Prediction of type 1 diabetes using a genetic risk model in the Diabetes Autoimmunity Study in the Young
Background Genetic predisposition for type 1 diabetes (T1D) is largely determined by human leukocyte antigen (HLA) genes; however, over 50 other genetic regions confer susceptibility. We evaluated a previously reported 10‐factor weighted model derived from the Type 1 Diabetes Genetics Consortium to...
Saved in:
Published in | Pediatric diabetes Vol. 19; no. 2; pp. 277 - 283 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Former Munksgaard
John Wiley & Sons A/S
01.03.2018
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1399-543X 1399-5448 1399-5448 |
DOI | 10.1111/pedi.12543 |
Cover
Loading…
Abstract | Background
Genetic predisposition for type 1 diabetes (T1D) is largely determined by human leukocyte antigen (HLA) genes; however, over 50 other genetic regions confer susceptibility. We evaluated a previously reported 10‐factor weighted model derived from the Type 1 Diabetes Genetics Consortium to predict the development of diabetes in the Diabetes Autoimmunity Study in the Young (DAISY) prospective cohort. Performance of the model, derived from individuals with first‐degree relatives (FDR) with T1D, was evaluated in DAISY general population (GP) participants as well as FDR subjects.
Methods
The 10‐factor weighted risk model (HLA,
PTPN22
,
INS
,
IL2RA
,
ERBB3
,
ORMDL3
,
BACH2
,
IL27
,
GLIS3
,
RNLS
), 3‐factor model (HLA,
PTPN22, INS
), and HLA alone were compared for the prediction of diabetes in children with complete SNP data (n = 1941).
Results
Stratification by risk score significantly predicted progression to diabetes by Kaplan‐Meier analysis (GP: P = .00006; FDR: P = .0022). The 10‐factor model performed better in discriminating diabetes outcome than HLA alone (GP, P = .03; FDR, P = .01). In GP, the restricted 3‐factor model was superior to HLA (P = .03), but not different from the 10‐factor model (P = .22). In contrast, for FDR the 3‐factor model did not show improvement over HLA (P = .12) and performed worse than the 10‐factor model (P = .02)
Conclusions
We have shown a 10‐factor risk model predicts development of diabetes in both GP and FDR children. While this model was superior to a minimal model in FDR, it did not confer improvement in GP.
Differences in model performance in FDR vs GP children may lead to important insights into screening strategies specific to these groups. |
---|---|
AbstractList | Background
Genetic predisposition for type 1 diabetes (T1D) is largely determined by human leukocyte antigen (HLA) genes; however, over 50 other genetic regions confer susceptibility. We evaluated a previously reported 10‐factor weighted model derived from the Type 1 Diabetes Genetics Consortium to predict the development of diabetes in the Diabetes Autoimmunity Study in the Young (DAISY) prospective cohort. Performance of the model, derived from individuals with first‐degree relatives (FDR) with T1D, was evaluated in DAISY general population (GP) participants as well as FDR subjects.
Methods
The 10‐factor weighted risk model (HLA,
PTPN22
,
INS
,
IL2RA
,
ERBB3
,
ORMDL3
,
BACH2
,
IL27
,
GLIS3
,
RNLS
), 3‐factor model (HLA,
PTPN22, INS
), and HLA alone were compared for the prediction of diabetes in children with complete SNP data (n = 1941).
Results
Stratification by risk score significantly predicted progression to diabetes by Kaplan‐Meier analysis (GP: P = .00006; FDR: P = .0022). The 10‐factor model performed better in discriminating diabetes outcome than HLA alone (GP, P = .03; FDR, P = .01). In GP, the restricted 3‐factor model was superior to HLA (P = .03), but not different from the 10‐factor model (P = .22). In contrast, for FDR the 3‐factor model did not show improvement over HLA (P = .12) and performed worse than the 10‐factor model (P = .02)
Conclusions
We have shown a 10‐factor risk model predicts development of diabetes in both GP and FDR children. While this model was superior to a minimal model in FDR, it did not confer improvement in GP.
Differences in model performance in FDR vs GP children may lead to important insights into screening strategies specific to these groups. Background Genetic predisposition for type 1 diabetes (T1D) is largely determined by human leukocyte antigen (HLA) genes; however, over 50 other genetic regions confer susceptibility. We evaluated a previously reported 10-factor weighted model derived from the Type 1 Diabetes Genetics Consortium to predict the development of diabetes in the Diabetes Autoimmunity Study in the Young (DAISY) prospective cohort. Performance of the model, derived from individuals with first-degree relatives (FDR) with T1D, was evaluated in DAISY general population (GP) participants as well as FDR subjects. Methods The 10-factor weighted risk model (HLA, PTPN22, INS, IL2RA, ERBB3, ORMDL3, BACH2, IL27, GLIS3, RNLS), 3-factor model (HLA, PTPN22, INS), and HLA alone were compared for the prediction of diabetes in children with complete SNP data (n = 1941). Results Stratification by risk score significantly predicted progression to diabetes by Kaplan-Meier analysis (GP: P = .00006; FDR: P = .0022). The 10-factor model performed better in discriminating diabetes outcome than HLA alone (GP, P = .03; FDR, P = .01). In GP, the restricted 3-factor model was superior to HLA (P = .03), but not different from the 10-factor model (P = .22). In contrast, for FDR the 3-factor model did not show improvement over HLA (P = .12) and performed worse than the 10-factor model (P = .02) Conclusions We have shown a 10-factor risk model predicts development of diabetes in both GP and FDR children. While this model was superior to a minimal model in FDR, it did not confer improvement in GP. Differences in model performance in FDR vs GP children may lead to important insights into screening strategies specific to these groups. Genetic predisposition for type 1 diabetes (T1D) is largely determined by human leukocyte antigen (HLA) genes; however, over 50 other genetic regions confer susceptibility. We evaluated a previously reported 10-factor weighted model derived from the Type 1 Diabetes Genetics Consortium to predict the development of diabetes in the Diabetes Autoimmunity Study in the Young (DAISY) prospective cohort. Performance of the model, derived from individuals with first-degree relatives (FDR) with T1D, was evaluated in DAISY general population (GP) participants as well as FDR subjects. The 10-factor weighted risk model (HLA, PTPN22 , INS , IL2RA , ERBB3 , ORMDL3 , BACH2 , IL27 , GLIS3 , RNLS ), 3-factor model (HLA, PTPN22, INS ), and HLA alone were compared for the prediction of diabetes in children with complete SNP data (n = 1941). Stratification by risk score significantly predicted progression to diabetes by Kaplan-Meier analysis (GP: P = .00006; FDR: P = .0022). The 10-factor model performed better in discriminating diabetes outcome than HLA alone (GP, P = .03; FDR, P = .01). In GP, the restricted 3-factor model was superior to HLA (P = .03), but not different from the 10-factor model (P = .22). In contrast, for FDR the 3-factor model did not show improvement over HLA (P = .12) and performed worse than the 10-factor model (P = .02) CONCLUSIONS: We have shown a 10-factor risk model predicts development of diabetes in both GP and FDR children. While this model was superior to a minimal model in FDR, it did not confer improvement in GP. Differences in model performance in FDR vs GP children may lead to important insights into screening strategies specific to these groups. Genetic predisposition for type 1 diabetes (T1D) is largely determined by human leukocyte antigen (HLA) genes; however, over 50 other genetic regions confer susceptibility. We evaluated a previously reported 10-factor weighted model derived from the Type 1 Diabetes Genetics Consortium to predict the development of diabetes in the Diabetes Autoimmunity Study in the Young (DAISY) prospective cohort. Performance of the model, derived from individuals with first-degree relatives (FDR) with T1D, was evaluated in DAISY general population (GP) participants as well as FDR subjects.BACKGROUNDGenetic predisposition for type 1 diabetes (T1D) is largely determined by human leukocyte antigen (HLA) genes; however, over 50 other genetic regions confer susceptibility. We evaluated a previously reported 10-factor weighted model derived from the Type 1 Diabetes Genetics Consortium to predict the development of diabetes in the Diabetes Autoimmunity Study in the Young (DAISY) prospective cohort. Performance of the model, derived from individuals with first-degree relatives (FDR) with T1D, was evaluated in DAISY general population (GP) participants as well as FDR subjects.The 10-factor weighted risk model (HLA, PTPN22 , INS , IL2RA , ERBB3 , ORMDL3 , BACH2 , IL27 , GLIS3 , RNLS ), 3-factor model (HLA, PTPN22, INS ), and HLA alone were compared for the prediction of diabetes in children with complete SNP data (n = 1941).METHODSThe 10-factor weighted risk model (HLA, PTPN22 , INS , IL2RA , ERBB3 , ORMDL3 , BACH2 , IL27 , GLIS3 , RNLS ), 3-factor model (HLA, PTPN22, INS ), and HLA alone were compared for the prediction of diabetes in children with complete SNP data (n = 1941).Stratification by risk score significantly predicted progression to diabetes by Kaplan-Meier analysis (GP: P = .00006; FDR: P = .0022). The 10-factor model performed better in discriminating diabetes outcome than HLA alone (GP, P = .03; FDR, P = .01). In GP, the restricted 3-factor model was superior to HLA (P = .03), but not different from the 10-factor model (P = .22). In contrast, for FDR the 3-factor model did not show improvement over HLA (P = .12) and performed worse than the 10-factor model (P = .02) CONCLUSIONS: We have shown a 10-factor risk model predicts development of diabetes in both GP and FDR children. While this model was superior to a minimal model in FDR, it did not confer improvement in GP. Differences in model performance in FDR vs GP children may lead to important insights into screening strategies specific to these groups.RESULTSStratification by risk score significantly predicted progression to diabetes by Kaplan-Meier analysis (GP: P = .00006; FDR: P = .0022). The 10-factor model performed better in discriminating diabetes outcome than HLA alone (GP, P = .03; FDR, P = .01). In GP, the restricted 3-factor model was superior to HLA (P = .03), but not different from the 10-factor model (P = .22). In contrast, for FDR the 3-factor model did not show improvement over HLA (P = .12) and performed worse than the 10-factor model (P = .02) CONCLUSIONS: We have shown a 10-factor risk model predicts development of diabetes in both GP and FDR children. While this model was superior to a minimal model in FDR, it did not confer improvement in GP. Differences in model performance in FDR vs GP children may lead to important insights into screening strategies specific to these groups. |
Author | Krumsiek, Jan Norris, Jill M Rewers, Marian J Laimighofer, Michael Theis, Fabian J Ziegler, Anette‐Gabriele Frohnert, Brigitte I Winkler, Christiane Steck, Andrea K |
AuthorAffiliation | 2 Institute of Computational Biology, Helmholtz Zentrum München, München-Neuherberg 85764 Germany 4 Institute of Diabetes Research, Helmholtz Zentrum München and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Neuherberg 85764 Germany 5 Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, CO, 80045 USA 3 German Center for Diabetes Research (DZD), München-Neuherberg 85764 Germany 1 Barbara Davis Center for Childhood Diabetes, School of Medicine, University of Colorado, Aurora, CO 80045 USA |
AuthorAffiliation_xml | – name: 2 Institute of Computational Biology, Helmholtz Zentrum München, München-Neuherberg 85764 Germany – name: 3 German Center for Diabetes Research (DZD), München-Neuherberg 85764 Germany – name: 4 Institute of Diabetes Research, Helmholtz Zentrum München and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Neuherberg 85764 Germany – name: 1 Barbara Davis Center for Childhood Diabetes, School of Medicine, University of Colorado, Aurora, CO 80045 USA – name: 5 Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, CO, 80045 USA |
Author_xml | – sequence: 1 givenname: Brigitte I orcidid: 0000-0002-6636-4048 surname: Frohnert fullname: Frohnert, Brigitte I email: brigitte.frohnert@ucdenver.edu organization: University of Colorado – sequence: 2 givenname: Michael surname: Laimighofer fullname: Laimighofer, Michael organization: Helmholtz Zentrum München – sequence: 3 givenname: Jan surname: Krumsiek fullname: Krumsiek, Jan organization: German Center for Diabetes Research (DZD) – sequence: 4 givenname: Fabian J surname: Theis fullname: Theis, Fabian J organization: Helmholtz Zentrum München – sequence: 5 givenname: Christiane surname: Winkler fullname: Winkler, Christiane organization: Universität München – sequence: 6 givenname: Jill M surname: Norris fullname: Norris, Jill M organization: University of Colorado – sequence: 7 givenname: Anette‐Gabriele surname: Ziegler fullname: Ziegler, Anette‐Gabriele organization: Universität München – sequence: 8 givenname: Marian J surname: Rewers fullname: Rewers, Marian J organization: University of Colorado – sequence: 9 givenname: Andrea K surname: Steck fullname: Steck, Andrea K organization: University of Colorado |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28695611$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kV1rFDEYhYNU7Ife-AMk4I0IWyeTyUxyI5R-aKFgQQW9Cpnknd3UmWSbD2X-fbNut2gRc5PA-5yTk5xDtOe8A4RekuqYlPVuDcYek5o19Ak6IFSIBWsavvdwpt_20WGMN1VFOkGbZ2i_5q1gLSEHaHUdilon6x32A07zGjDBxqoeEkSco3VLrPASHCSrcbDxB568gRFbh9MK8NkOPcnJ22nKzqYZf07ZzDvku89u-Rw9HdQY4cX9foS-Xpx_Of24uPr04fL05GqhS2a66AfWmV5rYXTNxWA4kL5qNSMd5Y3qRKc7EKyMeVcbQ1hPek7anlVNzTllih6h91vfde4nMBpcCmqU62AnFWbplZV_T5xdyaX_KVnXNrwWxeDNvUHwtxlikpONGsZROfA5SiLKLzJRbivo60fojc_BlefJunx22whCSaFe_ZnoIcquhAJUW0AHH2OAQWqb1KaSEtCOklRy07Pc9Cx_91wkbx9Jdq7_hMkW_mVHmP9Dyuvzs8ut5g5SMLkI |
CitedBy_id | crossref_primary_10_1186_s13073_024_01305_8 crossref_primary_10_1016_j_autrev_2024_103611 crossref_primary_10_1016_j_mgene_2021_100898 crossref_primary_10_1017_S1751731119002374 crossref_primary_10_1155_2020_1025857 crossref_primary_10_1177_0962280218812211 crossref_primary_10_3390_biomedicines12020399 crossref_primary_10_2337_db18_1263 crossref_primary_10_1016_j_ebiom_2018_08_004 crossref_primary_10_1210_clinem_dgae349 crossref_primary_10_1111_pedi_12995 crossref_primary_10_1016_j_mvr_2022_104378 crossref_primary_10_1016_j_bbrc_2019_06_122 crossref_primary_10_1111_pedi_13454 crossref_primary_10_1007_s00125_020_05344_9 crossref_primary_10_1038_s41598_020_63322_y crossref_primary_10_1016_j_pharmthera_2020_107632 crossref_primary_10_2337_dc19_0102 |
Cites_doi | 10.1196/annals.1447.029 10.1007/s00125-014-3362-1 10.1097/MED.0000000000000173 10.1038/ng.249 10.1007/s00125-012-2472-x 10.1111/pedi.12327 10.1038/gene.2012.36 10.1111/pedi.12313 10.1210/jc.2010-0293 10.1007/s00125-013-2896-y 10.1007/s001250050514 10.1002/sim.2929 10.1016/j.jaut.2015.05.005 10.1111/pedi.12299 10.1073/pnas.0705894104 10.2337/diabetes.48.3.460 10.1111/pedi.12092 10.1111/pedi.12046 10.1006/jaut.1996.0055 10.1038/ng.381 10.2337/diabetes.54.10.2995 10.1093/nar/gkq912 10.2337/db08-1551 10.2337/db11-0386 |
ContentType | Journal Article |
Copyright | 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd |
Copyright_xml | – notice: 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd – notice: 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. – notice: 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 H94 K9. NAPCQ 7X8 5PM |
DOI | 10.1111/pedi.12543 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Immunology Abstracts MEDLINE - Academic |
DatabaseTitleList | AIDS and Cancer Research Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1399-5448 |
EndPage | 283 |
ExternalDocumentID | PMC5764829 28695611 10_1111_pedi_12543 PEDI12543 |
Genre | article Comparative Study Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: JDRF funderid: 17‐2013‐535; 11‐2010‐206; 2‐SRA‐2015‐13‐Q‐R – fundername: German BMBF‐funded iMed Helmholtz Alliance – fundername: National Institutes of Health funderid: R01 DK32083; DK32493; DK049654; 5K12DK094712; P30 KD57516 – fundername: Helmholtz‐Gemeinschaft funderid: HIRG‐0018 – fundername: Leona M. and Harry B. Helmsley Charitable Trust funderid: 2015PG‐T1D072 – fundername: NIDDK NIH HHS grantid: K12 DK094712 – fundername: NIDDK NIH HHS grantid: U01 DK062418 – fundername: Wellcome Trust – fundername: NIDDK NIH HHS grantid: R37 DK032493 – fundername: NIDDK NIH HHS grantid: R01 DK032493 – fundername: NIDDK NIH HHS grantid: R01 DK032083 – fundername: NIDDK NIH HHS grantid: R01 DK049654 – fundername: NIDDK NIH HHS grantid: P30 DK057516 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29O 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAJEY AAKAS AANHP AAONW AASGY AAWTL AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABPPZ ABPVW ABXGK ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFS ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZCM ADZMN AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFEBI AFGKR AFPWT AFZJQ AIACR AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC G-S G.N GODZA H.X H13 HF~ HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D Q.N Q11 QB0 R.K RHX ROL RX1 SUPJJ TEORI UB1 W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WRC WVDHM WXI XG1 YFH ZZTAW ~IA ~WT 7RV 7X7 8C1 8FI 8FJ AAFWJ AAYXX ABUWG AFKRA AGQPQ BENPR CCPQU CITATION FYUFA HMCUK NAPCQ PHGZM PHGZT PIMPY RPM UKHRP CGR CUY CVF ECM EIF NPM 7T5 H94 K9. PJZUB PPXIY 7X8 5PM |
ID | FETCH-LOGICAL-c4483-bf57dbcc9dc289fd8e1b06c517384a797c7e95c9d872dd15b1b816b50428835a3 |
IEDL.DBID | DR2 |
ISSN | 1399-543X 1399-5448 |
IngestDate | Thu Aug 21 17:37:33 EDT 2025 Fri Jul 11 05:19:16 EDT 2025 Wed Aug 13 08:57:09 EDT 2025 Thu Apr 03 07:00:13 EDT 2025 Tue Jul 01 04:05:41 EDT 2025 Thu Apr 24 22:56:14 EDT 2025 Wed Jan 22 17:05:31 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | epidemiology risk factors diabetes mellitus type 1 prospective study child |
Language | English |
License | http://doi.wiley.com/10.1002/tdm_license_1.1 http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4483-bf57dbcc9dc289fd8e1b06c517384a797c7e95c9d872dd15b1b816b50428835a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0002-6636-4048 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5764829 |
PMID | 28695611 |
PQID | 2001649131 |
PQPubID | 2045115 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5764829 proquest_miscellaneous_1917959883 proquest_journals_2001649131 pubmed_primary_28695611 crossref_citationtrail_10_1111_pedi_12543 crossref_primary_10_1111_pedi_12543 wiley_primary_10_1111_pedi_12543_PEDI12543 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2018 |
PublicationDateYYYYMMDD | 2018-03-01 |
PublicationDate_xml | – month: 03 year: 2018 text: March 2018 |
PublicationDecade | 2010 |
PublicationPlace | Former Munksgaard |
PublicationPlace_xml | – name: Former Munksgaard – name: Denmark – name: Hoboken |
PublicationTitle | Pediatric diabetes |
PublicationTitleAlternate | Pediatr Diabetes |
PublicationYear | 2018 |
Publisher | John Wiley & Sons A/S John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons A/S – name: John Wiley & Sons, Inc |
References | 2012; 61 2007; 104 2009; 41 2015; 16 1996; 39 2008; 1150 1999; 48 2008; 30 2011; 39 2016; 17 2012; 13 1996; 59 2012; 55 2009; 58 2013; 14 2013; 56 2015; 61 2015; 22 2014; 15 2005; 54 2014; 57 1996; 81 2008; 40 2010; 7 1996; 9 2010; 95 Michels (10.1111/pedi.12543-BIB0001|pedi12543-cit-0001) 2015; 16 Wenzlau (10.1111/pedi.12543-BIB0018|pedi12543-cit-0018) 2008; 1150 Winkler (10.1111/pedi.12543-BIB0024|pedi12543-cit-0024) 2012; 13 Lempainen (10.1111/pedi.12543-BIB0027|pedi12543-cit-0027) 2015; 61 Insel (10.1111/pedi.12543-BIB0002|pedi12543-cit-0002) 2015; 22 Barrett (10.1111/pedi.12543-BIB0007|pedi12543-cit-0007) 2009; 41 Burren (10.1111/pedi.12543-BIB0009|pedi12543-cit-0009) 2011; 39 Cooper (10.1111/pedi.12543-BIB0006|pedi12543-cit-0006) 2008; 40 Concannon (10.1111/pedi.12543-BIB0005|pedi12543-cit-0005) 2005; 54 Noble (10.1111/pedi.12543-BIB0003|pedi12543-cit-0003) 1996; 59 Ziegler (10.1111/pedi.12543-BIB0020|pedi12543-cit-0020) 2012; 55 Ziegler (10.1111/pedi.12543-BIB0012|pedi12543-cit-0012) 1999; 48 10.1111/pedi.12543-BIB0023|pedi12543-cit-0023 10.1111/pedi.12543-BIB0021|pedi12543-cit-0021 Lempainen (10.1111/pedi.12543-BIB0026|pedi12543-cit-0026) 2013; 14 Achenbach (10.1111/pedi.12543-BIB0025|pedi12543-cit-0025) 2013; 56 Pencina (10.1111/pedi.12543-BIB0022|pedi12543-cit-0022) 2008; 30 Lempainen (10.1111/pedi.12543-BIB0028|pedi12543-cit-0028) 2012; 61 Winkler (10.1111/pedi.12543-BIB0010|pedi12543-cit-0010) 2014; 57 Thümer (10.1111/pedi.12543-BIB0011|pedi12543-cit-0011) 2010; 7 Concannon (10.1111/pedi.12543-BIB0008|pedi12543-cit-0008) 2009; 58 Ilonen (10.1111/pedi.12543-BIB0004|pedi12543-cit-0004) 2016; 17 Rewers (10.1111/pedi.12543-BIB0013|pedi12543-cit-0013) 1996; 9 Wenzlau (10.1111/pedi.12543-BIB0017|pedi12543-cit-0017) 2007; 104 Meehan (10.1111/pedi.12543-BIB0029|pedi12543-cit-0029) 2015; 16 Bonifacio (10.1111/pedi.12543-BIB0016|pedi12543-cit-0016) 2010; 95 Rewers (10.1111/pedi.12543-BIB0014|pedi12543-cit-0014) 1996; 39 Steck (10.1111/pedi.12543-BIB0019|pedi12543-cit-0019) 2014; 15 Yu (10.1111/pedi.12543-BIB0015|pedi12543-cit-0015) 1996; 81 |
References_xml | – volume: 61 start-page: 45 year: 2015 end-page: 53 article-title: Non‐HLA gene effects on the disease process of type 1 diabetes: from HLA susceptibility to overt disease publication-title: J Autoimmun – volume: 58 start-page: 1018 year: 2009 end-page: 1022 article-title: Genome‐wide scan for linkage to type 1 diabetes in 2,496 multiplex families from the Type 1 Diabetes Genetics Consortium publication-title: Diabetes – volume: 14 start-page: 490 year: 2013 end-page: 496 article-title: Associations of polymorphisms in non‐HLA loci with autoantibodies at the diagnosis of type 1 diabetes: INS and IKZF4 associate with insulin autoantibodies publication-title: Pediatr Diabetes – volume: 81 start-page: 4264 year: 1996 end-page: 4267 article-title: Antiislet autoantibodies usually develop sequentially rather than simultaneously publication-title: J Clin Endocrinol Metab – volume: 54 start-page: 2995 year: 2005 end-page: 3001 article-title: Type 1 diabetes: evidence for susceptibility loci from four genome‐wide linkage scans in 1,435 multiplex families publication-title: Diabetes – volume: 1150 start-page: 256 year: 2008 end-page: 259 article-title: SlC30A8 is a major target of humoral autoimmunity in type 1 diabetes and a predictive marker in prediabetes publication-title: Ann N Y Acad Sci – volume: 39 start-page: D997 year: 2011 end-page: D1001 article-title: T1DBase: update 2011, organization and presentation of large‐scale data sets for type 1 diabetes research publication-title: Nucleic Acids Res – volume: 95 start-page: 3360 year: 2010 end-page: 3367 article-title: Harmonization of glutamic acid decarboxylase and islet antigen‐2 autoantibody assays for national institute of diabetes and digestive and kidney diseases consortia publication-title: J Clin Endocrinol Metab – volume: 61 start-page: 963 year: 2012 end-page: 966 article-title: Effect of the PTPN22 and INS risk genotypes on the progression to clinical type 1 diabetes after the initiation of β‐cell autoimmunity publication-title: Diabetes – volume: 56 start-page: 1615 year: 2013 end-page: 1622 article-title: Characteristics of rapid vs slow progression to type 1 diabetes in multiple islet autoantibody‐positive children publication-title: Diabetologia – volume: 48 start-page: 460 year: 1999 end-page: 468 article-title: Autoantibody appearance and risk for development of childhood diabetes in offspring of parents with type 1 diabetes: the 2‐year analysis of the German BABYDIAB Study publication-title: Diabetes – volume: 9 start-page: 405 year: 1996 end-page: 410 article-title: Beta‐cell autoantibodies in infants and toddlers without IDDM relatives: Diabetes Autoimmunity Study in the Young (DAISY) publication-title: J Autoimmun – volume: 30 start-page: 157 year: 2008 end-page: 172 article-title: Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond publication-title: Stat Med – volume: 13 start-page: 549 year: 2012 end-page: 555 article-title: A strategy for combining minor genetic susceptibility genes to improve prediction of disease in type 1 diabetes publication-title: Genes Immun – volume: 59 start-page: 1134 year: 1996 end-page: 1148 article-title: The role of HLA class II genes in insulin‐dependent diabetes mellitus: molecular analysis of 180 Caucasian, multiplex families publication-title: Am J Hum Genet – volume: 16 start-page: 465 year: 2015 end-page: 484 article-title: Prediction and prevention of type 1 diabetes: update on success of prediction and struggles at prevention publication-title: Pediatr Diabetes – volume: 22 start-page: 270 year: 2015 end-page: 276 article-title: General population screening for type 1 diabetes: has its time come? publication-title: Curr Opin Endocrinol Diabetes Obes – volume: 7 start-page: 202 year: 2010 end-page: 208 article-title: German new onset diabetes in the young incident cohort study: DiMelli study design and first‐year results publication-title: Rev Diabet Stud – volume: 41 start-page: 703 year: 2009 end-page: 707 article-title: Genome‐wide association study and meta‐analysis find that over 40 loci affect risk of type 1 diabetes publication-title: Nat Genet – volume: 16 start-page: 565 year: 2015 end-page: 572 article-title: Screening for T1D risk to reduce DKA is not economically viable publication-title: Pediatr Diabetes – volume: 17 start-page: 8 year: 2016 end-page: 16 article-title: Genetic susceptibility to type 1 diabetes in childhood – estimation of HLA class II associated disease risk and class II effect in various phases of islet autoimmunity publication-title: Pediatr Diabetes – volume: 57 start-page: 2521 year: 2014 end-page: 2529 article-title: Feature ranking of type 1 diabetes susceptibility genes improves prediction of type 1 diabetes publication-title: Diabetologia – volume: 15 start-page: 355 year: 2014 end-page: 362 article-title: Improving prediction of type 1 diabetes by testing non‐HLA genetic variants in addition to HLA markers publication-title: Pediatr Diabetes – volume: 40 start-page: 1399 year: 2008 end-page: 1401 article-title: Meta‐analysis of genome‐wide association study data identifies additional type 1 diabetes risk loci publication-title: Nat Genet – volume: 39 start-page: 807 year: 1996 end-page: 812 article-title: Newborn screening for HLA markers associated with IDDM: Diabetes Autoimmunity Study in the Young (DAISY) publication-title: Diabetologia – volume: 104 start-page: 17040 year: 2007 end-page: 17045 article-title: The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes publication-title: Proc Natl Acad Sci U S A – volume: 55 start-page: 1937 year: 2012 end-page: 1943 article-title: Age‐related islet autoantibody incidence in offspring of patients with type 1 diabetes publication-title: Diabetologia – volume: 1150 start-page: 256 year: 2008 ident: 10.1111/pedi.12543-BIB0018|pedi12543-cit-0018 article-title: SlC30A8 is a major target of humoral autoimmunity in type 1 diabetes and a predictive marker in prediabetes publication-title: Ann N Y Acad Sci doi: 10.1196/annals.1447.029 – volume: 57 start-page: 2521 year: 2014 ident: 10.1111/pedi.12543-BIB0010|pedi12543-cit-0010 article-title: Feature ranking of type 1 diabetes susceptibility genes improves prediction of type 1 diabetes publication-title: Diabetologia doi: 10.1007/s00125-014-3362-1 – volume: 22 start-page: 270 year: 2015 ident: 10.1111/pedi.12543-BIB0002|pedi12543-cit-0002 article-title: General population screening for type 1 diabetes: has its time come? publication-title: Curr Opin Endocrinol Diabetes Obes doi: 10.1097/MED.0000000000000173 – volume: 7 start-page: 202 year: 2010 ident: 10.1111/pedi.12543-BIB0011|pedi12543-cit-0011 article-title: German new onset diabetes in the young incident cohort study: DiMelli study design and first-year results publication-title: Rev Diabet Stud – volume: 40 start-page: 1399 year: 2008 ident: 10.1111/pedi.12543-BIB0006|pedi12543-cit-0006 article-title: Meta-analysis of genome-wide association study data identifies additional type 1 diabetes risk loci publication-title: Nat Genet doi: 10.1038/ng.249 – volume: 55 start-page: 1937 year: 2012 ident: 10.1111/pedi.12543-BIB0020|pedi12543-cit-0020 article-title: Age-related islet autoantibody incidence in offspring of patients with type 1 diabetes publication-title: Diabetologia doi: 10.1007/s00125-012-2472-x – volume: 17 start-page: 8 year: 2016 ident: 10.1111/pedi.12543-BIB0004|pedi12543-cit-0004 article-title: Genetic susceptibility to type 1 diabetes in childhood - estimation of HLA class II associated disease risk and class II effect in various phases of islet autoimmunity publication-title: Pediatr Diabetes doi: 10.1111/pedi.12327 – volume: 13 start-page: 549 year: 2012 ident: 10.1111/pedi.12543-BIB0024|pedi12543-cit-0024 article-title: A strategy for combining minor genetic susceptibility genes to improve prediction of disease in type 1 diabetes publication-title: Genes Immun doi: 10.1038/gene.2012.36 – volume: 16 start-page: 565 year: 2015 ident: 10.1111/pedi.12543-BIB0029|pedi12543-cit-0029 article-title: Screening for T1D risk to reduce DKA is not economically viable publication-title: Pediatr Diabetes doi: 10.1111/pedi.12313 – volume: 95 start-page: 3360 year: 2010 ident: 10.1111/pedi.12543-BIB0016|pedi12543-cit-0016 article-title: Harmonization of glutamic acid decarboxylase and islet antigen-2 autoantibody assays for national institute of diabetes and digestive and kidney diseases consortia publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2010-0293 – volume: 56 start-page: 1615 year: 2013 ident: 10.1111/pedi.12543-BIB0025|pedi12543-cit-0025 article-title: Characteristics of rapid vs slow progression to type 1 diabetes in multiple islet autoantibody-positive children publication-title: Diabetologia doi: 10.1007/s00125-013-2896-y – volume: 39 start-page: 807 year: 1996 ident: 10.1111/pedi.12543-BIB0014|pedi12543-cit-0014 article-title: Newborn screening for HLA markers associated with IDDM: Diabetes Autoimmunity Study in the Young (DAISY) publication-title: Diabetologia doi: 10.1007/s001250050514 – volume: 30 start-page: 157 year: 2008 ident: 10.1111/pedi.12543-BIB0022|pedi12543-cit-0022 article-title: Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond publication-title: Stat Med doi: 10.1002/sim.2929 – ident: 10.1111/pedi.12543-BIB0023|pedi12543-cit-0023 – volume: 61 start-page: 45 year: 2015 ident: 10.1111/pedi.12543-BIB0027|pedi12543-cit-0027 article-title: Non-HLA gene effects on the disease process of type 1 diabetes: from HLA susceptibility to overt disease publication-title: J Autoimmun doi: 10.1016/j.jaut.2015.05.005 – volume: 16 start-page: 465 year: 2015 ident: 10.1111/pedi.12543-BIB0001|pedi12543-cit-0001 article-title: Prediction and prevention of type 1 diabetes: update on success of prediction and struggles at prevention publication-title: Pediatr Diabetes doi: 10.1111/pedi.12299 – volume: 81 start-page: 4264 year: 1996 ident: 10.1111/pedi.12543-BIB0015|pedi12543-cit-0015 article-title: Antiislet autoantibodies usually develop sequentially rather than simultaneously publication-title: J Clin Endocrinol Metab – volume: 104 start-page: 17040 year: 2007 ident: 10.1111/pedi.12543-BIB0017|pedi12543-cit-0017 article-title: The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0705894104 – volume: 48 start-page: 460 year: 1999 ident: 10.1111/pedi.12543-BIB0012|pedi12543-cit-0012 article-title: Autoantibody appearance and risk for development of childhood diabetes in offspring of parents with type 1 diabetes: the 2-year analysis of the German BABYDIAB Study publication-title: Diabetes doi: 10.2337/diabetes.48.3.460 – volume: 15 start-page: 355 year: 2014 ident: 10.1111/pedi.12543-BIB0019|pedi12543-cit-0019 article-title: Improving prediction of type 1 diabetes by testing non-HLA genetic variants in addition to HLA markers publication-title: Pediatr Diabetes doi: 10.1111/pedi.12092 – volume: 14 start-page: 490 year: 2013 ident: 10.1111/pedi.12543-BIB0026|pedi12543-cit-0026 article-title: Associations of polymorphisms in non-HLA loci with autoantibodies at the diagnosis of type 1 diabetes: INS and IKZF4 associate with insulin autoantibodies publication-title: Pediatr Diabetes doi: 10.1111/pedi.12046 – volume: 59 start-page: 1134 year: 1996 ident: 10.1111/pedi.12543-BIB0003|pedi12543-cit-0003 article-title: The role of HLA class II genes in insulin-dependent diabetes mellitus: molecular analysis of 180 Caucasian, multiplex families publication-title: Am J Hum Genet – volume: 9 start-page: 405 year: 1996 ident: 10.1111/pedi.12543-BIB0013|pedi12543-cit-0013 article-title: Beta-cell autoantibodies in infants and toddlers without IDDM relatives: Diabetes Autoimmunity Study in the Young (DAISY) publication-title: J Autoimmun doi: 10.1006/jaut.1996.0055 – volume: 41 start-page: 703 year: 2009 ident: 10.1111/pedi.12543-BIB0007|pedi12543-cit-0007 article-title: Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes publication-title: Nat Genet doi: 10.1038/ng.381 – ident: 10.1111/pedi.12543-BIB0021|pedi12543-cit-0021 – volume: 54 start-page: 2995 year: 2005 ident: 10.1111/pedi.12543-BIB0005|pedi12543-cit-0005 article-title: Type 1 diabetes: evidence for susceptibility loci from four genome-wide linkage scans in 1,435 multiplex families publication-title: Diabetes doi: 10.2337/diabetes.54.10.2995 – volume: 39 start-page: D997 year: 2011 ident: 10.1111/pedi.12543-BIB0009|pedi12543-cit-0009 article-title: T1DBase: update 2011, organization and presentation of large-scale data sets for type 1 diabetes research publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq912 – volume: 58 start-page: 1018 year: 2009 ident: 10.1111/pedi.12543-BIB0008|pedi12543-cit-0008 article-title: Genome-wide scan for linkage to type 1 diabetes in 2,496 multiplex families from the Type 1 Diabetes Genetics Consortium publication-title: Diabetes doi: 10.2337/db08-1551 – volume: 61 start-page: 963 year: 2012 ident: 10.1111/pedi.12543-BIB0028|pedi12543-cit-0028 article-title: Effect of the PTPN22 and INS risk genotypes on the progression to clinical type 1 diabetes after the initiation of β-cell autoimmunity publication-title: Diabetes doi: 10.2337/db11-0386 |
SSID | ssj0017934 |
Score | 2.2645783 |
Snippet | Background
Genetic predisposition for type 1 diabetes (T1D) is largely determined by human leukocyte antigen (HLA) genes; however, over 50 other genetic... Genetic predisposition for type 1 diabetes (T1D) is largely determined by human leukocyte antigen (HLA) genes; however, over 50 other genetic regions confer... Background Genetic predisposition for type 1 diabetes (T1D) is largely determined by human leukocyte antigen (HLA) genes; however, over 50 other genetic... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 277 |
SubjectTerms | Autoantibodies - analysis Autoimmunity Child Child, Preschool Children Cohort Studies Diabetes Diabetes mellitus Diabetes mellitus (insulin dependent) Diabetes Mellitus, Type 1 - blood Diabetes Mellitus, Type 1 - genetics Diabetes Mellitus, Type 1 - immunology Discriminant Analysis Disease-Free Survival epidemiology ErbB-3 protein Family Health Female Genetic Predisposition to Disease Histocompatibility antigen HLA HLA-D Antigens - chemistry HLA-D Antigens - genetics Humans Infant Insulin - chemistry Insulin - genetics Interleukin 2 receptors Interleukin 27 Kaplan-Meier Estimate Longitudinal Studies Male Models, Genetic Polymorphism, Single Nucleotide Prospective Studies prospective study Protein Tyrosine Phosphatase, Non-Receptor Type 22 - chemistry Protein Tyrosine Phosphatase, Non-Receptor Type 22 - genetics Protein-tyrosine-phosphatase risk factors Single-nucleotide polymorphism type 1 |
Title | Prediction of type 1 diabetes using a genetic risk model in the Diabetes Autoimmunity Study in the Young |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpedi.12543 https://www.ncbi.nlm.nih.gov/pubmed/28695611 https://www.proquest.com/docview/2001649131 https://www.proquest.com/docview/1917959883 https://pubmed.ncbi.nlm.nih.gov/PMC5764829 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZaxRBEC5iBPHF-xiNS4u-KMyyPVd3gy8x2RCFhCUY2BcZ-ppkUWZDdvYh_nqreg6zRgR9GQa6humeOvqrnjoA3iJKrWSis9gXmYqzyopYVcbExk24MZoj0ylR-Oi4ODzNPs_z-RZ86HNh2voQw4EbaUaw16Tg2qyuKfkFGvcxp1xuNMAUrEWI6GSoHUWC13a0VSpGonlXm5TCeH49urkb3YCYNyMlryPYsAUd3Iev_eTbyJNv43VjxvbHb3Ud_3d1D-Beh03ZbitMD2HL14_gzlH39_0xnM8u6Z5YyZYVo9Nbxll_essohP6MaYYiSZmRjKLWWei0wxY1Q6DJ9nvS3XWzXITMlOaKUSjjVU8SrM8TOD2Yftk7jLtODbFF9y6NTZULZ6xVzqIDVznpuZkUNucilZkWSljhVY7DUiTO8dxwI3lhcnLYEALq9Cls18vaPwdmk8SLXOtMyyKrJmguZOVT6yfSuaRwIoJ3PcdK25Uxp24a38venaFPV4ZPF8GbgfaiLd7xR6qdnvFlp8Ar6s6JjqTiKY_g9TCMqkf_U3Ttl-tVSa6uyhWuIIJnrZwMr0lkQSnD-LTYkKCBgMp6b47Ui_NQ3hs9wEwmKoL3QUD-MvNyNt3_FO5e_AvxS7iLsE-2kXQ7sN1crv0rhFaNGcEtMRd4lXt8BLc_To9nJ6OgVj8BtQ4kjw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxQxDLagSMCFd-lAgSC4gDSrzbySHCvaagvdqkKttLdRXkNXVLNVd_ZQfj125kGXIiS4RYqjmSR2Yjv2Z4D3qKVWMtFZ7ItMxVllRawqY2LjxtwYzXHTKVF4elRMTrPPs3zWxeZQLkyLDzE43EgywnlNAk4O6WtSfoGn-4hTMvdtuEMlvYNF9XVAjyLWa2vaKhUj1axDJ6VAnl9j1--jG0rmzVjJ6zpsuIT2H7aVVpcBu5BiT76PVo0Z2R-_ITv-9_wewYNOPWU7LT89hlu-fgJ3p90D_FM4O76kNu0mW1SMHLiMs96ByyiK_hvTDLmSkiMZBa6zUGyHzWuGuibb7Ul3Vs1iHpJTmitG0YxXPUk4gJ7B6f7eyadJ3BVriC1aeGlsqlw4Y61yFm24yknPzbiwORepzLRQwgqvcuyWInGO54YbyQuTk82GWqBON2GjXtR-C5hNEi9yrTMti6wa44khK59aP5bOJYUTEXzot6y0HZI5FdQ4L3uLhpauDEsXwbuB9qLF7_gj1Xa_82Unw0sq0Im2pOIpj-Dt0I3SR08quvaL1bIka1flCmcQwfOWUYbPJLKgrGEcLdZYaCAgZO_1nnp-FhC-0QjMZKIi-Bg45C9_Xh7v7R6E1ot_IX4D9yYn08Py8ODoy0u4j1qgbAPrtmGjuVz5V6hpNeZ1kKef74UlXA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9qheKL1u_VViP6orDHZje7ScCX0uvRqi2HWLgXWfK19lD2jnbvof71ZrIf9loR9C2QCZvNzCS_SeYD4I1HqZVIFYtdwWTMKsNjWWkda5tQrRX1TMdA4eOT4vCUfZjlsw1438fCtPkhhgs31IywX6OCL211RcmXfnMfUYzlvgW3WZEIlOnx5yF5FEpeW9JWythTzbrkpOjH83vs-nF0A2PedJW8CmHDGTS5B1_72beuJ99Hq0aPzM9riR3_9_e24W4HTsleK033YcPVD2DruHt-fwhn03NsIy_JoiJ4fUso6a9vCfrQfyOKeJnE0EiCbusklNoh85p4pEnGPeneqlnMQ2hKc0nQl_GyJwnbzyM4nRx82T-Mu1INsfH2XRbrKudWGyOt8RZcZYWjOilMTnkmmOKSG-5k7rsFT62luaZa0ELnaLF5DKiyx7BZL2r3FIhJU8dzpZgSBasSv1-IymXGJcLatLA8grc9x0rT5THHcho_yt6ewaUrw9JF8HqgXbbZO_5ItdMzvuw0-ALLc3pLUtKMRvBq6Pa6hw8qqnaL1UWJtq7Mpf-DCJ60cjJ8JhUFxgz70XxNggYCzOu93lPPz0J-b28CMpHKCN4FAfnLzMvpwfgotJ79C_FL2JqOJ-Wno5OPz-GOh4Ci9arbgc3mfOV2Pcxq9IugTb8AihUkFA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+type+1+diabetes+using+a+genetic+risk+model+in+the+Diabetes+Autoimmunity+Study+in+the+Young&rft.jtitle=Pediatric+diabetes&rft.au=Frohnert%2C+Brigitte+I&rft.au=Laimighofer%2C+Michael&rft.au=Krumsiek%2C+Jan&rft.au=Theis%2C+Fabian+J&rft.date=2018-03-01&rft.issn=1399-5448&rft.eissn=1399-5448&rft.volume=19&rft.issue=2&rft.spage=277&rft_id=info:doi/10.1111%2Fpedi.12543&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1399-543X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1399-543X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1399-543X&client=summon |