Prediction of type 1 diabetes using a genetic risk model in the Diabetes Autoimmunity Study in the Young

Background Genetic predisposition for type 1 diabetes (T1D) is largely determined by human leukocyte antigen (HLA) genes; however, over 50 other genetic regions confer susceptibility. We evaluated a previously reported 10‐factor weighted model derived from the Type 1 Diabetes Genetics Consortium to...

Full description

Saved in:
Bibliographic Details
Published inPediatric diabetes Vol. 19; no. 2; pp. 277 - 283
Main Authors Frohnert, Brigitte I, Laimighofer, Michael, Krumsiek, Jan, Theis, Fabian J, Winkler, Christiane, Norris, Jill M, Ziegler, Anette‐Gabriele, Rewers, Marian J, Steck, Andrea K
Format Journal Article
LanguageEnglish
Published Former Munksgaard John Wiley & Sons A/S 01.03.2018
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1399-543X
1399-5448
1399-5448
DOI10.1111/pedi.12543

Cover

Loading…
Abstract Background Genetic predisposition for type 1 diabetes (T1D) is largely determined by human leukocyte antigen (HLA) genes; however, over 50 other genetic regions confer susceptibility. We evaluated a previously reported 10‐factor weighted model derived from the Type 1 Diabetes Genetics Consortium to predict the development of diabetes in the Diabetes Autoimmunity Study in the Young (DAISY) prospective cohort. Performance of the model, derived from individuals with first‐degree relatives (FDR) with T1D, was evaluated in DAISY general population (GP) participants as well as FDR subjects. Methods The 10‐factor weighted risk model (HLA, PTPN22 , INS , IL2RA , ERBB3 , ORMDL3 , BACH2 , IL27 , GLIS3 , RNLS ), 3‐factor model (HLA, PTPN22, INS ), and HLA alone were compared for the prediction of diabetes in children with complete SNP data (n = 1941). Results Stratification by risk score significantly predicted progression to diabetes by Kaplan‐Meier analysis (GP: P = .00006; FDR: P = .0022). The 10‐factor model performed better in discriminating diabetes outcome than HLA alone (GP, P = .03; FDR, P = .01). In GP, the restricted 3‐factor model was superior to HLA (P = .03), but not different from the 10‐factor model (P = .22). In contrast, for FDR the 3‐factor model did not show improvement over HLA (P = .12) and performed worse than the 10‐factor model (P = .02) Conclusions We have shown a 10‐factor risk model predicts development of diabetes in both GP and FDR children. While this model was superior to a minimal model in FDR, it did not confer improvement in GP. Differences in model performance in FDR vs GP children may lead to important insights into screening strategies specific to these groups.
AbstractList Background Genetic predisposition for type 1 diabetes (T1D) is largely determined by human leukocyte antigen (HLA) genes; however, over 50 other genetic regions confer susceptibility. We evaluated a previously reported 10‐factor weighted model derived from the Type 1 Diabetes Genetics Consortium to predict the development of diabetes in the Diabetes Autoimmunity Study in the Young (DAISY) prospective cohort. Performance of the model, derived from individuals with first‐degree relatives (FDR) with T1D, was evaluated in DAISY general population (GP) participants as well as FDR subjects. Methods The 10‐factor weighted risk model (HLA, PTPN22 , INS , IL2RA , ERBB3 , ORMDL3 , BACH2 , IL27 , GLIS3 , RNLS ), 3‐factor model (HLA, PTPN22, INS ), and HLA alone were compared for the prediction of diabetes in children with complete SNP data (n = 1941). Results Stratification by risk score significantly predicted progression to diabetes by Kaplan‐Meier analysis (GP: P = .00006; FDR: P = .0022). The 10‐factor model performed better in discriminating diabetes outcome than HLA alone (GP, P = .03; FDR, P = .01). In GP, the restricted 3‐factor model was superior to HLA (P = .03), but not different from the 10‐factor model (P = .22). In contrast, for FDR the 3‐factor model did not show improvement over HLA (P = .12) and performed worse than the 10‐factor model (P = .02) Conclusions We have shown a 10‐factor risk model predicts development of diabetes in both GP and FDR children. While this model was superior to a minimal model in FDR, it did not confer improvement in GP. Differences in model performance in FDR vs GP children may lead to important insights into screening strategies specific to these groups.
Background Genetic predisposition for type 1 diabetes (T1D) is largely determined by human leukocyte antigen (HLA) genes; however, over 50 other genetic regions confer susceptibility. We evaluated a previously reported 10-factor weighted model derived from the Type 1 Diabetes Genetics Consortium to predict the development of diabetes in the Diabetes Autoimmunity Study in the Young (DAISY) prospective cohort. Performance of the model, derived from individuals with first-degree relatives (FDR) with T1D, was evaluated in DAISY general population (GP) participants as well as FDR subjects. Methods The 10-factor weighted risk model (HLA, PTPN22, INS, IL2RA, ERBB3, ORMDL3, BACH2, IL27, GLIS3, RNLS), 3-factor model (HLA, PTPN22, INS), and HLA alone were compared for the prediction of diabetes in children with complete SNP data (n = 1941). Results Stratification by risk score significantly predicted progression to diabetes by Kaplan-Meier analysis (GP: P = .00006; FDR: P = .0022). The 10-factor model performed better in discriminating diabetes outcome than HLA alone (GP, P = .03; FDR, P = .01). In GP, the restricted 3-factor model was superior to HLA (P = .03), but not different from the 10-factor model (P = .22). In contrast, for FDR the 3-factor model did not show improvement over HLA (P = .12) and performed worse than the 10-factor model (P = .02) Conclusions We have shown a 10-factor risk model predicts development of diabetes in both GP and FDR children. While this model was superior to a minimal model in FDR, it did not confer improvement in GP. Differences in model performance in FDR vs GP children may lead to important insights into screening strategies specific to these groups.
Genetic predisposition for type 1 diabetes (T1D) is largely determined by human leukocyte antigen (HLA) genes; however, over 50 other genetic regions confer susceptibility. We evaluated a previously reported 10-factor weighted model derived from the Type 1 Diabetes Genetics Consortium to predict the development of diabetes in the Diabetes Autoimmunity Study in the Young (DAISY) prospective cohort. Performance of the model, derived from individuals with first-degree relatives (FDR) with T1D, was evaluated in DAISY general population (GP) participants as well as FDR subjects. The 10-factor weighted risk model (HLA, PTPN22 , INS , IL2RA , ERBB3 , ORMDL3 , BACH2 , IL27 , GLIS3 , RNLS ), 3-factor model (HLA, PTPN22, INS ), and HLA alone were compared for the prediction of diabetes in children with complete SNP data (n = 1941). Stratification by risk score significantly predicted progression to diabetes by Kaplan-Meier analysis (GP: P = .00006; FDR: P = .0022). The 10-factor model performed better in discriminating diabetes outcome than HLA alone (GP, P = .03; FDR, P = .01). In GP, the restricted 3-factor model was superior to HLA (P = .03), but not different from the 10-factor model (P = .22). In contrast, for FDR the 3-factor model did not show improvement over HLA (P = .12) and performed worse than the 10-factor model (P = .02) CONCLUSIONS: We have shown a 10-factor risk model predicts development of diabetes in both GP and FDR children. While this model was superior to a minimal model in FDR, it did not confer improvement in GP. Differences in model performance in FDR vs GP children may lead to important insights into screening strategies specific to these groups.
Genetic predisposition for type 1 diabetes (T1D) is largely determined by human leukocyte antigen (HLA) genes; however, over 50 other genetic regions confer susceptibility. We evaluated a previously reported 10-factor weighted model derived from the Type 1 Diabetes Genetics Consortium to predict the development of diabetes in the Diabetes Autoimmunity Study in the Young (DAISY) prospective cohort. Performance of the model, derived from individuals with first-degree relatives (FDR) with T1D, was evaluated in DAISY general population (GP) participants as well as FDR subjects.BACKGROUNDGenetic predisposition for type 1 diabetes (T1D) is largely determined by human leukocyte antigen (HLA) genes; however, over 50 other genetic regions confer susceptibility. We evaluated a previously reported 10-factor weighted model derived from the Type 1 Diabetes Genetics Consortium to predict the development of diabetes in the Diabetes Autoimmunity Study in the Young (DAISY) prospective cohort. Performance of the model, derived from individuals with first-degree relatives (FDR) with T1D, was evaluated in DAISY general population (GP) participants as well as FDR subjects.The 10-factor weighted risk model (HLA, PTPN22 , INS , IL2RA , ERBB3 , ORMDL3 , BACH2 , IL27 , GLIS3 , RNLS ), 3-factor model (HLA, PTPN22, INS ), and HLA alone were compared for the prediction of diabetes in children with complete SNP data (n = 1941).METHODSThe 10-factor weighted risk model (HLA, PTPN22 , INS , IL2RA , ERBB3 , ORMDL3 , BACH2 , IL27 , GLIS3 , RNLS ), 3-factor model (HLA, PTPN22, INS ), and HLA alone were compared for the prediction of diabetes in children with complete SNP data (n = 1941).Stratification by risk score significantly predicted progression to diabetes by Kaplan-Meier analysis (GP: P = .00006; FDR: P = .0022). The 10-factor model performed better in discriminating diabetes outcome than HLA alone (GP, P = .03; FDR, P = .01). In GP, the restricted 3-factor model was superior to HLA (P = .03), but not different from the 10-factor model (P = .22). In contrast, for FDR the 3-factor model did not show improvement over HLA (P = .12) and performed worse than the 10-factor model (P = .02) CONCLUSIONS: We have shown a 10-factor risk model predicts development of diabetes in both GP and FDR children. While this model was superior to a minimal model in FDR, it did not confer improvement in GP. Differences in model performance in FDR vs GP children may lead to important insights into screening strategies specific to these groups.RESULTSStratification by risk score significantly predicted progression to diabetes by Kaplan-Meier analysis (GP: P = .00006; FDR: P = .0022). The 10-factor model performed better in discriminating diabetes outcome than HLA alone (GP, P = .03; FDR, P = .01). In GP, the restricted 3-factor model was superior to HLA (P = .03), but not different from the 10-factor model (P = .22). In contrast, for FDR the 3-factor model did not show improvement over HLA (P = .12) and performed worse than the 10-factor model (P = .02) CONCLUSIONS: We have shown a 10-factor risk model predicts development of diabetes in both GP and FDR children. While this model was superior to a minimal model in FDR, it did not confer improvement in GP. Differences in model performance in FDR vs GP children may lead to important insights into screening strategies specific to these groups.
Author Krumsiek, Jan
Norris, Jill M
Rewers, Marian J
Laimighofer, Michael
Theis, Fabian J
Ziegler, Anette‐Gabriele
Frohnert, Brigitte I
Winkler, Christiane
Steck, Andrea K
AuthorAffiliation 2 Institute of Computational Biology, Helmholtz Zentrum München, München-Neuherberg 85764 Germany
4 Institute of Diabetes Research, Helmholtz Zentrum München and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Neuherberg 85764 Germany
5 Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, CO, 80045 USA
3 German Center for Diabetes Research (DZD), München-Neuherberg 85764 Germany
1 Barbara Davis Center for Childhood Diabetes, School of Medicine, University of Colorado, Aurora, CO 80045 USA
AuthorAffiliation_xml – name: 2 Institute of Computational Biology, Helmholtz Zentrum München, München-Neuherberg 85764 Germany
– name: 3 German Center for Diabetes Research (DZD), München-Neuherberg 85764 Germany
– name: 4 Institute of Diabetes Research, Helmholtz Zentrum München and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Neuherberg 85764 Germany
– name: 1 Barbara Davis Center for Childhood Diabetes, School of Medicine, University of Colorado, Aurora, CO 80045 USA
– name: 5 Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, CO, 80045 USA
Author_xml – sequence: 1
  givenname: Brigitte I
  orcidid: 0000-0002-6636-4048
  surname: Frohnert
  fullname: Frohnert, Brigitte I
  email: brigitte.frohnert@ucdenver.edu
  organization: University of Colorado
– sequence: 2
  givenname: Michael
  surname: Laimighofer
  fullname: Laimighofer, Michael
  organization: Helmholtz Zentrum München
– sequence: 3
  givenname: Jan
  surname: Krumsiek
  fullname: Krumsiek, Jan
  organization: German Center for Diabetes Research (DZD)
– sequence: 4
  givenname: Fabian J
  surname: Theis
  fullname: Theis, Fabian J
  organization: Helmholtz Zentrum München
– sequence: 5
  givenname: Christiane
  surname: Winkler
  fullname: Winkler, Christiane
  organization: Universität München
– sequence: 6
  givenname: Jill M
  surname: Norris
  fullname: Norris, Jill M
  organization: University of Colorado
– sequence: 7
  givenname: Anette‐Gabriele
  surname: Ziegler
  fullname: Ziegler, Anette‐Gabriele
  organization: Universität München
– sequence: 8
  givenname: Marian J
  surname: Rewers
  fullname: Rewers, Marian J
  organization: University of Colorado
– sequence: 9
  givenname: Andrea K
  surname: Steck
  fullname: Steck, Andrea K
  organization: University of Colorado
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28695611$$D View this record in MEDLINE/PubMed
BookMark eNp9kV1rFDEYhYNU7Ife-AMk4I0IWyeTyUxyI5R-aKFgQQW9Cpnknd3UmWSbD2X-fbNut2gRc5PA-5yTk5xDtOe8A4RekuqYlPVuDcYek5o19Ak6IFSIBWsavvdwpt_20WGMN1VFOkGbZ2i_5q1gLSEHaHUdilon6x32A07zGjDBxqoeEkSco3VLrPASHCSrcbDxB568gRFbh9MK8NkOPcnJ22nKzqYZf07ZzDvku89u-Rw9HdQY4cX9foS-Xpx_Of24uPr04fL05GqhS2a66AfWmV5rYXTNxWA4kL5qNSMd5Y3qRKc7EKyMeVcbQ1hPek7anlVNzTllih6h91vfde4nMBpcCmqU62AnFWbplZV_T5xdyaX_KVnXNrwWxeDNvUHwtxlikpONGsZROfA5SiLKLzJRbivo60fojc_BlefJunx22whCSaFe_ZnoIcquhAJUW0AHH2OAQWqb1KaSEtCOklRy07Pc9Cx_91wkbx9Jdq7_hMkW_mVHmP9Dyuvzs8ut5g5SMLkI
CitedBy_id crossref_primary_10_1186_s13073_024_01305_8
crossref_primary_10_1016_j_autrev_2024_103611
crossref_primary_10_1016_j_mgene_2021_100898
crossref_primary_10_1017_S1751731119002374
crossref_primary_10_1155_2020_1025857
crossref_primary_10_1177_0962280218812211
crossref_primary_10_3390_biomedicines12020399
crossref_primary_10_2337_db18_1263
crossref_primary_10_1016_j_ebiom_2018_08_004
crossref_primary_10_1210_clinem_dgae349
crossref_primary_10_1111_pedi_12995
crossref_primary_10_1016_j_mvr_2022_104378
crossref_primary_10_1016_j_bbrc_2019_06_122
crossref_primary_10_1111_pedi_13454
crossref_primary_10_1007_s00125_020_05344_9
crossref_primary_10_1038_s41598_020_63322_y
crossref_primary_10_1016_j_pharmthera_2020_107632
crossref_primary_10_2337_dc19_0102
Cites_doi 10.1196/annals.1447.029
10.1007/s00125-014-3362-1
10.1097/MED.0000000000000173
10.1038/ng.249
10.1007/s00125-012-2472-x
10.1111/pedi.12327
10.1038/gene.2012.36
10.1111/pedi.12313
10.1210/jc.2010-0293
10.1007/s00125-013-2896-y
10.1007/s001250050514
10.1002/sim.2929
10.1016/j.jaut.2015.05.005
10.1111/pedi.12299
10.1073/pnas.0705894104
10.2337/diabetes.48.3.460
10.1111/pedi.12092
10.1111/pedi.12046
10.1006/jaut.1996.0055
10.1038/ng.381
10.2337/diabetes.54.10.2995
10.1093/nar/gkq912
10.2337/db08-1551
10.2337/db11-0386
ContentType Journal Article
Copyright 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
Copyright_xml – notice: 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
– notice: 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
– notice: 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
H94
K9.
NAPCQ
7X8
5PM
DOI 10.1111/pedi.12543
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Immunology Abstracts
MEDLINE - Academic
DatabaseTitleList
AIDS and Cancer Research Abstracts
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1399-5448
EndPage 283
ExternalDocumentID PMC5764829
28695611
10_1111_pedi_12543
PEDI12543
Genre article
Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: JDRF
  funderid: 17‐2013‐535; 11‐2010‐206; 2‐SRA‐2015‐13‐Q‐R
– fundername: German BMBF‐funded iMed Helmholtz Alliance
– fundername: National Institutes of Health
  funderid: R01 DK32083; DK32493; DK049654; 5K12DK094712; P30 KD57516
– fundername: Helmholtz‐Gemeinschaft
  funderid: HIRG‐0018
– fundername: Leona M. and Harry B. Helmsley Charitable Trust
  funderid: 2015PG‐T1D072
– fundername: NIDDK NIH HHS
  grantid: K12 DK094712
– fundername: NIDDK NIH HHS
  grantid: U01 DK062418
– fundername: Wellcome Trust
– fundername: NIDDK NIH HHS
  grantid: R37 DK032493
– fundername: NIDDK NIH HHS
  grantid: R01 DK032493
– fundername: NIDDK NIH HHS
  grantid: R01 DK032083
– fundername: NIDDK NIH HHS
  grantid: R01 DK049654
– fundername: NIDDK NIH HHS
  grantid: P30 DK057516
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29O
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAJEY
AAKAS
AANHP
AAONW
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPPZ
ABPVW
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFS
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZCM
ADZMN
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFEBI
AFGKR
AFPWT
AFZJQ
AIACR
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GODZA
H.X
H13
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
R.K
RHX
ROL
RX1
SUPJJ
TEORI
UB1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WRC
WVDHM
WXI
XG1
YFH
ZZTAW
~IA
~WT
7RV
7X7
8C1
8FI
8FJ
AAFWJ
AAYXX
ABUWG
AFKRA
AGQPQ
BENPR
CCPQU
CITATION
FYUFA
HMCUK
NAPCQ
PHGZM
PHGZT
PIMPY
RPM
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
7T5
H94
K9.
PJZUB
PPXIY
7X8
5PM
ID FETCH-LOGICAL-c4483-bf57dbcc9dc289fd8e1b06c517384a797c7e95c9d872dd15b1b816b50428835a3
IEDL.DBID DR2
ISSN 1399-543X
1399-5448
IngestDate Thu Aug 21 17:37:33 EDT 2025
Fri Jul 11 05:19:16 EDT 2025
Wed Aug 13 08:57:09 EDT 2025
Thu Apr 03 07:00:13 EDT 2025
Tue Jul 01 04:05:41 EDT 2025
Thu Apr 24 22:56:14 EDT 2025
Wed Jan 22 17:05:31 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords epidemiology
risk factors
diabetes mellitus
type 1
prospective study
child
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4483-bf57dbcc9dc289fd8e1b06c517384a797c7e95c9d872dd15b1b816b50428835a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
These authors contributed equally to this work.
ORCID 0000-0002-6636-4048
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5764829
PMID 28695611
PQID 2001649131
PQPubID 2045115
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5764829
proquest_miscellaneous_1917959883
proquest_journals_2001649131
pubmed_primary_28695611
crossref_citationtrail_10_1111_pedi_12543
crossref_primary_10_1111_pedi_12543
wiley_primary_10_1111_pedi_12543_PEDI12543
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2018
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: March 2018
PublicationDecade 2010
PublicationPlace Former Munksgaard
PublicationPlace_xml – name: Former Munksgaard
– name: Denmark
– name: Hoboken
PublicationTitle Pediatric diabetes
PublicationTitleAlternate Pediatr Diabetes
PublicationYear 2018
Publisher John Wiley & Sons A/S
John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons A/S
– name: John Wiley & Sons, Inc
References 2012; 61
2007; 104
2009; 41
2015; 16
1996; 39
2008; 1150
1999; 48
2008; 30
2011; 39
2016; 17
2012; 13
1996; 59
2012; 55
2009; 58
2013; 14
2013; 56
2015; 61
2015; 22
2014; 15
2005; 54
2014; 57
1996; 81
2008; 40
2010; 7
1996; 9
2010; 95
Michels (10.1111/pedi.12543-BIB0001|pedi12543-cit-0001) 2015; 16
Wenzlau (10.1111/pedi.12543-BIB0018|pedi12543-cit-0018) 2008; 1150
Winkler (10.1111/pedi.12543-BIB0024|pedi12543-cit-0024) 2012; 13
Lempainen (10.1111/pedi.12543-BIB0027|pedi12543-cit-0027) 2015; 61
Insel (10.1111/pedi.12543-BIB0002|pedi12543-cit-0002) 2015; 22
Barrett (10.1111/pedi.12543-BIB0007|pedi12543-cit-0007) 2009; 41
Burren (10.1111/pedi.12543-BIB0009|pedi12543-cit-0009) 2011; 39
Cooper (10.1111/pedi.12543-BIB0006|pedi12543-cit-0006) 2008; 40
Concannon (10.1111/pedi.12543-BIB0005|pedi12543-cit-0005) 2005; 54
Noble (10.1111/pedi.12543-BIB0003|pedi12543-cit-0003) 1996; 59
Ziegler (10.1111/pedi.12543-BIB0020|pedi12543-cit-0020) 2012; 55
Ziegler (10.1111/pedi.12543-BIB0012|pedi12543-cit-0012) 1999; 48
10.1111/pedi.12543-BIB0023|pedi12543-cit-0023
10.1111/pedi.12543-BIB0021|pedi12543-cit-0021
Lempainen (10.1111/pedi.12543-BIB0026|pedi12543-cit-0026) 2013; 14
Achenbach (10.1111/pedi.12543-BIB0025|pedi12543-cit-0025) 2013; 56
Pencina (10.1111/pedi.12543-BIB0022|pedi12543-cit-0022) 2008; 30
Lempainen (10.1111/pedi.12543-BIB0028|pedi12543-cit-0028) 2012; 61
Winkler (10.1111/pedi.12543-BIB0010|pedi12543-cit-0010) 2014; 57
Thümer (10.1111/pedi.12543-BIB0011|pedi12543-cit-0011) 2010; 7
Concannon (10.1111/pedi.12543-BIB0008|pedi12543-cit-0008) 2009; 58
Ilonen (10.1111/pedi.12543-BIB0004|pedi12543-cit-0004) 2016; 17
Rewers (10.1111/pedi.12543-BIB0013|pedi12543-cit-0013) 1996; 9
Wenzlau (10.1111/pedi.12543-BIB0017|pedi12543-cit-0017) 2007; 104
Meehan (10.1111/pedi.12543-BIB0029|pedi12543-cit-0029) 2015; 16
Bonifacio (10.1111/pedi.12543-BIB0016|pedi12543-cit-0016) 2010; 95
Rewers (10.1111/pedi.12543-BIB0014|pedi12543-cit-0014) 1996; 39
Steck (10.1111/pedi.12543-BIB0019|pedi12543-cit-0019) 2014; 15
Yu (10.1111/pedi.12543-BIB0015|pedi12543-cit-0015) 1996; 81
References_xml – volume: 61
  start-page: 45
  year: 2015
  end-page: 53
  article-title: Non‐HLA gene effects on the disease process of type 1 diabetes: from HLA susceptibility to overt disease
  publication-title: J Autoimmun
– volume: 58
  start-page: 1018
  year: 2009
  end-page: 1022
  article-title: Genome‐wide scan for linkage to type 1 diabetes in 2,496 multiplex families from the Type 1 Diabetes Genetics Consortium
  publication-title: Diabetes
– volume: 14
  start-page: 490
  year: 2013
  end-page: 496
  article-title: Associations of polymorphisms in non‐HLA loci with autoantibodies at the diagnosis of type 1 diabetes: INS and IKZF4 associate with insulin autoantibodies
  publication-title: Pediatr Diabetes
– volume: 81
  start-page: 4264
  year: 1996
  end-page: 4267
  article-title: Antiislet autoantibodies usually develop sequentially rather than simultaneously
  publication-title: J Clin Endocrinol Metab
– volume: 54
  start-page: 2995
  year: 2005
  end-page: 3001
  article-title: Type 1 diabetes: evidence for susceptibility loci from four genome‐wide linkage scans in 1,435 multiplex families
  publication-title: Diabetes
– volume: 1150
  start-page: 256
  year: 2008
  end-page: 259
  article-title: SlC30A8 is a major target of humoral autoimmunity in type 1 diabetes and a predictive marker in prediabetes
  publication-title: Ann N Y Acad Sci
– volume: 39
  start-page: D997
  year: 2011
  end-page: D1001
  article-title: T1DBase: update 2011, organization and presentation of large‐scale data sets for type 1 diabetes research
  publication-title: Nucleic Acids Res
– volume: 95
  start-page: 3360
  year: 2010
  end-page: 3367
  article-title: Harmonization of glutamic acid decarboxylase and islet antigen‐2 autoantibody assays for national institute of diabetes and digestive and kidney diseases consortia
  publication-title: J Clin Endocrinol Metab
– volume: 61
  start-page: 963
  year: 2012
  end-page: 966
  article-title: Effect of the PTPN22 and INS risk genotypes on the progression to clinical type 1 diabetes after the initiation of β‐cell autoimmunity
  publication-title: Diabetes
– volume: 56
  start-page: 1615
  year: 2013
  end-page: 1622
  article-title: Characteristics of rapid vs slow progression to type 1 diabetes in multiple islet autoantibody‐positive children
  publication-title: Diabetologia
– volume: 48
  start-page: 460
  year: 1999
  end-page: 468
  article-title: Autoantibody appearance and risk for development of childhood diabetes in offspring of parents with type 1 diabetes: the 2‐year analysis of the German BABYDIAB Study
  publication-title: Diabetes
– volume: 9
  start-page: 405
  year: 1996
  end-page: 410
  article-title: Beta‐cell autoantibodies in infants and toddlers without IDDM relatives: Diabetes Autoimmunity Study in the Young (DAISY)
  publication-title: J Autoimmun
– volume: 30
  start-page: 157
  year: 2008
  end-page: 172
  article-title: Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond
  publication-title: Stat Med
– volume: 13
  start-page: 549
  year: 2012
  end-page: 555
  article-title: A strategy for combining minor genetic susceptibility genes to improve prediction of disease in type 1 diabetes
  publication-title: Genes Immun
– volume: 59
  start-page: 1134
  year: 1996
  end-page: 1148
  article-title: The role of HLA class II genes in insulin‐dependent diabetes mellitus: molecular analysis of 180 Caucasian, multiplex families
  publication-title: Am J Hum Genet
– volume: 16
  start-page: 465
  year: 2015
  end-page: 484
  article-title: Prediction and prevention of type 1 diabetes: update on success of prediction and struggles at prevention
  publication-title: Pediatr Diabetes
– volume: 22
  start-page: 270
  year: 2015
  end-page: 276
  article-title: General population screening for type 1 diabetes: has its time come?
  publication-title: Curr Opin Endocrinol Diabetes Obes
– volume: 7
  start-page: 202
  year: 2010
  end-page: 208
  article-title: German new onset diabetes in the young incident cohort study: DiMelli study design and first‐year results
  publication-title: Rev Diabet Stud
– volume: 41
  start-page: 703
  year: 2009
  end-page: 707
  article-title: Genome‐wide association study and meta‐analysis find that over 40 loci affect risk of type 1 diabetes
  publication-title: Nat Genet
– volume: 16
  start-page: 565
  year: 2015
  end-page: 572
  article-title: Screening for T1D risk to reduce DKA is not economically viable
  publication-title: Pediatr Diabetes
– volume: 17
  start-page: 8
  year: 2016
  end-page: 16
  article-title: Genetic susceptibility to type 1 diabetes in childhood – estimation of HLA class II associated disease risk and class II effect in various phases of islet autoimmunity
  publication-title: Pediatr Diabetes
– volume: 57
  start-page: 2521
  year: 2014
  end-page: 2529
  article-title: Feature ranking of type 1 diabetes susceptibility genes improves prediction of type 1 diabetes
  publication-title: Diabetologia
– volume: 15
  start-page: 355
  year: 2014
  end-page: 362
  article-title: Improving prediction of type 1 diabetes by testing non‐HLA genetic variants in addition to HLA markers
  publication-title: Pediatr Diabetes
– volume: 40
  start-page: 1399
  year: 2008
  end-page: 1401
  article-title: Meta‐analysis of genome‐wide association study data identifies additional type 1 diabetes risk loci
  publication-title: Nat Genet
– volume: 39
  start-page: 807
  year: 1996
  end-page: 812
  article-title: Newborn screening for HLA markers associated with IDDM: Diabetes Autoimmunity Study in the Young (DAISY)
  publication-title: Diabetologia
– volume: 104
  start-page: 17040
  year: 2007
  end-page: 17045
  article-title: The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes
  publication-title: Proc Natl Acad Sci U S A
– volume: 55
  start-page: 1937
  year: 2012
  end-page: 1943
  article-title: Age‐related islet autoantibody incidence in offspring of patients with type 1 diabetes
  publication-title: Diabetologia
– volume: 1150
  start-page: 256
  year: 2008
  ident: 10.1111/pedi.12543-BIB0018|pedi12543-cit-0018
  article-title: SlC30A8 is a major target of humoral autoimmunity in type 1 diabetes and a predictive marker in prediabetes
  publication-title: Ann N Y Acad Sci
  doi: 10.1196/annals.1447.029
– volume: 57
  start-page: 2521
  year: 2014
  ident: 10.1111/pedi.12543-BIB0010|pedi12543-cit-0010
  article-title: Feature ranking of type 1 diabetes susceptibility genes improves prediction of type 1 diabetes
  publication-title: Diabetologia
  doi: 10.1007/s00125-014-3362-1
– volume: 22
  start-page: 270
  year: 2015
  ident: 10.1111/pedi.12543-BIB0002|pedi12543-cit-0002
  article-title: General population screening for type 1 diabetes: has its time come?
  publication-title: Curr Opin Endocrinol Diabetes Obes
  doi: 10.1097/MED.0000000000000173
– volume: 7
  start-page: 202
  year: 2010
  ident: 10.1111/pedi.12543-BIB0011|pedi12543-cit-0011
  article-title: German new onset diabetes in the young incident cohort study: DiMelli study design and first-year results
  publication-title: Rev Diabet Stud
– volume: 40
  start-page: 1399
  year: 2008
  ident: 10.1111/pedi.12543-BIB0006|pedi12543-cit-0006
  article-title: Meta-analysis of genome-wide association study data identifies additional type 1 diabetes risk loci
  publication-title: Nat Genet
  doi: 10.1038/ng.249
– volume: 55
  start-page: 1937
  year: 2012
  ident: 10.1111/pedi.12543-BIB0020|pedi12543-cit-0020
  article-title: Age-related islet autoantibody incidence in offspring of patients with type 1 diabetes
  publication-title: Diabetologia
  doi: 10.1007/s00125-012-2472-x
– volume: 17
  start-page: 8
  year: 2016
  ident: 10.1111/pedi.12543-BIB0004|pedi12543-cit-0004
  article-title: Genetic susceptibility to type 1 diabetes in childhood - estimation of HLA class II associated disease risk and class II effect in various phases of islet autoimmunity
  publication-title: Pediatr Diabetes
  doi: 10.1111/pedi.12327
– volume: 13
  start-page: 549
  year: 2012
  ident: 10.1111/pedi.12543-BIB0024|pedi12543-cit-0024
  article-title: A strategy for combining minor genetic susceptibility genes to improve prediction of disease in type 1 diabetes
  publication-title: Genes Immun
  doi: 10.1038/gene.2012.36
– volume: 16
  start-page: 565
  year: 2015
  ident: 10.1111/pedi.12543-BIB0029|pedi12543-cit-0029
  article-title: Screening for T1D risk to reduce DKA is not economically viable
  publication-title: Pediatr Diabetes
  doi: 10.1111/pedi.12313
– volume: 95
  start-page: 3360
  year: 2010
  ident: 10.1111/pedi.12543-BIB0016|pedi12543-cit-0016
  article-title: Harmonization of glutamic acid decarboxylase and islet antigen-2 autoantibody assays for national institute of diabetes and digestive and kidney diseases consortia
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2010-0293
– volume: 56
  start-page: 1615
  year: 2013
  ident: 10.1111/pedi.12543-BIB0025|pedi12543-cit-0025
  article-title: Characteristics of rapid vs slow progression to type 1 diabetes in multiple islet autoantibody-positive children
  publication-title: Diabetologia
  doi: 10.1007/s00125-013-2896-y
– volume: 39
  start-page: 807
  year: 1996
  ident: 10.1111/pedi.12543-BIB0014|pedi12543-cit-0014
  article-title: Newborn screening for HLA markers associated with IDDM: Diabetes Autoimmunity Study in the Young (DAISY)
  publication-title: Diabetologia
  doi: 10.1007/s001250050514
– volume: 30
  start-page: 157
  year: 2008
  ident: 10.1111/pedi.12543-BIB0022|pedi12543-cit-0022
  article-title: Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond
  publication-title: Stat Med
  doi: 10.1002/sim.2929
– ident: 10.1111/pedi.12543-BIB0023|pedi12543-cit-0023
– volume: 61
  start-page: 45
  year: 2015
  ident: 10.1111/pedi.12543-BIB0027|pedi12543-cit-0027
  article-title: Non-HLA gene effects on the disease process of type 1 diabetes: from HLA susceptibility to overt disease
  publication-title: J Autoimmun
  doi: 10.1016/j.jaut.2015.05.005
– volume: 16
  start-page: 465
  year: 2015
  ident: 10.1111/pedi.12543-BIB0001|pedi12543-cit-0001
  article-title: Prediction and prevention of type 1 diabetes: update on success of prediction and struggles at prevention
  publication-title: Pediatr Diabetes
  doi: 10.1111/pedi.12299
– volume: 81
  start-page: 4264
  year: 1996
  ident: 10.1111/pedi.12543-BIB0015|pedi12543-cit-0015
  article-title: Antiislet autoantibodies usually develop sequentially rather than simultaneously
  publication-title: J Clin Endocrinol Metab
– volume: 104
  start-page: 17040
  year: 2007
  ident: 10.1111/pedi.12543-BIB0017|pedi12543-cit-0017
  article-title: The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0705894104
– volume: 48
  start-page: 460
  year: 1999
  ident: 10.1111/pedi.12543-BIB0012|pedi12543-cit-0012
  article-title: Autoantibody appearance and risk for development of childhood diabetes in offspring of parents with type 1 diabetes: the 2-year analysis of the German BABYDIAB Study
  publication-title: Diabetes
  doi: 10.2337/diabetes.48.3.460
– volume: 15
  start-page: 355
  year: 2014
  ident: 10.1111/pedi.12543-BIB0019|pedi12543-cit-0019
  article-title: Improving prediction of type 1 diabetes by testing non-HLA genetic variants in addition to HLA markers
  publication-title: Pediatr Diabetes
  doi: 10.1111/pedi.12092
– volume: 14
  start-page: 490
  year: 2013
  ident: 10.1111/pedi.12543-BIB0026|pedi12543-cit-0026
  article-title: Associations of polymorphisms in non-HLA loci with autoantibodies at the diagnosis of type 1 diabetes: INS and IKZF4 associate with insulin autoantibodies
  publication-title: Pediatr Diabetes
  doi: 10.1111/pedi.12046
– volume: 59
  start-page: 1134
  year: 1996
  ident: 10.1111/pedi.12543-BIB0003|pedi12543-cit-0003
  article-title: The role of HLA class II genes in insulin-dependent diabetes mellitus: molecular analysis of 180 Caucasian, multiplex families
  publication-title: Am J Hum Genet
– volume: 9
  start-page: 405
  year: 1996
  ident: 10.1111/pedi.12543-BIB0013|pedi12543-cit-0013
  article-title: Beta-cell autoantibodies in infants and toddlers without IDDM relatives: Diabetes Autoimmunity Study in the Young (DAISY)
  publication-title: J Autoimmun
  doi: 10.1006/jaut.1996.0055
– volume: 41
  start-page: 703
  year: 2009
  ident: 10.1111/pedi.12543-BIB0007|pedi12543-cit-0007
  article-title: Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes
  publication-title: Nat Genet
  doi: 10.1038/ng.381
– ident: 10.1111/pedi.12543-BIB0021|pedi12543-cit-0021
– volume: 54
  start-page: 2995
  year: 2005
  ident: 10.1111/pedi.12543-BIB0005|pedi12543-cit-0005
  article-title: Type 1 diabetes: evidence for susceptibility loci from four genome-wide linkage scans in 1,435 multiplex families
  publication-title: Diabetes
  doi: 10.2337/diabetes.54.10.2995
– volume: 39
  start-page: D997
  year: 2011
  ident: 10.1111/pedi.12543-BIB0009|pedi12543-cit-0009
  article-title: T1DBase: update 2011, organization and presentation of large-scale data sets for type 1 diabetes research
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkq912
– volume: 58
  start-page: 1018
  year: 2009
  ident: 10.1111/pedi.12543-BIB0008|pedi12543-cit-0008
  article-title: Genome-wide scan for linkage to type 1 diabetes in 2,496 multiplex families from the Type 1 Diabetes Genetics Consortium
  publication-title: Diabetes
  doi: 10.2337/db08-1551
– volume: 61
  start-page: 963
  year: 2012
  ident: 10.1111/pedi.12543-BIB0028|pedi12543-cit-0028
  article-title: Effect of the PTPN22 and INS risk genotypes on the progression to clinical type 1 diabetes after the initiation of β-cell autoimmunity
  publication-title: Diabetes
  doi: 10.2337/db11-0386
SSID ssj0017934
Score 2.2645783
Snippet Background Genetic predisposition for type 1 diabetes (T1D) is largely determined by human leukocyte antigen (HLA) genes; however, over 50 other genetic...
Genetic predisposition for type 1 diabetes (T1D) is largely determined by human leukocyte antigen (HLA) genes; however, over 50 other genetic regions confer...
Background Genetic predisposition for type 1 diabetes (T1D) is largely determined by human leukocyte antigen (HLA) genes; however, over 50 other genetic...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 277
SubjectTerms Autoantibodies - analysis
Autoimmunity
Child
Child, Preschool
Children
Cohort Studies
Diabetes
Diabetes mellitus
Diabetes mellitus (insulin dependent)
Diabetes Mellitus, Type 1 - blood
Diabetes Mellitus, Type 1 - genetics
Diabetes Mellitus, Type 1 - immunology
Discriminant Analysis
Disease-Free Survival
epidemiology
ErbB-3 protein
Family Health
Female
Genetic Predisposition to Disease
Histocompatibility antigen HLA
HLA-D Antigens - chemistry
HLA-D Antigens - genetics
Humans
Infant
Insulin - chemistry
Insulin - genetics
Interleukin 2 receptors
Interleukin 27
Kaplan-Meier Estimate
Longitudinal Studies
Male
Models, Genetic
Polymorphism, Single Nucleotide
Prospective Studies
prospective study
Protein Tyrosine Phosphatase, Non-Receptor Type 22 - chemistry
Protein Tyrosine Phosphatase, Non-Receptor Type 22 - genetics
Protein-tyrosine-phosphatase
risk factors
Single-nucleotide polymorphism
type 1
Title Prediction of type 1 diabetes using a genetic risk model in the Diabetes Autoimmunity Study in the Young
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpedi.12543
https://www.ncbi.nlm.nih.gov/pubmed/28695611
https://www.proquest.com/docview/2001649131
https://www.proquest.com/docview/1917959883
https://pubmed.ncbi.nlm.nih.gov/PMC5764829
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZaxRBEC5iBPHF-xiNS4u-KMyyPVd3gy8x2RCFhCUY2BcZ-ppkUWZDdvYh_nqreg6zRgR9GQa6humeOvqrnjoA3iJKrWSis9gXmYqzyopYVcbExk24MZoj0ylR-Oi4ODzNPs_z-RZ86HNh2voQw4EbaUaw16Tg2qyuKfkFGvcxp1xuNMAUrEWI6GSoHUWC13a0VSpGonlXm5TCeH49urkb3YCYNyMlryPYsAUd3Iev_eTbyJNv43VjxvbHb3Ud_3d1D-Beh03ZbitMD2HL14_gzlH39_0xnM8u6Z5YyZYVo9Nbxll_essohP6MaYYiSZmRjKLWWei0wxY1Q6DJ9nvS3XWzXITMlOaKUSjjVU8SrM8TOD2Yftk7jLtODbFF9y6NTZULZ6xVzqIDVznpuZkUNucilZkWSljhVY7DUiTO8dxwI3lhcnLYEALq9Cls18vaPwdmk8SLXOtMyyKrJmguZOVT6yfSuaRwIoJ3PcdK25Uxp24a38venaFPV4ZPF8GbgfaiLd7xR6qdnvFlp8Ar6s6JjqTiKY_g9TCMqkf_U3Ttl-tVSa6uyhWuIIJnrZwMr0lkQSnD-LTYkKCBgMp6b47Ui_NQ3hs9wEwmKoL3QUD-MvNyNt3_FO5e_AvxS7iLsE-2kXQ7sN1crv0rhFaNGcEtMRd4lXt8BLc_To9nJ6OgVj8BtQ4kjw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxQxDLagSMCFd-lAgSC4gDSrzbySHCvaagvdqkKttLdRXkNXVLNVd_ZQfj125kGXIiS4RYqjmSR2Yjv2Z4D3qKVWMtFZ7ItMxVllRawqY2LjxtwYzXHTKVF4elRMTrPPs3zWxeZQLkyLDzE43EgywnlNAk4O6WtSfoGn-4hTMvdtuEMlvYNF9XVAjyLWa2vaKhUj1axDJ6VAnl9j1--jG0rmzVjJ6zpsuIT2H7aVVpcBu5BiT76PVo0Z2R-_ITv-9_wewYNOPWU7LT89hlu-fgJ3p90D_FM4O76kNu0mW1SMHLiMs96ByyiK_hvTDLmSkiMZBa6zUGyHzWuGuibb7Ul3Vs1iHpJTmitG0YxXPUk4gJ7B6f7eyadJ3BVriC1aeGlsqlw4Y61yFm24yknPzbiwORepzLRQwgqvcuyWInGO54YbyQuTk82GWqBON2GjXtR-C5hNEi9yrTMti6wa44khK59aP5bOJYUTEXzot6y0HZI5FdQ4L3uLhpauDEsXwbuB9qLF7_gj1Xa_82Unw0sq0Im2pOIpj-Dt0I3SR08quvaL1bIka1flCmcQwfOWUYbPJLKgrGEcLdZYaCAgZO_1nnp-FhC-0QjMZKIi-Bg45C9_Xh7v7R6E1ot_IX4D9yYn08Py8ODoy0u4j1qgbAPrtmGjuVz5V6hpNeZ1kKef74UlXA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9qheKL1u_VViP6orDHZje7ScCX0uvRqi2HWLgXWfK19lD2jnbvof71ZrIf9loR9C2QCZvNzCS_SeYD4I1HqZVIFYtdwWTMKsNjWWkda5tQrRX1TMdA4eOT4vCUfZjlsw1438fCtPkhhgs31IywX6OCL211RcmXfnMfUYzlvgW3WZEIlOnx5yF5FEpeW9JWythTzbrkpOjH83vs-nF0A2PedJW8CmHDGTS5B1_72beuJ99Hq0aPzM9riR3_9_e24W4HTsleK033YcPVD2DruHt-fwhn03NsIy_JoiJ4fUso6a9vCfrQfyOKeJnE0EiCbusklNoh85p4pEnGPeneqlnMQ2hKc0nQl_GyJwnbzyM4nRx82T-Mu1INsfH2XRbrKudWGyOt8RZcZYWjOilMTnkmmOKSG-5k7rsFT62luaZa0ELnaLF5DKiyx7BZL2r3FIhJU8dzpZgSBasSv1-IymXGJcLatLA8grc9x0rT5THHcho_yt6ewaUrw9JF8HqgXbbZO_5ItdMzvuw0-ALLc3pLUtKMRvBq6Pa6hw8qqnaL1UWJtq7Mpf-DCJ60cjJ8JhUFxgz70XxNggYCzOu93lPPz0J-b28CMpHKCN4FAfnLzMvpwfgotJ79C_FL2JqOJ-Wno5OPz-GOh4Ci9arbgc3mfOV2Pcxq9IugTb8AihUkFA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+type+1+diabetes+using+a+genetic+risk+model+in+the+Diabetes+Autoimmunity+Study+in+the+Young&rft.jtitle=Pediatric+diabetes&rft.au=Frohnert%2C+Brigitte+I&rft.au=Laimighofer%2C+Michael&rft.au=Krumsiek%2C+Jan&rft.au=Theis%2C+Fabian+J&rft.date=2018-03-01&rft.issn=1399-5448&rft.eissn=1399-5448&rft.volume=19&rft.issue=2&rft.spage=277&rft_id=info:doi/10.1111%2Fpedi.12543&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1399-543X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1399-543X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1399-543X&client=summon