the reaction path, a cationic intermediate can be subject to cyclization, migration of a proton, hydride, or alkyl group, or quenching to terminate the sequence. However, enzymatic control of ligand folding, stabilization of specific intermediates, and defined quenching chemistry can maintain the specificity for forming a signature product. This review article will discuss our current understanding of how angiosperm MTSs control the reaction environment. Such knowledge allows inferences about the origin and regulation of chemical diversity, which is pertinent for appreciating the role of monoterpenoids in plant ecology but also for aiding commercial efforts that harness the accumulation of these specialized metabolites for the food, cosmetic, and pharmaceutical industries.
Author Srividya, Narayanan
Kim, Hoshin
Lange, Bernd Markus
Simone, Raugei
Author_xml – sequence: 1
  givenname: Narayanan
  orcidid: 0000-0001-7934-7987
  surname: Srividya
  fullname: Srividya, Narayanan
  email: narayanan.srividya@wsu.edu
  organization: Washington State University
– sequence: 2
  givenname: Hoshin
  orcidid: 0000-0002-8866-2126
  surname: Kim
  fullname: Kim, Hoshin
  organization: Physical and Computational Sciences Division, Pacific Northwest National Laboratory
– sequence: 3
  givenname: Raugei
  surname: Simone
  fullname: Simone, Raugei
  organization: Physical and Computational Sciences Division, Pacific Northwest National Laboratory
– sequence: 4
  givenname: Bernd Markus
  orcidid: 0000-0001-6565-9584
  surname: Lange
  fullname: Lange, Bernd Markus
  email: lange-m@wsu.edu
  organization: Washington State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38565299$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/2332906$$D View this record in Osti.gov
BookMark eNqFks1u1DAUhS1URKeFBS-ALNjAIm0cxx5niUblT5VgUSR2lmPfdDxK7GA7hbxB1zwHT8WT4HQKQpUAb65tffccHd17hA6cd4DQY1KekHxO07g7IXxd03toRShnBSX00wFalQ0vi3VNqkN0FOOuLMma8voBOqSCcVY1zQp932xhsFr12NgrCNGmGVuHlbu0Po4Qhoh_XH_Dg3c-QRjBAY6zS1sVIWLtXQq-z3UYe_iKAyidrHcRZyDhMfgrayA_IN9BTyH6EHHnAwbte3-5-PZzNjOLxABB25sPO4w-JOXSH77emvgQ3e9UH-HRbT1GH1-dXWzeFOfvX7_dvDwvdF0LWphmTYzoCBMcaFdTRTtNWMmFWNeqaYk2nAqtW9EaoVvoWMUEA9p2uiLUNJQeo6d7XR-TlVHbBHqbwzrQSVaUVk3JM_R8D-WYnyeISQ42auh75cBPUVLCKOdVnTX_i5aUZFRUi-qzO-jOT8HltJnK0-MsJ8zUk1tqagcwcgx2UGGWv-aagRd7QAcfY4DuN0JKueyMzDsjb3Yms6d32BxYLXNMQdn-Xx1fbA_z36XlxYd3-46fabjX3g
CitedBy_id crossref_primary_10_1093_hr_uhae272
Cites_doi 10.1016/j.phytochem.2014.02.016
10.3389/fpls.2023.1125065
10.1016/j.phytochem.2020.112573
10.1016/j.phytochem.2006.11.006
10.1016/0003-9861(88)90328-1
10.1105/tpc.011015
10.1104/pp.103.032946
10.1016/0003-9861(88)90447-X
10.1093/pcp/pcaa100
10.1016/j.phytochem.2022.113290
10.1093/jxb/ery224
10.1016/j.plantsci.2003.07.006
10.1248/bpb.24.373
10.1016/S0003-9861(02)00711-7
10.1016/j.phytochem.2014.03.020
10.1016/j.phytochem.2010.03.013
10.1002/anie.199316061
10.1016/j.plaphy.2018.03.009
10.3389/fpls.2021.700958
10.1186/s12870-023-04283-y
10.1039/j39690000264
10.1016/j.foodchem.2017.05.124
10.1021/acscatal.2c01836
10.1111/nph.14178
10.1016/j.tplants.2021.08.009
10.1073/pnas.1501203112
10.1007/s10529-014-1533-2
10.1073/pnas.0700915104
10.1007/s00425-002-0924-0
10.1021/cr00081a004
10.1248/bpb.27.1979
10.1002/jcc.21334
10.1093/jxb/err393
10.1016/j.synbio.2021.12.004
10.1248/bpb.25.661
10.1007/s11103-012-9920-3
10.1093/jxb/err456
10.3390/genes12040518
10.1016/S0031-9422(02)00674-X
10.1080/08927022.2018.1447106
10.1038/s41467-019-11290-x
10.1016/j.abb.2007.06.011
10.1073/pnas.232591099
10.1016/j.plaphy.2023.107969
10.1016/j.phytochem.2020.112610
10.1093/jxb/eraa353
10.1021/ja308295p
10.1016/j.plantsci.2014.09.008
10.3389/fpls.2019.01166
10.1016/j.pbi.2020.01.005
10.1105/tpc.106.047779
10.1111/pbi.12080
10.1016/j.phytochem.2017.01.015
10.1093/nar/gky427
10.1111/pbi.12914
10.1093/treephys/tpaa161
10.1016/j.tifs.2022.08.006
10.1007/s11103-017-0588-6
10.1002/cbic.202100688
10.1093/nar/gkab1061
10.1074/jbc.273.24.14891
10.1111/j.1365-313X.2008.03524.x
10.1021/ja00369a046
10.1016/j.jsb.2011.09.006
10.1104/pp.104.042929
10.29252/pgr.2.1.23
10.1104/pp.20.00593
10.1038/nmeth.3213
10.1111/tpj.14516
10.1016/j.molp.2018.06.002
10.1046/j.1432-1033.2002.02985.x
10.1016/j.copbio.2020.06.002
10.1093/gbe/evz142
10.1016/j.abb.2017.12.007
10.1038/s41438-020-00412-y
10.1016/j.phytochem.2011.03.014
10.3389/fpls.2016.00638
10.1007/s00425-014-2127-x
10.1021/acs.biochem.3c00217
10.1021/acs.biochem.7b00143
10.1021/acs.jafc.5b00546
10.1093/mp/ssr021
10.1111/pce.12959
10.1016/S0003-9861(03)00347-3
10.1105/tpc.8.7.1137
10.1016/S0021-9258(17)38384-9
10.1186/1758-2946-4-17
10.1007/s11103-007-9149-8
10.1016/j.jplph.2017.07.013
10.1007/s00425-013-1884-2
10.1111/j.1365-313X.2008.03496.x
10.1371/journal.pone.0173911
10.1071/FP09179
10.1271/bbb.100922
10.1007/s11103-022-01315-3
10.1038/s41598-021-96524-z
10.1006/abbi.1999.1466
10.1105/tpc.007989
10.1021/ja00725a079
10.1021/ja910134x
10.1016/0003-9861(79)90526-5
10.1055/s-0031-1282602
10.1007/s11295-011-0377-3
10.1104/pp.006544
10.3390/ijms151221992
10.3389/fpls.2015.01232
10.1104/pp.107.111088
10.1111/pce.13088
10.1007/s11103-007-9202-7
10.1016/S0021-9258(18)47551-5
10.1104/pp.104.051318
10.1186/s12870-017-1107-2
10.1021/acscatal.8b00692
10.1002/biof.552210115
10.1016/0003-9861(89)90134-3
10.1016/S0040-4039(00)90921-3
10.1371/journal.pone.0235416
10.1007/s00425-012-1704-0
10.1016/j.phytochem.2004.03.018
10.1007/s11103-010-9636-1
10.1007/s00425-018-3052-1
10.3389/fbioe.2021.631863
10.1107/S2053230X15023043
10.3390/ijms24087182
10.1177/1934578X0700200301
10.1021/acschembio.9b00514
10.1146/annurev-ento-020117-043507
10.3389/fpls.2022.1077229
10.1038/srep44126
10.3389/fpls.2016.01019
10.1016/j.abb.2012.12.003
10.1016/j.phytochem.2010.04.006
10.1016/j.plantsci.2020.110549
10.1016/j.plaphy.2023.107887
10.5650/jos.ess21172
10.1021/jo01332a030
10.1016/0003-9861(86)90390-5
10.1073/pnas.2100361119
10.1006/abbi.1993.1156
10.1105/tpc.104.023895
10.3389/fpls.2018.00846
10.1016/S0021-9258(18)67037-1
10.1016/S0021-9258(17)38661-1
10.1016/S0021-9258(18)88922-0
10.1007/s00425-018-3006-7
10.1111/ppl.12241
10.1073/pnas.0904113106
10.1021/acs.biochem.7b00144
10.1007/s10529-016-2098-z
10.1016/0040-4020(78)89026-7
10.1093/jxb/ery436
10.1016/j.jplph.2009.04.003
10.1021/bi980854k
10.1016/j.jplph.2015.12.008
10.1104/pp.18.01506
10.1021/acscatal.3c03047
10.1016/S0021-9258(19)49419-2
10.1016/j.plantsci.2004.11.012
10.3389/fpls.2022.869432
10.1016/j.bbrc.2017.06.147
10.1016/j.phytochem.2022.113318
10.1006/abbi.1996.0343
10.1006/abbi.1999.1669
10.1016/j.phytochem.2004.12.004
10.1104/pp.16.01378
10.1021/ja00369a045
10.3389/fpls.2023.1273648
10.1080/0972060X.2021.1977721
10.1007/s11101-023-09861-4
10.1016/0040-4020(68)89006-4
10.1021/acs.biochem.0c00206
10.1021/acscatal.7b01328
10.1039/c0ob00167h
ContentType Journal Article
Copyright 2024 The Authors. published by Society for Experimental Biology and John Wiley & Sons Ltd.
2024 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.
2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. published by Society for Experimental Biology and John Wiley & Sons Ltd.
– notice: 2024 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Washington State Univ., Pullman, WA (United States)
Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Environmental Molecular Sciences Laboratory (EMSL)
CorporateAuthor_xml – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Environmental Molecular Sciences Laboratory (EMSL)
– name: Washington State Univ., Pullman, WA (United States)
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7QR
7TM
8FD
FR3
M7N
P64
RC3
7X8
7S9
L.6
OTOTI
DOI 10.1111/tpj.16743
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
OSTI.GOV
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic


Genetics Abstracts
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
Chemistry
EISSN 1365-313X
EndPage 55
ExternalDocumentID 2332906
38565299
10_1111_tpj_16743
TPJ16743
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: U.S. Department of Energy, Pacific Northwest National Laboratory
  funderid: DE‐AC05‐75RL01830
– fundername: U.S. Department of Energy, Physical Biosciences
  funderid: DE‐SC0001553
– fundername: U.S. Department of Energy, Pacific Northwest National Laboratory
  grantid: DE-AC05-75RL01830
– fundername: U.S. Department of Energy, Physical Biosciences
  grantid: DE-SC0001553
GroupedDBID ---
-DZ
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
TR2
UB1
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
YFH
YUY
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7QR
7TM
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
M7N
P64
RC3
7X8
7S9
L.6
OTOTI
ID FETCH-LOGICAL-c4483-d971d8f1586e3f43a3fc15068874a9b1cd638ccb8bd8cbef52585e3bfc213d933
IEDL.DBID DR2
ISSN 0960-7412
1365-313X
IngestDate Mon Oct 21 03:31:27 EDT 2024
Fri Jul 11 18:29:57 EDT 2025
Fri Jul 11 16:03:18 EDT 2025
Fri Jul 25 10:43:19 EDT 2025
Thu Apr 03 07:00:32 EDT 2025
Thu Apr 24 23:06:00 EDT 2025
Tue Jul 01 01:40:36 EDT 2025
Wed Jan 22 17:18:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords carbocation
mechanistic enzymology
crystal structure
quantum mechanics/molecular mechanics
enzymatic control
molecular dynamics
monoterpene synthase
Language English
License Attribution-NonCommercial-NoDerivs
2024 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4483-d971d8f1586e3f43a3fc15068874a9b1cd638ccb8bd8cbef52585e3bfc213d933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
USDOE
PNNL-SA-193068
USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences & Biosciences Division (CSGB)
SC0001553; AC05-75RL01830; DE‐SC0001553; DE‐AC05‐75RL01830; AC05-76RL01830
USDOE Office of Science (SC), Biological and Environmental Research (BER)
ORCID 0000-0001-6565-9584
0000-0002-8866-2126
0000-0001-7934-7987
0000000288662126
0000000165659584
0000000179347987
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.16743
PMID 38565299
PQID 3073665483
PQPubID 31702
PageCount 28
ParticipantIDs osti_scitechconnect_2332906
proquest_miscellaneous_3153662421
proquest_miscellaneous_3031662826
proquest_journals_3073665483
pubmed_primary_38565299
crossref_primary_10_1111_tpj_16743
crossref_citationtrail_10_1111_tpj_16743
wiley_primary_10_1111_tpj_16743_TPJ16743
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2024
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
– name: United States
PublicationTitle The Plant journal : for cell and molecular biology
PublicationTitleAlternate Plant J
PublicationYear 2024
Publisher Blackwell Publishing Ltd
Society for Experimental Biology
Publisher_xml – name: Blackwell Publishing Ltd
– name: Society for Experimental Biology
References 2004; 21
2007; 104
2004; 166
2007; 465
2004; 27
2019; 11
2013; 529
2019; 10
2019; 14
2002; 99
2022; 23
2020; 15
2018; 41
2000; 375
2018; 44
2016; 38
2022; 27
2005; 66
1982b; 104
2021; 70
2018; 46
1998; 273
2023; 62
2018; 9
2018; 8
2012; 134
1982a; 104
1993; 32
2011; 72
2013; 238
2014; 15
1977; 31
2002; 269
2020; 298
2007; 2
2007; 64
2007; 65
2014; 240
2007; 68
2022; 202
2010; 8
2007; 19
2018; 220
2010; 31
2010; 37
2003; 216
2002; 130
2023; 201
2011; 75
2017; 490
2011; 77
2023; 202
2008; 55
2011; 4
2022; 119
2014; 41
2021; 50
1985; 260
2001; 24
2017; 137
2011; 7
1967; 8
2016; 6
2016; 7
2019; 180
1970; 92
2022; 7
2015; 112
2015; 63
2017; 56
2022; 12
2022; 13
2014; 36
2018; 638
2018; 11
2012; 236
2018; 16
2016; 172
2009; 106
2004; 65
1987; 262
2021; 24
2017; 7
1968; 24
1978; 34
2018; 127
2020; 61
1986; 251
2003; 15
2020; 59
1988; 264
2016; 72
2019; 249
2020; 55
2008; 146
2017; 237
2004; 134
2020; 7
1979; 198
2023; 24
1987; 87
2004; 136
2023; 22
2004; 135
2023; 23
2014; 2
2012; 179
1988; 260
2013; 11
1989; 269
1986; 261
2009; 166
1999; 372
2021; 41
2022; 128
2016; 191
1996; 332
1996; 8
2010; 73
2012; 63
2010; 71
2017; 218
2015; 2
2021; 9
2015; 12
2003; 417
2023; 13
2019; 70
2023; 14
2020; 184
2021; 181
2021; 183
2018; 63
2020; 101
1993; 268
1993; 301
2012; 79
2003; 411
2018; 69
2014; 229
1998; 37
2002; 25
2017; 93
2021; 12
2021; 11
2004; 16
2017; 17
2005; 168
2020; 71
2023; 111
2015; 153
2017; 12
2010; 132
2020; 65
1979; 44
2012; 4
2003; 62
1969
2014; 102
e_1_2_13_120_1
e_1_2_13_143_1
e_1_2_13_166_1
e_1_2_13_24_1
e_1_2_13_47_1
e_1_2_13_20_1
e_1_2_13_66_1
e_1_2_13_101_1
e_1_2_13_147_1
e_1_2_13_43_1
e_1_2_13_124_1
e_1_2_13_85_1
e_1_2_13_8_1
e_1_2_13_62_1
e_1_2_13_81_1
e_1_2_13_162_1
e_1_2_13_92_1
e_1_2_13_96_1
e_1_2_13_117_1
Godtfredsen S. (e_1_2_13_52_1) 1977; 31
e_1_2_13_17_1
e_1_2_13_13_1
e_1_2_13_36_1
e_1_2_13_59_1
e_1_2_13_154_1
e_1_2_13_131_1
e_1_2_13_32_1
e_1_2_13_55_1
e_1_2_13_78_1
e_1_2_13_112_1
e_1_2_13_158_1
e_1_2_13_135_1
e_1_2_13_177_1
e_1_2_13_51_1
e_1_2_13_74_1
e_1_2_13_173_1
e_1_2_13_70_1
e_1_2_13_150_1
e_1_2_13_4_1
e_1_2_13_105_1
e_1_2_13_88_1
e_1_2_13_128_1
e_1_2_13_29_1
e_1_2_13_109_1
e_1_2_13_25_1
e_1_2_13_48_1
e_1_2_13_165_1
e_1_2_13_100_1
e_1_2_13_142_1
e_1_2_13_21_1
e_1_2_13_44_1
e_1_2_13_67_1
e_1_2_13_169_1
e_1_2_13_104_1
e_1_2_13_123_1
Jing‐Jing L. (e_1_2_13_77_1) 2014; 41
e_1_2_13_86_1
e_1_2_13_146_1
e_1_2_13_9_1
e_1_2_13_40_1
e_1_2_13_63_1
e_1_2_13_82_1
e_1_2_13_161_1
e_1_2_13_91_1
e_1_2_13_95_1
e_1_2_13_116_1
e_1_2_13_99_1
e_1_2_13_139_1
e_1_2_13_18_1
e_1_2_13_14_1
e_1_2_13_111_1
e_1_2_13_130_1
e_1_2_13_153_1
e_1_2_13_37_1
e_1_2_13_79_1
e_1_2_13_10_1
e_1_2_13_56_1
e_1_2_13_115_1
e_1_2_13_134_1
e_1_2_13_157_1
e_1_2_13_176_1
e_1_2_13_33_1
e_1_2_13_75_1
e_1_2_13_172_1
e_1_2_13_71_1
e_1_2_13_5_1
Wang L. (e_1_2_13_151_1) 2014; 2
e_1_2_13_108_1
e_1_2_13_127_1
e_1_2_13_49_1
e_1_2_13_122_1
e_1_2_13_141_1
e_1_2_13_164_1
e_1_2_13_26_1
e_1_2_13_68_1
e_1_2_13_45_1
e_1_2_13_126_1
e_1_2_13_87_1
e_1_2_13_145_1
e_1_2_13_168_1
e_1_2_13_22_1
e_1_2_13_64_1
e_1_2_13_103_1
e_1_2_13_41_1
e_1_2_13_60_1
e_1_2_13_83_1
e_1_2_13_6_1
e_1_2_13_160_1
e_1_2_13_90_1
e_1_2_13_94_1
e_1_2_13_98_1
e_1_2_13_119_1
e_1_2_13_138_1
e_1_2_13_19_1
e_1_2_13_133_1
e_1_2_13_15_1
e_1_2_13_38_1
e_1_2_13_57_1
e_1_2_13_110_1
e_1_2_13_152_1
e_1_2_13_137_1
e_1_2_13_175_1
e_1_2_13_11_1
e_1_2_13_34_1
e_1_2_13_53_1
e_1_2_13_76_1
e_1_2_13_114_1
e_1_2_13_156_1
e_1_2_13_171_1
e_1_2_13_30_1
e_1_2_13_72_1
e_1_2_13_2_1
e_1_2_13_107_1
e_1_2_13_149_1
e_1_2_13_121_1
e_1_2_13_144_1
e_1_2_13_27_1
e_1_2_13_46_1
e_1_2_13_69_1
e_1_2_13_163_1
e_1_2_13_102_1
e_1_2_13_125_1
e_1_2_13_148_1
e_1_2_13_23_1
e_1_2_13_42_1
e_1_2_13_65_1
e_1_2_13_167_1
e_1_2_13_84_1
e_1_2_13_7_1
e_1_2_13_61_1
e_1_2_13_80_1
e_1_2_13_140_1
e_1_2_13_93_1
e_1_2_13_97_1
e_1_2_13_118_1
e_1_2_13_39_1
e_1_2_13_132_1
e_1_2_13_155_1
e_1_2_13_35_1
e_1_2_13_16_1
e_1_2_13_58_1
e_1_2_13_113_1
e_1_2_13_136_1
e_1_2_13_159_1
e_1_2_13_174_1
e_1_2_13_31_1
e_1_2_13_12_1
e_1_2_13_54_1
e_1_2_13_170_1
e_1_2_13_73_1
e_1_2_13_50_1
e_1_2_13_3_1
e_1_2_13_106_1
e_1_2_13_129_1
e_1_2_13_89_1
e_1_2_13_28_1
References_xml – volume: 236
  start-page: 919
  year: 2012
  end-page: 929
  article-title: Biosynthesis of wine aroma: transcript profiles of hydroxymethylbutenyl diphosphate reductase, geranyl diphosphate synthase, and linalool/nerolidol synthase parallel monoterpenol glycoside accumulation in Gewürztraminer grapes
  publication-title: Planta
– volume: 136
  start-page: 3724
  year: 2004
  end-page: 3736
  article-title: The biochemical and molecular basis for the divergent patterns in the biosynthesis of terpenes and phenylpropenes in the peltate glands of three cultivars of basil
  publication-title: Plant Physiology
– volume: 104
  start-page: 1422
  year: 1982b
  end-page: 1424
  article-title: Model studies of terpene biosynthesis. A stepwise mechanism for cyclization of nerol to alpha‐terpineol
  publication-title: Journal of the American Chemical Society
– volume: 168
  start-page: 987
  year: 2005
  end-page: 995
  article-title: Isolation and characterization of (E)‐beta‐ocimene and 1, 8 cineole synthases in Marc
  publication-title: Plant Science
– volume: 8
  start-page: 1137
  year: 1996
  end-page: 1148
  article-title: Evolution of floral scent in clarkia: novel patterns of S‐linalool synthase gene expression in the flower
  publication-title: The Plant Cell
– volume: 2
  year: 2007
  article-title: Functional expression and characterization of trichome‐specific (−)‐limonene synthase and (+)‐α‐pinene synthase from
  publication-title: Natural Product Communications
– volume: 25
  start-page: 661
  year: 2002
  end-page: 665
  article-title: Molecular cloning, functional expression and characterization of (+)‐limonene synthase from
  publication-title: Biological and Pharmaceutical Bulletin
– volume: 24
  start-page: 910
  year: 2021
  end-page: 924
  article-title: Identification and molecular characterization of geraniol and linalool synthase genes related to monoterpene biosynthesis in Damask rose ( Mill.), several genes for little scent
  publication-title: Journal of Essential Oil Bearing Plants
– volume: 240
  start-page: 745
  year: 2014
  end-page: 762
  article-title: Characterization of two monoterpene synthases involved in floral scent formation in
  publication-title: Planta
– volume: 7
  start-page: 638
  year: 2016
  article-title: Isolation and characterization of three new monoterpene synthases from
  publication-title: Frontiers in Plant Science
– volume: 46
  start-page: W296
  year: 2018
  end-page: W303
  article-title: SWISS‐MODEL: homology modelling of protein structures and complexes
  publication-title: Nucleic Acids Research
– volume: 77
  start-page: PI9
  year: 2011
  article-title: Genomic characterization of γ‐terpinene synthase from
  publication-title: Planta Medica
– volume: 32
  start-page: 1606
  year: 1993
  end-page: 1608
  article-title: The classical 2‐norbornyl cation rigorously defined ab initio
  publication-title: Angewandte Chemie
– volume: 41
  start-page: 849
  year: 2021
  end-page: 864
  article-title: Monoterpene synthases responsible for the terpene profile of anther glands in RT Baker (Myrtaceae)
  publication-title: Tree Physiology
– volume: 191
  start-page: 120
  year: 2016
  end-page: 126
  article-title: Rice terpene synthase 24 (OsTPS24) encodes a jasmonate‐responsive monoterpene synthase that produces an antibacterial γ‐terpinene against rice pathogen
  publication-title: Journal of Plant Physiology
– volume: 19
  start-page: 1994
  year: 2007
  end-page: 2005
  article-title: Rational conversion of substrate and product specificity in a salvia monoterpene synthase: structural insights into the evolution of terpene synthase function
  publication-title: The Plant Cell
– volume: 99
  start-page: 15375
  year: 2002
  end-page: 15380
  article-title: Bornyl diphosphate synthase: structure and strategy for carbocation manipulation by a terpenoid cyclase
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 261
  start-page: 13438
  year: 1986
  end-page: 13445
  article-title: Biosynthesis of monoterpenes. Enantioselectivity in the enzymatic cyclization of (+)‐and (−)‐linalyl pyrophosphate to (+)‐and (−)‐bornyl pyrophosphate
  publication-title: Journal of Biological Chemistry
– volume: 372
  start-page: 143
  year: 1999
  end-page: 149
  article-title: (3R)‐linalool synthase from L.: cDNA isolation, characterization, and wound induction
  publication-title: Archives of Biochemistry and Biophysics
– volume: 112
  start-page: 3332
  year: 2015
  end-page: 3337
  article-title: Functional analysis of (4S)‐limonene synthase mutants reveals determinants of catalytic outcome in a model monoterpene synthase
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 16
  start-page: 3110
  year: 2004
  end-page: 3131
  article-title: Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species
  publication-title: Plant Cell
– volume: 12
  year: 2017
  article-title: Terpene synthases from
  publication-title: PLoS One
– volume: 301
  start-page: 361
  year: 1993
  end-page: 366
  article-title: Hydride shifts in the biosynthesis of the p‐Menthane monoterpenes α‐Terpinene, γ‐Terpinene, and β‐Phellandrene
  publication-title: Archives of Biochemistry and Biophysics
– volume: 55
  start-page: 224
  year: 2008
  end-page: 239
  article-title: Two nearly identical terpene synthases catalyze the formation of nerolidol and linalool in snapdragon flowers
  publication-title: The Plant Journal
– volume: 417
  start-page: 203
  year: 2003
  end-page: 211
  article-title: Alternative termination chemistries utilized by monoterpene cyclases: chimeric analysis of bornyl diphosphate, 1, 8‐cineole, and sabinene synthases
  publication-title: Archives of Biochemistry and Biophysics
– volume: 262
  start-page: 8213
  year: 1987
  end-page: 8219
  article-title: Monoterpene cyclases. Stereoelectronic requirements for substrate binding and ionization
  publication-title: Journal of Biological Chemistry
– volume: 11
  start-page: 17094
  year: 2021
  article-title: Kinetic studies and homology modeling of a dual‐substrate linalool/nerolidol synthase from
  publication-title: Scientific Reports
– volume: 7
  start-page: 44126
  year: 2017
  article-title: Transcriptomic insight into terpenoid and carbazole alkaloid biosynthesis, and functional characterization of two terpene synthases in curry tree ( )
  publication-title: Scientific Reports
– volume: 64
  start-page: 251
  year: 2007
  end-page: 263
  article-title: Tomato linalool synthase is induced in trichomes by jasmonic acid
  publication-title: Plant Molecular Biology
– volume: 179
  start-page: 269
  year: 2012
  end-page: 278
  article-title: UCSF chimera, MODELLER, and IMP: an integrated modeling system
  publication-title: Journal of Structural Biology
– volume: 9
  year: 2021
  article-title: Bornyl diphosphate synthase from and its application for (+)‐borneol biosynthesis in yeast
  publication-title: Frontiers in Bioengineering and Biotechnology
– volume: 249
  start-page: 71
  year: 2019
  end-page: 93
  article-title: Functional characterization and expression analysis of two terpene synthases involved in floral scent formation in Lilium ‘Siberia’
  publication-title: Planta
– volume: 7
  start-page: 5461
  year: 2017
  end-page: 5465
  article-title: Electrostatic control of chemistry in terpene cyclases
  publication-title: ACS Catalysis
– volume: 638
  start-page: 27
  year: 2018
  end-page: 34
  article-title: Mutational analysis and dynamic simulation of S‐limonene synthase reveal the importance of Y573: insight into the cyclization mechanism in monoterpene synthases
  publication-title: Archives of Biochemistry and Biophysics
– volume: 68
  start-page: 446
  year: 2007
  end-page: 453
  article-title: Geraniol synthases from perilla and their taxonomical significance
  publication-title: Phytochemistry
– volume: 71
  start-page: 6571
  year: 2020
  end-page: 6586
  article-title: Origin and functional differentiation of (E)‐β‐ocimene synthases reflect the expansion of monoterpenes in angiosperms
  publication-title: Journal of Experimental Botany
– volume: 260
  start-page: 13901
  year: 1985
  end-page: 13908
  article-title: Biosynthesis of monoterpenes. Enantioselectivity in the enzymatic cyclization of linalyl pyrophosphate to (−)‐endo‐fenchol
  publication-title: Journal of Biological Chemistry
– volume: 62
  start-page: 1081
  year: 2003
  end-page: 1086
  article-title: A cDNA clone for 3‐carene synthase from Salvia stenophylla
  publication-title: Phytochemistry
– volume: 102
  start-page: 64
  year: 2014
  end-page: 73
  article-title: Transcriptome profiling, and cloning and characterization of the main monoterpene synthases of L
  publication-title: Phytochemistry
– volume: 24
  start-page: 373
  year: 2001
  end-page: 377
  article-title: Molecular cloning, functional expression and characterization of d‐limonene synthase from
  publication-title: Biological and Pharmaceutical Bulletin
– volume: 11
  start-page: 875
  year: 2013
  end-page: 882
  article-title: Chrysanthemum expressing a linalool synthase gene ‘smells good’, but ‘tastes bad’ to western flower thrips
  publication-title: Plant Biotechnology Journal
– volume: 11
  start-page: 1084
  year: 2018
  end-page: 1096
  article-title: Phylogenomic mining of the mints reveals multiple mechanisms contributing to the evolution of chemical diversity in Lamiaceae
  publication-title: Molecular Plant
– volume: 260
  start-page: 5956
  year: 1985
  end-page: 5962
  article-title: Stereochemistry at C‐1 of geranyl pyrophosphate and neryl pyrophosphate in the cyclization to (+)‐and (−)‐bornyl pyrophosphate
  publication-title: Journal of Biological Chemistry
– volume: 104
  start-page: 1420
  year: 1982a
  end-page: 1422
  article-title: Model studies of terpene biosynthesis. Stereospecific cyclization of N‐methyl‐(S)‐4‐([1'‐2H] neryloxy) pyridinium methyl sulfate to. alpha.‐terpineol
  publication-title: Journal of the American Chemical Society
– volume: 260
  start-page: 250
  year: 1988
  end-page: 256
  article-title: Monoterpene cyclases: physicochemical features required for pyrophosphate binding determined from inhibition by structural analogs
  publication-title: Archives of Biochemistry and Biophysics
– volume: 70
  start-page: 1095
  year: 2019
  end-page: 1108
  article-title: Enzymology of monoterpene functionalization in glandular trichomes
  publication-title: Journal of Experimental Botany
– volume: 132
  start-page: 6349
  year: 2010
  end-page: 6360
  article-title: Challenges posed to bornyl diphosphate synthase: diverging reaction mechanisms in monoterpenes
  publication-title: Journal of the American Chemical Society
– volume: 15
  start-page: 481
  year: 2003
  end-page: 494
  article-title: Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers
  publication-title: The Plant Cell
– volume: 134
  start-page: 370
  year: 2004
  end-page: 379
  article-title: Characterization of geraniol synthase from the peltate glands of sweet basil
  publication-title: Plant Physiology
– volume: 106
  start-page: 10865
  year: 2009
  end-page: 10870
  article-title: Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 7
  start-page: 835
  year: 2011
  end-page: 844
  article-title: Molecular cloning and characterization of monoterpene synthases from (Lour.) Persoon
  publication-title: Tree Genetics & Genomes
– volume: 268
  start-page: 23016
  year: 1993
  end-page: 23024
  article-title: 4S‐limonene synthase from the oil glands of spearmint ( ). cDNA isolation, characterization, and bacterial expression of the catalytically active monoterpene cyclase
  publication-title: Journal of Biological Chemistry
– volume: 269
  start-page: 507
  year: 1989
  end-page: 516
  article-title: Monoterpene biosynthesis: mechanistic evaluation of the geranyl pyrophosphate:(−)‐endo‐fenchol cyclase from fennel ( )
  publication-title: Archives of Biochemistry and Biophysics
– volume: 4
  start-page: 1
  year: 2012
  article-title: Avogadro: an advanced semantic chemical editor, visualization, and analysis platform
  publication-title: Journal of Cheminformatics
– volume: 65
  start-page: 248
  year: 2020
  end-page: 258
  article-title: Enzymatic control of product distribution in terpene synthases: insights from multiscale simulations
  publication-title: Current Opinion in Biotechnology
– volume: 128
  start-page: 188
  year: 2022
  end-page: 201
  article-title: Beyond natural aromas: the bioactive and technological potential of monoterpenes
  publication-title: Trends in Food Science and Technology
– volume: 37
  start-page: 12213
  year: 1998
  end-page: 12220
  article-title: Truncation of limonene synthase preprotein provides a fully active ‘Pseudomature’ form of this monoterpene cyclase and reveals the function of the amino‐terminal arginine pair
  publication-title: Biochemistry
– volume: 36
  start-page: 1717
  year: 2014
  end-page: 1725
  article-title: Tomato terpene synthases TPS5 and TPS39 account for a monoterpene linalool production in tomato fruits
  publication-title: Biotechnology Letters
– volume: 10
  start-page: 1166
  year: 2019
  article-title: Terpene synthases as metabolic gatekeepers in the evolution of plant terpenoid chemical diversity
  publication-title: Frontiers in Plant Science
– volume: 13
  start-page: 12774
  year: 2023
  end-page: 12802
  article-title: Decoding catalysis by terpene synthases
  publication-title: ACS Catalysis
– volume: 332
  start-page: 280
  year: 1996
  end-page: 287
  article-title: cDNA cloning, characterization, and functional expression of 4S‐(−)‐limonene synthase from
  publication-title: Archives of Biochemistry and Biophysics
– volume: 135
  start-page: 1976
  year: 2004
  end-page: 1983
  article-title: Herbivore‐induced defense response in a model legume. Two‐spotted spider mites induce emission of (E)‐β‐ocimene and transcript accumulation of (E)‐β‐ocimene synthase in
  publication-title: Plant Physiology
– volume: 153
  start-page: 43
  year: 2015
  end-page: 57
  article-title: Functional characterization of terpene synthases and chemotypic variation in three lavender species of section Stoechas
  publication-title: Physiologia Plantarum
– volume: 101
  start-page: 37
  year: 2020
  end-page: 56
  article-title: Cannabis glandular trichomes alter morphology and metabolite content during flower maturation
  publication-title: The Plant Journal
– volume: 71
  start-page: 1068
  year: 2010
  end-page: 1075
  article-title: Geraniol and linalool synthases from wild species of perilla
  publication-title: Phytochemistry
– volume: 50
  start-page: D439
  year: 2021
  end-page: D444
  article-title: AlphaFold protein structure database: massively expanding the structural coverage of protein‐sequence space with high‐accuracy models
  publication-title: Nucleic Acids Research
– volume: 375
  start-page: 261
  year: 2000
  end-page: 269
  article-title: Terpenoid secondary metabolism in : cDNA cloning, characterization, and functional expression of a myrcene/(E)‐β‐ocimene synthase
  publication-title: Archives of Biochemistry and Biophysics
– volume: 59
  start-page: 1661
  year: 2020
  end-page: 1664
  article-title: Determinants of enantiospecificity in limonene synthases
  publication-title: Biochemistry
– volume: 7
  start-page: 1019
  year: 2016
  article-title: Multi‐substrate terpene synthases: their occurrence and physiological significance
  publication-title: Frontiers in Plant Science
– volume: 10
  start-page: 3799
  year: 2019
  article-title: Orthogonal monoterpenoid biosynthesis in yeast constructed on an isomeric substrate
  publication-title: Nature Communications
– volume: 7
  start-page: 490
  year: 2022
  end-page: 497
  article-title: Identification of (−)‐bornyl diphosphate synthase from and its application for (−)‐borneol biosynthesis in
  publication-title: Synthetic and Systems Biotechnology
– volume: 72
  start-page: 16
  year: 2016
  end-page: 23
  article-title: Expression, crystallization and structure elucidation of γ‐terpinene synthase from
  publication-title: Acta Crystallographica Section F: Structural Biology Communications
– volume: 93
  start-page: 641
  year: 2017
  end-page: 657
  article-title: Isolation and functional characterization of a methyl jasmonate‐responsive 3‐carene synthase from  × 
  publication-title: Plant Molecular Biology
– volume: 2
  start-page: 23
  year: 2015
  end-page: 34
  article-title: Isolation of linalool synthase and pinene synthase genes from yarrow ( L.) medicinal plant
  publication-title: Plant Genetic Researches
– volume: 134
  start-page: 19454
  year: 2012
  end-page: 19462
  article-title: Electrostatically guided dynamics‐the root of fidelity in a promiscuous terpene synthase?
  publication-title: Journal of the American Chemical Society
– volume: 21
  start-page: 79
  year: 2004
  end-page: 82
  article-title: Characterization of γ‐terpinene synthase from ( )
  publication-title: BioFactors
– volume: 16
  start-page: 1778
  year: 2018
  end-page: 1787
  article-title: The rice terpene synthase gene Os TPS 19 functions as an (S)‐limonene synthase in planta, and its overexpression leads to enhanced resistance to the blast fungus
  publication-title: Plant Biotechnology Journal
– volume: 198
  start-page: 512
  year: 1979
  end-page: 522
  article-title: Biosynthesis of monoterpenes: preliminary characterization of bornyl pyrophosphate synthetase from sage ( ) and demonstration that geranyl pyrophosphate is the preferred substrate for cyclization
  publication-title: Archives of Biochemistry and Biophysics
– volume: 56
  start-page: 1706
  year: 2017
  end-page: 1715
  article-title: Functional and structural characterization of a (+)‐limonene synthase from Citrus sinensis
  publication-title: Biochemistry
– volume: 130
  start-page: 477
  year: 2002
  end-page: 486
  article-title: Cloning and functional characterization of a β‐pinene synthase from that shows a circadian pattern of expression
  publication-title: Plant Physiology
– volume: 102
  start-page: 46
  year: 2014
  end-page: 54
  article-title: A domain swapping approach to elucidate differential regiospecific hydroxylation by geraniol and linalool synthases from perilla
  publication-title: Phytochemistry
– volume: 65
  start-page: 107
  year: 2007
  end-page: 124
  article-title: Regulation of simultaneous synthesis of floral scent terpenoids by the 1, 8‐cineole synthase of
  publication-title: Plant Molecular Biology
– volume: 14
  year: 2023
  article-title: Unraveling the evolutionary dynamics of the TPS gene family in land plants
  publication-title: Frontiers in Plant Science
– volume: 63
  start-page: 433
  year: 2018
  end-page: 452
  article-title: Tritrophic interactions mediated by herbivore‐induced plant volatiles: mechanisms, ecological relevance, and application potential
  publication-title: Annual Review of Entomology
– volume: 70
  start-page: 1641
  year: 2021
  end-page: 1650
  article-title: Functional characterization of a new bifunctional terpene synthase LpNES1 from a medicinal plant
  publication-title: Journal of Oleo Science
– volume: 37
  start-page: 232
  year: 2010
  end-page: 243
  article-title: Characterisation of an (S)‐linalool synthase from kiwifruit ( ) that catalyses the first committed step in the production of floral lilac compounds
  publication-title: Functional Plant Biology
– volume: 251
  start-page: 777
  year: 1986
  end-page: 782
  article-title: Evidence for the ionization steps in monoterpene cyclization reactions using 2‐fluorogeranyl and 2‐fluorolinalyl pyrophosphates as substrates
  publication-title: Archives of Biochemistry and Biophysics
– volume: 15
  start-page: 21992
  year: 2014
  end-page: 22010
  article-title: Identification of a plastid‐localized bifunctional nerolidol/linalool synthase in relation to linalool biosynthesis in young grape berries
  publication-title: International Journal of Molecular Sciences
– volume: 411
  start-page: 196
  year: 2003
  end-page: 203
  article-title: Domain swapping of monoterpene synthases: impact on enzymatic activity and product specificity
  publication-title: Archives of Biochemistry and Biophysics
– volume: 237
  start-page: 356
  year: 2017
  end-page: 363
  article-title: Formation and emission of linalool in tea ( ) leaves infested by tea green leafhopper ( ( ) Matsuda)
  publication-title: Food Chemistry
– volume: 15
  year: 2020
  article-title: Functional characterization of a new terpene synthase from
  publication-title: PLoS One
– volume: 65
  start-page: 1223
  year: 2004
  end-page: 1229
  article-title: Identification of Vitis vinifera (−)‐α‐terpineol synthase by in silico screening of full‐length cDNA ESTs and functional characterization of recombinant terpene synthase
  publication-title: Phytochemistry
– volume: 172
  start-page: 2120
  year: 2016
  end-page: 2131
  article-title: The α‐terpineol to 1, 8‐cineole cyclization reaction of tobacco terpene synthases
  publication-title: Plant Physiology
– volume: 31
  start-page: 455
  year: 2010
  end-page: 461
  article-title: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading
  publication-title: Journal of Computational Chemistry
– volume: 202
  year: 2022
  article-title: Identification and functional characterization of a γ‐terpinene synthase in L (black cumin)
  publication-title: Phytochemistry
– volume: 27
  start-page: 29
  year: 2022
  end-page: 38
  article-title: How do plants sense volatiles sent by other plants?
  publication-title: Trends in Plant Science
– volume: 166
  start-page: 49
  year: 2004
  end-page: 58
  article-title: Molecular cloning and functional characterization of four monoterpene synthase genes from Marc
  publication-title: Plant Science
– volume: 66
  start-page: 285
  year: 2005
  end-page: 293
  article-title: A geraniol‐synthase gene from
  publication-title: Phytochemistry
– volume: 92
  start-page: 6691
  year: 1970
  end-page: 6693
  article-title: Energy barriers for rotation about carbon‐carbon bonds in allyl cations
  publication-title: Journal of the American Chemical Society
– volume: 127
  start-page: 74
  year: 2018
  end-page: 87
  article-title: Linalool and linalool nerolidol synthases in roses, several genes for little scent
  publication-title: Plant Physiology and Biochemistry
– volume: 269
  start-page: 3160
  year: 2002
  end-page: 3171
  article-title: Monoterpene biosynthesis in lemon ( ) cDNA isolation and functional analysis of four monoterpene synthases
  publication-title: European Journal of Biochemistry
– volume: 6
  start-page: 1232
  year: 2016
  article-title: Emission and accumulation of monoterpene and the key terpene synthase (TPS) associated with monoterpene biosynthesis in Lour
  publication-title: Frontiers in Plant Science
– volume: 56
  start-page: 1716
  year: 2017
  end-page: 1725
  article-title: Structural characterization of early Michaelis complexes in the reaction catalyzed by (+)‐limonene synthase from using fluorinated substrate analogues
  publication-title: Biochemistry
– volume: 55
  start-page: 491
  year: 2008
  end-page: 503
  article-title: Molecular and genomic basis of volatile‐mediated indirect defense against insects in rice
  publication-title: The Plant Journal
– volume: 2
  start-page: 12
  year: 2014
  end-page: 18
  article-title: A linalool synthase from Taiwanese
  publication-title: Journal of Pharmacognosy and Phytochemistry
– volume: 44
  start-page: 1158
  year: 2018
  end-page: 1167
  article-title: QM/MM free energy simulations of the reaction catalysed by (4S)‐limonene synthase involving linalyl diphosphate (LPP) substrate
  publication-title: Molecular Simulation
– volume: 23
  start-page: 1
  year: 2023
  end-page: 15
  article-title: The hops ( ) genome contains a mid‐sized terpene synthase family that shows wide functional and allelic diversity
  publication-title: BMC Plant Biology
– volume: 34
  start-page: 2195
  year: 1978
  end-page: 2199
  article-title: Transformations of monoterpenoids in aqueous acids: the reactions of linalool. geraniol, nerol and their acetates in aqueous citric acid
  publication-title: Tetrahedron
– volume: 490
  start-page: 963
  year: 2017
  end-page: 968
  article-title: Functional identification of a bornyl diphosphate synthase that contains a duplicated, inhibitory arginine‐rich motif
  publication-title: Biochemical and Biophysical Research Communications
– volume: 146
  start-page: 965
  year: 2008
  end-page: 973
  article-title: Effects of feeding on lima bean leaves: IV. Diurnal and nocturnal damage differentially initiate plant volatile emission
  publication-title: Plant Physiology
– volume: 104
  start-page: 5360
  year: 2007
  end-page: 5365
  article-title: Structure of limonene synthase, a simple model for terpenoid cyclase catalysis
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 24
  start-page: 43
  year: 1968
  end-page: 52
  article-title: Cyclization of nerol and linalool on solvolysis of their phosphate esters
  publication-title: Tetrahedron
– volume: 13
  year: 2022
  article-title: Cloning and characterization of 1, 8‐cineole synthase (SgCINS) gene from the leaves of plant
  publication-title: Frontiers in Plant Science
– volume: 55
  start-page: 1
  year: 2020
  end-page: 10
  article-title: More is better: the diversity of terpene metabolism in plants
  publication-title: Current Opinion in Plant Biology
– volume: 61
  start-page: 1733
  year: 2020
  end-page: 1749
  article-title: Functional characterization of terpene synthases accounting for the volatilized‐terpene heterogeneity in cultivar flowers
  publication-title: Plant and Cell Physiology
– volume: 8
  start-page: 3089
  year: 1967
  end-page: 3094
  article-title: Acid catalyzed hydrolysis of neryl pyrophosphate and geranyl pyrophosphate
  publication-title: Tetrahedron Letters
– volume: 8
  start-page: 3780
  year: 2018
  end-page: 3791
  article-title: Experiment and simulation reveal how mutations in functional plasticity regions guide plant monoterpene synthase product outcome
  publication-title: ACS Catalysis
– volume: 249
  start-page: 9
  year: 2019
  end-page: 20
  article-title: Isoprenyl diphosphate synthases: the chain length determining step in terpene biosynthesis
  publication-title: Planta
– volume: 201
  year: 2023
  article-title: CsTPS21 encodes a jasmonate‐responsive monoterpene synthase producing β‐ocimene in citrus against Asian citrus psyllid
  publication-title: Plant Physiology and Biochemistry
– volume: 4
  start-page: 965
  year: 2011
  end-page: 984
  article-title: Product variability of the ‘cineole cassette’ monoterpene synthases of related species
  publication-title: Molecular Plant
– volume: 73
  start-page: 587
  year: 2010
  end-page: 603
  article-title: Terpene synthases of oregano ( L.) and their roles in the pathway and regulation of terpene biosynthesis
  publication-title: Plant Molecular Biology
– volume: 137
  start-page: 24
  year: 2017
  end-page: 33
  article-title: Bornyl‐diphosphate synthase from : a major monoterpene synthase involved in essential oil quality
  publication-title: Phytochemistry
– volume: 11
  start-page: 2078
  year: 2019
  end-page: 2098
  article-title: A comprehensive survey on the terpene synthase gene family provides new insight into its evolutionary patterns
  publication-title: Genome Biology and Evolution
– volume: 7
  start-page: 190
  year: 2020
  article-title: The carrot monoterpene synthase gene cluster on chromosome 4 harbours genes encoding flavour‐associated sabinene synthases
  publication-title: Horticulture Research
– volume: 23
  year: 2022
  article-title: Molecular determinants of carbocation cyclisation in bacterial monoterpene synthases
  publication-title: Chembiochem
– volume: 27
  start-page: 1979
  year: 2004
  end-page: 1985
  article-title: cDNA isolation and functional expression of myrcene synthase from
  publication-title: Biological and Pharmaceutical Bulletin
– volume: 38
  start-page: 1213
  year: 2016
  end-page: 1219
  article-title: Characterization of a monoterpene synthase from producing α‐pinene as its single product
  publication-title: Biotechnology Letters
– volume: 75
  start-page: 1245
  year: 2011
  end-page: 1248
  article-title: Molecular cloning and characterization of a linalool synthase from lemon myrtle
  publication-title: Bioscience, Biotechnology, and Biochemistry
– volume: 15
  start-page: 1227
  year: 2003
  end-page: 1241
  article-title: (E)‐β‐Ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: function and expression of three terpene synthase genes of a new terpene synthase subfamily
  publication-title: The Plant Cell
– volume: 12
  start-page: 518
  year: 2021
  article-title: Genome‐wide analysis of terpene synthase gene family in and catalytic activity analysis of a single terpene synthase
  publication-title: Genes
– volume: 62
  start-page: 2472
  year: 2023
  end-page: 2479
  article-title: Mutational analysis of (+)‐limonene synthase
  publication-title: Biochemistry
– volume: 41
  start-page: 2094
  year: 2014
  article-title: Correlation between spatiotemporal profiles of volatile terpenoids and relevant terpenoid synthase gene expression in
  publication-title: Acta Horticulturae Sinica
– volume: 273
  start-page: 14891
  year: 1998
  end-page: 14899
  article-title: Monoterpene synthases from common sage ( ) ‐ cDNA isolation, characterization, and functional expression of (+)‐sabinene synthase, 1,8‐cineole synthase, and (+)‐bornyl diphosphate synthase
  publication-title: Journal of Biological Chemistry
– volume: 44
  start-page: 3238
  year: 1979
  end-page: 3244
  article-title: Cyclization and allylic rearrangement in solvolyses of monoterpenoids
  publication-title: Journal of Organic Chemistry
– volume: 111
  start-page: 117
  year: 2023
  end-page: 130
  article-title: Cloning, functional characterization and evaluating potential in metabolic engineering for lavender (+)‐bornyl diphosphate synthase
  publication-title: Plant Molecular Biology
– volume: 63
  start-page: 1951
  year: 2012
  end-page: 1967
  article-title: Identification, functional characterization, and regulation of the enzyme responsible for floral (E)‐nerolidol biosynthesis in kiwifruit ( )
  publication-title: Journal of Experimental Botany
– volume: 229
  start-page: 154
  year: 2014
  end-page: 166
  article-title: Characterization of three linalool synthase genes from Marc. and analysis of linalool‐mediated resistance against subsp. citri and in citrus leaves and fruits
  publication-title: Plant Science
– volume: 216
  start-page: 745
  year: 2003
  end-page: 751
  article-title: Functional identification of AtTPS03 as (E)‐β‐ocimene synthase: a monoterpene synthase catalyzing jasmonate‐and wound‐induced volatile formation in
  publication-title: Planta
– volume: 41
  start-page: 261
  year: 2018
  end-page: 274
  article-title: The terpene synthase gene family in harbors a linalool synthase GhTPS12 implicated in direct defence responses against herbivores
  publication-title: Plant, Cell & Environment
– volume: 17
  start-page: 1
  year: 2017
  end-page: 14
  article-title: Four terpene synthases contribute to the generation of chemotypes in tea tree ( )
  publication-title: BMC Plant Biology
– volume: 31
  start-page: 62
  year: 1977
  article-title: The cyclization of linalool to alpha‐terpineol. Stereochemical course of the reaction
  publication-title: Chimia
– volume: 9
  start-page: 846
  year: 2018
  article-title: An integrative volatile terpenoid profiling and transcriptomics analysis for gene mining and functional characterization of AvBPPS and AvPS involved in the monoterpenoid biosynthesis in
  publication-title: Frontiers in Plant Science
– volume: 264
  start-page: 618
  year: 1988
  end-page: 631
  article-title: Monoterpene biosynthesis: demonstration of a geranyl pyrophosphate: sabinene hydrate cyclase in soluble enzyme preparations from sweet marjoram ( )
  publication-title: Archives of Biochemistry and Biophysics
– volume: 166
  start-page: 1700
  year: 2009
  end-page: 1704
  article-title: Characterization of a sabinene synthase gene from rough lemon ( )
  publication-title: Journal of Plant Physiology
– volume: 63
  start-page: 2739
  year: 2012
  end-page: 2752
  article-title: Volatile emissions of scented Alstroemeria genotypes are dominated by terpenes, and a myrcene synthase gene is highly expressed in scented Alstroemeria flowers
  publication-title: Journal of Experimental Botany
– volume: 465
  start-page: 417
  year: 2007
  end-page: 429
  article-title: Cloning and functional characterization of three terpene synthases from lavender ( )
  publication-title: Archives of Biochemistry and Biophysics
– volume: 218
  start-page: 35
  year: 2017
  end-page: 44
  article-title: Molecular cloning and functional characterization of a monoterpene synthase isolated from the aromatic wild shrub
  publication-title: Journal of Plant Physiology
– volume: 72
  start-page: 897
  year: 2011
  end-page: 908
  article-title: Four terpene synthases produce major compounds of the gypsy moth feeding‐induced volatile blend of
  publication-title: Phytochemistry
– volume: 13
  year: 2022
  article-title: Functional characterization of a terpene synthase responsible for (E)‐β‐ocimene biosynthesis identified in transcriptome after herbivory
  publication-title: Frontiers in Plant Science
– volume: 202
  year: 2023
  article-title: Monoterpene synthases contribute to the volatile production in tana ( ) through indigenous cultivation practices
  publication-title: Plant Physiology and Biochemistry
– volume: 181
  year: 2021
  article-title: Probing of the plasticity of the active site in pinene synthase elucidates its potential evolutionary mechanism
  publication-title: Phytochemistry
– start-page: 264
  year: 1969
  end-page: 268
  article-title: Phosphate esters. Part II. The formation of monoterpene hydrocarbons from geranyl and neryl diphenyl phosphates
  publication-title: Journal of the Chemical Society C: Organic
– volume: 12
  start-page: 7
  year: 2015
  end-page: 8
  article-title: The I‐TASSER suite: protein structure and function prediction
  publication-title: Nature Methods
– volume: 220
  start-page: 692
  year: 2018
  end-page: 702
  article-title: Why do plants produce so many terpenoid compounds?
  publication-title: New Phytologist
– volume: 69
  start-page: 4249
  year: 2018
  end-page: 4265
  article-title: Identification and characterization of terpene synthase genes accounting for volatile terpene emissions in flowers of Freesia × hybrida
  publication-title: Journal of Experimental Botany
– volume: 12
  start-page: 7453
  year: 2022
  end-page: 7469
  article-title: Determinants of selectivity for the formation of monocyclic and bicyclic products in monoterpene synthases
  publication-title: ACS Catalysis
– volume: 22
  start-page: 449
  year: 2023
  end-page: 465
  article-title: Cannabis monoterpene synthases: evaluating structure–function relationships
  publication-title: Phytochemistry Reviews
– volume: 12
  year: 2021
  article-title: Terpene synthase‐b and terpene synthase‐e/f genes produce monoterpenes for floral scent
  publication-title: Frontiers in Plant Science
– volume: 529
  start-page: 112
  year: 2013
  end-page: 121
  article-title: Stereochemical mechanism of two sabinene hydrate synthases forming antipodal monoterpenes in thyme ( )
  publication-title: Archives of Biochemistry and Biophysics
– volume: 238
  start-page: 191
  year: 2013
  end-page: 204
  article-title: Genomic characterization, molecular cloning and expression analysis of two terpene synthases from (Lamiaceae)
  publication-title: Planta
– volume: 183
  year: 2021
  article-title: Functional characterization of an Indian sandalwood ( L.) dual‐localized bifunctional nerolidol/linalool synthase gene involved in stress response
  publication-title: Phytochemistry
– volume: 14
  start-page: 2035
  year: 2019
  end-page: 2043
  article-title: Direct evidence of an enzyme‐generated LPP intermediate in (+)‐limonene synthase using a fluorinated GPP substrate analog
  publication-title: ACS Chemical Biology
– volume: 119
  year: 2022
  article-title: Origin and early evolution of the plant terpene synthase family
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 41
  start-page: 111
  year: 2018
  end-page: 120
  article-title: Expression of lima bean terpene synthases in rice enhances recruitment of a beneficial enemy of a major rice pest
  publication-title: Plant, Cell & Environment
– volume: 71
  start-page: 844
  year: 2010
  end-page: 852
  article-title: Functional and evolutionary relationships between terpene synthases from Australian Myrtaceae
  publication-title: Phytochemistry
– volume: 87
  start-page: 929
  year: 1987
  end-page: 954
  article-title: Biosynthesis and catabolism of monoterpenoids
  publication-title: Chemical Reviews
– volume: 261
  start-page: 7257
  year: 1986
  end-page: 7263
  article-title: Inhibition of monoterpene cyclases by sulfonium analogs of presumptive carbocationic intermediates of the cyclization reaction
  publication-title: Journal of Biological Chemistry
– volume: 14
  year: 2023
  article-title: Biochemical basis for the formation of organ‐specific volatile blends in mint
  publication-title: Frontiers in Plant Science
– volume: 298
  year: 2020
  article-title: Characterization of terpene synthase genes potentially involved in black fig fly ( ) interactions with
  publication-title: Plant Science
– volume: 202
  year: 2022
  article-title: Identification and characterization of three nearly identical linalool/nerolidol synthase from
  publication-title: Phytochemistry
– volume: 180
  start-page: 1877
  year: 2019
  end-page: 1897
  article-title: Gene networks underlying cannabinoid and terpenoid accumulation in
  publication-title: Plant Physiology
– volume: 63
  start-page: 4870
  year: 2015
  end-page: 4878
  article-title: Identification and characterization of terpene synthases potentially involved in the formation of volatile terpenes in carrot ( L.) roots
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 184
  start-page: 130
  year: 2020
  end-page: 147
  article-title: Terpene synthases and terpene variation in
  publication-title: Plant Physiology
– volume: 79
  start-page: 393
  year: 2012
  end-page: 411
  article-title: Cloning, functional characterization and genomic organization of 1, 8‐cineole synthases from
  publication-title: Plant Molecular Biology
– volume: 24
  start-page: 7182
  year: 2023
  article-title: Functional characterization of a (E)‐β‐Ocimene synthase gene contributing to the defense against
  publication-title: International Journal of Molecular Sciences
– volume: 8
  start-page: 4589
  year: 2010
  end-page: 4600
  article-title: Quantum chemical dissection of the classic terpinyl/pinyl/bornyl/camphyl cation conundrum‐the role of pyrophosphate in manipulating pathways to monoterpenes
  publication-title: Organic and Biomolecular Chemistry
– ident: e_1_2_13_50_1
  doi: 10.1016/j.phytochem.2014.02.016
– ident: e_1_2_13_89_1
  doi: 10.3389/fpls.2023.1125065
– ident: e_1_2_13_160_1
  doi: 10.1016/j.phytochem.2020.112573
– ident: e_1_2_13_72_1
  doi: 10.1016/j.phytochem.2006.11.006
– ident: e_1_2_13_57_1
  doi: 10.1016/0003-9861(88)90328-1
– ident: e_1_2_13_43_1
  doi: 10.1105/tpc.011015
– ident: e_1_2_13_71_1
  doi: 10.1104/pp.103.032946
– ident: e_1_2_13_155_1
  doi: 10.1016/0003-9861(88)90447-X
– ident: e_1_2_13_12_1
  doi: 10.1093/pcp/pcaa100
– ident: e_1_2_13_45_1
  doi: 10.1016/j.phytochem.2022.113290
– ident: e_1_2_13_51_1
  doi: 10.1093/jxb/ery224
– ident: e_1_2_13_138_1
  doi: 10.1016/j.plantsci.2003.07.006
– ident: e_1_2_13_107_1
  doi: 10.1248/bpb.24.373
– ident: e_1_2_13_44_1
  doi: 10.1016/S0003-9861(02)00711-7
– ident: e_1_2_13_132_1
  doi: 10.1016/j.phytochem.2014.03.020
– ident: e_1_2_13_80_1
  doi: 10.1016/j.phytochem.2010.03.013
– ident: e_1_2_13_149_1
  doi: 10.1002/anie.199316061
– ident: e_1_2_13_102_1
  doi: 10.1016/j.plaphy.2018.03.009
– ident: e_1_2_13_63_1
  doi: 10.3389/fpls.2021.700958
– ident: e_1_2_13_25_1
  doi: 10.1186/s12870-023-04283-y
– ident: e_1_2_13_56_1
  doi: 10.1039/j39690000264
– ident: e_1_2_13_111_1
  doi: 10.1016/j.foodchem.2017.05.124
– ident: e_1_2_13_81_1
  doi: 10.1021/acscatal.2c01836
– ident: e_1_2_13_122_1
  doi: 10.1111/nph.14178
– ident: e_1_2_13_96_1
  doi: 10.1016/j.tplants.2021.08.009
– ident: e_1_2_13_140_1
  doi: 10.1073/pnas.1501203112
– ident: e_1_2_13_21_1
  doi: 10.1007/s10529-014-1533-2
– ident: e_1_2_13_67_1
  doi: 10.1073/pnas.0700915104
– ident: e_1_2_13_47_1
  doi: 10.1007/s00425-002-0924-0
– ident: e_1_2_13_31_1
  doi: 10.1021/cr00081a004
– ident: e_1_2_13_62_1
  doi: 10.1248/bpb.27.1979
– ident: e_1_2_13_144_1
  doi: 10.1002/jcc.21334
– ident: e_1_2_13_54_1
  doi: 10.1093/jxb/err393
– ident: e_1_2_13_100_1
  doi: 10.1016/j.synbio.2021.12.004
– ident: e_1_2_13_108_1
  doi: 10.1248/bpb.25.661
– ident: e_1_2_13_38_1
  doi: 10.1007/s11103-012-9920-3
– ident: e_1_2_13_9_1
  doi: 10.1093/jxb/err456
– ident: e_1_2_13_27_1
  doi: 10.3390/genes12040518
– ident: e_1_2_13_60_1
  doi: 10.1016/S0031-9422(02)00674-X
– ident: e_1_2_13_168_1
  doi: 10.1080/08927022.2018.1447106
– ident: e_1_2_13_69_1
  doi: 10.1038/s41467-019-11290-x
– ident: e_1_2_13_86_1
  doi: 10.1016/j.abb.2007.06.011
– ident: e_1_2_13_157_1
  doi: 10.1073/pnas.232591099
– ident: e_1_2_13_48_1
  doi: 10.1016/j.plaphy.2023.107969
– ident: e_1_2_13_175_1
  doi: 10.1016/j.phytochem.2020.112610
– ident: e_1_2_13_41_1
  doi: 10.1093/jxb/eraa353
– ident: e_1_2_13_104_1
  doi: 10.1021/ja308295p
– ident: e_1_2_13_139_1
  doi: 10.1016/j.plantsci.2014.09.008
– ident: e_1_2_13_79_1
  doi: 10.3389/fpls.2019.01166
– ident: e_1_2_13_176_1
  doi: 10.1016/j.pbi.2020.01.005
– ident: e_1_2_13_78_1
  doi: 10.1105/tpc.106.047779
– ident: e_1_2_13_166_1
  doi: 10.1111/pbi.12080
– ident: e_1_2_13_40_1
  doi: 10.1016/j.phytochem.2017.01.015
– ident: e_1_2_13_152_1
  doi: 10.1093/nar/gky427
– ident: e_1_2_13_24_1
  doi: 10.1111/pbi.12914
– ident: e_1_2_13_53_1
  doi: 10.1093/treephys/tpaa161
– ident: e_1_2_13_119_1
  doi: 10.1016/j.tifs.2022.08.006
– ident: e_1_2_13_4_1
  doi: 10.1007/s11103-017-0588-6
– ident: e_1_2_13_90_1
  doi: 10.1002/cbic.202100688
– ident: e_1_2_13_148_1
  doi: 10.1093/nar/gkab1061
– ident: e_1_2_13_159_1
  doi: 10.1074/jbc.273.24.14891
– ident: e_1_2_13_170_1
  doi: 10.1111/j.1365-313X.2008.03524.x
– ident: e_1_2_13_125_1
  doi: 10.1021/ja00369a046
– ident: e_1_2_13_167_1
  doi: 10.1016/j.jsb.2011.09.006
– ident: e_1_2_13_8_1
  doi: 10.1104/pp.104.042929
– ident: e_1_2_13_73_1
  doi: 10.29252/pgr.2.1.23
– ident: e_1_2_13_19_1
  doi: 10.1104/pp.20.00593
– ident: e_1_2_13_164_1
  doi: 10.1038/nmeth.3213
– ident: e_1_2_13_95_1
  doi: 10.1111/tpj.14516
– ident: e_1_2_13_16_1
  doi: 10.1016/j.molp.2018.06.002
– ident: e_1_2_13_98_1
  doi: 10.1046/j.1432-1033.2002.02985.x
– ident: e_1_2_13_126_1
  doi: 10.1016/j.copbio.2020.06.002
– ident: e_1_2_13_76_1
  doi: 10.1093/gbe/evz142
– ident: e_1_2_13_161_1
  doi: 10.1016/j.abb.2017.12.007
– ident: e_1_2_13_127_1
  doi: 10.1038/s41438-020-00412-y
– ident: e_1_2_13_37_1
  doi: 10.1016/j.phytochem.2011.03.014
– ident: e_1_2_13_130_1
  doi: 10.3389/fpls.2016.00638
– ident: e_1_2_13_172_1
  doi: 10.1007/s00425-014-2127-x
– ident: e_1_2_13_134_1
  doi: 10.1021/acs.biochem.3c00217
– ident: e_1_2_13_112_1
  doi: 10.1021/acs.biochem.7b00143
– volume: 31
  start-page: 62
  year: 1977
  ident: e_1_2_13_52_1
  article-title: The cyclization of linalool to alpha‐terpineol. Stereochemical course of the reaction
  publication-title: Chimia
– ident: e_1_2_13_162_1
  doi: 10.1021/acs.jafc.5b00546
– ident: e_1_2_13_46_1
  doi: 10.1093/mp/ssr021
– ident: e_1_2_13_92_1
  doi: 10.1111/pce.12959
– ident: e_1_2_13_121_1
  doi: 10.1016/S0003-9861(03)00347-3
– ident: e_1_2_13_42_1
  doi: 10.1105/tpc.8.7.1137
– ident: e_1_2_13_36_1
  doi: 10.1016/S0021-9258(17)38384-9
– ident: e_1_2_13_59_1
  doi: 10.1186/1758-2946-4-17
– ident: e_1_2_13_147_1
  doi: 10.1007/s11103-007-9149-8
– ident: e_1_2_13_49_1
  doi: 10.1016/j.jplph.2017.07.013
– volume: 2
  start-page: 12
  year: 2014
  ident: e_1_2_13_151_1
  article-title: A linalool synthase from Taiwanese Perilla citriodora
  publication-title: Journal of Pharmacognosy and Phytochemistry
– ident: e_1_2_13_94_1
  doi: 10.1007/s00425-013-1884-2
– ident: e_1_2_13_114_1
  doi: 10.1111/j.1365-313X.2008.03496.x
– ident: e_1_2_13_18_1
  doi: 10.1371/journal.pone.0173911
– ident: e_1_2_13_26_1
  doi: 10.1071/FP09179
– ident: e_1_2_13_142_1
  doi: 10.1271/bbb.100922
– ident: e_1_2_13_3_1
  doi: 10.1007/s11103-022-01315-3
– ident: e_1_2_13_10_1
  doi: 10.1038/s41598-021-96524-z
– ident: e_1_2_13_74_1
  doi: 10.1006/abbi.1999.1466
– volume: 41
  start-page: 2094
  year: 2014
  ident: e_1_2_13_77_1
  article-title: Correlation between spatiotemporal profiles of volatile terpenoids and relevant terpenoid synthase gene expression in Camellia sinensis
  publication-title: Acta Horticulturae Sinica
– ident: e_1_2_13_23_1
  doi: 10.1105/tpc.007989
– ident: e_1_2_13_39_1
  doi: 10.1021/ja00725a079
– ident: e_1_2_13_153_1
  doi: 10.1021/ja910134x
– ident: e_1_2_13_33_1
  doi: 10.1016/0003-9861(79)90526-5
– ident: e_1_2_13_93_1
  doi: 10.1055/s-0031-1282602
– ident: e_1_2_13_22_1
  doi: 10.1007/s11295-011-0377-3
– ident: e_1_2_13_97_1
  doi: 10.1104/pp.006544
– ident: e_1_2_13_177_1
  doi: 10.3390/ijms151221992
– ident: e_1_2_13_174_1
  doi: 10.3389/fpls.2015.01232
– ident: e_1_2_13_7_1
  doi: 10.1104/pp.107.111088
– ident: e_1_2_13_65_1
  doi: 10.1111/pce.13088
– ident: e_1_2_13_129_1
  doi: 10.1007/s11103-007-9202-7
– ident: e_1_2_13_154_1
  doi: 10.1016/S0021-9258(18)47551-5
– ident: e_1_2_13_70_1
  doi: 10.1104/pp.104.051318
– ident: e_1_2_13_118_1
  doi: 10.1186/s12870-017-1107-2
– ident: e_1_2_13_91_1
  doi: 10.1021/acscatal.8b00692
– ident: e_1_2_13_143_1
  doi: 10.1002/biof.552210115
– ident: e_1_2_13_34_1
  doi: 10.1016/0003-9861(89)90134-3
– ident: e_1_2_13_146_1
  doi: 10.1016/S0040-4039(00)90921-3
– ident: e_1_2_13_11_1
  doi: 10.1371/journal.pone.0235416
– ident: e_1_2_13_106_1
  doi: 10.1007/s00425-012-1704-0
– ident: e_1_2_13_105_1
  doi: 10.1016/j.phytochem.2004.03.018
– ident: e_1_2_13_29_1
  doi: 10.1007/s11103-010-9636-1
– ident: e_1_2_13_115_1
  doi: 10.1007/s00425-018-3052-1
– ident: e_1_2_13_99_1
  doi: 10.3389/fbioe.2021.631863
– ident: e_1_2_13_131_1
  doi: 10.1107/S2053230X15023043
– ident: e_1_2_13_58_1
  doi: 10.3390/ijms24087182
– ident: e_1_2_13_55_1
  doi: 10.1177/1934578X0700200301
– ident: e_1_2_13_113_1
  doi: 10.1021/acschembio.9b00514
– ident: e_1_2_13_145_1
  doi: 10.1146/annurev-ento-020117-043507
– ident: e_1_2_13_64_1
  doi: 10.3389/fpls.2022.1077229
– ident: e_1_2_13_110_1
  doi: 10.1038/srep44126
– ident: e_1_2_13_120_1
  doi: 10.3389/fpls.2016.01019
– ident: e_1_2_13_83_1
  doi: 10.1016/j.abb.2012.12.003
– ident: e_1_2_13_109_1
  doi: 10.1016/j.phytochem.2010.04.006
– ident: e_1_2_13_116_1
  doi: 10.1016/j.plantsci.2020.110549
– ident: e_1_2_13_15_1
  doi: 10.1016/j.plaphy.2023.107887
– ident: e_1_2_13_136_1
  doi: 10.5650/jos.ess21172
– ident: e_1_2_13_20_1
  doi: 10.1021/jo01332a030
– ident: e_1_2_13_30_1
  doi: 10.1016/0003-9861(86)90390-5
– ident: e_1_2_13_75_1
  doi: 10.1073/pnas.2100361119
– ident: e_1_2_13_85_1
  doi: 10.1006/abbi.1993.1156
– ident: e_1_2_13_5_1
  doi: 10.1105/tpc.104.023895
– ident: e_1_2_13_150_1
  doi: 10.3389/fpls.2018.00846
– ident: e_1_2_13_35_1
  doi: 10.1016/S0021-9258(18)67037-1
– ident: e_1_2_13_133_1
  doi: 10.1016/S0021-9258(17)38661-1
– ident: e_1_2_13_32_1
  doi: 10.1016/S0021-9258(18)88922-0
– ident: e_1_2_13_2_1
  doi: 10.1007/s00425-018-3006-7
– ident: e_1_2_13_14_1
  doi: 10.1111/ppl.12241
– ident: e_1_2_13_135_1
  doi: 10.1073/pnas.0904113106
– ident: e_1_2_13_84_1
  doi: 10.1021/acs.biochem.7b00144
– ident: e_1_2_13_101_1
  doi: 10.1007/s10529-016-2098-z
– ident: e_1_2_13_13_1
  doi: 10.1016/0040-4020(78)89026-7
– ident: e_1_2_13_87_1
  doi: 10.1093/jxb/ery436
– ident: e_1_2_13_82_1
  doi: 10.1016/j.jplph.2009.04.003
– ident: e_1_2_13_158_1
  doi: 10.1021/bi980854k
– ident: e_1_2_13_169_1
  doi: 10.1016/j.jplph.2015.12.008
– ident: e_1_2_13_173_1
  doi: 10.1104/pp.18.01506
– ident: e_1_2_13_156_1
  doi: 10.1021/acscatal.3c03047
– ident: e_1_2_13_28_1
  doi: 10.1016/S0021-9258(19)49419-2
– ident: e_1_2_13_137_1
  doi: 10.1016/j.plantsci.2004.11.012
– ident: e_1_2_13_6_1
  doi: 10.3389/fpls.2022.869432
– ident: e_1_2_13_66_1
  doi: 10.1016/j.bbrc.2017.06.147
– ident: e_1_2_13_68_1
  doi: 10.1016/j.phytochem.2022.113318
– ident: e_1_2_13_171_1
  doi: 10.1006/abbi.1996.0343
– ident: e_1_2_13_17_1
  doi: 10.1006/abbi.1999.1669
– ident: e_1_2_13_165_1
  doi: 10.1016/j.phytochem.2004.12.004
– ident: e_1_2_13_123_1
  doi: 10.1104/pp.16.01378
– ident: e_1_2_13_124_1
  doi: 10.1021/ja00369a045
– ident: e_1_2_13_163_1
  doi: 10.3389/fpls.2023.1273648
– ident: e_1_2_13_117_1
  doi: 10.1080/0972060X.2021.1977721
– ident: e_1_2_13_88_1
  doi: 10.1007/s11101-023-09861-4
– ident: e_1_2_13_128_1
  doi: 10.1016/0040-4020(68)89006-4
– ident: e_1_2_13_141_1
  doi: 10.1021/acs.biochem.0c00206
– ident: e_1_2_13_103_1
  doi: 10.1021/acscatal.7b01328
– ident: e_1_2_13_61_1
  doi: 10.1039/c0ob00167h
SSID ssj0017364
Score 2.4621193
SecondaryResourceType review_article
Snippet SUMMARY Monoterpene synthases (MTSs) catalyze the first committed step in the biosynthesis of monoterpenoids, a class of specialized metabolites with...
Monoterpene synthases (MTSs) catalyze the first committed step in the biosynthesis of monoterpenoids, a class of specialized metabolites with particularly high...
SUMMARYMonoterpene synthases (MTSs) catalyze the first committed step in the biosynthesis of monoterpenoids, a class of specialized metabolites with...
SourceID osti
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 28
SubjectTerms Angiospermae
Angiosperms
BASIC BIOLOGICAL SCIENCES
Biosynthesis
carbocation
chemistry
class
crystal structure
enzymatic control
Food industry
Food plants
hydrides
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Intermediates
Intramolecular Lyases
ligands
Magnoliopsida - enzymology
Magnoliopsida - genetics
Magnoliopsida - metabolism
mechanistic enzymology
Metabolites
molecular dynamics
monoterpene synthase
Monoterpenes - metabolism
Monoterpenoids
Pharmaceutical industry
Plant ecology
Plant Proteins - genetics
Plant Proteins - metabolism
quantum mechanics/molecular mechanics
Quenching
Substrates
Title Chemical diversity in angiosperms − monoterpene synthases control complex reactions that provide the precursors for ecologically and commercially important monoterpenoids
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftpj.16743
https://www.ncbi.nlm.nih.gov/pubmed/38565299
https://www.proquest.com/docview/3073665483
https://www.proquest.com/docview/3031662826
https://www.proquest.com/docview/3153662421
https://www.osti.gov/biblio/2332906
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtRAEC2FEQcu7MuQEDWIAxdH6S5vI06AiKJIoAglUg5IlnsxGZGxo7RHyuQLOPMdfBVfQlV7UYICQtzscXnabVdVv7JfvwZ4qVym6EgSmW23HcUO00jbREXOpQTlUGobpJQ-fEx3D-O9o-RoDV4Pc2E6fYjxhRtHRsjXHOCl9peCvD2lMGcKPeVf5moxIPo0SkfJDDvpKELoEY2aqlcVYhbPeOaVsWjSUExdhzOvwtYw7uzcgc_DFXd0k69by1ZvmYvfxBz_s0t34XaPR8WbzoHuwZqr78PNtw1hxtUD-DHoCQg78DfEvBZl_WUeJMYXXvz89l2QKzfMXaS8Kfyqbo9paPSiZ8GLwFp354LgaZhE4QUZtKKfA0g7jrb5tb9vzrwgEC2cGVLyyYoas_wXC14aKvwwX4SaoW4vtdvMrX8IhzvvD97tRv36DpGhohAjO8ukzSuZ5KnDKsYSK8OCh5T34nKmpbGUHIzRuba50a5KFNU2DnVllEQ7Q3wEk7qp3RMQmJGXVTmVO6aKsywp81hSI1mVzKxEp6fwanjShenFz3kNjpNiKILo3hfh3k_hxWh62il-XGe0zu5SEExhrV3DpCTTFgqR5fOnsDF4UdGnBF9wMuWlnnM6-fl4mIKZv9CUtWuWbIMyTakKTv9iQ2NUyrN65BQedx46XifmhM8JYFB3g5_9uQPFwf5e2Hj676brcEsRpOvIyhswac-W7hlBslZvwg0V72-GCPwF7ys40w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VgAQX3o_QAgviwMVV1-NXJC6AqEJpK4RSqRe08j4MEY1d1Y5E-AWc-R38Kn4JM-uHWlQQ4ubE46zXmcc369lvAJ6GLg3pTByYLbcVRA6TQNs4DJxLCMqh1NZTKe3tJ9ODaOcwPlyD5_1emJYfYlhwY8vw_poNnBekT1l5c0x2zjX0F-Aid_T2CdX7gTxKptiSRxFGDyhuhh2vENfxDJeeiUajiqzqPKR5Frj6yLN9DT7099wWnHzeXDZ603z9jc7xfyd1Ha52kFS8aHXoBqy58iZcelkRbFzdgh89pYCwfQmHmJciLz_OPcv4ohY_v30XpM0Vly-S6xT1qmw-UXSsRVcIL3zhuvsiCKH6fRS1IIFGdNsA6YOjY175r6uTWhCOFs70XvloRYNZ_okFd4fyX8wXPm0om1PjVnNb34aD7dezV9Oga_EQGMoLMbCTVNqskHGWOCwizLEwzHlIri_KJ1oaS_7BGJ1pmxntijik9MahLkwo0U4Q78CorEp3DwSmpGhFRhmPKaI0jfMskjRIWsQTK9HpMTzr_2plOv5zbsNxpPo8iJ698s9-DE8G0eOW9OM8oXXWF0VIhel2DdclmUaFiMygP4aNXo1U5xVqxf6Uuz1ndPHj4TTZM7-kyUtXLVkGZZJQIpz8RYbCVMIbe-QY7rYqOtwnZgTRCWPQdL2i_XkCavZuxx_c_3fRR3B5OtvbVbtv9t-uw5WQEF5bu7wBo-Zk6R4QQmv0Q2-IvwDjTjwX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtRAEC2FASEuhC0wJECDOHBxNO320qOcgDAKAaIIJVIOSJZ7gxEZexR7JIYv4Mx35KvyJVS1FyUoIMTNS9nttmt51a5-DfA8tGmIZ-JAj-woiKxIAmXiMLA2QSgnuDKeSunDXrJzGO0exUcrsNXNhWn4IfoBN7IM76_JwOfGnTPyeo5mTiX0V-BqlIwkqfT2x547iqei4Y5CiB5g2AxbWiEq4-kvvRCMBiUa1WVA8yJu9YFnsgqfukdu6k2-bi5qtam__8bm-J99ugU3W0DKXjYadBtWbHEHrr0qETQu78JpRyjATFfAwaYFy4vPU88xPqvY2Y-fDHW5pOJFdJysWhb1F4yNFWvL4JkvW7ffGOJTP4uiYihQs3YSIO5Y3KZx_6o8qRiiaGZ155OPl9iYoVvMaG0of2A680lDUZ9rt5ya6h4cTt4cvN4J2gUeAo1ZoQjMOOVGOh7LxAoXiVw4TYyH6PiifKy4NugdtFZSGamVdXGIyY0VyumQCzMWYg0GRVnYB8BEimrmJOY72kVpGucy4thI6uKx4cKqIbzovnSmW_ZzWoTjOOuyIHz3mX_3Q3jWi84byo_LhNZJXTLEKUS2q6kqSddZKATx5w9ho9OirPUJVUbelNZ6lnjx0_40WjP9oskLWy5IRvAkwTQ4-YsMBqmEpvXwIdxvNLR_TiERoCPCwO56PftzB7KD_V2_8fDfRZ_A9f3tSfb-7d67dbgRIrxrCpc3YFCfLOwjhGe1euzN8BczPjrP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemical+diversity+in+angiosperms+%E2%88%92+monoterpene+synthases+control+complex+reactions+that+provide+the+precursors+for+ecologically+and+commercially+important+monoterpenoids&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Srividya%2C+Narayanan&rft.au=Kim%2C+Hoshin&rft.au=Simone%2C+Raugei&rft.au=Lange%2C+Bernd+Markus&rft.date=2024-07-01&rft.issn=0960-7412&rft.eissn=1365-313X&rft.volume=119&rft.issue=1&rft.spage=28&rft.epage=55&rft_id=info:doi/10.1111%2Ftpj.16743&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_tpj_16743
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon