Effect of chromium dinicocysteinate supplementation on circulating levels of insulin, TNF-α, oxidative stress, and insulin resistance in type 2 diabetic subjects: Randomized, double-blind, placebo-controlled study

Scope Chromium and cysteine supplementation have been shown to improve glucose metabolism in animal studies. This study examined the hypothesis that chromium dinicocysteinate (CDNC), a complex of chromium and l‐cysteine, is beneficial in lowering oxidative stress, vascular inflammation, and glycemia...

Full description

Saved in:
Bibliographic Details
Published inMolecular nutrition & food research Vol. 56; no. 8; pp. 1333 - 1341
Main Authors Jain, Sushil K., Kahlon, Gunjan, Morehead, Lester, Dhawan, Richa, Lieblong, Benjamin, Stapleton, Tommie, Caldito, Gloria, Hoeldtke, Robert, Levine, Steven N., Bass III, Pat Farrington
Format Journal Article
LanguageEnglish
Published Weinheim Blackwell Publishing Ltd 01.08.2012
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Scope Chromium and cysteine supplementation have been shown to improve glucose metabolism in animal studies. This study examined the hypothesis that chromium dinicocysteinate (CDNC), a complex of chromium and l‐cysteine, is beneficial in lowering oxidative stress, vascular inflammation, and glycemia in type 2 diabetic subjects. Methods and results Type 2 diabetic subjects enrolled in this study were given placebo for 1 month for stabilization and then randomized into one of three groups: placebo (P), chromium picolinate (CP), or CDNC, after which they received daily oral supplementation for 3 months. Of the 100 patients enrolled in the study, 74 patients completed it. There were 25 patients in the P supplemented group, 25 in the CP supplemented and 24 in the CDNC supplemented group who completed the study. Blood markers of glycemia, vascular inflammation, HOMA insulin resistance, and oxidative stress were determined at randomization and after 3 months of supplementation with P, CP, or CDNC. There was a significant decrease at 3 months in insulin resistance (p = 0.02) and in the levels of protein oxidation (p = 0.02) and TNF‐α (p = 0.01) in the CDNC supplemented cohort compared to baseline. However, there was no statistically significant change in these markers in the CP supplemented group compared to baseline. Insulin levels significantly decreased (p = 0.01) for subjects receiving CDNC but not CP. There was no significant impact of supplementation on HbA1c or glucose levels in either of the groups. Conclusion CDNC supplementation lowers insulin resistance by reducing blood levels of TNF‐α, insulin, and oxidative stress in type 2 diabetic subjects. Therefore, CDNC supplementation has potential as an adjunct therapy for individuals with type 2 diabetes.
AbstractList Chromium and cysteine supplementation have been shown to improve glucose metabolism in animal studies. This study examined the hypothesis that chromium dinicocysteinate (CDNC), a complex of chromium and l-cysteine, is beneficial in lowering oxidative stress, vascular inflammation, and glycemia in type 2 diabetic subjects.SCOPEChromium and cysteine supplementation have been shown to improve glucose metabolism in animal studies. This study examined the hypothesis that chromium dinicocysteinate (CDNC), a complex of chromium and l-cysteine, is beneficial in lowering oxidative stress, vascular inflammation, and glycemia in type 2 diabetic subjects.Type 2 diabetic subjects enrolled in this study were given placebo for 1 month for stabilization and then randomized into one of three groups: placebo (P), chromium picolinate (CP), or CDNC, after which they received daily oral supplementation for 3 months. Of the 100 patients enrolled in the study, 74 patients completed it. There were 25 patients in the P supplemented group, 25 in the CP supplemented and 24 in the CDNC supplemented group who completed the study. Blood markers of glycemia, vascular inflammation, HOMA insulin resistance, and oxidative stress were determined at randomization and after 3 months of supplementation with P, CP, or CDNC. There was a significant decrease at 3 months in insulin resistance (p = 0.02) and in the levels of protein oxidation (p = 0.02) and TNF-α (p = 0.01) in the CDNC supplemented cohort compared to baseline. However, there was no statistically significant change in these markers in the CP supplemented group compared to baseline. Insulin levels significantly decreased (p = 0.01) for subjects receiving CDNC but not CP. There was no significant impact of supplementation on HbA(1c) or glucose levels in either of the groups.METHODS AND RESULTSType 2 diabetic subjects enrolled in this study were given placebo for 1 month for stabilization and then randomized into one of three groups: placebo (P), chromium picolinate (CP), or CDNC, after which they received daily oral supplementation for 3 months. Of the 100 patients enrolled in the study, 74 patients completed it. There were 25 patients in the P supplemented group, 25 in the CP supplemented and 24 in the CDNC supplemented group who completed the study. Blood markers of glycemia, vascular inflammation, HOMA insulin resistance, and oxidative stress were determined at randomization and after 3 months of supplementation with P, CP, or CDNC. There was a significant decrease at 3 months in insulin resistance (p = 0.02) and in the levels of protein oxidation (p = 0.02) and TNF-α (p = 0.01) in the CDNC supplemented cohort compared to baseline. However, there was no statistically significant change in these markers in the CP supplemented group compared to baseline. Insulin levels significantly decreased (p = 0.01) for subjects receiving CDNC but not CP. There was no significant impact of supplementation on HbA(1c) or glucose levels in either of the groups.CDNC supplementation lowers insulin resistance by reducing blood levels of TNF-α, insulin, and oxidative stress in type 2 diabetic subjects. Therefore, CDNC supplementation has potential as an adjunct therapy for individuals with type 2 diabetes.CONCLUSIONCDNC supplementation lowers insulin resistance by reducing blood levels of TNF-α, insulin, and oxidative stress in type 2 diabetic subjects. Therefore, CDNC supplementation has potential as an adjunct therapy for individuals with type 2 diabetes.
Scope Chromium and cysteine supplementation have been shown to improve glucose metabolism in animal studies. This study examined the hypothesis that chromium dinicocysteinate (CDNC), a complex of chromium and l‐cysteine, is beneficial in lowering oxidative stress, vascular inflammation, and glycemia in type 2 diabetic subjects. Methods and results Type 2 diabetic subjects enrolled in this study were given placebo for 1 month for stabilization and then randomized into one of three groups: placebo (P), chromium picolinate (CP), or CDNC, after which they received daily oral supplementation for 3 months. Of the 100 patients enrolled in the study, 74 patients completed it. There were 25 patients in the P supplemented group, 25 in the CP supplemented and 24 in the CDNC supplemented group who completed the study. Blood markers of glycemia, vascular inflammation, HOMA insulin resistance, and oxidative stress were determined at randomization and after 3 months of supplementation with P, CP, or CDNC. There was a significant decrease at 3 months in insulin resistance (p = 0.02) and in the levels of protein oxidation (p = 0.02) and TNF‐α (p = 0.01) in the CDNC supplemented cohort compared to baseline. However, there was no statistically significant change in these markers in the CP supplemented group compared to baseline. Insulin levels significantly decreased (p = 0.01) for subjects receiving CDNC but not CP. There was no significant impact of supplementation on HbA1c or glucose levels in either of the groups. Conclusion CDNC supplementation lowers insulin resistance by reducing blood levels of TNF‐α, insulin, and oxidative stress in type 2 diabetic subjects. Therefore, CDNC supplementation has potential as an adjunct therapy for individuals with type 2 diabetes.
Chromium and cysteine supplementation have been shown to improve glucose metabolism in animal studies. This study examined the hypothesis that chromium dinicocysteinate (CDNC), a complex of chromium and l-cysteine, is beneficial in lowering oxidative stress, vascular inflammation, and glycemia in type 2 diabetic subjects. Type 2 diabetic subjects enrolled in this study were given placebo for 1 month for stabilization and then randomized into one of three groups: placebo (P), chromium picolinate (CP), or CDNC, after which they received daily oral supplementation for 3 months. Of the 100 patients enrolled in the study, 74 patients completed it. There were 25 patients in the P supplemented group, 25 in the CP supplemented and 24 in the CDNC supplemented group who completed the study. Blood markers of glycemia, vascular inflammation, HOMA insulin resistance, and oxidative stress were determined at randomization and after 3 months of supplementation with P, CP, or CDNC. There was a significant decrease at 3 months in insulin resistance (p = 0.02) and in the levels of protein oxidation (p = 0.02) and TNF-α (p = 0.01) in the CDNC supplemented cohort compared to baseline. However, there was no statistically significant change in these markers in the CP supplemented group compared to baseline. Insulin levels significantly decreased (p = 0.01) for subjects receiving CDNC but not CP. There was no significant impact of supplementation on HbA(1c) or glucose levels in either of the groups. CDNC supplementation lowers insulin resistance by reducing blood levels of TNF-α, insulin, and oxidative stress in type 2 diabetic subjects. Therefore, CDNC supplementation has potential as an adjunct therapy for individuals with type 2 diabetes.
Author Lieblong, Benjamin
Stapleton, Tommie
Jain, Sushil K.
Hoeldtke, Robert
Kahlon, Gunjan
Caldito, Gloria
Bass III, Pat Farrington
Morehead, Lester
Levine, Steven N.
Dhawan, Richa
Author_xml – sequence: 1
  givenname: Sushil K.
  surname: Jain
  fullname: Jain, Sushil K.
  email: sjain@lsuhsc.edu
  organization: Departments of Pediatrics and Medicine, Louisiana State University Health Sciences Center, LA, Shreveport, USA
– sequence: 2
  givenname: Gunjan
  surname: Kahlon
  fullname: Kahlon, Gunjan
– sequence: 3
  givenname: Lester
  surname: Morehead
  fullname: Morehead, Lester
– sequence: 4
  givenname: Richa
  surname: Dhawan
  fullname: Dhawan, Richa
– sequence: 5
  givenname: Benjamin
  surname: Lieblong
  fullname: Lieblong, Benjamin
– sequence: 6
  givenname: Tommie
  surname: Stapleton
  fullname: Stapleton, Tommie
– sequence: 7
  givenname: Gloria
  surname: Caldito
  fullname: Caldito, Gloria
– sequence: 8
  givenname: Robert
  surname: Hoeldtke
  fullname: Hoeldtke, Robert
– sequence: 9
  givenname: Steven N.
  surname: Levine
  fullname: Levine, Steven N.
– sequence: 10
  givenname: Pat Farrington
  surname: Bass III
  fullname: Bass III, Pat Farrington
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26336842$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22674882$$D View this record in MEDLINE/PubMed
BookMark eNqFkktvEzEQx1eoiD7gyhH5gsQhG-z1vsKtqpoCKkGkQRwtP2bBxWsvtrc0fCu-CEc-Dw5Jg8SlkiV7Rr__PDxznB1YZyHLnhI8JRgXL3vb-WmBSTIaMnuQHZGa0LwklB7s30V1mB2HcI0xJUVJH2WHRVE3ZdsWR9nv864DGZHrkPziXa_HHilttXRyHSJoyyOgMA6DgR5s5FE7i9KR2svRJNN-RgZuwIRNCG3DaLSdoNVinv_6OUHuVqsE3aQY0UMIE8StusNQ8ugQuZWQXCiuB0BFys4FRC1TVnGdSguv0DKJUmk_QE2QcqMwkIukT9ZguAThculs9M4YUCnRqNaPs4cdNwGe7O6T7OP8fHX2Or98f_Hm7PQyl2XZFnnqnWOgUincdWUjhKhkC7hqSQsVrWblrGoVr5pWibpUDZFClFXTyZmoZl3dUHqSvdjGHbz7NkKIrNdBgjHcghsDI5jSpKhanNBnO3QUPSg2eN1zv2Z3s0jA8x3Ag-Sm8-ljdPjH1ZTWbbnhpltOeheCh26PEMw2S8E2S8H2S5EE5X8CqbeTjJ5rc6_suzawvicJe7eYL0nzt418K0ujhdu9jPuvLP1YU7FPiwv29sPValHNrtiS_gH3X-Cp
CitedBy_id crossref_primary_10_1016_S1042_0991_15_30756_8
crossref_primary_10_3390_jcm9061901
crossref_primary_10_1093_nutrit_nuw011
crossref_primary_10_1186_s12986_015_0014_5
crossref_primary_10_1186_1472_6823_12_31
crossref_primary_10_3390_ijms25021305
crossref_primary_10_1007_s12272_022_01374_6
crossref_primary_10_1007_s12011_024_04486_w
crossref_primary_10_1016_j_jtemb_2012_09_002
crossref_primary_10_1007_s13300_019_00721_z
crossref_primary_10_1007_s00394_013_0508_8
crossref_primary_10_1016_j_lfs_2023_121899
crossref_primary_10_1007_s11010_016_2931_7
crossref_primary_10_1024_0300_9831_a000706
crossref_primary_10_1155_2019_3801639
crossref_primary_10_1007_s12011_019_01783_7
crossref_primary_10_1331_JAPhA_2014_14537
crossref_primary_10_1007_s13679_022_00490_0
crossref_primary_10_1016_j_heliyon_2023_e19826
crossref_primary_10_1039_c3fo30317a
crossref_primary_10_3402_fnr_v60_31762
crossref_primary_10_53446_actamednicomedia_1243239
crossref_primary_10_1016_j_eujim_2020_101147
crossref_primary_10_1016_j_mehy_2015_06_005
crossref_primary_10_1007_s12011_017_1167_z
crossref_primary_10_3390_app11020638
crossref_primary_10_1016_j_phrs_2020_105098
crossref_primary_10_1016_j_fct_2017_01_007
crossref_primary_10_1016_j_saa_2016_09_016
crossref_primary_10_1016_j_dsx_2022_102510
crossref_primary_10_1007_s12011_013_9863_9
crossref_primary_10_1016_j_ica_2017_05_041
crossref_primary_10_1186_1475_2891_14_14
crossref_primary_10_3389_fendo_2014_00099
crossref_primary_10_1007_s11906_017_0701_x
crossref_primary_10_1016_j_ctcp_2020_101291
crossref_primary_10_1111_jcpt_12147
crossref_primary_10_1016_j_inoche_2013_02_004
crossref_primary_10_3390_antiox12081572
crossref_primary_10_1017_S0007114515005127
crossref_primary_10_1038_ejcn_2014_114
crossref_primary_10_1097_01_EHX_0000439094_19244_a8
crossref_primary_10_3389_fimmu_2021_614000
crossref_primary_10_1002_mnfr_201700438
crossref_primary_10_1111_1440_1681_13144
crossref_primary_10_1016_j_ctim_2021_102755
crossref_primary_10_1111_1440_1681_13462
Cites_doi 10.2174/157339906776818532
10.1146/annurev.nutr.24.012003.132446
10.1002/mnfr.200900177
10.1079/PNS2003315
10.1111/j.1399-5448.2008.00436.x
10.1098/rstb.2005.1770
10.1016/j.freeradbiomed.2010.12.006
10.1006/bbrc.2001.6026
10.2527/jas.2007-0462
10.1016/j.freeradbiomed.2007.01.006
10.2337/diab.38.12.1539
10.1152/ajpcell.00283.2008
10.1080/13813450802181047
10.1089/ars.2007.1595
10.1371/journal.pone.0005017
10.1016/j.metabol.2005.04.009
10.2337/dc10-1006
10.1093/jn/134.12.3245
10.1089/ars.2010.3739
10.2337/diacare.27.9.2211
10.1016/j.freeradbiomed.2009.03.014
10.1016/j.freeradbiomed.2007.05.019
10.2337/db07-1378
10.1530/eje.0.1500207
10.3132/dvdr.2007.025
10.2337/diacare.27.11.2741
10.1016/j.jnutbio.2006.10.002
10.1016/S0021-9258(19)30085-7
10.2337/diab.46.11.1786
10.1055/s-2007-985847
10.1093/jn/132.6.1107
10.1016/j.ejphar.2004.12.018
10.1089/ars.2005.7.1040
10.2337/diab.43.11.1271
10.1016/S0002-9149(03)00611-8
10.2337/dc06-0996
10.1016/j.cyto.2006.05.005
10.1016/S0021-9258(19)74276-8
ContentType Journal Article
Copyright 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 INIST-CNRS
2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 INIST-CNRS
– notice: 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/mnfr.201100719
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Diet & Clinical Nutrition
EISSN 1613-4133
EndPage 1341
ExternalDocumentID 22674882
26336842
10_1002_mnfr_201100719
MNFR1782
ark_67375_WNG_JQSTN59S_R
Genre article
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  funderid: RO1 DK072433
– fundername: NIDDK
– fundername: NIDDK NIH HHS
  grantid: R01 DK064797
– fundername: NIDDK NIH HHS
  grantid: R01DK072433
– fundername: NIDDK NIH HHS
  grantid: R01 DK072433
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TEORI
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WJL
WNSPC
WOHZO
WXSBR
WYISQ
XG1
XV2
Y6R
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
DROCM
AAFWJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c4482-ffea0e3cdd0ff47bbb5c8e05818e53594958da578db64d71cbb457fc9b59f6733
IEDL.DBID DR2
ISSN 1613-4125
1613-4133
IngestDate Fri Jul 11 00:42:19 EDT 2025
Wed Feb 19 02:03:15 EST 2025
Mon Jul 21 09:15:20 EDT 2025
Tue Jul 01 01:51:34 EDT 2025
Thu Apr 24 23:08:57 EDT 2025
Wed Jan 22 16:22:12 EST 2025
Wed Oct 30 09:56:51 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Resistance
Oxidative stress
Cysteine
Aminoacid
Chromium
Insulin resistance
Supplementation
Diabetes
Insulin
Feeding
Heavy metal
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4482-ffea0e3cdd0ff47bbb5c8e05818e53594958da578db64d71cbb457fc9b59f6733
Notes istex:0CA9B1DA3FAEE96C72A9966BCCA83FB1E13EA0BB
National Institutes of Health - No. RO1 DK072433
NIDDK
ArticleID:MNFR1782
ark:/67375/WNG-JQSTN59S-R
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
OpenAccessLink http://doi.org/10.1002/mnfr.201100719
PMID 22674882
PQID 1033457580
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1033457580
pubmed_primary_22674882
pascalfrancis_primary_26336842
crossref_primary_10_1002_mnfr_201100719
crossref_citationtrail_10_1002_mnfr_201100719
wiley_primary_10_1002_mnfr_201100719_MNFR1782
istex_primary_ark_67375_WNG_JQSTN59S_R
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2012
PublicationDateYYYYMMDD 2012-08-01
PublicationDate_xml – month: 08
  year: 2012
  text: August 2012
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Molecular nutrition & food research
PublicationTitleAlternate Mol. Nutr. Food Res
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Wiley
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
References Yaturu, S., Daberry, B., Rains, J., Jain, S.-K., Resistin and adiponectin levels in subjects with coronary artery disease and type 2 diabetes. Cytokine 2006, 34, 219-223.
Singh, U., Devraj, S., Jialal, I., Vitamin E, oxidative stress and inflammation. Ann. Rev. Nutr. 2005, 25, 151-174.
Merino-Ibarra, E., Artieda, M., Cenarro, A., Goicoechea, J. et al., Ultrasonography for the evaluation of visceral fat and the metabolic syndrome. Metabolism 2005, 54, 1230-1235.
Hummel, M., Standl, E., Schnell, O., Chromium in metabolic and cardiovascular disease. Horm. Metabolic Disease 2007, 39, 743-751.
Jain, S.-K., Rains, J., Croad, J., Effect of chromium niacinate and chromium picolinate supplementation on fasting blood glucose, HbA1, TNF-α, IL-6, CRP, cholesterol, triglycerides and lipid peroxidation levels in streptozotocine treated diabetic rats. Free Radical Biol. Med. 2007, 43, 1124-1131.
Iyer, S. S., Accardi, C. J., Ziegler, T. R., Blanco, R. A. et al., Cysteine redox potential determines pro-inflammatory IL-1beta levels. PLoS One 2009, 4, e5017. DOI:10.1371/journal.pone.0005017
Vincent, J.-B., Recent advances in the nutritional biochemistry of trivalent chromium. Proc. Nutr. Soc. 2004, 63, 41-47.
Hsueh, W. A., Quinones, M. J., Role of endothelial dysfunction in insulin resistance. Am. J. Cardiol. 2003, 92, 10J-17J.
Song, D., Hutchings, S., Pang, C. C. Y., Chronic N-acetylcysteine prevents fructose-induced insulin resistance and hypertension in rats. Eu. J. Pharmacol. 2005, 508, 205-210.
Blouet, C., Mariotti, F., Mikogami, T., Tome, D. et al., Meal cysteine improves postprandial glucose control in rats fed a high-sucrose meal. J. Nutr. Biochem. 2007, 18, 519-524.
Nyholm, B., Nielsen, M. F., Kristensen, K., Nielsen, S. et al., Evidence of increased visceral obesity and reduced physical fitness in healthy insulin-resistant first-degree relatives of type 2 diabetic patients. Eur. J. Endocrinol. 2004, 150, 207-214.
Balk, E. M., Tatsioni, A., Lichtenstein, A. H., Lau, J. et al., Effect of chromium supplementation on glucose metabolism and lipids. Diabetes Care 2007, 30, 2154-2163.
Cefalu, W. T., Wang, Z. Q., Zhang, X. H., Baldor, L. C. et al., Oral chromium picolinate improves carbohydrate and lipid metabolism and enhance skeletal muscle Glut-4 translocation in obese, hyperinsulinemic (JCR-LA corpulent) rats. J. Nutr. 2002, 132, 1107-1114.
Pennathur, S., Heinecke, J. W., Mechanisms for oxidative stress in diabetic cardiovascular disease. Antiox. Redox. Signal 2007, 9, 955-969.
Cefalu, W.-T., Hu, F.-B., Role of chromium in human health and in diabetes. Diab. Care 2004, 27, 2741-2751.
Evans, J. L., Maddux, B. A., Goldfine, I. D., The molecular basis for oxidative stress-induced insulin resistance. Antiox. Redox. Signal 2005, 7, 1040-1052.
Greenfield, J. R., Campbell, L. V., Relationship between inflammation, insulin resistance and type 2 diabetes: 'cause or effect'? Curr. Diabetes Rev. 2006, 2, 195-211.
Jain, S.-K., Kannan, K., Chromium chloride inhibits oxidative stress and TNF-α secretion caused by exposure to high glucose in cultured monocytes. Biochem. Biophys. Res. Commun. 2001, 289, 687-691.
Sekhar, R. V., McKay, S. V., Patel, S. G., Guthikonda, A. P. et al., Glutathione synthesis is diminished in patients with uncontrolled diabetes and restored by dietary supplementation with cysteine and glycine. Diabetes Care 2011, 34, 162-167.
Dröge, W., Oxidative stress and ageing: is ageing a cysteine deficiency syndrome? Philos. Trans. R Soc. Lond. B Biol. Sci. 2005, 360, 2355-2372.
Hsu, C. C., Yen, H. F., Yin, M. C., Tsai, C. M. et al., Five cysteine-containing compounds delay diabetic deterioration in Balb/cA mice. J. Nutr. 2004, 134, 3245-3249.
Hotamisligil, G. S., Spiegelman, B. M., Tumor necrosis factor alpha: a key component of the obesity-diabetes link. Diabetes 1994, 43, 1271-1278.
Jain, S. K., Velusamy, T., Croad, J. L., Rains, J. L. et al., L-cysteine supplementation lowers blood glucose, glycated hemoglobin, CRP, MCP-1, oxidative stress and inhibits NFkB activation in the livers of Zucker diabetic rats. Free Radic. Biol. Med. 2009, 46, 1633-1638.
Otani, H., Oxidative stress as pathogenesis of cardiovascular risk associated with metabolic syndrome. Antiox. Redox. Signal 2011, 15, 1911-1926.
Hayashi, T., Boyko, E. J., McNeely, M. J., Leonetti, D. L. et al., Visceral adiposity, not abdominal subcutaneous fat area, is associated with an increase in future insulin resistance in Japanese Americans. Diabetes 2008, 57, 1269-1275.
Jones, D. P., Radical-free biology of oxidative stress. Am. J. Cell Physiol. 2008, 249, C849-C868.
Darmaun, D., Smith, S. D., Sweeten, S., Hartman, B. K. et al., Poorly controlled type 1 diabetes is associated with altered glutathione homeostasis in adolescents: apparent resistance to N-acetylcysteine supplementation. Pediatr. Diabetes 2008, 9, 577-582.
Blouet, C. B., Mariotti, F., Azzout-Marniche, D., Mathe, V. et al., Dietary cysteine alleviates sucrose-induced oxidative stress and insulin resistance. Free Radic. Biol. Med. 2007, 42, 1089-1097.
Jain, S.-K., Hyperglycemia can cause membrane lipid peroxidation and osmotic fragility in human red blood cells. J. Biol. Chem. 1989, 264, 21340-21345.
Lorenzo, M., Fernandez-Veledo, S., Vila-Bedmar, R., Garcia-Guerra, L. et al., Insulin resistance induced by tumor necrosis factor-alpha in myocytes and brown adipocytes. J. Anim. Sci. 2008, 86, E94-E104.
Feinstein, R., Kanety, H., Papa, M. Z., Lunenfeld, B. et al., Tumor necrosis factor-alpha suppresses insulin-induced tyrosine phosphorylation of insulin receptor and its substrates. J. Biol. Chem. 1993, 268, 26055-26058.
Nieto-Vazquez, I., Fernandez-Veledo, S., Kramer, D. K., Vila-Bedmar, R. et al., Insulin resistance associated to obesity: the link TNF-alpha. Arch. Physiol. Biochem. 2008, 114, 183-194.
Jain, S.-K., McVie, R., Duett, J., Herbst, J.-J., Erythrocyte membrane lipid peroxidation and glycosylated hemoglobin in diabetes. Diabetes 1989, 1539-1543.
Anderson, R.-A., Cheng, N., Bryden, N.-A., Polansky, M.-M. et al., Elevated intakes of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes. Diabetes 1997, 46, 1786-1791.
Rajpathak, S., Rimm, E.-B., Li, T., Morris, J.-S. et al., Lower toenail chromium in men with diabetes and cardiovascular disease compared with healthy men. Diabetes Care 2004, 27, 2211-2216.
Jain, S. K., Croad, J. L., Velusamy, T., Rains, J. L. et al., Chromium dinicocysteinate supplementation can lower blood glucose, CRP, MCP-1, ICAM-1, creatinine, apparently mediated by elevated blood vitamin C and adiponectin and inhibition of NFkB, Akt, and Glut-2 in livers of zucker diabetic fatty rats. Mol. Nutr. Food Res. 2010, 54, 1371-80.
Hartge, M. M., Unger, T., Kintscher, U., The endothelium and vascular inflammation in diabetes. Diab. Vasc. Dis. Res. 2007, 4, 84-88.
Rains, J. L., Jain, S. K., Oxidative stress, insulin signaling and diabetes. Free Rad. Biol. Med. 2011, 50, 567-575.
2007; 39
2007; 18
2004; 63
2010; 54
2001; 289
2009; 46
2006; 34
2002; 132
2004; 27
1997; 46
2008; 9
2008; 249
2008; 57
2011; 34
2011; 15
2007; 30
2006; 2
1993; 268
1994; 43
2005; 25
2004; 134
2005; 360
2003; 92
1989; 264
2004; 150
2011; 50
2007; 9
2005; 7
2005; 54
2007; 4
2005; 508
2008; 114
2009; 4
2008; 86
2007; 42
2007; 43
1989
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
Jain S.‐K. (e_1_2_7_25_1) 1989
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
17952838 - Horm Metab Res. 2007 Oct;39(10):743-51
17940160 - J Anim Sci. 2008 Apr;86(14 Suppl):E94-104
18299316 - Diabetes. 2008 May;57(5):1269-75
17142027 - J Nutr Biochem. 2007 Aug;18(8):519-24
17854708 - Free Radic Biol Med. 2007 Oct 15;43(8):1124-31
18220627 - Curr Diabetes Rev. 2006 May;2(2):195-211
20306473 - Mol Nutr Food Res. 2010 Sep;54(9):1371-80
9356027 - Diabetes. 1997 Nov;46(11):1786-91
15998259 - Antioxid Redox Signal. 2005 Jul-Aug;7(7-8):1040-52
19328229 - Free Radic Biol Med. 2009 Jun 15;46(12):1633-8
16822679 - Cytokine. 2006 May;34(3-4):219-23
15680273 - Eur J Pharmacol. 2005 Jan 31;508(1-3):205-10
16321806 - Philos Trans R Soc Lond B Biol Sci. 2005 Dec 29;360(1464):2355-72
17654441 - Diab Vasc Dis Res. 2007 Jun;4(2):84-8
19325908 - PLoS One. 2009;4(3):e5017
8253716 - J Biol Chem. 1993 Dec 15;268(35):26055-8
19067892 - Pediatr Diabetes. 2008 Dec;9(6):577-82
20929994 - Diabetes Care. 2011 Jan;34(1):162-7
16125535 - Metabolism. 2005 Sep;54(9):1230-5
12957322 - Am J Cardiol. 2003 Aug 18;92(4A):10J-17J
17508917 - Antioxid Redox Signal. 2007 Jul;9(7):955-69
12042418 - J Nutr. 2002 Jun;132(6):1107-14
2583378 - Diabetes. 1989 Dec;38(12):1539-43
18684987 - Am J Physiol Cell Physiol. 2008 Oct;295(4):C849-68
11726202 - Biochem Biophys Res Commun. 2001 Dec 7;289(3):687-91
15070438 - Proc Nutr Soc. 2004 Feb;63(1):41-7
2592379 - J Biol Chem. 1989 Dec 15;264(35):21340-5
14763919 - Eur J Endocrinol. 2004 Feb;150(2):207-14
21163346 - Free Radic Biol Med. 2011 Mar 1;50(5):567-75
15333486 - Diabetes Care. 2004 Sep;27(9):2211-6
18629684 - Arch Physiol Biochem. 2008 Jul;114(3):183-94
7926300 - Diabetes. 1994 Nov;43(11):1271-8
15505017 - Diabetes Care. 2004 Nov;27(11):2741-51
17349935 - Free Radic Biol Med. 2007 Apr 1;42(7):1089-97
21126197 - Antioxid Redox Signal. 2011 Oct 1;15(7):1911-26
15570020 - J Nutr. 2004 Dec;134(12):3245-9
17519436 - Diabetes Care. 2007 Aug;30(8):2154-63
16011463 - Annu Rev Nutr. 2005;25:151-74
References_xml – reference: Blouet, C. B., Mariotti, F., Azzout-Marniche, D., Mathe, V. et al., Dietary cysteine alleviates sucrose-induced oxidative stress and insulin resistance. Free Radic. Biol. Med. 2007, 42, 1089-1097.
– reference: Jain, S. K., Croad, J. L., Velusamy, T., Rains, J. L. et al., Chromium dinicocysteinate supplementation can lower blood glucose, CRP, MCP-1, ICAM-1, creatinine, apparently mediated by elevated blood vitamin C and adiponectin and inhibition of NFkB, Akt, and Glut-2 in livers of zucker diabetic fatty rats. Mol. Nutr. Food Res. 2010, 54, 1371-80.
– reference: Hsueh, W. A., Quinones, M. J., Role of endothelial dysfunction in insulin resistance. Am. J. Cardiol. 2003, 92, 10J-17J.
– reference: Blouet, C., Mariotti, F., Mikogami, T., Tome, D. et al., Meal cysteine improves postprandial glucose control in rats fed a high-sucrose meal. J. Nutr. Biochem. 2007, 18, 519-524.
– reference: Feinstein, R., Kanety, H., Papa, M. Z., Lunenfeld, B. et al., Tumor necrosis factor-alpha suppresses insulin-induced tyrosine phosphorylation of insulin receptor and its substrates. J. Biol. Chem. 1993, 268, 26055-26058.
– reference: Yaturu, S., Daberry, B., Rains, J., Jain, S.-K., Resistin and adiponectin levels in subjects with coronary artery disease and type 2 diabetes. Cytokine 2006, 34, 219-223.
– reference: Hotamisligil, G. S., Spiegelman, B. M., Tumor necrosis factor alpha: a key component of the obesity-diabetes link. Diabetes 1994, 43, 1271-1278.
– reference: Rains, J. L., Jain, S. K., Oxidative stress, insulin signaling and diabetes. Free Rad. Biol. Med. 2011, 50, 567-575.
– reference: Song, D., Hutchings, S., Pang, C. C. Y., Chronic N-acetylcysteine prevents fructose-induced insulin resistance and hypertension in rats. Eu. J. Pharmacol. 2005, 508, 205-210.
– reference: Nyholm, B., Nielsen, M. F., Kristensen, K., Nielsen, S. et al., Evidence of increased visceral obesity and reduced physical fitness in healthy insulin-resistant first-degree relatives of type 2 diabetic patients. Eur. J. Endocrinol. 2004, 150, 207-214.
– reference: Hsu, C. C., Yen, H. F., Yin, M. C., Tsai, C. M. et al., Five cysteine-containing compounds delay diabetic deterioration in Balb/cA mice. J. Nutr. 2004, 134, 3245-3249.
– reference: Vincent, J.-B., Recent advances in the nutritional biochemistry of trivalent chromium. Proc. Nutr. Soc. 2004, 63, 41-47.
– reference: Lorenzo, M., Fernandez-Veledo, S., Vila-Bedmar, R., Garcia-Guerra, L. et al., Insulin resistance induced by tumor necrosis factor-alpha in myocytes and brown adipocytes. J. Anim. Sci. 2008, 86, E94-E104.
– reference: Iyer, S. S., Accardi, C. J., Ziegler, T. R., Blanco, R. A. et al., Cysteine redox potential determines pro-inflammatory IL-1beta levels. PLoS One 2009, 4, e5017. DOI:10.1371/journal.pone.0005017
– reference: Merino-Ibarra, E., Artieda, M., Cenarro, A., Goicoechea, J. et al., Ultrasonography for the evaluation of visceral fat and the metabolic syndrome. Metabolism 2005, 54, 1230-1235.
– reference: Evans, J. L., Maddux, B. A., Goldfine, I. D., The molecular basis for oxidative stress-induced insulin resistance. Antiox. Redox. Signal 2005, 7, 1040-1052.
– reference: Greenfield, J. R., Campbell, L. V., Relationship between inflammation, insulin resistance and type 2 diabetes: 'cause or effect'? Curr. Diabetes Rev. 2006, 2, 195-211.
– reference: Sekhar, R. V., McKay, S. V., Patel, S. G., Guthikonda, A. P. et al., Glutathione synthesis is diminished in patients with uncontrolled diabetes and restored by dietary supplementation with cysteine and glycine. Diabetes Care 2011, 34, 162-167.
– reference: Darmaun, D., Smith, S. D., Sweeten, S., Hartman, B. K. et al., Poorly controlled type 1 diabetes is associated with altered glutathione homeostasis in adolescents: apparent resistance to N-acetylcysteine supplementation. Pediatr. Diabetes 2008, 9, 577-582.
– reference: Rajpathak, S., Rimm, E.-B., Li, T., Morris, J.-S. et al., Lower toenail chromium in men with diabetes and cardiovascular disease compared with healthy men. Diabetes Care 2004, 27, 2211-2216.
– reference: Balk, E. M., Tatsioni, A., Lichtenstein, A. H., Lau, J. et al., Effect of chromium supplementation on glucose metabolism and lipids. Diabetes Care 2007, 30, 2154-2163.
– reference: Singh, U., Devraj, S., Jialal, I., Vitamin E, oxidative stress and inflammation. Ann. Rev. Nutr. 2005, 25, 151-174.
– reference: Otani, H., Oxidative stress as pathogenesis of cardiovascular risk associated with metabolic syndrome. Antiox. Redox. Signal 2011, 15, 1911-1926.
– reference: Cefalu, W.-T., Hu, F.-B., Role of chromium in human health and in diabetes. Diab. Care 2004, 27, 2741-2751.
– reference: Hayashi, T., Boyko, E. J., McNeely, M. J., Leonetti, D. L. et al., Visceral adiposity, not abdominal subcutaneous fat area, is associated with an increase in future insulin resistance in Japanese Americans. Diabetes 2008, 57, 1269-1275.
– reference: Anderson, R.-A., Cheng, N., Bryden, N.-A., Polansky, M.-M. et al., Elevated intakes of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes. Diabetes 1997, 46, 1786-1791.
– reference: Nieto-Vazquez, I., Fernandez-Veledo, S., Kramer, D. K., Vila-Bedmar, R. et al., Insulin resistance associated to obesity: the link TNF-alpha. Arch. Physiol. Biochem. 2008, 114, 183-194.
– reference: Cefalu, W. T., Wang, Z. Q., Zhang, X. H., Baldor, L. C. et al., Oral chromium picolinate improves carbohydrate and lipid metabolism and enhance skeletal muscle Glut-4 translocation in obese, hyperinsulinemic (JCR-LA corpulent) rats. J. Nutr. 2002, 132, 1107-1114.
– reference: Jain, S.-K., Rains, J., Croad, J., Effect of chromium niacinate and chromium picolinate supplementation on fasting blood glucose, HbA1, TNF-α, IL-6, CRP, cholesterol, triglycerides and lipid peroxidation levels in streptozotocine treated diabetic rats. Free Radical Biol. Med. 2007, 43, 1124-1131.
– reference: Hartge, M. M., Unger, T., Kintscher, U., The endothelium and vascular inflammation in diabetes. Diab. Vasc. Dis. Res. 2007, 4, 84-88.
– reference: Dröge, W., Oxidative stress and ageing: is ageing a cysteine deficiency syndrome? Philos. Trans. R Soc. Lond. B Biol. Sci. 2005, 360, 2355-2372.
– reference: Jain, S.-K., Hyperglycemia can cause membrane lipid peroxidation and osmotic fragility in human red blood cells. J. Biol. Chem. 1989, 264, 21340-21345.
– reference: Jain, S.-K., McVie, R., Duett, J., Herbst, J.-J., Erythrocyte membrane lipid peroxidation and glycosylated hemoglobin in diabetes. Diabetes 1989, 1539-1543.
– reference: Jones, D. P., Radical-free biology of oxidative stress. Am. J. Cell Physiol. 2008, 249, C849-C868.
– reference: Jain, S.-K., Kannan, K., Chromium chloride inhibits oxidative stress and TNF-α secretion caused by exposure to high glucose in cultured monocytes. Biochem. Biophys. Res. Commun. 2001, 289, 687-691.
– reference: Pennathur, S., Heinecke, J. W., Mechanisms for oxidative stress in diabetic cardiovascular disease. Antiox. Redox. Signal 2007, 9, 955-969.
– reference: Hummel, M., Standl, E., Schnell, O., Chromium in metabolic and cardiovascular disease. Horm. Metabolic Disease 2007, 39, 743-751.
– reference: Jain, S. K., Velusamy, T., Croad, J. L., Rains, J. L. et al., L-cysteine supplementation lowers blood glucose, glycated hemoglobin, CRP, MCP-1, oxidative stress and inhibits NFkB activation in the livers of Zucker diabetic rats. Free Radic. Biol. Med. 2009, 46, 1633-1638.
– volume: 134
  start-page: 3245
  year: 2004
  end-page: 3249
  article-title: Five cysteine‐containing compounds delay diabetic deterioration in alb/c mice
  publication-title: J. Nutr.
– volume: 150
  start-page: 207
  year: 2004
  end-page: 214
  article-title: Evidence of increased visceral obesity and reduced physical fitness in healthy insulin‐resistant first‐degree relatives of type 2 diabetic patients
  publication-title: Eur. J. Endocrinol.
– volume: 114
  start-page: 183
  year: 2008
  end-page: 194
  article-title: Insulin resistance associated to obesity: the link ‐alpha
  publication-title: Arch. Physiol. Biochem.
– volume: 42
  start-page: 1089
  year: 2007
  end-page: 1097
  article-title: Dietary cysteine alleviates sucrose‐induced oxidative stress and insulin resistance
  publication-title: Free Radic. Biol. Med.
– volume: 43
  start-page: 1271
  year: 1994
  end-page: 1278
  article-title: Tumor necrosis factor alpha: a key component of the obesity‐diabetes link
  publication-title: Diabetes
– volume: 86
  start-page: E94
  year: 2008
  end-page: E104
  article-title: Insulin resistance induced by tumor necrosis factor‐alpha in myocytes and brown adipocytes
  publication-title: J. Anim. Sci.
– volume: 46
  start-page: 1633
  year: 2009
  end-page: 1638
  article-title: ‐cysteine supplementation lowers blood glucose, glycated hemoglobin, , ‐1, oxidative stress and inhibits k activation in the livers of ucker diabetic rats
  publication-title: Free Radic. Biol. Med.
– volume: 4
  start-page: e5017
  year: 2009
  article-title: Cysteine redox potential determines pro‐inflammatory ‐1beta levels
  publication-title: PLoS One
– volume: 54
  start-page: 1230
  year: 2005
  end-page: 1235
  article-title: Ultrasonography for the evaluation of visceral fat and the metabolic syndrome
  publication-title: Metabolism
– volume: 2
  start-page: 195
  year: 2006
  end-page: 211
  article-title: Relationship between inflammation, insulin resistance and type 2 diabetes: ‘cause or effect’?
  publication-title: Curr. Diabetes Rev.
– volume: 7
  start-page: 1040
  year: 2005
  end-page: 1052.
  article-title: The molecular basis for oxidative stress‐induced insulin resistance
  publication-title: Antiox. Redox. Signal
– volume: 132
  start-page: 1107
  year: 2002
  end-page: 1114
  article-title: Oral chromium picolinate improves carbohydrate and lipid metabolism and enhance skeletal muscle lut‐4 translocation in obese, hyperinsulinemic ( ‐ corpulent) rats
  publication-title: J. Nutr.
– volume: 34
  start-page: 219
  year: 2006
  end-page: 223
  article-title: Resistin and adiponectin levels in subjects with coronary artery disease and type 2 diabetes
  publication-title: Cytokine
– volume: 360
  start-page: 2355
  year: 2005
  end-page: 2372
  article-title: Oxidative stress and ageing: is ageing a cysteine deficiency syndrome?
  publication-title: Philos. Trans. R Soc. Lond. B Biol. Sci.
– start-page: 1539
  year: 1989
  end-page: 1543
  article-title: Erythrocyte membrane lipid peroxidation and glycosylated hemoglobin in diabetes
  publication-title: Diabetes
– volume: 268
  start-page: 26055
  year: 1993
  end-page: 26058
  article-title: Tumor necrosis factor‐alpha suppresses insulin‐induced tyrosine phosphorylation of insulin receptor and its substrates
  publication-title: J. Biol. Chem.
– volume: 9
  start-page: 955
  year: 2007
  end-page: 969.
  article-title: Mechanisms for oxidative stress in diabetic cardiovascular disease
  publication-title: Antiox. Redox. Signal
– volume: 34
  start-page: 162
  year: 2011
  end-page: 167
  article-title: Glutathione synthesis is diminished in patients with uncontrolled diabetes and restored by dietary supplementation with cysteine and glycine
  publication-title: Diabetes Care
– volume: 43
  start-page: 1124
  year: 2007
  end-page: 1131
  article-title: Effect of chromium niacinate and chromium picolinate supplementation on fasting blood glucose, b 1, ‐α, ‐6, , cholesterol, triglycerides and lipid peroxidation levels in streptozotocine treated diabetic rats
  publication-title: Free Radical Biol. Med.
– volume: 15
  start-page: 1911
  year: 2011
  end-page: 1926
  article-title: Oxidative stress as pathogenesis of cardiovascular risk associated with metabolic syndrome
  publication-title: Antiox. Redox. Signal
– volume: 25
  start-page: 151
  year: 2005
  end-page: 174
  article-title: Vitamin , oxidative stress and inflammation
  publication-title: Ann. Rev. Nutr.
– volume: 27
  start-page: 2211
  year: 2004
  end-page: 2216
  article-title: Lower toenail chromium in men with diabetes and cardiovascular disease compared with healthy men
  publication-title: Diabetes Care
– volume: 63
  start-page: 41
  year: 2004
  end-page: 47
  article-title: Recent advances in the nutritional biochemistry of trivalent chromium
  publication-title: Proc. Nutr. Soc.
– volume: 57
  start-page: 1269
  year: 2008
  end-page: 1275
  article-title: Visceral adiposity, not abdominal subcutaneous fat area, is associated with an increase in future insulin resistance in apanese mericans
  publication-title: Diabetes
– volume: 18
  start-page: 519
  year: 2007
  end-page: 524
  article-title: Meal cysteine improves postprandial glucose control in rats fed a high‐sucrose meal
  publication-title: J. Nutr. Biochem.
– volume: 92
  start-page: 10J
  year: 2003
  end-page: 17J
  article-title: Role of endothelial dysfunction in insulin resistance
  publication-title: Am. J. Cardiol.
– volume: 39
  start-page: 743
  year: 2007
  end-page: 751
  article-title: Chromium in metabolic and cardiovascular disease
  publication-title: Horm. Metabolic Disease
– volume: 46
  start-page: 1786
  year: 1997
  end-page: 1791
  article-title: Elevated intakes of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes
  publication-title: Diabetes
– volume: 4
  start-page: 84
  year: 2007
  end-page: 88
  article-title: The endothelium and vascular inflammation in diabetes
  publication-title: Diab. Vasc. Dis. Res.
– volume: 30
  start-page: 2154
  year: 2007
  end-page: 2163
  article-title: Effect of chromium supplementation on glucose metabolism and lipids
  publication-title: Diabetes Care
– volume: 27
  start-page: 2741
  year: 2004
  end-page: 2751
  article-title: Role of chromium in human health and in diabetes
  publication-title: Diab. Care
– volume: 50
  start-page: 567
  year: 2011
  end-page: 575
  article-title: Oxidative stress, insulin signaling and diabetes
  publication-title: Free Rad. Biol. Med.
– volume: 9
  start-page: 577
  year: 2008
  end-page: 582
  article-title: Poorly controlled type 1 diabetes is associated with altered glutathione homeostasis in adolescents: apparent resistance to ‐acetylcysteine supplementation
  publication-title: Pediatr. Diabetes
– volume: 264
  start-page: 21340
  year: 1989
  end-page: 21345
  article-title: Hyperglycemia can cause membrane lipid peroxidation and osmotic fragility in human red blood cells
  publication-title: J. Biol. Chem.
– volume: 289
  start-page: 687
  year: 2001
  end-page: 691
  article-title: Chromium chloride inhibits oxidative stress and ‐α secretion caused by exposure to high glucose in cultured monocytes
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 249
  start-page: C849
  year: 2008
  end-page: C868
  article-title: Radical‐free biology of oxidative stress
  publication-title: Am. J. Cell Physiol.
– volume: 54
  start-page: 1371
  year: 2010
  end-page: 80
  article-title: Chromium dinicocysteinate supplementation can lower blood glucose, , ‐1, ‐1, creatinine, apparently mediated by elevated blood vitamin C and adiponectin and inhibition of k , kt, and lut‐2 in livers of zucker diabetic fatty rats
  publication-title: Mol. Nutr. Food Res.
– volume: 508
  start-page: 205
  year: 2005
  end-page: 210
  article-title: Chronic ‐acetylcysteine prevents fructose‐induced insulin resistance and hypertension in rats
  publication-title: Eu. J. Pharmacol.
– ident: e_1_2_7_36_1
  doi: 10.2174/157339906776818532
– ident: e_1_2_7_9_1
  doi: 10.1146/annurev.nutr.24.012003.132446
– ident: e_1_2_7_23_1
  doi: 10.1002/mnfr.200900177
– ident: e_1_2_7_2_1
  doi: 10.1079/PNS2003315
– ident: e_1_2_7_15_1
  doi: 10.1111/j.1399-5448.2008.00436.x
– ident: e_1_2_7_16_1
  doi: 10.1098/rstb.2005.1770
– ident: e_1_2_7_10_1
  doi: 10.1016/j.freeradbiomed.2010.12.006
– ident: e_1_2_7_27_1
  doi: 10.1006/bbrc.2001.6026
– ident: e_1_2_7_33_1
  doi: 10.2527/jas.2007-0462
– ident: e_1_2_7_18_1
  doi: 10.1016/j.freeradbiomed.2007.01.006
– start-page: 1539
  year: 1989
  ident: e_1_2_7_25_1
  article-title: Erythrocyte membrane lipid peroxidation and glycosylated hemoglobin in diabetes
  publication-title: Diabetes
  doi: 10.2337/diab.38.12.1539
– ident: e_1_2_7_28_1
  doi: 10.1152/ajpcell.00283.2008
– ident: e_1_2_7_35_1
  doi: 10.1080/13813450802181047
– ident: e_1_2_7_11_1
  doi: 10.1089/ars.2007.1595
– ident: e_1_2_7_22_1
  doi: 10.1371/journal.pone.0005017
– ident: e_1_2_7_30_1
  doi: 10.1016/j.metabol.2005.04.009
– ident: e_1_2_7_14_1
  doi: 10.2337/dc10-1006
– ident: e_1_2_7_20_1
  doi: 10.1093/jn/134.12.3245
– ident: e_1_2_7_26_1
  doi: 10.1089/ars.2010.3739
– ident: e_1_2_7_7_1
  doi: 10.2337/diacare.27.9.2211
– ident: e_1_2_7_21_1
  doi: 10.1016/j.freeradbiomed.2009.03.014
– ident: e_1_2_7_29_1
  doi: 10.1016/j.freeradbiomed.2007.05.019
– ident: e_1_2_7_31_1
  doi: 10.2337/db07-1378
– ident: e_1_2_7_32_1
  doi: 10.1530/eje.0.1500207
– ident: e_1_2_7_38_1
  doi: 10.3132/dvdr.2007.025
– ident: e_1_2_7_3_1
  doi: 10.2337/diacare.27.11.2741
– ident: e_1_2_7_17_1
  doi: 10.1016/j.jnutbio.2006.10.002
– ident: e_1_2_7_24_1
  doi: 10.1016/S0021-9258(19)30085-7
– ident: e_1_2_7_6_1
  doi: 10.2337/diab.46.11.1786
– ident: e_1_2_7_5_1
  doi: 10.1055/s-2007-985847
– ident: e_1_2_7_8_1
  doi: 10.1093/jn/132.6.1107
– ident: e_1_2_7_19_1
  doi: 10.1016/j.ejphar.2004.12.018
– ident: e_1_2_7_12_1
  doi: 10.1089/ars.2005.7.1040
– ident: e_1_2_7_37_1
  doi: 10.2337/diab.43.11.1271
– ident: e_1_2_7_39_1
  doi: 10.1016/S0002-9149(03)00611-8
– ident: e_1_2_7_4_1
  doi: 10.2337/dc06-0996
– ident: e_1_2_7_13_1
  doi: 10.1016/j.cyto.2006.05.005
– ident: e_1_2_7_34_1
  doi: 10.1016/S0021-9258(19)74276-8
– reference: 16011463 - Annu Rev Nutr. 2005;25:151-74
– reference: 17654441 - Diab Vasc Dis Res. 2007 Jun;4(2):84-8
– reference: 19328229 - Free Radic Biol Med. 2009 Jun 15;46(12):1633-8
– reference: 16125535 - Metabolism. 2005 Sep;54(9):1230-5
– reference: 17142027 - J Nutr Biochem. 2007 Aug;18(8):519-24
– reference: 18299316 - Diabetes. 2008 May;57(5):1269-75
– reference: 20306473 - Mol Nutr Food Res. 2010 Sep;54(9):1371-80
– reference: 16321806 - Philos Trans R Soc Lond B Biol Sci. 2005 Dec 29;360(1464):2355-72
– reference: 17349935 - Free Radic Biol Med. 2007 Apr 1;42(7):1089-97
– reference: 20929994 - Diabetes Care. 2011 Jan;34(1):162-7
– reference: 17519436 - Diabetes Care. 2007 Aug;30(8):2154-63
– reference: 12042418 - J Nutr. 2002 Jun;132(6):1107-14
– reference: 19325908 - PLoS One. 2009;4(3):e5017
– reference: 21126197 - Antioxid Redox Signal. 2011 Oct 1;15(7):1911-26
– reference: 15505017 - Diabetes Care. 2004 Nov;27(11):2741-51
– reference: 16822679 - Cytokine. 2006 May;34(3-4):219-23
– reference: 7926300 - Diabetes. 1994 Nov;43(11):1271-8
– reference: 15680273 - Eur J Pharmacol. 2005 Jan 31;508(1-3):205-10
– reference: 11726202 - Biochem Biophys Res Commun. 2001 Dec 7;289(3):687-91
– reference: 17952838 - Horm Metab Res. 2007 Oct;39(10):743-51
– reference: 18220627 - Curr Diabetes Rev. 2006 May;2(2):195-211
– reference: 8253716 - J Biol Chem. 1993 Dec 15;268(35):26055-8
– reference: 17508917 - Antioxid Redox Signal. 2007 Jul;9(7):955-69
– reference: 14763919 - Eur J Endocrinol. 2004 Feb;150(2):207-14
– reference: 17854708 - Free Radic Biol Med. 2007 Oct 15;43(8):1124-31
– reference: 19067892 - Pediatr Diabetes. 2008 Dec;9(6):577-82
– reference: 15333486 - Diabetes Care. 2004 Sep;27(9):2211-6
– reference: 2592379 - J Biol Chem. 1989 Dec 15;264(35):21340-5
– reference: 2583378 - Diabetes. 1989 Dec;38(12):1539-43
– reference: 15070438 - Proc Nutr Soc. 2004 Feb;63(1):41-7
– reference: 12957322 - Am J Cardiol. 2003 Aug 18;92(4A):10J-17J
– reference: 21163346 - Free Radic Biol Med. 2011 Mar 1;50(5):567-75
– reference: 18629684 - Arch Physiol Biochem. 2008 Jul;114(3):183-94
– reference: 18684987 - Am J Physiol Cell Physiol. 2008 Oct;295(4):C849-68
– reference: 15570020 - J Nutr. 2004 Dec;134(12):3245-9
– reference: 15998259 - Antioxid Redox Signal. 2005 Jul-Aug;7(7-8):1040-52
– reference: 17940160 - J Anim Sci. 2008 Apr;86(14 Suppl):E94-104
– reference: 9356027 - Diabetes. 1997 Nov;46(11):1786-91
SSID ssj0031243
Score 2.272461
Snippet Scope Chromium and cysteine supplementation have been shown to improve glucose metabolism in animal studies. This study examined the hypothesis that chromium...
Chromium and cysteine supplementation have been shown to improve glucose metabolism in animal studies. This study examined the hypothesis that chromium...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1333
SubjectTerms Adult
Biological and medical sciences
Chromium
Cysteine - analogs & derivatives
Cysteine - therapeutic use
Diabetes
Diabetes Mellitus, Type 2 - drug therapy
Diabetes Mellitus, Type 2 - metabolism
Dietary Supplements
Double-Blind Method
Feeding. Feeding behavior
Female
Food industries
Fundamental and applied biological sciences. Psychology
Humans
Insulin - blood
Insulin Resistance
Intercellular Adhesion Molecule-1 - blood
Interleukin-6 - blood
Interleukin-8 - blood
l-cysteine
Male
Middle Aged
Organometallic Compounds - therapeutic use
Oxidative stress
Oxidative Stress - drug effects
Tumor Necrosis Factor-alpha - metabolism
Vertebrates: anatomy and physiology, studies on body, several organs or systems
Title Effect of chromium dinicocysteinate supplementation on circulating levels of insulin, TNF-α, oxidative stress, and insulin resistance in type 2 diabetic subjects: Randomized, double-blind, placebo-controlled study
URI https://api.istex.fr/ark:/67375/WNG-JQSTN59S-R/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmnfr.201100719
https://www.ncbi.nlm.nih.gov/pubmed/22674882
https://www.proquest.com/docview/1033457580
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQuXDh_QiPykioXDZtGsd5cEPAUlVqJLZb0VvkV0rU3QRtdqWqJ34Cf4U_wi_g1F_SGTtJWQRCCCmXWDNOnIw9Y_vzN4S8yIxULBWxHxkW-lFYxn6mU-1riBXCmCsdWsabgzzeO4r2j_nxT6f4HT_EsOCGPcOO19jBhWx3rkhD53W5sBSc6CXxBB8CtjAqmgz8UQycl0XYg8_yI3DlPWtjEO6sq695pev4gc8QJSla-FCly3DxuxB0PaK1Lml8i4i-MQ6Jcrq9Wsptdf4Lz-P_tPY2udnFq_S1M7A75Jqp7xLvbWWWdIt2pKIzmvec_vfID8eHTJuSqk-LZl6t5lSjWKOQNLqqIbilLeYSdbh11KJwqWqhbCqx-oTOEMnUYhUdVH5Ep_n44svX799GtDmrtGUrp-6cy4iKWveCFEowIgZThiKKC8w0pG6BuVLwXInrTu0rOgEleLlzo0dUNys5M1C9hBrg3uLUZAMFHZB_ZjS1PLz3ydH43fTNnt-lkPAVzDtDH1osAsOU1kFZRomUkqvUBBzCFMMZz2B6mGoBo5aWcaSTXSVlxJNSZZJnZZww9oBs1E1tHhEaK86EKDOVljrKWCZx0x7mzzIwIil17BG_N6FCdfzqmOZjVjhm6LDAf1gM_9AjLwf5z45Z5I-SW9YiBzGxOEU8XsKLj_n7Yv_D4TTn2WEx8cjmmskOCmHMGG64euR5b8MFDCO4NyRq06xaeCxj0HKeBh556Iz7SjvEjDQpaPvWRP_yusVBPp7sQuT5-B_ln5AbUBg6eOVTsrFcrMwzCPmWctN260tZeVhJ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagPcCF9yM8ipFQuWzaNI7z4IaAZSndSGy3orcofgSi7iYouytVPfET-Cv8EX4BJ34JM3aSahEIIaS9rDXjxMnYMx5_-YaQJ4kWksV56Aaa-W7gF6GbqFi5CmIFP-RS-YbxZpyGo6Ng_5h3aEL8FsbyQ_QJN5wZZr3GCY4J6d1z1tB5VTSGgxPdZHKRbGJZb7OrmvQMUgzcl8HYg9dyA3DmHW-j5--u66_5pU18xKeIk8wX8KgKW-Pid0HoekxrnNLwKhHdcCwW5WRntRQ78uwXpsf_Gu81cqUNWelza2PXyQVd3SDOy1Iv6TZteUVnNO1o_W-S75YSmdYFlR-bel6u5lShWC2RN7qsIL6lCywnaqHrqEXhJ8tGmmpi1Qc6QzDTArto0fIDOk2HPz5_-fZ1QOvTUhnCcmo_dRnQvFKdIIUWDIrBmqGJYo6Z-tTmmEsJ1xWYelo8oxNQgps702pAVb0SMw3dC-gB_huomqihocXyz7Sihor3Fjkavpq-GLltFQlXwtbTd2HEuaeZVMoriiASQnAZa49DpKI54wnsEGOVw8KlRBioaE8KEfCokIngSRFGjN0mG1Vd6buEhpKzPC8SGRcqSFgi8NwettDC03lUqNAhbmdDmWwp1rHSxyyz5NB-hu8w69-hQ5728p8sucgfJbeNSfZieXOCkLyIZ-_T19n-u8NpypPDbOKQrTWb7RX8kDE8c3XI486IM1hJ8Hgor3S9WsBlGYOR89hzyB1r3efaPhaliUHbNTb6l9vNxulwsgfB571_lH9ELo2m44Ps4E369j65DAK-RVs-IBvLZqUfQgS4FFtmjv8Ej4JcZA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLWglRAb3o8UKEZCZTNp0zjOgx1iGEqhEUynaneRnzTqTFLNQ6q64hP4FX6EL2DFl3BtJymDQAghZRPnXidOrn2v7ZNzEXqaKS5IymI_UiT0o1DHfiZT6UuIFcKYChlaxpu9PN45iHaP6NFPf_E7fohuwc30DDtemw5-KvXWBWnopNJTS8FpvGR2Ga1GcZAau-4POwIpAt7LQuzBafkR-PKWtjEIt5b1l9zSqnnDZwYmyWbwprRLcfG7GHQ5pLU-aXAdsbY1DopysrmY801x_gvR4_809wa61gSs-IWzsJvokqpuIa9fqjnewA2r6BjnLan_bfTNESLjWmNxPK0n5WKCpRGrhWGNLiuIbvHMJBN1wHWjheEQ5VTYXGLVRzw2UKaZqaLByvfwKB98__T565cers9KaenKsfvRpYdZJVtBDCUmJAZbhiJsVphxiN0KcyngvtwsPM2e4yEowcOdK9nDsl7wsYLqOdQA5xaoxmsoaJD8YyWxJeK9gw4Gr0Yvd_wmh4QvYOIZ-tBiFigipAy0jhLOORWpCijEKYoSmsH8MJUMhi3J40gm24LziCZaZJxmOk4IuYtWqrpS9xGOBSWM6UykWkYZybjZtYcJNA8US7SMPeS3JlSIhmDd5PkYF44aOizMNyy6b-ihZ538qaMW-aPkhrXIToxNTwwgL6HFYf662P2wP8pptl8MPbS-ZLKdQhgTYnZcPfSkteECxhGzOcQqVS9mcFtCoOU0DTx0zxn3hXZoUtKkoO1bE_3L4xZ7-WC4DaHn2j_KP0ZX3vcHxbs3-dsH6CpcDx3U8iFamU8X6hGEf3O-bnv4D2u3Wxw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+chromium+dinicocysteinate+supplementation+on+circulating+levels+of+insulin%2C+TNF-%CE%B1%2C+oxidative+stress%2C+and+insulin+resistance+in+type+2+diabetic+subjects%3A+Randomized%2C+double-blind%2C+placebo-controlled+study&rft.jtitle=Molecular+nutrition+%26+food+research&rft.au=JAIN%2C+Sushil+K&rft.au=KAHLON%2C+Gunjan&rft.au=MOREHEAD%2C+Lester&rft.au=DHAWAN%2C+Richa&rft.date=2012-08-01&rft.pub=Wiley&rft.issn=1613-4125&rft.volume=56&rft.issue=8&rft.spage=1333&rft.epage=1341&rft_id=info:doi/10.1002%2Fmnfr.201100719&rft.externalDBID=n%2Fa&rft.externalDocID=26336842
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-4125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-4125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-4125&client=summon