Effect of chromium dinicocysteinate supplementation on circulating levels of insulin, TNF-α, oxidative stress, and insulin resistance in type 2 diabetic subjects: Randomized, double-blind, placebo-controlled study
Scope Chromium and cysteine supplementation have been shown to improve glucose metabolism in animal studies. This study examined the hypothesis that chromium dinicocysteinate (CDNC), a complex of chromium and l‐cysteine, is beneficial in lowering oxidative stress, vascular inflammation, and glycemia...
Saved in:
Published in | Molecular nutrition & food research Vol. 56; no. 8; pp. 1333 - 1341 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Blackwell Publishing Ltd
01.08.2012
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Scope
Chromium and cysteine supplementation have been shown to improve glucose metabolism in animal studies. This study examined the hypothesis that chromium dinicocysteinate (CDNC), a complex of chromium and l‐cysteine, is beneficial in lowering oxidative stress, vascular inflammation, and glycemia in type 2 diabetic subjects.
Methods and results
Type 2 diabetic subjects enrolled in this study were given placebo for 1 month for stabilization and then randomized into one of three groups: placebo (P), chromium picolinate (CP), or CDNC, after which they received daily oral supplementation for 3 months. Of the 100 patients enrolled in the study, 74 patients completed it. There were 25 patients in the P supplemented group, 25 in the CP supplemented and 24 in the CDNC supplemented group who completed the study. Blood markers of glycemia, vascular inflammation, HOMA insulin resistance, and oxidative stress were determined at randomization and after 3 months of supplementation with P, CP, or CDNC. There was a significant decrease at 3 months in insulin resistance (p = 0.02) and in the levels of protein oxidation (p = 0.02) and TNF‐α (p = 0.01) in the CDNC supplemented cohort compared to baseline. However, there was no statistically significant change in these markers in the CP supplemented group compared to baseline. Insulin levels significantly decreased (p = 0.01) for subjects receiving CDNC but not CP. There was no significant impact of supplementation on HbA1c or glucose levels in either of the groups.
Conclusion
CDNC supplementation lowers insulin resistance by reducing blood levels of TNF‐α, insulin, and oxidative stress in type 2 diabetic subjects. Therefore, CDNC supplementation has potential as an adjunct therapy for individuals with type 2 diabetes. |
---|---|
AbstractList | Chromium and cysteine supplementation have been shown to improve glucose metabolism in animal studies. This study examined the hypothesis that chromium dinicocysteinate (CDNC), a complex of chromium and l-cysteine, is beneficial in lowering oxidative stress, vascular inflammation, and glycemia in type 2 diabetic subjects.SCOPEChromium and cysteine supplementation have been shown to improve glucose metabolism in animal studies. This study examined the hypothesis that chromium dinicocysteinate (CDNC), a complex of chromium and l-cysteine, is beneficial in lowering oxidative stress, vascular inflammation, and glycemia in type 2 diabetic subjects.Type 2 diabetic subjects enrolled in this study were given placebo for 1 month for stabilization and then randomized into one of three groups: placebo (P), chromium picolinate (CP), or CDNC, after which they received daily oral supplementation for 3 months. Of the 100 patients enrolled in the study, 74 patients completed it. There were 25 patients in the P supplemented group, 25 in the CP supplemented and 24 in the CDNC supplemented group who completed the study. Blood markers of glycemia, vascular inflammation, HOMA insulin resistance, and oxidative stress were determined at randomization and after 3 months of supplementation with P, CP, or CDNC. There was a significant decrease at 3 months in insulin resistance (p = 0.02) and in the levels of protein oxidation (p = 0.02) and TNF-α (p = 0.01) in the CDNC supplemented cohort compared to baseline. However, there was no statistically significant change in these markers in the CP supplemented group compared to baseline. Insulin levels significantly decreased (p = 0.01) for subjects receiving CDNC but not CP. There was no significant impact of supplementation on HbA(1c) or glucose levels in either of the groups.METHODS AND RESULTSType 2 diabetic subjects enrolled in this study were given placebo for 1 month for stabilization and then randomized into one of three groups: placebo (P), chromium picolinate (CP), or CDNC, after which they received daily oral supplementation for 3 months. Of the 100 patients enrolled in the study, 74 patients completed it. There were 25 patients in the P supplemented group, 25 in the CP supplemented and 24 in the CDNC supplemented group who completed the study. Blood markers of glycemia, vascular inflammation, HOMA insulin resistance, and oxidative stress were determined at randomization and after 3 months of supplementation with P, CP, or CDNC. There was a significant decrease at 3 months in insulin resistance (p = 0.02) and in the levels of protein oxidation (p = 0.02) and TNF-α (p = 0.01) in the CDNC supplemented cohort compared to baseline. However, there was no statistically significant change in these markers in the CP supplemented group compared to baseline. Insulin levels significantly decreased (p = 0.01) for subjects receiving CDNC but not CP. There was no significant impact of supplementation on HbA(1c) or glucose levels in either of the groups.CDNC supplementation lowers insulin resistance by reducing blood levels of TNF-α, insulin, and oxidative stress in type 2 diabetic subjects. Therefore, CDNC supplementation has potential as an adjunct therapy for individuals with type 2 diabetes.CONCLUSIONCDNC supplementation lowers insulin resistance by reducing blood levels of TNF-α, insulin, and oxidative stress in type 2 diabetic subjects. Therefore, CDNC supplementation has potential as an adjunct therapy for individuals with type 2 diabetes. Scope Chromium and cysteine supplementation have been shown to improve glucose metabolism in animal studies. This study examined the hypothesis that chromium dinicocysteinate (CDNC), a complex of chromium and l‐cysteine, is beneficial in lowering oxidative stress, vascular inflammation, and glycemia in type 2 diabetic subjects. Methods and results Type 2 diabetic subjects enrolled in this study were given placebo for 1 month for stabilization and then randomized into one of three groups: placebo (P), chromium picolinate (CP), or CDNC, after which they received daily oral supplementation for 3 months. Of the 100 patients enrolled in the study, 74 patients completed it. There were 25 patients in the P supplemented group, 25 in the CP supplemented and 24 in the CDNC supplemented group who completed the study. Blood markers of glycemia, vascular inflammation, HOMA insulin resistance, and oxidative stress were determined at randomization and after 3 months of supplementation with P, CP, or CDNC. There was a significant decrease at 3 months in insulin resistance (p = 0.02) and in the levels of protein oxidation (p = 0.02) and TNF‐α (p = 0.01) in the CDNC supplemented cohort compared to baseline. However, there was no statistically significant change in these markers in the CP supplemented group compared to baseline. Insulin levels significantly decreased (p = 0.01) for subjects receiving CDNC but not CP. There was no significant impact of supplementation on HbA1c or glucose levels in either of the groups. Conclusion CDNC supplementation lowers insulin resistance by reducing blood levels of TNF‐α, insulin, and oxidative stress in type 2 diabetic subjects. Therefore, CDNC supplementation has potential as an adjunct therapy for individuals with type 2 diabetes. Chromium and cysteine supplementation have been shown to improve glucose metabolism in animal studies. This study examined the hypothesis that chromium dinicocysteinate (CDNC), a complex of chromium and l-cysteine, is beneficial in lowering oxidative stress, vascular inflammation, and glycemia in type 2 diabetic subjects. Type 2 diabetic subjects enrolled in this study were given placebo for 1 month for stabilization and then randomized into one of three groups: placebo (P), chromium picolinate (CP), or CDNC, after which they received daily oral supplementation for 3 months. Of the 100 patients enrolled in the study, 74 patients completed it. There were 25 patients in the P supplemented group, 25 in the CP supplemented and 24 in the CDNC supplemented group who completed the study. Blood markers of glycemia, vascular inflammation, HOMA insulin resistance, and oxidative stress were determined at randomization and after 3 months of supplementation with P, CP, or CDNC. There was a significant decrease at 3 months in insulin resistance (p = 0.02) and in the levels of protein oxidation (p = 0.02) and TNF-α (p = 0.01) in the CDNC supplemented cohort compared to baseline. However, there was no statistically significant change in these markers in the CP supplemented group compared to baseline. Insulin levels significantly decreased (p = 0.01) for subjects receiving CDNC but not CP. There was no significant impact of supplementation on HbA(1c) or glucose levels in either of the groups. CDNC supplementation lowers insulin resistance by reducing blood levels of TNF-α, insulin, and oxidative stress in type 2 diabetic subjects. Therefore, CDNC supplementation has potential as an adjunct therapy for individuals with type 2 diabetes. |
Author | Lieblong, Benjamin Stapleton, Tommie Jain, Sushil K. Hoeldtke, Robert Kahlon, Gunjan Caldito, Gloria Bass III, Pat Farrington Morehead, Lester Levine, Steven N. Dhawan, Richa |
Author_xml | – sequence: 1 givenname: Sushil K. surname: Jain fullname: Jain, Sushil K. email: sjain@lsuhsc.edu organization: Departments of Pediatrics and Medicine, Louisiana State University Health Sciences Center, LA, Shreveport, USA – sequence: 2 givenname: Gunjan surname: Kahlon fullname: Kahlon, Gunjan – sequence: 3 givenname: Lester surname: Morehead fullname: Morehead, Lester – sequence: 4 givenname: Richa surname: Dhawan fullname: Dhawan, Richa – sequence: 5 givenname: Benjamin surname: Lieblong fullname: Lieblong, Benjamin – sequence: 6 givenname: Tommie surname: Stapleton fullname: Stapleton, Tommie – sequence: 7 givenname: Gloria surname: Caldito fullname: Caldito, Gloria – sequence: 8 givenname: Robert surname: Hoeldtke fullname: Hoeldtke, Robert – sequence: 9 givenname: Steven N. surname: Levine fullname: Levine, Steven N. – sequence: 10 givenname: Pat Farrington surname: Bass III fullname: Bass III, Pat Farrington |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26336842$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22674882$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktvEzEQx1eoiD7gyhH5gsQhG-z1vsKtqpoCKkGkQRwtP2bBxWsvtrc0fCu-CEc-Dw5Jg8SlkiV7Rr__PDxznB1YZyHLnhI8JRgXL3vb-WmBSTIaMnuQHZGa0LwklB7s30V1mB2HcI0xJUVJH2WHRVE3ZdsWR9nv864DGZHrkPziXa_HHilttXRyHSJoyyOgMA6DgR5s5FE7i9KR2svRJNN-RgZuwIRNCG3DaLSdoNVinv_6OUHuVqsE3aQY0UMIE8StusNQ8ugQuZWQXCiuB0BFys4FRC1TVnGdSguv0DKJUmk_QE2QcqMwkIukT9ZguAThculs9M4YUCnRqNaPs4cdNwGe7O6T7OP8fHX2Or98f_Hm7PQyl2XZFnnqnWOgUincdWUjhKhkC7hqSQsVrWblrGoVr5pWibpUDZFClFXTyZmoZl3dUHqSvdjGHbz7NkKIrNdBgjHcghsDI5jSpKhanNBnO3QUPSg2eN1zv2Z3s0jA8x3Ag-Sm8-ljdPjH1ZTWbbnhpltOeheCh26PEMw2S8E2S8H2S5EE5X8CqbeTjJ5rc6_suzawvicJe7eYL0nzt418K0ujhdu9jPuvLP1YU7FPiwv29sPValHNrtiS_gH3X-Cp |
CitedBy_id | crossref_primary_10_1016_S1042_0991_15_30756_8 crossref_primary_10_3390_jcm9061901 crossref_primary_10_1093_nutrit_nuw011 crossref_primary_10_1186_s12986_015_0014_5 crossref_primary_10_1186_1472_6823_12_31 crossref_primary_10_3390_ijms25021305 crossref_primary_10_1007_s12272_022_01374_6 crossref_primary_10_1007_s12011_024_04486_w crossref_primary_10_1016_j_jtemb_2012_09_002 crossref_primary_10_1007_s13300_019_00721_z crossref_primary_10_1007_s00394_013_0508_8 crossref_primary_10_1016_j_lfs_2023_121899 crossref_primary_10_1007_s11010_016_2931_7 crossref_primary_10_1024_0300_9831_a000706 crossref_primary_10_1155_2019_3801639 crossref_primary_10_1007_s12011_019_01783_7 crossref_primary_10_1331_JAPhA_2014_14537 crossref_primary_10_1007_s13679_022_00490_0 crossref_primary_10_1016_j_heliyon_2023_e19826 crossref_primary_10_1039_c3fo30317a crossref_primary_10_3402_fnr_v60_31762 crossref_primary_10_53446_actamednicomedia_1243239 crossref_primary_10_1016_j_eujim_2020_101147 crossref_primary_10_1016_j_mehy_2015_06_005 crossref_primary_10_1007_s12011_017_1167_z crossref_primary_10_3390_app11020638 crossref_primary_10_1016_j_phrs_2020_105098 crossref_primary_10_1016_j_fct_2017_01_007 crossref_primary_10_1016_j_saa_2016_09_016 crossref_primary_10_1016_j_dsx_2022_102510 crossref_primary_10_1007_s12011_013_9863_9 crossref_primary_10_1016_j_ica_2017_05_041 crossref_primary_10_1186_1475_2891_14_14 crossref_primary_10_3389_fendo_2014_00099 crossref_primary_10_1007_s11906_017_0701_x crossref_primary_10_1016_j_ctcp_2020_101291 crossref_primary_10_1111_jcpt_12147 crossref_primary_10_1016_j_inoche_2013_02_004 crossref_primary_10_3390_antiox12081572 crossref_primary_10_1017_S0007114515005127 crossref_primary_10_1038_ejcn_2014_114 crossref_primary_10_1097_01_EHX_0000439094_19244_a8 crossref_primary_10_3389_fimmu_2021_614000 crossref_primary_10_1002_mnfr_201700438 crossref_primary_10_1111_1440_1681_13144 crossref_primary_10_1016_j_ctim_2021_102755 crossref_primary_10_1111_1440_1681_13462 |
Cites_doi | 10.2174/157339906776818532 10.1146/annurev.nutr.24.012003.132446 10.1002/mnfr.200900177 10.1079/PNS2003315 10.1111/j.1399-5448.2008.00436.x 10.1098/rstb.2005.1770 10.1016/j.freeradbiomed.2010.12.006 10.1006/bbrc.2001.6026 10.2527/jas.2007-0462 10.1016/j.freeradbiomed.2007.01.006 10.2337/diab.38.12.1539 10.1152/ajpcell.00283.2008 10.1080/13813450802181047 10.1089/ars.2007.1595 10.1371/journal.pone.0005017 10.1016/j.metabol.2005.04.009 10.2337/dc10-1006 10.1093/jn/134.12.3245 10.1089/ars.2010.3739 10.2337/diacare.27.9.2211 10.1016/j.freeradbiomed.2009.03.014 10.1016/j.freeradbiomed.2007.05.019 10.2337/db07-1378 10.1530/eje.0.1500207 10.3132/dvdr.2007.025 10.2337/diacare.27.11.2741 10.1016/j.jnutbio.2006.10.002 10.1016/S0021-9258(19)30085-7 10.2337/diab.46.11.1786 10.1055/s-2007-985847 10.1093/jn/132.6.1107 10.1016/j.ejphar.2004.12.018 10.1089/ars.2005.7.1040 10.2337/diab.43.11.1271 10.1016/S0002-9149(03)00611-8 10.2337/dc06-0996 10.1016/j.cyto.2006.05.005 10.1016/S0021-9258(19)74276-8 |
ContentType | Journal Article |
Copyright | 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2015 INIST-CNRS 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2015 INIST-CNRS – notice: 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1002/mnfr.201100719 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Diet & Clinical Nutrition |
EISSN | 1613-4133 |
EndPage | 1341 |
ExternalDocumentID | 22674882 26336842 10_1002_mnfr_201100719 MNFR1782 ark_67375_WNG_JQSTN59S_R |
Genre | article Randomized Controlled Trial Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Health funderid: RO1 DK072433 – fundername: NIDDK – fundername: NIDDK NIH HHS grantid: R01 DK064797 – fundername: NIDDK NIH HHS grantid: R01DK072433 – fundername: NIDDK NIH HHS grantid: R01 DK072433 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 TEORI UB1 V8K W8V W99 WBKPD WIH WIK WJL WNSPC WOHZO WXSBR WYISQ XG1 XV2 Y6R ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ DROCM AAFWJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c4482-ffea0e3cdd0ff47bbb5c8e05818e53594958da578db64d71cbb457fc9b59f6733 |
IEDL.DBID | DR2 |
ISSN | 1613-4125 1613-4133 |
IngestDate | Fri Jul 11 00:42:19 EDT 2025 Wed Feb 19 02:03:15 EST 2025 Mon Jul 21 09:15:20 EDT 2025 Tue Jul 01 01:51:34 EDT 2025 Thu Apr 24 23:08:57 EDT 2025 Wed Jan 22 16:22:12 EST 2025 Wed Oct 30 09:56:51 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Resistance Oxidative stress Cysteine Aminoacid Chromium Insulin resistance Supplementation Diabetes Insulin Feeding Heavy metal |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4482-ffea0e3cdd0ff47bbb5c8e05818e53594958da578db64d71cbb457fc9b59f6733 |
Notes | istex:0CA9B1DA3FAEE96C72A9966BCCA83FB1E13EA0BB National Institutes of Health - No. RO1 DK072433 NIDDK ArticleID:MNFR1782 ark:/67375/WNG-JQSTN59S-R ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
OpenAccessLink | http://doi.org/10.1002/mnfr.201100719 |
PMID | 22674882 |
PQID | 1033457580 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1033457580 pubmed_primary_22674882 pascalfrancis_primary_26336842 crossref_primary_10_1002_mnfr_201100719 crossref_citationtrail_10_1002_mnfr_201100719 wiley_primary_10_1002_mnfr_201100719_MNFR1782 istex_primary_ark_67375_WNG_JQSTN59S_R |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2012 |
PublicationDateYYYYMMDD | 2012-08-01 |
PublicationDate_xml | – month: 08 year: 2012 text: August 2012 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | Molecular nutrition & food research |
PublicationTitleAlternate | Mol. Nutr. Food Res |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Ltd Wiley |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley |
References | Yaturu, S., Daberry, B., Rains, J., Jain, S.-K., Resistin and adiponectin levels in subjects with coronary artery disease and type 2 diabetes. Cytokine 2006, 34, 219-223. Singh, U., Devraj, S., Jialal, I., Vitamin E, oxidative stress and inflammation. Ann. Rev. Nutr. 2005, 25, 151-174. Merino-Ibarra, E., Artieda, M., Cenarro, A., Goicoechea, J. et al., Ultrasonography for the evaluation of visceral fat and the metabolic syndrome. Metabolism 2005, 54, 1230-1235. Hummel, M., Standl, E., Schnell, O., Chromium in metabolic and cardiovascular disease. Horm. Metabolic Disease 2007, 39, 743-751. Jain, S.-K., Rains, J., Croad, J., Effect of chromium niacinate and chromium picolinate supplementation on fasting blood glucose, HbA1, TNF-α, IL-6, CRP, cholesterol, triglycerides and lipid peroxidation levels in streptozotocine treated diabetic rats. Free Radical Biol. Med. 2007, 43, 1124-1131. Iyer, S. S., Accardi, C. J., Ziegler, T. R., Blanco, R. A. et al., Cysteine redox potential determines pro-inflammatory IL-1beta levels. PLoS One 2009, 4, e5017. DOI:10.1371/journal.pone.0005017 Vincent, J.-B., Recent advances in the nutritional biochemistry of trivalent chromium. Proc. Nutr. Soc. 2004, 63, 41-47. Hsueh, W. A., Quinones, M. J., Role of endothelial dysfunction in insulin resistance. Am. J. Cardiol. 2003, 92, 10J-17J. Song, D., Hutchings, S., Pang, C. C. Y., Chronic N-acetylcysteine prevents fructose-induced insulin resistance and hypertension in rats. Eu. J. Pharmacol. 2005, 508, 205-210. Blouet, C., Mariotti, F., Mikogami, T., Tome, D. et al., Meal cysteine improves postprandial glucose control in rats fed a high-sucrose meal. J. Nutr. Biochem. 2007, 18, 519-524. Nyholm, B., Nielsen, M. F., Kristensen, K., Nielsen, S. et al., Evidence of increased visceral obesity and reduced physical fitness in healthy insulin-resistant first-degree relatives of type 2 diabetic patients. Eur. J. Endocrinol. 2004, 150, 207-214. Balk, E. M., Tatsioni, A., Lichtenstein, A. H., Lau, J. et al., Effect of chromium supplementation on glucose metabolism and lipids. Diabetes Care 2007, 30, 2154-2163. Cefalu, W. T., Wang, Z. Q., Zhang, X. H., Baldor, L. C. et al., Oral chromium picolinate improves carbohydrate and lipid metabolism and enhance skeletal muscle Glut-4 translocation in obese, hyperinsulinemic (JCR-LA corpulent) rats. J. Nutr. 2002, 132, 1107-1114. Pennathur, S., Heinecke, J. W., Mechanisms for oxidative stress in diabetic cardiovascular disease. Antiox. Redox. Signal 2007, 9, 955-969. Cefalu, W.-T., Hu, F.-B., Role of chromium in human health and in diabetes. Diab. Care 2004, 27, 2741-2751. Evans, J. L., Maddux, B. A., Goldfine, I. D., The molecular basis for oxidative stress-induced insulin resistance. Antiox. Redox. Signal 2005, 7, 1040-1052. Greenfield, J. R., Campbell, L. V., Relationship between inflammation, insulin resistance and type 2 diabetes: 'cause or effect'? Curr. Diabetes Rev. 2006, 2, 195-211. Jain, S.-K., Kannan, K., Chromium chloride inhibits oxidative stress and TNF-α secretion caused by exposure to high glucose in cultured monocytes. Biochem. Biophys. Res. Commun. 2001, 289, 687-691. Sekhar, R. V., McKay, S. V., Patel, S. G., Guthikonda, A. P. et al., Glutathione synthesis is diminished in patients with uncontrolled diabetes and restored by dietary supplementation with cysteine and glycine. Diabetes Care 2011, 34, 162-167. Dröge, W., Oxidative stress and ageing: is ageing a cysteine deficiency syndrome? Philos. Trans. R Soc. Lond. B Biol. Sci. 2005, 360, 2355-2372. Hsu, C. C., Yen, H. F., Yin, M. C., Tsai, C. M. et al., Five cysteine-containing compounds delay diabetic deterioration in Balb/cA mice. J. Nutr. 2004, 134, 3245-3249. Hotamisligil, G. S., Spiegelman, B. M., Tumor necrosis factor alpha: a key component of the obesity-diabetes link. Diabetes 1994, 43, 1271-1278. Jain, S. K., Velusamy, T., Croad, J. L., Rains, J. L. et al., L-cysteine supplementation lowers blood glucose, glycated hemoglobin, CRP, MCP-1, oxidative stress and inhibits NFkB activation in the livers of Zucker diabetic rats. Free Radic. Biol. Med. 2009, 46, 1633-1638. Otani, H., Oxidative stress as pathogenesis of cardiovascular risk associated with metabolic syndrome. Antiox. Redox. Signal 2011, 15, 1911-1926. Hayashi, T., Boyko, E. J., McNeely, M. J., Leonetti, D. L. et al., Visceral adiposity, not abdominal subcutaneous fat area, is associated with an increase in future insulin resistance in Japanese Americans. Diabetes 2008, 57, 1269-1275. Jones, D. P., Radical-free biology of oxidative stress. Am. J. Cell Physiol. 2008, 249, C849-C868. Darmaun, D., Smith, S. D., Sweeten, S., Hartman, B. K. et al., Poorly controlled type 1 diabetes is associated with altered glutathione homeostasis in adolescents: apparent resistance to N-acetylcysteine supplementation. Pediatr. Diabetes 2008, 9, 577-582. Blouet, C. B., Mariotti, F., Azzout-Marniche, D., Mathe, V. et al., Dietary cysteine alleviates sucrose-induced oxidative stress and insulin resistance. Free Radic. Biol. Med. 2007, 42, 1089-1097. Jain, S.-K., Hyperglycemia can cause membrane lipid peroxidation and osmotic fragility in human red blood cells. J. Biol. Chem. 1989, 264, 21340-21345. Lorenzo, M., Fernandez-Veledo, S., Vila-Bedmar, R., Garcia-Guerra, L. et al., Insulin resistance induced by tumor necrosis factor-alpha in myocytes and brown adipocytes. J. Anim. Sci. 2008, 86, E94-E104. Feinstein, R., Kanety, H., Papa, M. Z., Lunenfeld, B. et al., Tumor necrosis factor-alpha suppresses insulin-induced tyrosine phosphorylation of insulin receptor and its substrates. J. Biol. Chem. 1993, 268, 26055-26058. Nieto-Vazquez, I., Fernandez-Veledo, S., Kramer, D. K., Vila-Bedmar, R. et al., Insulin resistance associated to obesity: the link TNF-alpha. Arch. Physiol. Biochem. 2008, 114, 183-194. Jain, S.-K., McVie, R., Duett, J., Herbst, J.-J., Erythrocyte membrane lipid peroxidation and glycosylated hemoglobin in diabetes. Diabetes 1989, 1539-1543. Anderson, R.-A., Cheng, N., Bryden, N.-A., Polansky, M.-M. et al., Elevated intakes of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes. Diabetes 1997, 46, 1786-1791. Rajpathak, S., Rimm, E.-B., Li, T., Morris, J.-S. et al., Lower toenail chromium in men with diabetes and cardiovascular disease compared with healthy men. Diabetes Care 2004, 27, 2211-2216. Jain, S. K., Croad, J. L., Velusamy, T., Rains, J. L. et al., Chromium dinicocysteinate supplementation can lower blood glucose, CRP, MCP-1, ICAM-1, creatinine, apparently mediated by elevated blood vitamin C and adiponectin and inhibition of NFkB, Akt, and Glut-2 in livers of zucker diabetic fatty rats. Mol. Nutr. Food Res. 2010, 54, 1371-80. Hartge, M. M., Unger, T., Kintscher, U., The endothelium and vascular inflammation in diabetes. Diab. Vasc. Dis. Res. 2007, 4, 84-88. Rains, J. L., Jain, S. K., Oxidative stress, insulin signaling and diabetes. Free Rad. Biol. Med. 2011, 50, 567-575. 2007; 39 2007; 18 2004; 63 2010; 54 2001; 289 2009; 46 2006; 34 2002; 132 2004; 27 1997; 46 2008; 9 2008; 249 2008; 57 2011; 34 2011; 15 2007; 30 2006; 2 1993; 268 1994; 43 2005; 25 2004; 134 2005; 360 2003; 92 1989; 264 2004; 150 2011; 50 2007; 9 2005; 7 2005; 54 2007; 4 2005; 508 2008; 114 2009; 4 2008; 86 2007; 42 2007; 43 1989 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 Jain S.‐K. (e_1_2_7_25_1) 1989 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 17952838 - Horm Metab Res. 2007 Oct;39(10):743-51 17940160 - J Anim Sci. 2008 Apr;86(14 Suppl):E94-104 18299316 - Diabetes. 2008 May;57(5):1269-75 17142027 - J Nutr Biochem. 2007 Aug;18(8):519-24 17854708 - Free Radic Biol Med. 2007 Oct 15;43(8):1124-31 18220627 - Curr Diabetes Rev. 2006 May;2(2):195-211 20306473 - Mol Nutr Food Res. 2010 Sep;54(9):1371-80 9356027 - Diabetes. 1997 Nov;46(11):1786-91 15998259 - Antioxid Redox Signal. 2005 Jul-Aug;7(7-8):1040-52 19328229 - Free Radic Biol Med. 2009 Jun 15;46(12):1633-8 16822679 - Cytokine. 2006 May;34(3-4):219-23 15680273 - Eur J Pharmacol. 2005 Jan 31;508(1-3):205-10 16321806 - Philos Trans R Soc Lond B Biol Sci. 2005 Dec 29;360(1464):2355-72 17654441 - Diab Vasc Dis Res. 2007 Jun;4(2):84-8 19325908 - PLoS One. 2009;4(3):e5017 8253716 - J Biol Chem. 1993 Dec 15;268(35):26055-8 19067892 - Pediatr Diabetes. 2008 Dec;9(6):577-82 20929994 - Diabetes Care. 2011 Jan;34(1):162-7 16125535 - Metabolism. 2005 Sep;54(9):1230-5 12957322 - Am J Cardiol. 2003 Aug 18;92(4A):10J-17J 17508917 - Antioxid Redox Signal. 2007 Jul;9(7):955-69 12042418 - J Nutr. 2002 Jun;132(6):1107-14 2583378 - Diabetes. 1989 Dec;38(12):1539-43 18684987 - Am J Physiol Cell Physiol. 2008 Oct;295(4):C849-68 11726202 - Biochem Biophys Res Commun. 2001 Dec 7;289(3):687-91 15070438 - Proc Nutr Soc. 2004 Feb;63(1):41-7 2592379 - J Biol Chem. 1989 Dec 15;264(35):21340-5 14763919 - Eur J Endocrinol. 2004 Feb;150(2):207-14 21163346 - Free Radic Biol Med. 2011 Mar 1;50(5):567-75 15333486 - Diabetes Care. 2004 Sep;27(9):2211-6 18629684 - Arch Physiol Biochem. 2008 Jul;114(3):183-94 7926300 - Diabetes. 1994 Nov;43(11):1271-8 15505017 - Diabetes Care. 2004 Nov;27(11):2741-51 17349935 - Free Radic Biol Med. 2007 Apr 1;42(7):1089-97 21126197 - Antioxid Redox Signal. 2011 Oct 1;15(7):1911-26 15570020 - J Nutr. 2004 Dec;134(12):3245-9 17519436 - Diabetes Care. 2007 Aug;30(8):2154-63 16011463 - Annu Rev Nutr. 2005;25:151-74 |
References_xml | – reference: Blouet, C. B., Mariotti, F., Azzout-Marniche, D., Mathe, V. et al., Dietary cysteine alleviates sucrose-induced oxidative stress and insulin resistance. Free Radic. Biol. Med. 2007, 42, 1089-1097. – reference: Jain, S. K., Croad, J. L., Velusamy, T., Rains, J. L. et al., Chromium dinicocysteinate supplementation can lower blood glucose, CRP, MCP-1, ICAM-1, creatinine, apparently mediated by elevated blood vitamin C and adiponectin and inhibition of NFkB, Akt, and Glut-2 in livers of zucker diabetic fatty rats. Mol. Nutr. Food Res. 2010, 54, 1371-80. – reference: Hsueh, W. A., Quinones, M. J., Role of endothelial dysfunction in insulin resistance. Am. J. Cardiol. 2003, 92, 10J-17J. – reference: Blouet, C., Mariotti, F., Mikogami, T., Tome, D. et al., Meal cysteine improves postprandial glucose control in rats fed a high-sucrose meal. J. Nutr. Biochem. 2007, 18, 519-524. – reference: Feinstein, R., Kanety, H., Papa, M. Z., Lunenfeld, B. et al., Tumor necrosis factor-alpha suppresses insulin-induced tyrosine phosphorylation of insulin receptor and its substrates. J. Biol. Chem. 1993, 268, 26055-26058. – reference: Yaturu, S., Daberry, B., Rains, J., Jain, S.-K., Resistin and adiponectin levels in subjects with coronary artery disease and type 2 diabetes. Cytokine 2006, 34, 219-223. – reference: Hotamisligil, G. S., Spiegelman, B. M., Tumor necrosis factor alpha: a key component of the obesity-diabetes link. Diabetes 1994, 43, 1271-1278. – reference: Rains, J. L., Jain, S. K., Oxidative stress, insulin signaling and diabetes. Free Rad. Biol. Med. 2011, 50, 567-575. – reference: Song, D., Hutchings, S., Pang, C. C. Y., Chronic N-acetylcysteine prevents fructose-induced insulin resistance and hypertension in rats. Eu. J. Pharmacol. 2005, 508, 205-210. – reference: Nyholm, B., Nielsen, M. F., Kristensen, K., Nielsen, S. et al., Evidence of increased visceral obesity and reduced physical fitness in healthy insulin-resistant first-degree relatives of type 2 diabetic patients. Eur. J. Endocrinol. 2004, 150, 207-214. – reference: Hsu, C. C., Yen, H. F., Yin, M. C., Tsai, C. M. et al., Five cysteine-containing compounds delay diabetic deterioration in Balb/cA mice. J. Nutr. 2004, 134, 3245-3249. – reference: Vincent, J.-B., Recent advances in the nutritional biochemistry of trivalent chromium. Proc. Nutr. Soc. 2004, 63, 41-47. – reference: Lorenzo, M., Fernandez-Veledo, S., Vila-Bedmar, R., Garcia-Guerra, L. et al., Insulin resistance induced by tumor necrosis factor-alpha in myocytes and brown adipocytes. J. Anim. Sci. 2008, 86, E94-E104. – reference: Iyer, S. S., Accardi, C. J., Ziegler, T. R., Blanco, R. A. et al., Cysteine redox potential determines pro-inflammatory IL-1beta levels. PLoS One 2009, 4, e5017. DOI:10.1371/journal.pone.0005017 – reference: Merino-Ibarra, E., Artieda, M., Cenarro, A., Goicoechea, J. et al., Ultrasonography for the evaluation of visceral fat and the metabolic syndrome. Metabolism 2005, 54, 1230-1235. – reference: Evans, J. L., Maddux, B. A., Goldfine, I. D., The molecular basis for oxidative stress-induced insulin resistance. Antiox. Redox. Signal 2005, 7, 1040-1052. – reference: Greenfield, J. R., Campbell, L. V., Relationship between inflammation, insulin resistance and type 2 diabetes: 'cause or effect'? Curr. Diabetes Rev. 2006, 2, 195-211. – reference: Sekhar, R. V., McKay, S. V., Patel, S. G., Guthikonda, A. P. et al., Glutathione synthesis is diminished in patients with uncontrolled diabetes and restored by dietary supplementation with cysteine and glycine. Diabetes Care 2011, 34, 162-167. – reference: Darmaun, D., Smith, S. D., Sweeten, S., Hartman, B. K. et al., Poorly controlled type 1 diabetes is associated with altered glutathione homeostasis in adolescents: apparent resistance to N-acetylcysteine supplementation. Pediatr. Diabetes 2008, 9, 577-582. – reference: Rajpathak, S., Rimm, E.-B., Li, T., Morris, J.-S. et al., Lower toenail chromium in men with diabetes and cardiovascular disease compared with healthy men. Diabetes Care 2004, 27, 2211-2216. – reference: Balk, E. M., Tatsioni, A., Lichtenstein, A. H., Lau, J. et al., Effect of chromium supplementation on glucose metabolism and lipids. Diabetes Care 2007, 30, 2154-2163. – reference: Singh, U., Devraj, S., Jialal, I., Vitamin E, oxidative stress and inflammation. Ann. Rev. Nutr. 2005, 25, 151-174. – reference: Otani, H., Oxidative stress as pathogenesis of cardiovascular risk associated with metabolic syndrome. Antiox. Redox. Signal 2011, 15, 1911-1926. – reference: Cefalu, W.-T., Hu, F.-B., Role of chromium in human health and in diabetes. Diab. Care 2004, 27, 2741-2751. – reference: Hayashi, T., Boyko, E. J., McNeely, M. J., Leonetti, D. L. et al., Visceral adiposity, not abdominal subcutaneous fat area, is associated with an increase in future insulin resistance in Japanese Americans. Diabetes 2008, 57, 1269-1275. – reference: Anderson, R.-A., Cheng, N., Bryden, N.-A., Polansky, M.-M. et al., Elevated intakes of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes. Diabetes 1997, 46, 1786-1791. – reference: Nieto-Vazquez, I., Fernandez-Veledo, S., Kramer, D. K., Vila-Bedmar, R. et al., Insulin resistance associated to obesity: the link TNF-alpha. Arch. Physiol. Biochem. 2008, 114, 183-194. – reference: Cefalu, W. T., Wang, Z. Q., Zhang, X. H., Baldor, L. C. et al., Oral chromium picolinate improves carbohydrate and lipid metabolism and enhance skeletal muscle Glut-4 translocation in obese, hyperinsulinemic (JCR-LA corpulent) rats. J. Nutr. 2002, 132, 1107-1114. – reference: Jain, S.-K., Rains, J., Croad, J., Effect of chromium niacinate and chromium picolinate supplementation on fasting blood glucose, HbA1, TNF-α, IL-6, CRP, cholesterol, triglycerides and lipid peroxidation levels in streptozotocine treated diabetic rats. Free Radical Biol. Med. 2007, 43, 1124-1131. – reference: Hartge, M. M., Unger, T., Kintscher, U., The endothelium and vascular inflammation in diabetes. Diab. Vasc. Dis. Res. 2007, 4, 84-88. – reference: Dröge, W., Oxidative stress and ageing: is ageing a cysteine deficiency syndrome? Philos. Trans. R Soc. Lond. B Biol. Sci. 2005, 360, 2355-2372. – reference: Jain, S.-K., Hyperglycemia can cause membrane lipid peroxidation and osmotic fragility in human red blood cells. J. Biol. Chem. 1989, 264, 21340-21345. – reference: Jain, S.-K., McVie, R., Duett, J., Herbst, J.-J., Erythrocyte membrane lipid peroxidation and glycosylated hemoglobin in diabetes. Diabetes 1989, 1539-1543. – reference: Jones, D. P., Radical-free biology of oxidative stress. Am. J. Cell Physiol. 2008, 249, C849-C868. – reference: Jain, S.-K., Kannan, K., Chromium chloride inhibits oxidative stress and TNF-α secretion caused by exposure to high glucose in cultured monocytes. Biochem. Biophys. Res. Commun. 2001, 289, 687-691. – reference: Pennathur, S., Heinecke, J. W., Mechanisms for oxidative stress in diabetic cardiovascular disease. Antiox. Redox. Signal 2007, 9, 955-969. – reference: Hummel, M., Standl, E., Schnell, O., Chromium in metabolic and cardiovascular disease. Horm. Metabolic Disease 2007, 39, 743-751. – reference: Jain, S. K., Velusamy, T., Croad, J. L., Rains, J. L. et al., L-cysteine supplementation lowers blood glucose, glycated hemoglobin, CRP, MCP-1, oxidative stress and inhibits NFkB activation in the livers of Zucker diabetic rats. Free Radic. Biol. Med. 2009, 46, 1633-1638. – volume: 134 start-page: 3245 year: 2004 end-page: 3249 article-title: Five cysteine‐containing compounds delay diabetic deterioration in alb/c mice publication-title: J. Nutr. – volume: 150 start-page: 207 year: 2004 end-page: 214 article-title: Evidence of increased visceral obesity and reduced physical fitness in healthy insulin‐resistant first‐degree relatives of type 2 diabetic patients publication-title: Eur. J. Endocrinol. – volume: 114 start-page: 183 year: 2008 end-page: 194 article-title: Insulin resistance associated to obesity: the link ‐alpha publication-title: Arch. Physiol. Biochem. – volume: 42 start-page: 1089 year: 2007 end-page: 1097 article-title: Dietary cysteine alleviates sucrose‐induced oxidative stress and insulin resistance publication-title: Free Radic. Biol. Med. – volume: 43 start-page: 1271 year: 1994 end-page: 1278 article-title: Tumor necrosis factor alpha: a key component of the obesity‐diabetes link publication-title: Diabetes – volume: 86 start-page: E94 year: 2008 end-page: E104 article-title: Insulin resistance induced by tumor necrosis factor‐alpha in myocytes and brown adipocytes publication-title: J. Anim. Sci. – volume: 46 start-page: 1633 year: 2009 end-page: 1638 article-title: ‐cysteine supplementation lowers blood glucose, glycated hemoglobin, , ‐1, oxidative stress and inhibits k activation in the livers of ucker diabetic rats publication-title: Free Radic. Biol. Med. – volume: 4 start-page: e5017 year: 2009 article-title: Cysteine redox potential determines pro‐inflammatory ‐1beta levels publication-title: PLoS One – volume: 54 start-page: 1230 year: 2005 end-page: 1235 article-title: Ultrasonography for the evaluation of visceral fat and the metabolic syndrome publication-title: Metabolism – volume: 2 start-page: 195 year: 2006 end-page: 211 article-title: Relationship between inflammation, insulin resistance and type 2 diabetes: ‘cause or effect’? publication-title: Curr. Diabetes Rev. – volume: 7 start-page: 1040 year: 2005 end-page: 1052. article-title: The molecular basis for oxidative stress‐induced insulin resistance publication-title: Antiox. Redox. Signal – volume: 132 start-page: 1107 year: 2002 end-page: 1114 article-title: Oral chromium picolinate improves carbohydrate and lipid metabolism and enhance skeletal muscle lut‐4 translocation in obese, hyperinsulinemic ( ‐ corpulent) rats publication-title: J. Nutr. – volume: 34 start-page: 219 year: 2006 end-page: 223 article-title: Resistin and adiponectin levels in subjects with coronary artery disease and type 2 diabetes publication-title: Cytokine – volume: 360 start-page: 2355 year: 2005 end-page: 2372 article-title: Oxidative stress and ageing: is ageing a cysteine deficiency syndrome? publication-title: Philos. Trans. R Soc. Lond. B Biol. Sci. – start-page: 1539 year: 1989 end-page: 1543 article-title: Erythrocyte membrane lipid peroxidation and glycosylated hemoglobin in diabetes publication-title: Diabetes – volume: 268 start-page: 26055 year: 1993 end-page: 26058 article-title: Tumor necrosis factor‐alpha suppresses insulin‐induced tyrosine phosphorylation of insulin receptor and its substrates publication-title: J. Biol. Chem. – volume: 9 start-page: 955 year: 2007 end-page: 969. article-title: Mechanisms for oxidative stress in diabetic cardiovascular disease publication-title: Antiox. Redox. Signal – volume: 34 start-page: 162 year: 2011 end-page: 167 article-title: Glutathione synthesis is diminished in patients with uncontrolled diabetes and restored by dietary supplementation with cysteine and glycine publication-title: Diabetes Care – volume: 43 start-page: 1124 year: 2007 end-page: 1131 article-title: Effect of chromium niacinate and chromium picolinate supplementation on fasting blood glucose, b 1, ‐α, ‐6, , cholesterol, triglycerides and lipid peroxidation levels in streptozotocine treated diabetic rats publication-title: Free Radical Biol. Med. – volume: 15 start-page: 1911 year: 2011 end-page: 1926 article-title: Oxidative stress as pathogenesis of cardiovascular risk associated with metabolic syndrome publication-title: Antiox. Redox. Signal – volume: 25 start-page: 151 year: 2005 end-page: 174 article-title: Vitamin , oxidative stress and inflammation publication-title: Ann. Rev. Nutr. – volume: 27 start-page: 2211 year: 2004 end-page: 2216 article-title: Lower toenail chromium in men with diabetes and cardiovascular disease compared with healthy men publication-title: Diabetes Care – volume: 63 start-page: 41 year: 2004 end-page: 47 article-title: Recent advances in the nutritional biochemistry of trivalent chromium publication-title: Proc. Nutr. Soc. – volume: 57 start-page: 1269 year: 2008 end-page: 1275 article-title: Visceral adiposity, not abdominal subcutaneous fat area, is associated with an increase in future insulin resistance in apanese mericans publication-title: Diabetes – volume: 18 start-page: 519 year: 2007 end-page: 524 article-title: Meal cysteine improves postprandial glucose control in rats fed a high‐sucrose meal publication-title: J. Nutr. Biochem. – volume: 92 start-page: 10J year: 2003 end-page: 17J article-title: Role of endothelial dysfunction in insulin resistance publication-title: Am. J. Cardiol. – volume: 39 start-page: 743 year: 2007 end-page: 751 article-title: Chromium in metabolic and cardiovascular disease publication-title: Horm. Metabolic Disease – volume: 46 start-page: 1786 year: 1997 end-page: 1791 article-title: Elevated intakes of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes publication-title: Diabetes – volume: 4 start-page: 84 year: 2007 end-page: 88 article-title: The endothelium and vascular inflammation in diabetes publication-title: Diab. Vasc. Dis. Res. – volume: 30 start-page: 2154 year: 2007 end-page: 2163 article-title: Effect of chromium supplementation on glucose metabolism and lipids publication-title: Diabetes Care – volume: 27 start-page: 2741 year: 2004 end-page: 2751 article-title: Role of chromium in human health and in diabetes publication-title: Diab. Care – volume: 50 start-page: 567 year: 2011 end-page: 575 article-title: Oxidative stress, insulin signaling and diabetes publication-title: Free Rad. Biol. Med. – volume: 9 start-page: 577 year: 2008 end-page: 582 article-title: Poorly controlled type 1 diabetes is associated with altered glutathione homeostasis in adolescents: apparent resistance to ‐acetylcysteine supplementation publication-title: Pediatr. Diabetes – volume: 264 start-page: 21340 year: 1989 end-page: 21345 article-title: Hyperglycemia can cause membrane lipid peroxidation and osmotic fragility in human red blood cells publication-title: J. Biol. Chem. – volume: 289 start-page: 687 year: 2001 end-page: 691 article-title: Chromium chloride inhibits oxidative stress and ‐α secretion caused by exposure to high glucose in cultured monocytes publication-title: Biochem. Biophys. Res. Commun. – volume: 249 start-page: C849 year: 2008 end-page: C868 article-title: Radical‐free biology of oxidative stress publication-title: Am. J. Cell Physiol. – volume: 54 start-page: 1371 year: 2010 end-page: 80 article-title: Chromium dinicocysteinate supplementation can lower blood glucose, , ‐1, ‐1, creatinine, apparently mediated by elevated blood vitamin C and adiponectin and inhibition of k , kt, and lut‐2 in livers of zucker diabetic fatty rats publication-title: Mol. Nutr. Food Res. – volume: 508 start-page: 205 year: 2005 end-page: 210 article-title: Chronic ‐acetylcysteine prevents fructose‐induced insulin resistance and hypertension in rats publication-title: Eu. J. Pharmacol. – ident: e_1_2_7_36_1 doi: 10.2174/157339906776818532 – ident: e_1_2_7_9_1 doi: 10.1146/annurev.nutr.24.012003.132446 – ident: e_1_2_7_23_1 doi: 10.1002/mnfr.200900177 – ident: e_1_2_7_2_1 doi: 10.1079/PNS2003315 – ident: e_1_2_7_15_1 doi: 10.1111/j.1399-5448.2008.00436.x – ident: e_1_2_7_16_1 doi: 10.1098/rstb.2005.1770 – ident: e_1_2_7_10_1 doi: 10.1016/j.freeradbiomed.2010.12.006 – ident: e_1_2_7_27_1 doi: 10.1006/bbrc.2001.6026 – ident: e_1_2_7_33_1 doi: 10.2527/jas.2007-0462 – ident: e_1_2_7_18_1 doi: 10.1016/j.freeradbiomed.2007.01.006 – start-page: 1539 year: 1989 ident: e_1_2_7_25_1 article-title: Erythrocyte membrane lipid peroxidation and glycosylated hemoglobin in diabetes publication-title: Diabetes doi: 10.2337/diab.38.12.1539 – ident: e_1_2_7_28_1 doi: 10.1152/ajpcell.00283.2008 – ident: e_1_2_7_35_1 doi: 10.1080/13813450802181047 – ident: e_1_2_7_11_1 doi: 10.1089/ars.2007.1595 – ident: e_1_2_7_22_1 doi: 10.1371/journal.pone.0005017 – ident: e_1_2_7_30_1 doi: 10.1016/j.metabol.2005.04.009 – ident: e_1_2_7_14_1 doi: 10.2337/dc10-1006 – ident: e_1_2_7_20_1 doi: 10.1093/jn/134.12.3245 – ident: e_1_2_7_26_1 doi: 10.1089/ars.2010.3739 – ident: e_1_2_7_7_1 doi: 10.2337/diacare.27.9.2211 – ident: e_1_2_7_21_1 doi: 10.1016/j.freeradbiomed.2009.03.014 – ident: e_1_2_7_29_1 doi: 10.1016/j.freeradbiomed.2007.05.019 – ident: e_1_2_7_31_1 doi: 10.2337/db07-1378 – ident: e_1_2_7_32_1 doi: 10.1530/eje.0.1500207 – ident: e_1_2_7_38_1 doi: 10.3132/dvdr.2007.025 – ident: e_1_2_7_3_1 doi: 10.2337/diacare.27.11.2741 – ident: e_1_2_7_17_1 doi: 10.1016/j.jnutbio.2006.10.002 – ident: e_1_2_7_24_1 doi: 10.1016/S0021-9258(19)30085-7 – ident: e_1_2_7_6_1 doi: 10.2337/diab.46.11.1786 – ident: e_1_2_7_5_1 doi: 10.1055/s-2007-985847 – ident: e_1_2_7_8_1 doi: 10.1093/jn/132.6.1107 – ident: e_1_2_7_19_1 doi: 10.1016/j.ejphar.2004.12.018 – ident: e_1_2_7_12_1 doi: 10.1089/ars.2005.7.1040 – ident: e_1_2_7_37_1 doi: 10.2337/diab.43.11.1271 – ident: e_1_2_7_39_1 doi: 10.1016/S0002-9149(03)00611-8 – ident: e_1_2_7_4_1 doi: 10.2337/dc06-0996 – ident: e_1_2_7_13_1 doi: 10.1016/j.cyto.2006.05.005 – ident: e_1_2_7_34_1 doi: 10.1016/S0021-9258(19)74276-8 – reference: 16011463 - Annu Rev Nutr. 2005;25:151-74 – reference: 17654441 - Diab Vasc Dis Res. 2007 Jun;4(2):84-8 – reference: 19328229 - Free Radic Biol Med. 2009 Jun 15;46(12):1633-8 – reference: 16125535 - Metabolism. 2005 Sep;54(9):1230-5 – reference: 17142027 - J Nutr Biochem. 2007 Aug;18(8):519-24 – reference: 18299316 - Diabetes. 2008 May;57(5):1269-75 – reference: 20306473 - Mol Nutr Food Res. 2010 Sep;54(9):1371-80 – reference: 16321806 - Philos Trans R Soc Lond B Biol Sci. 2005 Dec 29;360(1464):2355-72 – reference: 17349935 - Free Radic Biol Med. 2007 Apr 1;42(7):1089-97 – reference: 20929994 - Diabetes Care. 2011 Jan;34(1):162-7 – reference: 17519436 - Diabetes Care. 2007 Aug;30(8):2154-63 – reference: 12042418 - J Nutr. 2002 Jun;132(6):1107-14 – reference: 19325908 - PLoS One. 2009;4(3):e5017 – reference: 21126197 - Antioxid Redox Signal. 2011 Oct 1;15(7):1911-26 – reference: 15505017 - Diabetes Care. 2004 Nov;27(11):2741-51 – reference: 16822679 - Cytokine. 2006 May;34(3-4):219-23 – reference: 7926300 - Diabetes. 1994 Nov;43(11):1271-8 – reference: 15680273 - Eur J Pharmacol. 2005 Jan 31;508(1-3):205-10 – reference: 11726202 - Biochem Biophys Res Commun. 2001 Dec 7;289(3):687-91 – reference: 17952838 - Horm Metab Res. 2007 Oct;39(10):743-51 – reference: 18220627 - Curr Diabetes Rev. 2006 May;2(2):195-211 – reference: 8253716 - J Biol Chem. 1993 Dec 15;268(35):26055-8 – reference: 17508917 - Antioxid Redox Signal. 2007 Jul;9(7):955-69 – reference: 14763919 - Eur J Endocrinol. 2004 Feb;150(2):207-14 – reference: 17854708 - Free Radic Biol Med. 2007 Oct 15;43(8):1124-31 – reference: 19067892 - Pediatr Diabetes. 2008 Dec;9(6):577-82 – reference: 15333486 - Diabetes Care. 2004 Sep;27(9):2211-6 – reference: 2592379 - J Biol Chem. 1989 Dec 15;264(35):21340-5 – reference: 2583378 - Diabetes. 1989 Dec;38(12):1539-43 – reference: 15070438 - Proc Nutr Soc. 2004 Feb;63(1):41-7 – reference: 12957322 - Am J Cardiol. 2003 Aug 18;92(4A):10J-17J – reference: 21163346 - Free Radic Biol Med. 2011 Mar 1;50(5):567-75 – reference: 18629684 - Arch Physiol Biochem. 2008 Jul;114(3):183-94 – reference: 18684987 - Am J Physiol Cell Physiol. 2008 Oct;295(4):C849-68 – reference: 15570020 - J Nutr. 2004 Dec;134(12):3245-9 – reference: 15998259 - Antioxid Redox Signal. 2005 Jul-Aug;7(7-8):1040-52 – reference: 17940160 - J Anim Sci. 2008 Apr;86(14 Suppl):E94-104 – reference: 9356027 - Diabetes. 1997 Nov;46(11):1786-91 |
SSID | ssj0031243 |
Score | 2.272461 |
Snippet | Scope
Chromium and cysteine supplementation have been shown to improve glucose metabolism in animal studies. This study examined the hypothesis that chromium... Chromium and cysteine supplementation have been shown to improve glucose metabolism in animal studies. This study examined the hypothesis that chromium... |
SourceID | proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1333 |
SubjectTerms | Adult Biological and medical sciences Chromium Cysteine - analogs & derivatives Cysteine - therapeutic use Diabetes Diabetes Mellitus, Type 2 - drug therapy Diabetes Mellitus, Type 2 - metabolism Dietary Supplements Double-Blind Method Feeding. Feeding behavior Female Food industries Fundamental and applied biological sciences. Psychology Humans Insulin - blood Insulin Resistance Intercellular Adhesion Molecule-1 - blood Interleukin-6 - blood Interleukin-8 - blood l-cysteine Male Middle Aged Organometallic Compounds - therapeutic use Oxidative stress Oxidative Stress - drug effects Tumor Necrosis Factor-alpha - metabolism Vertebrates: anatomy and physiology, studies on body, several organs or systems |
Title | Effect of chromium dinicocysteinate supplementation on circulating levels of insulin, TNF-α, oxidative stress, and insulin resistance in type 2 diabetic subjects: Randomized, double-blind, placebo-controlled study |
URI | https://api.istex.fr/ark:/67375/WNG-JQSTN59S-R/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmnfr.201100719 https://www.ncbi.nlm.nih.gov/pubmed/22674882 https://www.proquest.com/docview/1033457580 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQuXDh_QiPykioXDZtGsd5cEPAUlVqJLZb0VvkV0rU3QRtdqWqJ34Cf4U_wi_g1F_SGTtJWQRCCCmXWDNOnIw9Y_vzN4S8yIxULBWxHxkW-lFYxn6mU-1riBXCmCsdWsabgzzeO4r2j_nxT6f4HT_EsOCGPcOO19jBhWx3rkhD53W5sBSc6CXxBB8CtjAqmgz8UQycl0XYg8_yI3DlPWtjEO6sq695pev4gc8QJSla-FCly3DxuxB0PaK1Lml8i4i-MQ6Jcrq9Wsptdf4Lz-P_tPY2udnFq_S1M7A75Jqp7xLvbWWWdIt2pKIzmvec_vfID8eHTJuSqk-LZl6t5lSjWKOQNLqqIbilLeYSdbh11KJwqWqhbCqx-oTOEMnUYhUdVH5Ep_n44svX799GtDmrtGUrp-6cy4iKWveCFEowIgZThiKKC8w0pG6BuVLwXInrTu0rOgEleLlzo0dUNys5M1C9hBrg3uLUZAMFHZB_ZjS1PLz3ydH43fTNnt-lkPAVzDtDH1osAsOU1kFZRomUkqvUBBzCFMMZz2B6mGoBo5aWcaSTXSVlxJNSZZJnZZww9oBs1E1tHhEaK86EKDOVljrKWCZx0x7mzzIwIil17BG_N6FCdfzqmOZjVjhm6LDAf1gM_9AjLwf5z45Z5I-SW9YiBzGxOEU8XsKLj_n7Yv_D4TTn2WEx8cjmmskOCmHMGG64euR5b8MFDCO4NyRq06xaeCxj0HKeBh556Iz7SjvEjDQpaPvWRP_yusVBPp7sQuT5-B_ln5AbUBg6eOVTsrFcrMwzCPmWctN260tZeVhJ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagPcCF9yM8ipFQuWzaNI7z4IaAZSndSGy3orcofgSi7iYouytVPfET-Cv8EX4BJ34JM3aSahEIIaS9rDXjxMnYMx5_-YaQJ4kWksV56Aaa-W7gF6GbqFi5CmIFP-RS-YbxZpyGo6Ng_5h3aEL8FsbyQ_QJN5wZZr3GCY4J6d1z1tB5VTSGgxPdZHKRbGJZb7OrmvQMUgzcl8HYg9dyA3DmHW-j5--u66_5pU18xKeIk8wX8KgKW-Pid0HoekxrnNLwKhHdcCwW5WRntRQ78uwXpsf_Gu81cqUNWelza2PXyQVd3SDOy1Iv6TZteUVnNO1o_W-S75YSmdYFlR-bel6u5lShWC2RN7qsIL6lCywnaqHrqEXhJ8tGmmpi1Qc6QzDTArto0fIDOk2HPz5_-fZ1QOvTUhnCcmo_dRnQvFKdIIUWDIrBmqGJYo6Z-tTmmEsJ1xWYelo8oxNQgps702pAVb0SMw3dC-gB_huomqihocXyz7Sihor3Fjkavpq-GLltFQlXwtbTd2HEuaeZVMoriiASQnAZa49DpKI54wnsEGOVw8KlRBioaE8KEfCokIngSRFGjN0mG1Vd6buEhpKzPC8SGRcqSFgi8NwettDC03lUqNAhbmdDmWwp1rHSxyyz5NB-hu8w69-hQ5728p8sucgfJbeNSfZieXOCkLyIZ-_T19n-u8NpypPDbOKQrTWb7RX8kDE8c3XI486IM1hJ8Hgor3S9WsBlGYOR89hzyB1r3efaPhaliUHbNTb6l9vNxulwsgfB571_lH9ELo2m44Ps4E369j65DAK-RVs-IBvLZqUfQgS4FFtmjv8Ej4JcZA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLWglRAb3o8UKEZCZTNp0zjOgx1iGEqhEUynaneRnzTqTFLNQ6q64hP4FX6EL2DFl3BtJymDQAghZRPnXidOrn2v7ZNzEXqaKS5IymI_UiT0o1DHfiZT6UuIFcKYChlaxpu9PN45iHaP6NFPf_E7fohuwc30DDtemw5-KvXWBWnopNJTS8FpvGR2Ga1GcZAau-4POwIpAt7LQuzBafkR-PKWtjEIt5b1l9zSqnnDZwYmyWbwprRLcfG7GHQ5pLU-aXAdsbY1DopysrmY801x_gvR4_809wa61gSs-IWzsJvokqpuIa9fqjnewA2r6BjnLan_bfTNESLjWmNxPK0n5WKCpRGrhWGNLiuIbvHMJBN1wHWjheEQ5VTYXGLVRzw2UKaZqaLByvfwKB98__T565cers9KaenKsfvRpYdZJVtBDCUmJAZbhiJsVphxiN0KcyngvtwsPM2e4yEowcOdK9nDsl7wsYLqOdQA5xaoxmsoaJD8YyWxJeK9gw4Gr0Yvd_wmh4QvYOIZ-tBiFigipAy0jhLOORWpCijEKYoSmsH8MJUMhi3J40gm24LziCZaZJxmOk4IuYtWqrpS9xGOBSWM6UykWkYZybjZtYcJNA8US7SMPeS3JlSIhmDd5PkYF44aOizMNyy6b-ihZ538qaMW-aPkhrXIToxNTwwgL6HFYf662P2wP8pptl8MPbS-ZLKdQhgTYnZcPfSkteECxhGzOcQqVS9mcFtCoOU0DTx0zxn3hXZoUtKkoO1bE_3L4xZ7-WC4DaHn2j_KP0ZX3vcHxbs3-dsH6CpcDx3U8iFamU8X6hGEf3O-bnv4D2u3Wxw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+chromium+dinicocysteinate+supplementation+on+circulating+levels+of+insulin%2C+TNF-%CE%B1%2C+oxidative+stress%2C+and+insulin+resistance+in+type+2+diabetic+subjects%3A+Randomized%2C+double-blind%2C+placebo-controlled+study&rft.jtitle=Molecular+nutrition+%26+food+research&rft.au=JAIN%2C+Sushil+K&rft.au=KAHLON%2C+Gunjan&rft.au=MOREHEAD%2C+Lester&rft.au=DHAWAN%2C+Richa&rft.date=2012-08-01&rft.pub=Wiley&rft.issn=1613-4125&rft.volume=56&rft.issue=8&rft.spage=1333&rft.epage=1341&rft_id=info:doi/10.1002%2Fmnfr.201100719&rft.externalDBID=n%2Fa&rft.externalDocID=26336842 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-4125&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-4125&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-4125&client=summon |