Self-Assembled Asymmetric Block Copolymer Membranes: Bridging the Gap from Ultra- to Nanofiltration

The self‐assembly of block copolymers is an emerging strategy to produce isoporous ultrafiltration membranes. However, thus far, it has not been possible to bridge the gap from ultra‐ to nanofiltration and decrease the pore size of self‐assembled block copolymer membranes to below 5 nm without post‐...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 54; no. 47; pp. 13937 - 13941
Main Authors Yu, Haizhou, Qiu, Xiaoyan, Moreno, Nicolas, Ma, Zengwei, Calo, Victor Manuel, Nunes, Suzana P., Peinemann, Klaus-Viktor
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 16.11.2015
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The self‐assembly of block copolymers is an emerging strategy to produce isoporous ultrafiltration membranes. However, thus far, it has not been possible to bridge the gap from ultra‐ to nanofiltration and decrease the pore size of self‐assembled block copolymer membranes to below 5 nm without post‐treatment. It is now reported that the self‐assembly of blends of two chemically interacting copolymers can lead to highly porous membranes with pore diameters as small as 1.5 nm. The membrane containing an ultraporous, 60 nm thin separation layer can fully reject solutes with molecular weights of 600 g mol−1 in aqueous solutions with a water flux that is more than one order of magnitude higher than the permeance of commercial nanofiltration membranes. Simulations of the membrane formation process by dissipative particle dynamics (DPD) were used to explain the dramatic observed pore size reduction combined with an increase in water flux. Blends of two chemically interacting copolymers bridge the gap from ultra‐ (UF) to nanofiltration (NF) as such membranes with pore sizes below 5 nm have been synthesized without post‐treatment. Simulations of the membrane formation process by dissipative particle dynamics were used to explain the dramatic observed pore size reduction combined with an increase in water flux.
AbstractList The self-assembly of block copolymers is an emerging strategy to produce isoporous ultrafiltration membranes. However, thus far, it has not been possible to bridge the gap from ultra- to nanofiltration and decrease the pore size of self-assembled block copolymer membranes to below 5 nm without post-treatment. It is now reported that the self-assembly of blends of two chemically interacting copolymers can lead to highly porous membranes with pore diameters as small as 1.5 nm. The membrane containing an ultraporous, 60 nm thin separation layer can fully reject solutes with molecular weights of 600 g mol(-1) in aqueous solutions with a water flux that is more than one order of magnitude higher than the permeance of commercial nanofiltration membranes. Simulations of the membrane formation process by dissipative particle dynamics (DPD) were used to explain the dramatic observed pore size reduction combined with an increase in water flux.The self-assembly of block copolymers is an emerging strategy to produce isoporous ultrafiltration membranes. However, thus far, it has not been possible to bridge the gap from ultra- to nanofiltration and decrease the pore size of self-assembled block copolymer membranes to below 5 nm without post-treatment. It is now reported that the self-assembly of blends of two chemically interacting copolymers can lead to highly porous membranes with pore diameters as small as 1.5 nm. The membrane containing an ultraporous, 60 nm thin separation layer can fully reject solutes with molecular weights of 600 g mol(-1) in aqueous solutions with a water flux that is more than one order of magnitude higher than the permeance of commercial nanofiltration membranes. Simulations of the membrane formation process by dissipative particle dynamics (DPD) were used to explain the dramatic observed pore size reduction combined with an increase in water flux.
The self-assembly of block copolymers is an emerging strategy to produce isoporous ultrafiltration membranes. However, thus far, it has not been possible to bridge the gap from ultra- to nanofiltration and decrease the pore size of self-assembled block copolymer membranes to below 5nm without post-treatment. It is now reported that the self-assembly of blends of two chemically interacting copolymers can lead to highly porous membranes with pore diameters as small as 1.5nm. The membrane containing an ultraporous, 60nm thin separation layer can fully reject solutes with molecular weights of 600gmol-1 in aqueous solutions with a water flux that is more than one order of magnitude higher than the permeance of commercial nanofiltration membranes. Simulations of the membrane formation process by dissipative particle dynamics (DPD) were used to explain the dramatic observed pore size reduction combined with an increase in water flux.
The self‐assembly of block copolymers is an emerging strategy to produce isoporous ultrafiltration membranes. However, thus far, it has not been possible to bridge the gap from ultra‐ to nanofiltration and decrease the pore size of self‐assembled block copolymer membranes to below 5 nm without post‐treatment. It is now reported that the self‐assembly of blends of two chemically interacting copolymers can lead to highly porous membranes with pore diameters as small as 1.5 nm. The membrane containing an ultraporous, 60 nm thin separation layer can fully reject solutes with molecular weights of 600 g mol −1 in aqueous solutions with a water flux that is more than one order of magnitude higher than the permeance of commercial nanofiltration membranes. Simulations of the membrane formation process by dissipative particle dynamics (DPD) were used to explain the dramatic observed pore size reduction combined with an increase in water flux.
The self-assembly of block copolymers is an emerging strategy to produce isoporous ultrafiltration membranes. However, thus far, it has not been possible to bridge the gap from ultra- to nanofiltration and decrease the pore size of self-assembled block copolymer membranes to below 5 nm without post-treatment. It is now reported that the self-assembly of blends of two chemically interacting copolymers can lead to highly porous membranes with pore diameters as small as 1.5 nm. The membrane containing an ultraporous, 60 nm thin separation layer can fully reject solutes with molecular weights of 600 g mol(-1) in aqueous solutions with a water flux that is more than one order of magnitude higher than the permeance of commercial nanofiltration membranes. Simulations of the membrane formation process by dissipative particle dynamics (DPD) were used to explain the dramatic observed pore size reduction combined with an increase in water flux.
The self‐assembly of block copolymers is an emerging strategy to produce isoporous ultrafiltration membranes. However, thus far, it has not been possible to bridge the gap from ultra‐ to nanofiltration and decrease the pore size of self‐assembled block copolymer membranes to below 5 nm without post‐treatment. It is now reported that the self‐assembly of blends of two chemically interacting copolymers can lead to highly porous membranes with pore diameters as small as 1.5 nm. The membrane containing an ultraporous, 60 nm thin separation layer can fully reject solutes with molecular weights of 600 g mol−1 in aqueous solutions with a water flux that is more than one order of magnitude higher than the permeance of commercial nanofiltration membranes. Simulations of the membrane formation process by dissipative particle dynamics (DPD) were used to explain the dramatic observed pore size reduction combined with an increase in water flux. Blends of two chemically interacting copolymers bridge the gap from ultra‐ (UF) to nanofiltration (NF) as such membranes with pore sizes below 5 nm have been synthesized without post‐treatment. Simulations of the membrane formation process by dissipative particle dynamics were used to explain the dramatic observed pore size reduction combined with an increase in water flux.
Author Ma, Zengwei
Moreno, Nicolas
Yu, Haizhou
Nunes, Suzana P.
Peinemann, Klaus-Viktor
Qiu, Xiaoyan
Calo, Victor Manuel
Author_xml – sequence: 1
  givenname: Haizhou
  surname: Yu
  fullname: Yu, Haizhou
  organization: Advanced Membranes and Porous Materials Center, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Kingdom of Saudi Arabia)
– sequence: 2
  givenname: Xiaoyan
  surname: Qiu
  fullname: Qiu, Xiaoyan
  organization: Advanced Membranes and Porous Materials Center, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Kingdom of Saudi Arabia)
– sequence: 3
  givenname: Nicolas
  surname: Moreno
  fullname: Moreno, Nicolas
  organization: Biological and Environmental Science and Engineering Division (KAUST), Thuwal 23955-6900 (Kingdom of Saudi Arabia)
– sequence: 4
  givenname: Zengwei
  surname: Ma
  fullname: Ma, Zengwei
  organization: School of Optoelectronic Information, Chongqing University of Technology, Chongqing 40054 (China)
– sequence: 5
  givenname: Victor Manuel
  surname: Calo
  fullname: Calo, Victor Manuel
  organization: Center for Numerical Porous Media (KAUST), Thuwal 23955-6900 (Kingdom of Saudi Arabia)
– sequence: 6
  givenname: Suzana P.
  surname: Nunes
  fullname: Nunes, Suzana P.
  organization: Biological and Environmental Science and Engineering Division (KAUST), Thuwal 23955-6900 (Kingdom of Saudi Arabia)
– sequence: 7
  givenname: Klaus-Viktor
  surname: Peinemann
  fullname: Peinemann, Klaus-Viktor
  email: klausviktor.peinemann@kaust.edu.sa
  organization: Advanced Membranes and Porous Materials Center, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Kingdom of Saudi Arabia)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26388216$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1vEzEQhi1URD_gyhFZ4sJlg73-DLd0VUJFCRJQcbS83tni1rtO7Y0g_x6HtBWqhDiNR3qe0YzfY3QwxhEQeknJjBJSv7Wjh1lNqCBCSvYEHVFR04opxQ7KmzNWKS3oITrO-brwWhP5DB3WkmldU3mE3FcIfbXIGYY2QIcXeTsMMCXv8GmI7gY3cR3DdoCEPxUk2RHyO3yafHflxys8_QC8tGvcpzjgyzAlW-Ep4pUdY-937eTj-Bw97W3I8OKunqDL92ffmg_VxeflebO4qBznmlXzVjBey7p1XdcrNndS9GTOGLQ1l1YIzm3PFQMngTnRasd6Arq1LW-J7qlkJ-jNfu46xdsN5MkMPjsIoSwdN9lQJYnWnNaioK8foddxk8ayXaGEIopoRgr16o7atAN0Zp38YNPW3H9fAfgecCnmnKA3zk9_bi6n-2AoMbuUzC4l85BS0WaPtPvJ_xTme-GnD7D9D20Wq_Ozv91q7_o8wa8H16YbIxVTwnxfLc0XQVTTNNp8ZL8BG_Sy1w
CODEN ACIEAY
CitedBy_id crossref_primary_10_1021_acs_iecr_7b02411
crossref_primary_10_1016_j_cocis_2020_03_003
crossref_primary_10_1039_C6PY01401A
crossref_primary_10_1002_smll_201701885
crossref_primary_10_1038_s41598_018_22200_4
crossref_primary_10_1016_j_memsci_2022_121277
crossref_primary_10_1021_acsmacrolett_9b00403
crossref_primary_10_1002_marc_201600440
crossref_primary_10_1016_j_cis_2021_102545
crossref_primary_10_1016_j_memsci_2018_06_038
crossref_primary_10_1039_D0SC00569J
crossref_primary_10_1039_D2CS00894G
crossref_primary_10_1007_s40843_020_1549_4
crossref_primary_10_1021_acs_macromol_1c01372
crossref_primary_10_1016_j_memsci_2016_05_061
crossref_primary_10_1126_sciadv_adf6122
crossref_primary_10_1038_s41545_018_0002_1
crossref_primary_10_1016_j_memsci_2022_120338
crossref_primary_10_1039_D1SM01368H
crossref_primary_10_1039_C7SM01284E
crossref_primary_10_1002_mame_202000017
crossref_primary_10_1002_smll_202308171
crossref_primary_10_1016_j_memsci_2023_121450
crossref_primary_10_1016_j_psep_2022_11_036
crossref_primary_10_1146_annurev_chembioeng_111919_091940
crossref_primary_10_3390_molecules27103263
crossref_primary_10_1039_C7CC01596H
crossref_primary_10_1021_acsapm_4c03286
crossref_primary_10_1016_j_pmatsci_2017_10_006
crossref_primary_10_1016_j_memsci_2018_11_044
crossref_primary_10_1021_acsami_3c06709
crossref_primary_10_3390_polym11050887
crossref_primary_10_1016_j_desal_2019_05_001
crossref_primary_10_1039_C6QM00072J
crossref_primary_10_1021_acs_chemmater_8b03334
crossref_primary_10_1016_j_jiec_2021_06_022
crossref_primary_10_1039_D2NR05477A
crossref_primary_10_1016_j_memsci_2021_120097
crossref_primary_10_1021_acsnano_8b06521
crossref_primary_10_1126_science_aab0530
crossref_primary_10_3390_polym14214568
crossref_primary_10_1021_acs_macromol_8b02627
crossref_primary_10_1002_ange_201804656
crossref_primary_10_1007_s10965_019_1941_z
crossref_primary_10_1021_acs_macromol_7b00438
crossref_primary_10_1002_mats_201700027
crossref_primary_10_1039_D0TA02150D
crossref_primary_10_1016_j_coche_2020_02_002
crossref_primary_10_1002_macp_201600587
crossref_primary_10_1016_j_memsci_2020_118450
crossref_primary_10_1002_ange_202315167
crossref_primary_10_1016_j_memsci_2023_121427
crossref_primary_10_1039_C7TA09777H
crossref_primary_10_1016_j_seppur_2020_116818
crossref_primary_10_1021_acs_macromol_0c01111
crossref_primary_10_1039_C9CC00902G
crossref_primary_10_3390_polym15092020
crossref_primary_10_1016_j_memsci_2020_118849
crossref_primary_10_3390_nano10122443
crossref_primary_10_3390_polym11101636
crossref_primary_10_1016_j_seppur_2023_123964
crossref_primary_10_1021_acs_jpcb_6b00273
crossref_primary_10_1063_5_0052111
crossref_primary_10_1016_j_memsci_2018_09_047
crossref_primary_10_1021_acsami_9b10273
crossref_primary_10_1021_acsapm_0c00051
crossref_primary_10_1016_j_memsci_2020_118186
crossref_primary_10_1002_anie_202315167
crossref_primary_10_3390_membranes10080162
crossref_primary_10_1016_j_desal_2024_117609
crossref_primary_10_1016_j_memsci_2024_123021
crossref_primary_10_3390_nano10010141
crossref_primary_10_1016_j_memsci_2019_117761
crossref_primary_10_1016_j_seppur_2021_120228
crossref_primary_10_1039_C8FD00015H
crossref_primary_10_1016_j_progpolymsci_2020_101219
crossref_primary_10_1038_s41598_019_50338_2
crossref_primary_10_1016_j_memsci_2022_120932
crossref_primary_10_1016_j_desal_2024_118274
crossref_primary_10_1073_pnas_2010284117
crossref_primary_10_1021_acsnano_9b03659
crossref_primary_10_1002_mats_202000014
crossref_primary_10_1021_acsmacrolett_7b00278
crossref_primary_10_1080_15422119_2018_1500919
crossref_primary_10_1063_5_0052114
crossref_primary_10_1002_anie_201804656
crossref_primary_10_1016_j_memsci_2019_04_045
crossref_primary_10_1002_marc_202100235
crossref_primary_10_1016_j_memsci_2021_119858
crossref_primary_10_1016_j_memsci_2020_118241
crossref_primary_10_1088_0965_0393_24_8_085012
crossref_primary_10_1016_j_porgcoat_2021_106554
crossref_primary_10_1002_marc_201900561
crossref_primary_10_1016_j_seppur_2019_01_035
crossref_primary_10_1016_j_mattod_2023_03_002
crossref_primary_10_1016_j_memsci_2018_03_072
crossref_primary_10_1039_C6CC06402G
crossref_primary_10_1002_mats_202400046
crossref_primary_10_1039_D3SM01532G
crossref_primary_10_1021_acsami_1c23760
crossref_primary_10_1016_j_bios_2024_116457
crossref_primary_10_1016_j_coco_2021_101025
crossref_primary_10_1016_j_seppur_2021_118372
crossref_primary_10_1021_jacs_0c01829
crossref_primary_10_1039_D0TA02510K
crossref_primary_10_1039_C6CC03842E
crossref_primary_10_1016_j_memsci_2023_121745
crossref_primary_10_1007_s11705_020_1987_9
crossref_primary_10_1021_acsnano_0c07883
crossref_primary_10_1039_C8CP00751A
crossref_primary_10_1021_jacs_9b11336
crossref_primary_10_1002_polb_24419
crossref_primary_10_1021_acs_macromol_5b02579
crossref_primary_10_1039_C7CS00688H
crossref_primary_10_1016_j_apsusc_2019_143896
crossref_primary_10_1016_j_memsci_2019_05_011
crossref_primary_10_1016_j_progpolymsci_2024_101907
crossref_primary_10_1021_acs_langmuir_6b04465
crossref_primary_10_1016_j_memsci_2017_11_047
crossref_primary_10_1021_acs_macromol_8b01446
crossref_primary_10_1021_acsami_6b14332
Cites_doi 10.1126/science.1162950
10.1021/nn1014006
10.1088/0965-0393/18/1/015012
10.1021/la201439p
10.1038/ncomms3297
10.1016/j.memsci.2013.05.029
10.1038/nnano.2010.274
10.1021/la500712b
10.1126/science.1070821
10.1002/anie.201404491
10.1126/science.1111041
10.1126/science.1212101
10.1209/0295-5075/19/3/001
10.1038/srep03190
10.1021/ma0499775
10.1139/v99-141
10.1021/nl0494001
10.1038/nmat1717
10.1039/c3sm27475f
10.1038/nmat1295
10.1007/s11837-013-0827-5
10.1006/jcph.1995.1039
10.1002/adma.200803302
10.1038/nature05532
10.1063/1.882522
10.1038/nnano.2008.13
10.1038/nmat2038
10.1002/ange.201404491
10.1002/adma.201404309
10.1016/j.polymer.2013.11.010
10.1021/ma101531k
10.1039/b610188g
10.1038/nmat2512
10.1038/nnano.2009.90
10.1021/la5028527
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201505663
DatabaseName Istex
CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
CrossRef
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 13941
ExternalDocumentID 3922318331
26388216
10_1002_anie_201505663
ANIE201505663
ark_67375_WNG_R507CCC8_K
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: King Abdullah University of Science and Technology (KAUST)
– fundername: National Natural Science Foundation of China
  funderid: 21304110
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
B-7
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAHQN
AAMNL
AAYCA
ACYXJ
AFWVQ
ALVPJ
AAYXX
ABDBF
ABJNI
AETEA
AEYWJ
AGQPQ
AGYGG
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4483-9b534262bcddf739c65f0933eb246a5544af473ec6e3c5b8c3f0e8bab4b08f163
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 03:54:31 EDT 2025
Sun Jul 13 03:38:19 EDT 2025
Thu Apr 03 07:05:56 EDT 2025
Tue Jul 01 03:27:02 EDT 2025
Thu Apr 24 23:05:26 EDT 2025
Wed Jan 22 16:29:43 EST 2025
Wed Oct 30 09:54:38 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 47
Keywords membranes
block copolymers
self-assembly
nanofiltration
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4483-9b534262bcddf739c65f0933eb246a5544af473ec6e3c5b8c3f0e8bab4b08f163
Notes King Abdullah University of Science and Technology (KAUST)
istex:F550797AD944E922F47B91ACBBA7B03AB57E5FD6
ark:/67375/WNG-R507CCC8-K
National Natural Science Foundation of China - No. 21304110
ArticleID:ANIE201505663
These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26388216
PQID 1757070830
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_1760884125
proquest_journals_1757070830
pubmed_primary_26388216
crossref_citationtrail_10_1002_anie_201505663
crossref_primary_10_1002_anie_201505663
wiley_primary_10_1002_anie_201505663_ANIE201505663
istex_primary_ark_67375_WNG_R507CCC8_K
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 16, 2015
PublicationDateYYYYMMDD 2015-11-16
PublicationDate_xml – month: 11
  year: 2015
  text: November 16, 2015
  day: 16
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew. Chem. Int. Ed
PublicationYear 2015
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References D. A. Christian, W. Tian, W. G. Ellenbroek, I. Levental, K. Rajagopal, P. A. Janmey, A. J. Liu, T. Baumgart, D. E. Discher, Nat. Mater. 2009, 8, 843-849.
M. Radjabian, V. Abetz, Adv. Mater. 2015, 27, 352-355.
S. Plimpton, J. Comput. Phys. 1995, 117, 1-19.
K.-V. Peinemann, V. Abetz, P. F. W. Simon, Nat. Mater. 2007, 6, 992-996.
S. Karan, S. Samitse, X. Peng, K. Kurashima, I. Ichiinose, Science 2012, 335, 444-447.
W. Park, Y. Kim, J. Jeong, K. Kim, J.-K. Yoo, Y. Hur, J. Kim, E. L. Thomas, A. Alexander-Katz, Y. S. Jung, Sci. Rep. 2013, 3, 3190.
D. S. Marques, U. Vainio, N. M. Chaparro, V. M. Calo, A. R. Bezahd, J. W. Pitera, K.-V. Peinemann, S. P. Nunes, Soft Matter 2013, 9, 5557-5564.
D. S. Marques, R. M. Dorin, U. Wiesner, D.-M. Smilgies, A. R. Behzad, U. Vainio, K.-V. Peinemann, S. P. Nunes, Polymer 2014, 55, 1327-1332.
D. Losic, G. Triani, P. J. Evans, A. Atanacio, J. G. Mitchell, N. H. Voelcker, J. Mater. Chem. 2006, 16, 4029-4034.
P. Chen, T. Mitsui, D. Farmer, J. Golovchenko, R. G. Gordon, D. Branton, Nano Lett. 2004, 4, 1333-1337.
P. J. Hoogerbrugge, J. M. V. A. Koelman, Europhys. Lett. 1992, 19, 155-160.
Angew. Chem. 2014, 126, 10236-10240
A. Ruzette, L. Leibler, Nat. Mater. 2005, 4, 19-31.
E. A. Jackson, M. A. Hillmyer, ACS Nano 2010, 4, 3548-3553.
S. P. Nunes, M. Karunakaran, N. Pradeep, A. R. Behzad, B. Hooghan, R. Sougrat, H. He, K.-V. Peinemann, Langmuir 2011, 27, 10184-10190.
W. Zhang, L. Shi, Y. An, K. Wu, L. Gao, Z. Liu, R. Ma, Q. Meng, C. Zhao, B. He, Macromolecules 2004, 37, 2924-2929.
C. Tang, E. M. Lennon, G. H. Fredrickson, E. J. Kramer, C. J. Hawker, Science 2008, 322, 429-432.
C. C. Striemer, T. R. Gaborski, J. McGrath, P. M. Fauchet, Nature 2007, 445, 749-753.
E. Krieg, H. Weissman, E. Shirman, E. Shimoni, B. Rybtchinski, Nat. Nanotechnol. 2011, 6, 141-146.
G. M. Whitesides, B. Grzybowski, Science 2002, 295, 2418-2421.
J. Bang, U. Jeong, D. Y. Ryu, T. P. Russell, C. J. Hawker, Adv. Mater. 2009, 21, 4769-4792.
H. Yu, X. Qiu, S. P. Nunes, K.-V. Peinemann, Angew. Chem. Int. Ed. 2014, 53, 10072-10076
R. Vyhnalkova, A. H. Müller, A. Eisenberg, Langmuir 2014, 30, 13152-13163.
R. Vyhnalkova, A. H. Müller, A. Eisenberg, Langmuir 2014, 30, 5031-5040.
L. A. Baker, S. P. Bird, Nat. Nanotechnol. 2008, 3, 73-74.
N. S. Cameron, M. K. Corbierre, A. Eisenberg, Can. J. Chem. 1999, 77, 1311-1326.
M. Stoykovich, M. Müller, S. O. Kim, H. H. Solak, E. W. Edwards, J. J. de Pablo, P. F. Nealey, Science 2005, 308, 1442-1446.
M. Barsbay, O. Güven, H. Bessbousse, T. L. Wade, F. Beuneu, M.-C. Clochard, J. Membr. Sci. 2013, 445, 135-145.
A. Stukowski, JOM 2013, 66, 399-407.
X. Peng, J. Jin, Y. Nakamura, T. Ohno, I. Ichinose, Nat. Nanotechnol. 2009, 4, 353-357.
S. P. Nunes, R. Sougrat, B. Hooghan, D. H. Anjum, A. R. Behzad, L. Zhao, N. Pradeep, I. Pinnau, U. Vainio, K.-V. Peinemann, Macromolecules 2010, 43, 8079-8085.
F. S. Bates, G. H. Fredrickson, Phys. Today 1999, 52, 32-38.
A. Stukowski, Modell. Simul. Mater. Sci. Eng. 2010, 18, 015012.
J. Zhu, S. Zhang, K. Zhang, X. Wang, J. W. Mays, K. L. Wooley, D. J. Pochan, Nat. Commun. 2013, 4, 2297.
W. Lee, R. Ji, U. Gösele, K. Nielsch, Nat. Mater. 2006, 5, 741-747.
2014 2014; 53 126
2007; 445
2013; 3
2013; 4
2009; 21
2013; 66
2010; 18
2002; 295
2006; 16
2013; 445
2004; 4
1995; 117
2006; 5
1992; 19
2008; 3
2008; 322
2011; 6
2013; 9
2010; 43
2015; 27
2004; 37
2005; 4
2007; 6
1999; 77
2005; 308
2009; 8
1999; 52
2009; 4
2014; 30
2012; 335
2011; 27
2010; 4
2014; 55
e_1_2_4_20_2
e_1_2_4_22_2
e_1_2_4_21_2
e_1_2_4_24_2
e_1_2_4_23_2
e_1_2_4_26_2
e_1_2_4_25_2
e_1_2_4_28_2
e_1_2_4_27_2
e_1_2_4_29_2
e_1_2_4_2_2
e_1_2_4_1_2
e_1_2_4_4_2
e_1_2_4_3_2
e_1_2_4_6_2
e_1_2_4_5_2
e_1_2_4_8_2
e_1_2_4_7_2
e_1_2_4_9_2
e_1_2_4_31_2
e_1_2_4_30_2
e_1_2_4_10_2
e_1_2_4_33_2
e_1_2_4_11_2
e_1_2_4_32_2
e_1_2_4_12_2
e_1_2_4_13_2
e_1_2_4_34_2
e_1_2_4_13_3
e_1_2_4_14_2
e_1_2_4_15_2
e_1_2_4_17_2
e_1_2_4_16_2
e_1_2_4_19_2
e_1_2_4_18_2
References_xml – reference: S. P. Nunes, R. Sougrat, B. Hooghan, D. H. Anjum, A. R. Behzad, L. Zhao, N. Pradeep, I. Pinnau, U. Vainio, K.-V. Peinemann, Macromolecules 2010, 43, 8079-8085.
– reference: J. Zhu, S. Zhang, K. Zhang, X. Wang, J. W. Mays, K. L. Wooley, D. J. Pochan, Nat. Commun. 2013, 4, 2297.
– reference: R. Vyhnalkova, A. H. Müller, A. Eisenberg, Langmuir 2014, 30, 13152-13163.
– reference: K.-V. Peinemann, V. Abetz, P. F. W. Simon, Nat. Mater. 2007, 6, 992-996.
– reference: P. Chen, T. Mitsui, D. Farmer, J. Golovchenko, R. G. Gordon, D. Branton, Nano Lett. 2004, 4, 1333-1337.
– reference: C. Tang, E. M. Lennon, G. H. Fredrickson, E. J. Kramer, C. J. Hawker, Science 2008, 322, 429-432.
– reference: D. S. Marques, U. Vainio, N. M. Chaparro, V. M. Calo, A. R. Bezahd, J. W. Pitera, K.-V. Peinemann, S. P. Nunes, Soft Matter 2013, 9, 5557-5564.
– reference: D. A. Christian, W. Tian, W. G. Ellenbroek, I. Levental, K. Rajagopal, P. A. Janmey, A. J. Liu, T. Baumgart, D. E. Discher, Nat. Mater. 2009, 8, 843-849.
– reference: A. Stukowski, Modell. Simul. Mater. Sci. Eng. 2010, 18, 015012.
– reference: M. Barsbay, O. Güven, H. Bessbousse, T. L. Wade, F. Beuneu, M.-C. Clochard, J. Membr. Sci. 2013, 445, 135-145.
– reference: H. Yu, X. Qiu, S. P. Nunes, K.-V. Peinemann, Angew. Chem. Int. Ed. 2014, 53, 10072-10076;
– reference: E. A. Jackson, M. A. Hillmyer, ACS Nano 2010, 4, 3548-3553.
– reference: W. Zhang, L. Shi, Y. An, K. Wu, L. Gao, Z. Liu, R. Ma, Q. Meng, C. Zhao, B. He, Macromolecules 2004, 37, 2924-2929.
– reference: M. Stoykovich, M. Müller, S. O. Kim, H. H. Solak, E. W. Edwards, J. J. de Pablo, P. F. Nealey, Science 2005, 308, 1442-1446.
– reference: S. Plimpton, J. Comput. Phys. 1995, 117, 1-19.
– reference: W. Park, Y. Kim, J. Jeong, K. Kim, J.-K. Yoo, Y. Hur, J. Kim, E. L. Thomas, A. Alexander-Katz, Y. S. Jung, Sci. Rep. 2013, 3, 3190.
– reference: C. C. Striemer, T. R. Gaborski, J. McGrath, P. M. Fauchet, Nature 2007, 445, 749-753.
– reference: L. A. Baker, S. P. Bird, Nat. Nanotechnol. 2008, 3, 73-74.
– reference: A. Ruzette, L. Leibler, Nat. Mater. 2005, 4, 19-31.
– reference: A. Stukowski, JOM 2013, 66, 399-407.
– reference: Angew. Chem. 2014, 126, 10236-10240
– reference: S. P. Nunes, M. Karunakaran, N. Pradeep, A. R. Behzad, B. Hooghan, R. Sougrat, H. He, K.-V. Peinemann, Langmuir 2011, 27, 10184-10190.
– reference: M. Radjabian, V. Abetz, Adv. Mater. 2015, 27, 352-355.
– reference: G. M. Whitesides, B. Grzybowski, Science 2002, 295, 2418-2421.
– reference: P. J. Hoogerbrugge, J. M. V. A. Koelman, Europhys. Lett. 1992, 19, 155-160.
– reference: R. Vyhnalkova, A. H. Müller, A. Eisenberg, Langmuir 2014, 30, 5031-5040.
– reference: S. Karan, S. Samitse, X. Peng, K. Kurashima, I. Ichiinose, Science 2012, 335, 444-447.
– reference: D. S. Marques, R. M. Dorin, U. Wiesner, D.-M. Smilgies, A. R. Behzad, U. Vainio, K.-V. Peinemann, S. P. Nunes, Polymer 2014, 55, 1327-1332.
– reference: X. Peng, J. Jin, Y. Nakamura, T. Ohno, I. Ichinose, Nat. Nanotechnol. 2009, 4, 353-357.
– reference: W. Lee, R. Ji, U. Gösele, K. Nielsch, Nat. Mater. 2006, 5, 741-747.
– reference: F. S. Bates, G. H. Fredrickson, Phys. Today 1999, 52, 32-38.
– reference: D. Losic, G. Triani, P. J. Evans, A. Atanacio, J. G. Mitchell, N. H. Voelcker, J. Mater. Chem. 2006, 16, 4029-4034.
– reference: E. Krieg, H. Weissman, E. Shirman, E. Shimoni, B. Rybtchinski, Nat. Nanotechnol. 2011, 6, 141-146.
– reference: J. Bang, U. Jeong, D. Y. Ryu, T. P. Russell, C. J. Hawker, Adv. Mater. 2009, 21, 4769-4792.
– reference: N. S. Cameron, M. K. Corbierre, A. Eisenberg, Can. J. Chem. 1999, 77, 1311-1326.
– volume: 18
  start-page: 015012
  year: 2010
  publication-title: Modell. Simul. Mater. Sci. Eng.
– volume: 4
  start-page: 1333
  year: 2004
  end-page: 1337
  publication-title: Nano Lett.
– volume: 117
  start-page: 1
  year: 1995
  end-page: 19
  publication-title: J. Comput. Phys.
– volume: 445
  start-page: 749
  year: 2007
  end-page: 753
  publication-title: Nature
– volume: 27
  start-page: 352
  year: 2015
  end-page: 355
  publication-title: Adv. Mater.
– volume: 66
  start-page: 399
  year: 2013
  end-page: 407
  publication-title: JOM
– volume: 4
  start-page: 353
  year: 2009
  end-page: 357
  publication-title: Nat. Nanotechnol.
– volume: 5
  start-page: 741
  year: 2006
  end-page: 747
  publication-title: Nat. Mater.
– volume: 43
  start-page: 8079
  year: 2010
  end-page: 8085
  publication-title: Macromolecules
– volume: 9
  start-page: 5557
  year: 2013
  end-page: 5564
  publication-title: Soft Matter
– volume: 3
  start-page: 3190
  year: 2013
  publication-title: Sci. Rep.
– volume: 27
  start-page: 10184
  year: 2011
  end-page: 10190
  publication-title: Langmuir
– volume: 55
  start-page: 1327
  year: 2014
  end-page: 1332
  publication-title: Polymer
– volume: 4
  start-page: 3548
  year: 2010
  end-page: 3553
  publication-title: ACS Nano
– volume: 19
  start-page: 155
  year: 1992
  end-page: 160
  publication-title: Europhys. Lett.
– volume: 77
  start-page: 1311
  year: 1999
  end-page: 1326
  publication-title: Can. J. Chem.
– volume: 53 126
  start-page: 10072 10236
  year: 2014 2014
  end-page: 10076 10240
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 37
  start-page: 2924
  year: 2004
  end-page: 2929
  publication-title: Macromolecules
– volume: 30
  start-page: 13152
  year: 2014
  end-page: 13163
  publication-title: Langmuir
– volume: 6
  start-page: 992
  year: 2007
  end-page: 996
  publication-title: Nat. Mater.
– volume: 335
  start-page: 444
  year: 2012
  end-page: 447
  publication-title: Science
– volume: 21
  start-page: 4769
  year: 2009
  end-page: 4792
  publication-title: Adv. Mater.
– volume: 322
  start-page: 429
  year: 2008
  end-page: 432
  publication-title: Science
– volume: 8
  start-page: 843
  year: 2009
  end-page: 849
  publication-title: Nat. Mater.
– volume: 6
  start-page: 141
  year: 2011
  end-page: 146
  publication-title: Nat. Nanotechnol.
– volume: 4
  start-page: 2297
  year: 2013
  publication-title: Nat. Commun.
– volume: 30
  start-page: 5031
  year: 2014
  end-page: 5040
  publication-title: Langmuir
– volume: 4
  start-page: 19
  year: 2005
  end-page: 31
  publication-title: Nat. Mater.
– volume: 3
  start-page: 73
  year: 2008
  end-page: 74
  publication-title: Nat. Nanotechnol.
– volume: 308
  start-page: 1442
  year: 2005
  end-page: 1446
  publication-title: Science
– volume: 52
  start-page: 32
  year: 1999
  end-page: 38
  publication-title: Phys. Today
– volume: 445
  start-page: 135
  year: 2013
  end-page: 145
  publication-title: J. Membr. Sci.
– volume: 16
  start-page: 4029
  year: 2006
  end-page: 4034
  publication-title: J. Mater. Chem.
– volume: 295
  start-page: 2418
  year: 2002
  end-page: 2421
  publication-title: Science
– ident: e_1_2_4_18_2
  doi: 10.1126/science.1162950
– ident: e_1_2_4_10_2
  doi: 10.1021/nn1014006
– ident: e_1_2_4_33_2
  doi: 10.1088/0965-0393/18/1/015012
– ident: e_1_2_4_15_2
  doi: 10.1021/la201439p
– ident: e_1_2_4_20_2
  doi: 10.1038/ncomms3297
– ident: e_1_2_4_31_2
  doi: 10.1016/j.memsci.2013.05.029
– ident: e_1_2_4_5_2
  doi: 10.1038/nnano.2010.274
– ident: e_1_2_4_25_2
  doi: 10.1021/la500712b
– ident: e_1_2_4_7_2
  doi: 10.1126/science.1070821
– ident: e_1_2_4_13_2
  doi: 10.1002/anie.201404491
– ident: e_1_2_4_17_2
  doi: 10.1126/science.1111041
– ident: e_1_2_4_4_2
  doi: 10.1126/science.1212101
– ident: e_1_2_4_26_2
  doi: 10.1209/0295-5075/19/3/001
– ident: e_1_2_4_16_2
  doi: 10.1038/srep03190
– ident: e_1_2_4_27_2
  doi: 10.1021/ma0499775
– ident: e_1_2_4_28_2
  doi: 10.1139/v99-141
– ident: e_1_2_4_29_2
  doi: 10.1021/nl0494001
– ident: e_1_2_4_6_2
  doi: 10.1038/nmat1717
– ident: e_1_2_4_22_2
  doi: 10.1039/c3sm27475f
– ident: e_1_2_4_8_2
  doi: 10.1038/nmat1295
– ident: e_1_2_4_34_2
  doi: 10.1007/s11837-013-0827-5
– ident: e_1_2_4_32_2
  doi: 10.1006/jcph.1995.1039
– ident: e_1_2_4_11_2
  doi: 10.1002/adma.200803302
– ident: e_1_2_4_3_2
  doi: 10.1038/nature05532
– ident: e_1_2_4_9_2
  doi: 10.1063/1.882522
– ident: e_1_2_4_1_2
  doi: 10.1038/nnano.2008.13
– ident: e_1_2_4_12_2
  doi: 10.1038/nmat2038
– ident: e_1_2_4_13_3
  doi: 10.1002/ange.201404491
– ident: e_1_2_4_21_2
  doi: 10.1002/adma.201404309
– ident: e_1_2_4_23_2
  doi: 10.1016/j.polymer.2013.11.010
– ident: e_1_2_4_14_2
  doi: 10.1021/ma101531k
– ident: e_1_2_4_30_2
  doi: 10.1039/b610188g
– ident: e_1_2_4_19_2
  doi: 10.1038/nmat2512
– ident: e_1_2_4_2_2
  doi: 10.1038/nnano.2009.90
– ident: e_1_2_4_24_2
  doi: 10.1021/la5028527
SSID ssj0028806
Score 2.5287435
Snippet The self‐assembly of block copolymers is an emerging strategy to produce isoporous ultrafiltration membranes. However, thus far, it has not been possible to...
The self-assembly of block copolymers is an emerging strategy to produce isoporous ultrafiltration membranes. However, thus far, it has not been possible to...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 13937
SubjectTerms block copolymers
Copolymers
Membranes
Nanofiltration
Nanotechnology
Pore size
self-assembly
Solutes
Ultrafiltration
Title Self-Assembled Asymmetric Block Copolymer Membranes: Bridging the Gap from Ultra- to Nanofiltration
URI https://api.istex.fr/ark:/67375/WNG-R507CCC8-K/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201505663
https://www.ncbi.nlm.nih.gov/pubmed/26388216
https://www.proquest.com/docview/1757070830
https://www.proquest.com/docview/1760884125
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcoALj_IKFGQkBCe3SZw42d62UR-AuofCit4s27E57KvazUqUEz-B38gv6UxesBUICW6JMk4cezzz-THfALwqY5NIk0ouvc15YkLNdSQiXjqcb4VexKGndcjTkTwZJ-_O0_Nfovgbfoh-wY1GRm2vaYBrs9r7SRpKEdh0NItcuCS6TzqwRajorOePivFzTXiREJyy0HesjWG8t1l8wyvdpAb-8jvIuYlgaxd0dBd0V_nm5Mlkd12ZXfv1Gq_j__zdPbjT4lM2bBTqPtxw8224VXRp4R7A5w9u6n98-067xTMzdSUbri5nM0rMZdkBusYJKyjxwuXMLdkpiqAzdKt9dkCRYegnGSJOdqwvGAW2sPG0Wmp8G6sWDA095Q9veXwfwvjo8GNxwttsDdziFE_wgUkF0dsbW5Y-EwMrU0_LJTh1T6RG1JJon2TCWemETU1uhQ9dbrRBBck9wsJHsDVfzN0TYF57NCzOI_YwSeT9ILPOau-NDWWZ-jQA3vWWsi2VOWXUmKqGhDlW1Hyqb74A3vTyFw2Jxx8lX9ed34vp5YSOvmWp-jQ6VmeInouiyNX7AHY67VDtqF8phGIZmtBchAG87B9j_9AmDDb2Yk0yEg17grgygMeNVvUfi9EY5nEkA4hr3fhLZdVw9Pawv3v6L4WewW26puDKSO7AVrVcu-eIsirzoh5JV9yLH7Y
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BeygX3pRAASMhOKVN4sTJcttGbbe0u4fSFdws27E57KvazUqUEz-B38gvYSYvtAiEBMck48SxxzOfH_MNwKsi0rHQifCFM5kf60D5KuShX1icbwWOR4GjdcjhSAzG8buPSXuakGJhan6IbsGNRkZlr2mA04L0wU_WUArBprNZ5MMFvwnblNa7mlVddAxSEX6wDjDi3Kc89C1vYxAdbJbf8Evb1MSffwc6NzFs5YSO74Buq1-fPZnsr0u9b778wuz4X_93F243EJX1a526Bzfs_D7s5G1muAfw6b2duu9fv9GG8UxPbcH6q-vZjHJzGXaI3nHCcsq9cD2zSzZEEfSHdvWWHVJwGLpKhqCTnagrRrEtbDwtlwrfxsoFQ1tPKcQbKt-HMD4-uswHfpOwwTc4y-N-TyecGO61KQqX8p4RiaMVE5y9x0IhcImVi1NujbDcJDoz3AU200qjjmQOkeEj2Jov5vYxMKcc2hbrEH7oOHSulxprlHPaBKJIXOKB33aXNA2bOSXVmMqahzmS1Hyyaz4P3nTyVzWPxx8lX1e934mp5YROv6WJ_DA6kRcIoPM8z-SZB3uteshm4K8korEUrWjGAw9edo-xf2gfBht7sSYZgbY9RmjpwW6tVt3HIrSHWRQKD6JKOf5SWdkfnR51V0_-pdAL2BlcDs_l-eno7CncovsUaxmKPdgql2v7DEFXqZ9Xw-oHxgsj0Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BKwEX3tBAASMhOKVN4sSb5bZNu20pXaHCit4s27F72Kd2sxLlxE_gN_JLmMkLFoGQ4JhknDj2eObzY74BeJFHOhY6Eb5wJvVjHShfhTz0c4vzrcDxKHC0Dnk6EEfD-M15cv5TFH_FD9EuuNHIKO01DfB57nZ_kIZSBDYdzSIXLvhV2IxFkJJe75-1BFIRfq-KL-LcpzT0DW1jEO2ul19zS5vUwp9-hznXIWzpg_q3QDW1r46ejHZWhd4xn38hdvyf37sNN2uAynqVRt2BK3Z6F65nTV64e3Dx3o7dty9fabt4osc2Z73l5WRCmbkM20PfOGIZZV64nNgFO0UR9IZ2-ZrtUWgYOkqGkJMdqjmjyBY2HBcLhW9jxYyhpacE4jWR730Y9g8-ZEd-na7BNzjH435XJ5z47bXJc9fhXSMSR-slOHePhULYEisXd7g1wnKT6NRwF9hUK40akjrEhQ9gYzqb2i1gTjm0LNYh-NBx6Fy3Y6xRzmkTiDxxiQd-01vS1FzmlFJjLCsW5khS88m2-Tx41crPKxaPP0q-LDu_FVOLEZ196yTy4-BQniF8zrIslScebDfaIethv5SIxTpoQ1MeePC8fYz9Q7sw2NizFcmgnqYxAksPHlZa1X4sQmuYRqHwICp14y-Vlb3B8UF79ehfCj2Da-_2-_Lt8eDkMdyg2xRoGYpt2CgWK_sEEVehn5aD6jtahSKJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self%E2%80%90Assembled+Asymmetric+Block+Copolymer+Membranes%3A+Bridging+the+Gap+from+Ultra%E2%80%90+to+Nanofiltration&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Yu%2C+Haizhou&rft.au=Qiu%2C+Xiaoyan&rft.au=Moreno%2C+Nicolas&rft.au=Ma%2C+Zengwei&rft.date=2015-11-16&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=54&rft.issue=47&rft.spage=13937&rft.epage=13941&rft_id=info:doi/10.1002%2Fanie.201505663&rft.externalDBID=10.1002%252Fanie.201505663&rft.externalDocID=ANIE201505663
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon