Self-Assembled Asymmetric Block Copolymer Membranes: Bridging the Gap from Ultra- to Nanofiltration
The self‐assembly of block copolymers is an emerging strategy to produce isoporous ultrafiltration membranes. However, thus far, it has not been possible to bridge the gap from ultra‐ to nanofiltration and decrease the pore size of self‐assembled block copolymer membranes to below 5 nm without post‐...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 54; no. 47; pp. 13937 - 13941 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
16.11.2015
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The self‐assembly of block copolymers is an emerging strategy to produce isoporous ultrafiltration membranes. However, thus far, it has not been possible to bridge the gap from ultra‐ to nanofiltration and decrease the pore size of self‐assembled block copolymer membranes to below 5 nm without post‐treatment. It is now reported that the self‐assembly of blends of two chemically interacting copolymers can lead to highly porous membranes with pore diameters as small as 1.5 nm. The membrane containing an ultraporous, 60 nm thin separation layer can fully reject solutes with molecular weights of 600 g mol−1 in aqueous solutions with a water flux that is more than one order of magnitude higher than the permeance of commercial nanofiltration membranes. Simulations of the membrane formation process by dissipative particle dynamics (DPD) were used to explain the dramatic observed pore size reduction combined with an increase in water flux.
Blends of two chemically interacting copolymers bridge the gap from ultra‐ (UF) to nanofiltration (NF) as such membranes with pore sizes below 5 nm have been synthesized without post‐treatment. Simulations of the membrane formation process by dissipative particle dynamics were used to explain the dramatic observed pore size reduction combined with an increase in water flux. |
---|---|
AbstractList | The self-assembly of block copolymers is an emerging strategy to produce isoporous ultrafiltration membranes. However, thus far, it has not been possible to bridge the gap from ultra- to nanofiltration and decrease the pore size of self-assembled block copolymer membranes to below 5 nm without post-treatment. It is now reported that the self-assembly of blends of two chemically interacting copolymers can lead to highly porous membranes with pore diameters as small as 1.5 nm. The membrane containing an ultraporous, 60 nm thin separation layer can fully reject solutes with molecular weights of 600 g mol(-1) in aqueous solutions with a water flux that is more than one order of magnitude higher than the permeance of commercial nanofiltration membranes. Simulations of the membrane formation process by dissipative particle dynamics (DPD) were used to explain the dramatic observed pore size reduction combined with an increase in water flux.The self-assembly of block copolymers is an emerging strategy to produce isoporous ultrafiltration membranes. However, thus far, it has not been possible to bridge the gap from ultra- to nanofiltration and decrease the pore size of self-assembled block copolymer membranes to below 5 nm without post-treatment. It is now reported that the self-assembly of blends of two chemically interacting copolymers can lead to highly porous membranes with pore diameters as small as 1.5 nm. The membrane containing an ultraporous, 60 nm thin separation layer can fully reject solutes with molecular weights of 600 g mol(-1) in aqueous solutions with a water flux that is more than one order of magnitude higher than the permeance of commercial nanofiltration membranes. Simulations of the membrane formation process by dissipative particle dynamics (DPD) were used to explain the dramatic observed pore size reduction combined with an increase in water flux. The self-assembly of block copolymers is an emerging strategy to produce isoporous ultrafiltration membranes. However, thus far, it has not been possible to bridge the gap from ultra- to nanofiltration and decrease the pore size of self-assembled block copolymer membranes to below 5nm without post-treatment. It is now reported that the self-assembly of blends of two chemically interacting copolymers can lead to highly porous membranes with pore diameters as small as 1.5nm. The membrane containing an ultraporous, 60nm thin separation layer can fully reject solutes with molecular weights of 600gmol-1 in aqueous solutions with a water flux that is more than one order of magnitude higher than the permeance of commercial nanofiltration membranes. Simulations of the membrane formation process by dissipative particle dynamics (DPD) were used to explain the dramatic observed pore size reduction combined with an increase in water flux. The self‐assembly of block copolymers is an emerging strategy to produce isoporous ultrafiltration membranes. However, thus far, it has not been possible to bridge the gap from ultra‐ to nanofiltration and decrease the pore size of self‐assembled block copolymer membranes to below 5 nm without post‐treatment. It is now reported that the self‐assembly of blends of two chemically interacting copolymers can lead to highly porous membranes with pore diameters as small as 1.5 nm. The membrane containing an ultraporous, 60 nm thin separation layer can fully reject solutes with molecular weights of 600 g mol −1 in aqueous solutions with a water flux that is more than one order of magnitude higher than the permeance of commercial nanofiltration membranes. Simulations of the membrane formation process by dissipative particle dynamics (DPD) were used to explain the dramatic observed pore size reduction combined with an increase in water flux. The self-assembly of block copolymers is an emerging strategy to produce isoporous ultrafiltration membranes. However, thus far, it has not been possible to bridge the gap from ultra- to nanofiltration and decrease the pore size of self-assembled block copolymer membranes to below 5 nm without post-treatment. It is now reported that the self-assembly of blends of two chemically interacting copolymers can lead to highly porous membranes with pore diameters as small as 1.5 nm. The membrane containing an ultraporous, 60 nm thin separation layer can fully reject solutes with molecular weights of 600 g mol(-1) in aqueous solutions with a water flux that is more than one order of magnitude higher than the permeance of commercial nanofiltration membranes. Simulations of the membrane formation process by dissipative particle dynamics (DPD) were used to explain the dramatic observed pore size reduction combined with an increase in water flux. The self‐assembly of block copolymers is an emerging strategy to produce isoporous ultrafiltration membranes. However, thus far, it has not been possible to bridge the gap from ultra‐ to nanofiltration and decrease the pore size of self‐assembled block copolymer membranes to below 5 nm without post‐treatment. It is now reported that the self‐assembly of blends of two chemically interacting copolymers can lead to highly porous membranes with pore diameters as small as 1.5 nm. The membrane containing an ultraporous, 60 nm thin separation layer can fully reject solutes with molecular weights of 600 g mol−1 in aqueous solutions with a water flux that is more than one order of magnitude higher than the permeance of commercial nanofiltration membranes. Simulations of the membrane formation process by dissipative particle dynamics (DPD) were used to explain the dramatic observed pore size reduction combined with an increase in water flux. Blends of two chemically interacting copolymers bridge the gap from ultra‐ (UF) to nanofiltration (NF) as such membranes with pore sizes below 5 nm have been synthesized without post‐treatment. Simulations of the membrane formation process by dissipative particle dynamics were used to explain the dramatic observed pore size reduction combined with an increase in water flux. |
Author | Ma, Zengwei Moreno, Nicolas Yu, Haizhou Nunes, Suzana P. Peinemann, Klaus-Viktor Qiu, Xiaoyan Calo, Victor Manuel |
Author_xml | – sequence: 1 givenname: Haizhou surname: Yu fullname: Yu, Haizhou organization: Advanced Membranes and Porous Materials Center, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Kingdom of Saudi Arabia) – sequence: 2 givenname: Xiaoyan surname: Qiu fullname: Qiu, Xiaoyan organization: Advanced Membranes and Porous Materials Center, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Kingdom of Saudi Arabia) – sequence: 3 givenname: Nicolas surname: Moreno fullname: Moreno, Nicolas organization: Biological and Environmental Science and Engineering Division (KAUST), Thuwal 23955-6900 (Kingdom of Saudi Arabia) – sequence: 4 givenname: Zengwei surname: Ma fullname: Ma, Zengwei organization: School of Optoelectronic Information, Chongqing University of Technology, Chongqing 40054 (China) – sequence: 5 givenname: Victor Manuel surname: Calo fullname: Calo, Victor Manuel organization: Center for Numerical Porous Media (KAUST), Thuwal 23955-6900 (Kingdom of Saudi Arabia) – sequence: 6 givenname: Suzana P. surname: Nunes fullname: Nunes, Suzana P. organization: Biological and Environmental Science and Engineering Division (KAUST), Thuwal 23955-6900 (Kingdom of Saudi Arabia) – sequence: 7 givenname: Klaus-Viktor surname: Peinemann fullname: Peinemann, Klaus-Viktor email: klausviktor.peinemann@kaust.edu.sa organization: Advanced Membranes and Porous Materials Center, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Kingdom of Saudi Arabia) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26388216$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1vEzEQhi1URD_gyhFZ4sJlg73-DLd0VUJFCRJQcbS83tni1rtO7Y0g_x6HtBWqhDiNR3qe0YzfY3QwxhEQeknJjBJSv7Wjh1lNqCBCSvYEHVFR04opxQ7KmzNWKS3oITrO-brwWhP5DB3WkmldU3mE3FcIfbXIGYY2QIcXeTsMMCXv8GmI7gY3cR3DdoCEPxUk2RHyO3yafHflxys8_QC8tGvcpzjgyzAlW-Ep4pUdY-937eTj-Bw97W3I8OKunqDL92ffmg_VxeflebO4qBznmlXzVjBey7p1XdcrNndS9GTOGLQ1l1YIzm3PFQMngTnRasd6Arq1LW-J7qlkJ-jNfu46xdsN5MkMPjsIoSwdN9lQJYnWnNaioK8foddxk8ayXaGEIopoRgr16o7atAN0Zp38YNPW3H9fAfgecCnmnKA3zk9_bi6n-2AoMbuUzC4l85BS0WaPtPvJ_xTme-GnD7D9D20Wq_Ozv91q7_o8wa8H16YbIxVTwnxfLc0XQVTTNNp8ZL8BG_Sy1w |
CODEN | ACIEAY |
CitedBy_id | crossref_primary_10_1021_acs_iecr_7b02411 crossref_primary_10_1016_j_cocis_2020_03_003 crossref_primary_10_1039_C6PY01401A crossref_primary_10_1002_smll_201701885 crossref_primary_10_1038_s41598_018_22200_4 crossref_primary_10_1016_j_memsci_2022_121277 crossref_primary_10_1021_acsmacrolett_9b00403 crossref_primary_10_1002_marc_201600440 crossref_primary_10_1016_j_cis_2021_102545 crossref_primary_10_1016_j_memsci_2018_06_038 crossref_primary_10_1039_D0SC00569J crossref_primary_10_1039_D2CS00894G crossref_primary_10_1007_s40843_020_1549_4 crossref_primary_10_1021_acs_macromol_1c01372 crossref_primary_10_1016_j_memsci_2016_05_061 crossref_primary_10_1126_sciadv_adf6122 crossref_primary_10_1038_s41545_018_0002_1 crossref_primary_10_1016_j_memsci_2022_120338 crossref_primary_10_1039_D1SM01368H crossref_primary_10_1039_C7SM01284E crossref_primary_10_1002_mame_202000017 crossref_primary_10_1002_smll_202308171 crossref_primary_10_1016_j_memsci_2023_121450 crossref_primary_10_1016_j_psep_2022_11_036 crossref_primary_10_1146_annurev_chembioeng_111919_091940 crossref_primary_10_3390_molecules27103263 crossref_primary_10_1039_C7CC01596H crossref_primary_10_1021_acsapm_4c03286 crossref_primary_10_1016_j_pmatsci_2017_10_006 crossref_primary_10_1016_j_memsci_2018_11_044 crossref_primary_10_1021_acsami_3c06709 crossref_primary_10_3390_polym11050887 crossref_primary_10_1016_j_desal_2019_05_001 crossref_primary_10_1039_C6QM00072J crossref_primary_10_1021_acs_chemmater_8b03334 crossref_primary_10_1016_j_jiec_2021_06_022 crossref_primary_10_1039_D2NR05477A crossref_primary_10_1016_j_memsci_2021_120097 crossref_primary_10_1021_acsnano_8b06521 crossref_primary_10_1126_science_aab0530 crossref_primary_10_3390_polym14214568 crossref_primary_10_1021_acs_macromol_8b02627 crossref_primary_10_1002_ange_201804656 crossref_primary_10_1007_s10965_019_1941_z crossref_primary_10_1021_acs_macromol_7b00438 crossref_primary_10_1002_mats_201700027 crossref_primary_10_1039_D0TA02150D crossref_primary_10_1016_j_coche_2020_02_002 crossref_primary_10_1002_macp_201600587 crossref_primary_10_1016_j_memsci_2020_118450 crossref_primary_10_1002_ange_202315167 crossref_primary_10_1016_j_memsci_2023_121427 crossref_primary_10_1039_C7TA09777H crossref_primary_10_1016_j_seppur_2020_116818 crossref_primary_10_1021_acs_macromol_0c01111 crossref_primary_10_1039_C9CC00902G crossref_primary_10_3390_polym15092020 crossref_primary_10_1016_j_memsci_2020_118849 crossref_primary_10_3390_nano10122443 crossref_primary_10_3390_polym11101636 crossref_primary_10_1016_j_seppur_2023_123964 crossref_primary_10_1021_acs_jpcb_6b00273 crossref_primary_10_1063_5_0052111 crossref_primary_10_1016_j_memsci_2018_09_047 crossref_primary_10_1021_acsami_9b10273 crossref_primary_10_1021_acsapm_0c00051 crossref_primary_10_1016_j_memsci_2020_118186 crossref_primary_10_1002_anie_202315167 crossref_primary_10_3390_membranes10080162 crossref_primary_10_1016_j_desal_2024_117609 crossref_primary_10_1016_j_memsci_2024_123021 crossref_primary_10_3390_nano10010141 crossref_primary_10_1016_j_memsci_2019_117761 crossref_primary_10_1016_j_seppur_2021_120228 crossref_primary_10_1039_C8FD00015H crossref_primary_10_1016_j_progpolymsci_2020_101219 crossref_primary_10_1038_s41598_019_50338_2 crossref_primary_10_1016_j_memsci_2022_120932 crossref_primary_10_1016_j_desal_2024_118274 crossref_primary_10_1073_pnas_2010284117 crossref_primary_10_1021_acsnano_9b03659 crossref_primary_10_1002_mats_202000014 crossref_primary_10_1021_acsmacrolett_7b00278 crossref_primary_10_1080_15422119_2018_1500919 crossref_primary_10_1063_5_0052114 crossref_primary_10_1002_anie_201804656 crossref_primary_10_1016_j_memsci_2019_04_045 crossref_primary_10_1002_marc_202100235 crossref_primary_10_1016_j_memsci_2021_119858 crossref_primary_10_1016_j_memsci_2020_118241 crossref_primary_10_1088_0965_0393_24_8_085012 crossref_primary_10_1016_j_porgcoat_2021_106554 crossref_primary_10_1002_marc_201900561 crossref_primary_10_1016_j_seppur_2019_01_035 crossref_primary_10_1016_j_mattod_2023_03_002 crossref_primary_10_1016_j_memsci_2018_03_072 crossref_primary_10_1039_C6CC06402G crossref_primary_10_1002_mats_202400046 crossref_primary_10_1039_D3SM01532G crossref_primary_10_1021_acsami_1c23760 crossref_primary_10_1016_j_bios_2024_116457 crossref_primary_10_1016_j_coco_2021_101025 crossref_primary_10_1016_j_seppur_2021_118372 crossref_primary_10_1021_jacs_0c01829 crossref_primary_10_1039_D0TA02510K crossref_primary_10_1039_C6CC03842E crossref_primary_10_1016_j_memsci_2023_121745 crossref_primary_10_1007_s11705_020_1987_9 crossref_primary_10_1021_acsnano_0c07883 crossref_primary_10_1039_C8CP00751A crossref_primary_10_1021_jacs_9b11336 crossref_primary_10_1002_polb_24419 crossref_primary_10_1021_acs_macromol_5b02579 crossref_primary_10_1039_C7CS00688H crossref_primary_10_1016_j_apsusc_2019_143896 crossref_primary_10_1016_j_memsci_2019_05_011 crossref_primary_10_1016_j_progpolymsci_2024_101907 crossref_primary_10_1021_acs_langmuir_6b04465 crossref_primary_10_1016_j_memsci_2017_11_047 crossref_primary_10_1021_acs_macromol_8b01446 crossref_primary_10_1021_acsami_6b14332 |
Cites_doi | 10.1126/science.1162950 10.1021/nn1014006 10.1088/0965-0393/18/1/015012 10.1021/la201439p 10.1038/ncomms3297 10.1016/j.memsci.2013.05.029 10.1038/nnano.2010.274 10.1021/la500712b 10.1126/science.1070821 10.1002/anie.201404491 10.1126/science.1111041 10.1126/science.1212101 10.1209/0295-5075/19/3/001 10.1038/srep03190 10.1021/ma0499775 10.1139/v99-141 10.1021/nl0494001 10.1038/nmat1717 10.1039/c3sm27475f 10.1038/nmat1295 10.1007/s11837-013-0827-5 10.1006/jcph.1995.1039 10.1002/adma.200803302 10.1038/nature05532 10.1063/1.882522 10.1038/nnano.2008.13 10.1038/nmat2038 10.1002/ange.201404491 10.1002/adma.201404309 10.1016/j.polymer.2013.11.010 10.1021/ma101531k 10.1039/b610188g 10.1038/nmat2512 10.1038/nnano.2009.90 10.1021/la5028527 |
ContentType | Journal Article |
Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201505663 |
DatabaseName | Istex CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 13941 |
ExternalDocumentID | 3922318331 26388216 10_1002_anie_201505663 ANIE201505663 ark_67375_WNG_R507CCC8_K |
Genre | shortCommunication Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: King Abdullah University of Science and Technology (KAUST) – fundername: National Natural Science Foundation of China funderid: 21304110 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB B-7 BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAHQN AAMNL AAYCA ACYXJ AFWVQ ALVPJ AAYXX ABDBF ABJNI AETEA AEYWJ AGQPQ AGYGG CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4483-9b534262bcddf739c65f0933eb246a5544af473ec6e3c5b8c3f0e8bab4b08f163 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 03:54:31 EDT 2025 Sun Jul 13 03:38:19 EDT 2025 Thu Apr 03 07:05:56 EDT 2025 Tue Jul 01 03:27:02 EDT 2025 Thu Apr 24 23:05:26 EDT 2025 Wed Jan 22 16:29:43 EST 2025 Wed Oct 30 09:54:38 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 47 |
Keywords | membranes block copolymers self-assembly nanofiltration |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4483-9b534262bcddf739c65f0933eb246a5544af473ec6e3c5b8c3f0e8bab4b08f163 |
Notes | King Abdullah University of Science and Technology (KAUST) istex:F550797AD944E922F47B91ACBBA7B03AB57E5FD6 ark:/67375/WNG-R507CCC8-K National Natural Science Foundation of China - No. 21304110 ArticleID:ANIE201505663 These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 26388216 |
PQID | 1757070830 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1760884125 proquest_journals_1757070830 pubmed_primary_26388216 crossref_citationtrail_10_1002_anie_201505663 crossref_primary_10_1002_anie_201505663 wiley_primary_10_1002_anie_201505663_ANIE201505663 istex_primary_ark_67375_WNG_R507CCC8_K |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 16, 2015 |
PublicationDateYYYYMMDD | 2015-11-16 |
PublicationDate_xml | – month: 11 year: 2015 text: November 16, 2015 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew. Chem. Int. Ed |
PublicationYear | 2015 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
References | D. A. Christian, W. Tian, W. G. Ellenbroek, I. Levental, K. Rajagopal, P. A. Janmey, A. J. Liu, T. Baumgart, D. E. Discher, Nat. Mater. 2009, 8, 843-849. M. Radjabian, V. Abetz, Adv. Mater. 2015, 27, 352-355. S. Plimpton, J. Comput. Phys. 1995, 117, 1-19. K.-V. Peinemann, V. Abetz, P. F. W. Simon, Nat. Mater. 2007, 6, 992-996. S. Karan, S. Samitse, X. Peng, K. Kurashima, I. Ichiinose, Science 2012, 335, 444-447. W. Park, Y. Kim, J. Jeong, K. Kim, J.-K. Yoo, Y. Hur, J. Kim, E. L. Thomas, A. Alexander-Katz, Y. S. Jung, Sci. Rep. 2013, 3, 3190. D. S. Marques, U. Vainio, N. M. Chaparro, V. M. Calo, A. R. Bezahd, J. W. Pitera, K.-V. Peinemann, S. P. Nunes, Soft Matter 2013, 9, 5557-5564. D. S. Marques, R. M. Dorin, U. Wiesner, D.-M. Smilgies, A. R. Behzad, U. Vainio, K.-V. Peinemann, S. P. Nunes, Polymer 2014, 55, 1327-1332. D. Losic, G. Triani, P. J. Evans, A. Atanacio, J. G. Mitchell, N. H. Voelcker, J. Mater. Chem. 2006, 16, 4029-4034. P. Chen, T. Mitsui, D. Farmer, J. Golovchenko, R. G. Gordon, D. Branton, Nano Lett. 2004, 4, 1333-1337. P. J. Hoogerbrugge, J. M. V. A. Koelman, Europhys. Lett. 1992, 19, 155-160. Angew. Chem. 2014, 126, 10236-10240 A. Ruzette, L. Leibler, Nat. Mater. 2005, 4, 19-31. E. A. Jackson, M. A. Hillmyer, ACS Nano 2010, 4, 3548-3553. S. P. Nunes, M. Karunakaran, N. Pradeep, A. R. Behzad, B. Hooghan, R. Sougrat, H. He, K.-V. Peinemann, Langmuir 2011, 27, 10184-10190. W. Zhang, L. Shi, Y. An, K. Wu, L. Gao, Z. Liu, R. Ma, Q. Meng, C. Zhao, B. He, Macromolecules 2004, 37, 2924-2929. C. Tang, E. M. Lennon, G. H. Fredrickson, E. J. Kramer, C. J. Hawker, Science 2008, 322, 429-432. C. C. Striemer, T. R. Gaborski, J. McGrath, P. M. Fauchet, Nature 2007, 445, 749-753. E. Krieg, H. Weissman, E. Shirman, E. Shimoni, B. Rybtchinski, Nat. Nanotechnol. 2011, 6, 141-146. G. M. Whitesides, B. Grzybowski, Science 2002, 295, 2418-2421. J. Bang, U. Jeong, D. Y. Ryu, T. P. Russell, C. J. Hawker, Adv. Mater. 2009, 21, 4769-4792. H. Yu, X. Qiu, S. P. Nunes, K.-V. Peinemann, Angew. Chem. Int. Ed. 2014, 53, 10072-10076 R. Vyhnalkova, A. H. Müller, A. Eisenberg, Langmuir 2014, 30, 13152-13163. R. Vyhnalkova, A. H. Müller, A. Eisenberg, Langmuir 2014, 30, 5031-5040. L. A. Baker, S. P. Bird, Nat. Nanotechnol. 2008, 3, 73-74. N. S. Cameron, M. K. Corbierre, A. Eisenberg, Can. J. Chem. 1999, 77, 1311-1326. M. Stoykovich, M. Müller, S. O. Kim, H. H. Solak, E. W. Edwards, J. J. de Pablo, P. F. Nealey, Science 2005, 308, 1442-1446. M. Barsbay, O. Güven, H. Bessbousse, T. L. Wade, F. Beuneu, M.-C. Clochard, J. Membr. Sci. 2013, 445, 135-145. A. Stukowski, JOM 2013, 66, 399-407. X. Peng, J. Jin, Y. Nakamura, T. Ohno, I. Ichinose, Nat. Nanotechnol. 2009, 4, 353-357. S. P. Nunes, R. Sougrat, B. Hooghan, D. H. Anjum, A. R. Behzad, L. Zhao, N. Pradeep, I. Pinnau, U. Vainio, K.-V. Peinemann, Macromolecules 2010, 43, 8079-8085. F. S. Bates, G. H. Fredrickson, Phys. Today 1999, 52, 32-38. A. Stukowski, Modell. Simul. Mater. Sci. Eng. 2010, 18, 015012. J. Zhu, S. Zhang, K. Zhang, X. Wang, J. W. Mays, K. L. Wooley, D. J. Pochan, Nat. Commun. 2013, 4, 2297. W. Lee, R. Ji, U. Gösele, K. Nielsch, Nat. Mater. 2006, 5, 741-747. 2014 2014; 53 126 2007; 445 2013; 3 2013; 4 2009; 21 2013; 66 2010; 18 2002; 295 2006; 16 2013; 445 2004; 4 1995; 117 2006; 5 1992; 19 2008; 3 2008; 322 2011; 6 2013; 9 2010; 43 2015; 27 2004; 37 2005; 4 2007; 6 1999; 77 2005; 308 2009; 8 1999; 52 2009; 4 2014; 30 2012; 335 2011; 27 2010; 4 2014; 55 e_1_2_4_20_2 e_1_2_4_22_2 e_1_2_4_21_2 e_1_2_4_24_2 e_1_2_4_23_2 e_1_2_4_26_2 e_1_2_4_25_2 e_1_2_4_28_2 e_1_2_4_27_2 e_1_2_4_29_2 e_1_2_4_2_2 e_1_2_4_1_2 e_1_2_4_4_2 e_1_2_4_3_2 e_1_2_4_6_2 e_1_2_4_5_2 e_1_2_4_8_2 e_1_2_4_7_2 e_1_2_4_9_2 e_1_2_4_31_2 e_1_2_4_30_2 e_1_2_4_10_2 e_1_2_4_33_2 e_1_2_4_11_2 e_1_2_4_32_2 e_1_2_4_12_2 e_1_2_4_13_2 e_1_2_4_34_2 e_1_2_4_13_3 e_1_2_4_14_2 e_1_2_4_15_2 e_1_2_4_17_2 e_1_2_4_16_2 e_1_2_4_19_2 e_1_2_4_18_2 |
References_xml | – reference: S. P. Nunes, R. Sougrat, B. Hooghan, D. H. Anjum, A. R. Behzad, L. Zhao, N. Pradeep, I. Pinnau, U. Vainio, K.-V. Peinemann, Macromolecules 2010, 43, 8079-8085. – reference: J. Zhu, S. Zhang, K. Zhang, X. Wang, J. W. Mays, K. L. Wooley, D. J. Pochan, Nat. Commun. 2013, 4, 2297. – reference: R. Vyhnalkova, A. H. Müller, A. Eisenberg, Langmuir 2014, 30, 13152-13163. – reference: K.-V. Peinemann, V. Abetz, P. F. W. Simon, Nat. Mater. 2007, 6, 992-996. – reference: P. Chen, T. Mitsui, D. Farmer, J. Golovchenko, R. G. Gordon, D. Branton, Nano Lett. 2004, 4, 1333-1337. – reference: C. Tang, E. M. Lennon, G. H. Fredrickson, E. J. Kramer, C. J. Hawker, Science 2008, 322, 429-432. – reference: D. S. Marques, U. Vainio, N. M. Chaparro, V. M. Calo, A. R. Bezahd, J. W. Pitera, K.-V. Peinemann, S. P. Nunes, Soft Matter 2013, 9, 5557-5564. – reference: D. A. Christian, W. Tian, W. G. Ellenbroek, I. Levental, K. Rajagopal, P. A. Janmey, A. J. Liu, T. Baumgart, D. E. Discher, Nat. Mater. 2009, 8, 843-849. – reference: A. Stukowski, Modell. Simul. Mater. Sci. Eng. 2010, 18, 015012. – reference: M. Barsbay, O. Güven, H. Bessbousse, T. L. Wade, F. Beuneu, M.-C. Clochard, J. Membr. Sci. 2013, 445, 135-145. – reference: H. Yu, X. Qiu, S. P. Nunes, K.-V. Peinemann, Angew. Chem. Int. Ed. 2014, 53, 10072-10076; – reference: E. A. Jackson, M. A. Hillmyer, ACS Nano 2010, 4, 3548-3553. – reference: W. Zhang, L. Shi, Y. An, K. Wu, L. Gao, Z. Liu, R. Ma, Q. Meng, C. Zhao, B. He, Macromolecules 2004, 37, 2924-2929. – reference: M. Stoykovich, M. Müller, S. O. Kim, H. H. Solak, E. W. Edwards, J. J. de Pablo, P. F. Nealey, Science 2005, 308, 1442-1446. – reference: S. Plimpton, J. Comput. Phys. 1995, 117, 1-19. – reference: W. Park, Y. Kim, J. Jeong, K. Kim, J.-K. Yoo, Y. Hur, J. Kim, E. L. Thomas, A. Alexander-Katz, Y. S. Jung, Sci. Rep. 2013, 3, 3190. – reference: C. C. Striemer, T. R. Gaborski, J. McGrath, P. M. Fauchet, Nature 2007, 445, 749-753. – reference: L. A. Baker, S. P. Bird, Nat. Nanotechnol. 2008, 3, 73-74. – reference: A. Ruzette, L. Leibler, Nat. Mater. 2005, 4, 19-31. – reference: A. Stukowski, JOM 2013, 66, 399-407. – reference: Angew. Chem. 2014, 126, 10236-10240 – reference: S. P. Nunes, M. Karunakaran, N. Pradeep, A. R. Behzad, B. Hooghan, R. Sougrat, H. He, K.-V. Peinemann, Langmuir 2011, 27, 10184-10190. – reference: M. Radjabian, V. Abetz, Adv. Mater. 2015, 27, 352-355. – reference: G. M. Whitesides, B. Grzybowski, Science 2002, 295, 2418-2421. – reference: P. J. Hoogerbrugge, J. M. V. A. Koelman, Europhys. Lett. 1992, 19, 155-160. – reference: R. Vyhnalkova, A. H. Müller, A. Eisenberg, Langmuir 2014, 30, 5031-5040. – reference: S. Karan, S. Samitse, X. Peng, K. Kurashima, I. Ichiinose, Science 2012, 335, 444-447. – reference: D. S. Marques, R. M. Dorin, U. Wiesner, D.-M. Smilgies, A. R. Behzad, U. Vainio, K.-V. Peinemann, S. P. Nunes, Polymer 2014, 55, 1327-1332. – reference: X. Peng, J. Jin, Y. Nakamura, T. Ohno, I. Ichinose, Nat. Nanotechnol. 2009, 4, 353-357. – reference: W. Lee, R. Ji, U. Gösele, K. Nielsch, Nat. Mater. 2006, 5, 741-747. – reference: F. S. Bates, G. H. Fredrickson, Phys. Today 1999, 52, 32-38. – reference: D. Losic, G. Triani, P. J. Evans, A. Atanacio, J. G. Mitchell, N. H. Voelcker, J. Mater. Chem. 2006, 16, 4029-4034. – reference: E. Krieg, H. Weissman, E. Shirman, E. Shimoni, B. Rybtchinski, Nat. Nanotechnol. 2011, 6, 141-146. – reference: J. Bang, U. Jeong, D. Y. Ryu, T. P. Russell, C. J. Hawker, Adv. Mater. 2009, 21, 4769-4792. – reference: N. S. Cameron, M. K. Corbierre, A. Eisenberg, Can. J. Chem. 1999, 77, 1311-1326. – volume: 18 start-page: 015012 year: 2010 publication-title: Modell. Simul. Mater. Sci. Eng. – volume: 4 start-page: 1333 year: 2004 end-page: 1337 publication-title: Nano Lett. – volume: 117 start-page: 1 year: 1995 end-page: 19 publication-title: J. Comput. Phys. – volume: 445 start-page: 749 year: 2007 end-page: 753 publication-title: Nature – volume: 27 start-page: 352 year: 2015 end-page: 355 publication-title: Adv. Mater. – volume: 66 start-page: 399 year: 2013 end-page: 407 publication-title: JOM – volume: 4 start-page: 353 year: 2009 end-page: 357 publication-title: Nat. Nanotechnol. – volume: 5 start-page: 741 year: 2006 end-page: 747 publication-title: Nat. Mater. – volume: 43 start-page: 8079 year: 2010 end-page: 8085 publication-title: Macromolecules – volume: 9 start-page: 5557 year: 2013 end-page: 5564 publication-title: Soft Matter – volume: 3 start-page: 3190 year: 2013 publication-title: Sci. Rep. – volume: 27 start-page: 10184 year: 2011 end-page: 10190 publication-title: Langmuir – volume: 55 start-page: 1327 year: 2014 end-page: 1332 publication-title: Polymer – volume: 4 start-page: 3548 year: 2010 end-page: 3553 publication-title: ACS Nano – volume: 19 start-page: 155 year: 1992 end-page: 160 publication-title: Europhys. Lett. – volume: 77 start-page: 1311 year: 1999 end-page: 1326 publication-title: Can. J. Chem. – volume: 53 126 start-page: 10072 10236 year: 2014 2014 end-page: 10076 10240 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 37 start-page: 2924 year: 2004 end-page: 2929 publication-title: Macromolecules – volume: 30 start-page: 13152 year: 2014 end-page: 13163 publication-title: Langmuir – volume: 6 start-page: 992 year: 2007 end-page: 996 publication-title: Nat. Mater. – volume: 335 start-page: 444 year: 2012 end-page: 447 publication-title: Science – volume: 21 start-page: 4769 year: 2009 end-page: 4792 publication-title: Adv. Mater. – volume: 322 start-page: 429 year: 2008 end-page: 432 publication-title: Science – volume: 8 start-page: 843 year: 2009 end-page: 849 publication-title: Nat. Mater. – volume: 6 start-page: 141 year: 2011 end-page: 146 publication-title: Nat. Nanotechnol. – volume: 4 start-page: 2297 year: 2013 publication-title: Nat. Commun. – volume: 30 start-page: 5031 year: 2014 end-page: 5040 publication-title: Langmuir – volume: 4 start-page: 19 year: 2005 end-page: 31 publication-title: Nat. Mater. – volume: 3 start-page: 73 year: 2008 end-page: 74 publication-title: Nat. Nanotechnol. – volume: 308 start-page: 1442 year: 2005 end-page: 1446 publication-title: Science – volume: 52 start-page: 32 year: 1999 end-page: 38 publication-title: Phys. Today – volume: 445 start-page: 135 year: 2013 end-page: 145 publication-title: J. Membr. Sci. – volume: 16 start-page: 4029 year: 2006 end-page: 4034 publication-title: J. Mater. Chem. – volume: 295 start-page: 2418 year: 2002 end-page: 2421 publication-title: Science – ident: e_1_2_4_18_2 doi: 10.1126/science.1162950 – ident: e_1_2_4_10_2 doi: 10.1021/nn1014006 – ident: e_1_2_4_33_2 doi: 10.1088/0965-0393/18/1/015012 – ident: e_1_2_4_15_2 doi: 10.1021/la201439p – ident: e_1_2_4_20_2 doi: 10.1038/ncomms3297 – ident: e_1_2_4_31_2 doi: 10.1016/j.memsci.2013.05.029 – ident: e_1_2_4_5_2 doi: 10.1038/nnano.2010.274 – ident: e_1_2_4_25_2 doi: 10.1021/la500712b – ident: e_1_2_4_7_2 doi: 10.1126/science.1070821 – ident: e_1_2_4_13_2 doi: 10.1002/anie.201404491 – ident: e_1_2_4_17_2 doi: 10.1126/science.1111041 – ident: e_1_2_4_4_2 doi: 10.1126/science.1212101 – ident: e_1_2_4_26_2 doi: 10.1209/0295-5075/19/3/001 – ident: e_1_2_4_16_2 doi: 10.1038/srep03190 – ident: e_1_2_4_27_2 doi: 10.1021/ma0499775 – ident: e_1_2_4_28_2 doi: 10.1139/v99-141 – ident: e_1_2_4_29_2 doi: 10.1021/nl0494001 – ident: e_1_2_4_6_2 doi: 10.1038/nmat1717 – ident: e_1_2_4_22_2 doi: 10.1039/c3sm27475f – ident: e_1_2_4_8_2 doi: 10.1038/nmat1295 – ident: e_1_2_4_34_2 doi: 10.1007/s11837-013-0827-5 – ident: e_1_2_4_32_2 doi: 10.1006/jcph.1995.1039 – ident: e_1_2_4_11_2 doi: 10.1002/adma.200803302 – ident: e_1_2_4_3_2 doi: 10.1038/nature05532 – ident: e_1_2_4_9_2 doi: 10.1063/1.882522 – ident: e_1_2_4_1_2 doi: 10.1038/nnano.2008.13 – ident: e_1_2_4_12_2 doi: 10.1038/nmat2038 – ident: e_1_2_4_13_3 doi: 10.1002/ange.201404491 – ident: e_1_2_4_21_2 doi: 10.1002/adma.201404309 – ident: e_1_2_4_23_2 doi: 10.1016/j.polymer.2013.11.010 – ident: e_1_2_4_14_2 doi: 10.1021/ma101531k – ident: e_1_2_4_30_2 doi: 10.1039/b610188g – ident: e_1_2_4_19_2 doi: 10.1038/nmat2512 – ident: e_1_2_4_2_2 doi: 10.1038/nnano.2009.90 – ident: e_1_2_4_24_2 doi: 10.1021/la5028527 |
SSID | ssj0028806 |
Score | 2.5287435 |
Snippet | The self‐assembly of block copolymers is an emerging strategy to produce isoporous ultrafiltration membranes. However, thus far, it has not been possible to... The self-assembly of block copolymers is an emerging strategy to produce isoporous ultrafiltration membranes. However, thus far, it has not been possible to... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 13937 |
SubjectTerms | block copolymers Copolymers Membranes Nanofiltration Nanotechnology Pore size self-assembly Solutes Ultrafiltration |
Title | Self-Assembled Asymmetric Block Copolymer Membranes: Bridging the Gap from Ultra- to Nanofiltration |
URI | https://api.istex.fr/ark:/67375/WNG-R507CCC8-K/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201505663 https://www.ncbi.nlm.nih.gov/pubmed/26388216 https://www.proquest.com/docview/1757070830 https://www.proquest.com/docview/1760884125 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcoALj_IKFGQkBCe3SZw42d62UR-AuofCit4s27E57KvazUqUEz-B38gv6UxesBUICW6JMk4cezzz-THfALwqY5NIk0ouvc15YkLNdSQiXjqcb4VexKGndcjTkTwZJ-_O0_Nfovgbfoh-wY1GRm2vaYBrs9r7SRpKEdh0NItcuCS6TzqwRajorOePivFzTXiREJyy0HesjWG8t1l8wyvdpAb-8jvIuYlgaxd0dBd0V_nm5Mlkd12ZXfv1Gq_j__zdPbjT4lM2bBTqPtxw8224VXRp4R7A5w9u6n98-067xTMzdSUbri5nM0rMZdkBusYJKyjxwuXMLdkpiqAzdKt9dkCRYegnGSJOdqwvGAW2sPG0Wmp8G6sWDA095Q9veXwfwvjo8GNxwttsDdziFE_wgUkF0dsbW5Y-EwMrU0_LJTh1T6RG1JJon2TCWemETU1uhQ9dbrRBBck9wsJHsDVfzN0TYF57NCzOI_YwSeT9ILPOau-NDWWZ-jQA3vWWsi2VOWXUmKqGhDlW1Hyqb74A3vTyFw2Jxx8lX9ed34vp5YSOvmWp-jQ6VmeInouiyNX7AHY67VDtqF8phGIZmtBchAG87B9j_9AmDDb2Yk0yEg17grgygMeNVvUfi9EY5nEkA4hr3fhLZdVw9Pawv3v6L4WewW26puDKSO7AVrVcu-eIsirzoh5JV9yLH7Y |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BeygX3pRAASMhOKVN4sTJcttGbbe0u4fSFdws27E57KvazUqUEz-B38gvYSYvtAiEBMck48SxxzOfH_MNwKsi0rHQifCFM5kf60D5KuShX1icbwWOR4GjdcjhSAzG8buPSXuakGJhan6IbsGNRkZlr2mA04L0wU_WUArBprNZ5MMFvwnblNa7mlVddAxSEX6wDjDi3Kc89C1vYxAdbJbf8Evb1MSffwc6NzFs5YSO74Buq1-fPZnsr0u9b778wuz4X_93F243EJX1a526Bzfs_D7s5G1muAfw6b2duu9fv9GG8UxPbcH6q-vZjHJzGXaI3nHCcsq9cD2zSzZEEfSHdvWWHVJwGLpKhqCTnagrRrEtbDwtlwrfxsoFQ1tPKcQbKt-HMD4-uswHfpOwwTc4y-N-TyecGO61KQqX8p4RiaMVE5y9x0IhcImVi1NujbDcJDoz3AU200qjjmQOkeEj2Jov5vYxMKcc2hbrEH7oOHSulxprlHPaBKJIXOKB33aXNA2bOSXVmMqahzmS1Hyyaz4P3nTyVzWPxx8lX1e934mp5YROv6WJ_DA6kRcIoPM8z-SZB3uteshm4K8korEUrWjGAw9edo-xf2gfBht7sSYZgbY9RmjpwW6tVt3HIrSHWRQKD6JKOf5SWdkfnR51V0_-pdAL2BlcDs_l-eno7CncovsUaxmKPdgql2v7DEFXqZ9Xw-oHxgsj0Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BKwEX3tBAASMhOKVN4sSb5bZNu20pXaHCit4s27F72Kd2sxLlxE_gN_JLmMkLFoGQ4JhknDj2eObzY74BeJFHOhY6Eb5wJvVjHShfhTz0c4vzrcDxKHC0Dnk6EEfD-M15cv5TFH_FD9EuuNHIKO01DfB57nZ_kIZSBDYdzSIXLvhV2IxFkJJe75-1BFIRfq-KL-LcpzT0DW1jEO2ul19zS5vUwp9-hznXIWzpg_q3QDW1r46ejHZWhd4xn38hdvyf37sNN2uAynqVRt2BK3Z6F65nTV64e3Dx3o7dty9fabt4osc2Z73l5WRCmbkM20PfOGIZZV64nNgFO0UR9IZ2-ZrtUWgYOkqGkJMdqjmjyBY2HBcLhW9jxYyhpacE4jWR730Y9g8-ZEd-na7BNzjH435XJ5z47bXJc9fhXSMSR-slOHePhULYEisXd7g1wnKT6NRwF9hUK40akjrEhQ9gYzqb2i1gTjm0LNYh-NBx6Fy3Y6xRzmkTiDxxiQd-01vS1FzmlFJjLCsW5khS88m2-Tx41crPKxaPP0q-LDu_FVOLEZ196yTy4-BQniF8zrIslScebDfaIethv5SIxTpoQ1MeePC8fYz9Q7sw2NizFcmgnqYxAksPHlZa1X4sQmuYRqHwICp14y-Vlb3B8UF79ehfCj2Da-_2-_Lt8eDkMdyg2xRoGYpt2CgWK_sEEVehn5aD6jtahSKJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self%E2%80%90Assembled+Asymmetric+Block+Copolymer+Membranes%3A+Bridging+the+Gap+from+Ultra%E2%80%90+to+Nanofiltration&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Yu%2C+Haizhou&rft.au=Qiu%2C+Xiaoyan&rft.au=Moreno%2C+Nicolas&rft.au=Ma%2C+Zengwei&rft.date=2015-11-16&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=54&rft.issue=47&rft.spage=13937&rft.epage=13941&rft_id=info:doi/10.1002%2Fanie.201505663&rft.externalDBID=10.1002%252Fanie.201505663&rft.externalDocID=ANIE201505663 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |