Enthalpy and Entropy Barriers Explain the Effects of Topology on the Kinetics of Zeolite-Catalyzed Reactions

The methylation of ethene, propene, and trans‐2‐butene on zeolites H‐ZSM‐58 (DDR), H‐ZSM‐22 (TON), and H‐ZSM‐5 (MFI) is studied to elucidate the particular influence of topology on the kinetics of zeolite‐catalyzed reactions. H‐ZSM‐58 and H‐ZSM‐22 are found to display overall lower methylation rates...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 19; no. 35; pp. 11568 - 11576
Main Authors Van der Mynsbrugge, Jeroen, De Ridder, Jeroen, Hemelsoet, Karen, Waroquier, Michel, Van Speybroeck, Veronique
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 26.08.2013
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The methylation of ethene, propene, and trans‐2‐butene on zeolites H‐ZSM‐58 (DDR), H‐ZSM‐22 (TON), and H‐ZSM‐5 (MFI) is studied to elucidate the particular influence of topology on the kinetics of zeolite‐catalyzed reactions. H‐ZSM‐58 and H‐ZSM‐22 are found to display overall lower methylation rates compared to H‐ZSM‐5 and also different trends in methylation rates with increasing alkene size. These variations may be rationalized based on a decomposition of the free‐energy barriers into enthalpic and entropic contributions, which reveals that the lower methylation rates on H‐ZSM‐58 and H‐ZSM‐22 have virtually opposite reasons. On H‐ZSM‐58, the lower methylation rates are caused by higher enthalpy barriers, owing to inefficient stabilization of the reaction intermediates in the large cage‐like pores. On the other hand, on H‐ZSM‐22, the methylation rates mostly suffer from higher entropy barriers, because excessive entropy losses are incurred inside the narrow‐channel structure. These results show that the kinetics of crucial elementary steps hinge on the balance between proper stabilization of the reaction intermediates inside the zeolite pores and the resulting entropy losses. These fundamental insights into their inner workings are indispensable for ultimately selecting or designing better zeolite catalysts. Breaking it down: The methylation of ethene, propene, and trans‐2‐butene on zeolites H‐ZSM‐58 (DDR), H‐ZSM‐22 (TON), and H‐ZSM‐5 (MFI) was studied to elucidate the influence of topology on the kinetics of zeolite‐catalyzed reactions. Analysis of the free‐energy barriers revealed that methylation rates are determined by the interplay between the stabilization of reaction intermediates inside the zeolite pores and the resulting entropy losses.
AbstractList Abstract The methylation of ethene, propene, and trans ‐2‐butene on zeolites H‐ZSM‐58 (DDR), H‐ZSM‐22 (TON), and H‐ZSM‐5 (MFI) is studied to elucidate the particular influence of topology on the kinetics of zeolite‐catalyzed reactions. H‐ZSM‐58 and H‐ZSM‐22 are found to display overall lower methylation rates compared to H‐ZSM‐5 and also different trends in methylation rates with increasing alkene size. These variations may be rationalized based on a decomposition of the free‐energy barriers into enthalpic and entropic contributions, which reveals that the lower methylation rates on H‐ZSM‐58 and H‐ZSM‐22 have virtually opposite reasons. On H‐ZSM‐58, the lower methylation rates are caused by higher enthalpy barriers, owing to inefficient stabilization of the reaction intermediates in the large cage‐like pores. On the other hand, on H‐ZSM‐22, the methylation rates mostly suffer from higher entropy barriers, because excessive entropy losses are incurred inside the narrow‐channel structure. These results show that the kinetics of crucial elementary steps hinge on the balance between proper stabilization of the reaction intermediates inside the zeolite pores and the resulting entropy losses. These fundamental insights into their inner workings are indispensable for ultimately selecting or designing better zeolite catalysts.
The methylation of ethene, propene, and trans-2-butene on zeolites H-ZSM-58 (DDR), H-ZSM-22 (TON), and H-ZSM-5 (MFI) is studied to elucidate the particular influence of topology on the kinetics of zeolite-catalyzed reactions. H-ZSM-58 and H-ZSM-22 are found to display overall lower methylation rates compared to H-ZSM-5 and also different trends in methylation rates with increasing alkene size. These variations may be rationalized based on a decomposition of the free-energy barriers into enthalpic and entropic contributions, which reveals that the lower methylation rates on H-ZSM-58 and H-ZSM-22 have virtually opposite reasons. On H-ZSM-58, the lower methylation rates are caused by higher enthalpy barriers, owing to inefficient stabilization of the reaction intermediates in the large cage-like pores. On the other hand, on H-ZSM-22, the methylation rates mostly suffer from higher entropy barriers, because excessive entropy losses are incurred inside the narrow-channel structure. These results show that the kinetics of crucial elementary steps hinge on the balance between proper stabilization of the reaction intermediates inside the zeolite pores and the resulting entropy losses. These fundamental insights into their inner workings are indispensable for ultimately selecting or designing better zeolite catalysts. [PUBLICATION ABSTRACT]
The methylation of ethene, propene, and trans‐2‐butene on zeolites H‐ZSM‐58 (DDR), H‐ZSM‐22 (TON), and H‐ZSM‐5 (MFI) is studied to elucidate the particular influence of topology on the kinetics of zeolite‐catalyzed reactions. H‐ZSM‐58 and H‐ZSM‐22 are found to display overall lower methylation rates compared to H‐ZSM‐5 and also different trends in methylation rates with increasing alkene size. These variations may be rationalized based on a decomposition of the free‐energy barriers into enthalpic and entropic contributions, which reveals that the lower methylation rates on H‐ZSM‐58 and H‐ZSM‐22 have virtually opposite reasons. On H‐ZSM‐58, the lower methylation rates are caused by higher enthalpy barriers, owing to inefficient stabilization of the reaction intermediates in the large cage‐like pores. On the other hand, on H‐ZSM‐22, the methylation rates mostly suffer from higher entropy barriers, because excessive entropy losses are incurred inside the narrow‐channel structure. These results show that the kinetics of crucial elementary steps hinge on the balance between proper stabilization of the reaction intermediates inside the zeolite pores and the resulting entropy losses. These fundamental insights into their inner workings are indispensable for ultimately selecting or designing better zeolite catalysts. Breaking it down: The methylation of ethene, propene, and trans‐2‐butene on zeolites H‐ZSM‐58 (DDR), H‐ZSM‐22 (TON), and H‐ZSM‐5 (MFI) was studied to elucidate the influence of topology on the kinetics of zeolite‐catalyzed reactions. Analysis of the free‐energy barriers revealed that methylation rates are determined by the interplay between the stabilization of reaction intermediates inside the zeolite pores and the resulting entropy losses.
The methylation of ethene, propene, and trans-2-butene on zeolites H-ZSM-58 (DDR), H-ZSM-22 (TON), and H-ZSM-5 (MFI) is studied to elucidate the particular influence of topology on the kinetics of zeolite-catalyzed reactions. H-ZSM-58 and H-ZSM-22 are found to display overall lower methylation rates compared to H-ZSM-5 and also different trends in methylation rates with increasing alkene size. These variations may be rationalized based on a decomposition of the free-energy barriers into enthalpic and entropic contributions, which reveals that the lower methylation rates on H-ZSM-58 and H-ZSM-22 have virtually opposite reasons. On H-ZSM-58, the lower methylation rates are caused by higher enthalpy barriers, owing to inefficient stabilization of the reaction intermediates in the large cage-like pores. On the other hand, on H-ZSM-22, the methylation rates mostly suffer from higher entropy barriers, because excessive entropy losses are incurred inside the narrow-channel structure. These results show that the kinetics of crucial elementary steps hinge on the balance between proper stabilization of the reaction intermediates inside the zeolite pores and the resulting entropy losses. These fundamental insights into their inner workings are indispensable for ultimately selecting or designing better zeolite catalysts.
Author Van der Mynsbrugge, Jeroen
Waroquier, Michel
Van Speybroeck, Veronique
De Ridder, Jeroen
Hemelsoet, Karen
Author_xml – sequence: 1
  givenname: Jeroen
  surname: Van der Mynsbrugge
  fullname: Van der Mynsbrugge, Jeroen
  organization: Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium - QCMM Alliance, Ghent-Brussels (Belgium), Fax: (+32) 9-264-66-97
– sequence: 2
  givenname: Jeroen
  surname: De Ridder
  fullname: De Ridder, Jeroen
  organization: Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium - QCMM Alliance, Ghent-Brussels (Belgium), Fax: (+32) 9-264-66-97
– sequence: 3
  givenname: Karen
  surname: Hemelsoet
  fullname: Hemelsoet, Karen
  organization: Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium - QCMM Alliance, Ghent-Brussels (Belgium), Fax: (+32) 9-264-66-97
– sequence: 4
  givenname: Michel
  surname: Waroquier
  fullname: Waroquier, Michel
  organization: Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium - QCMM Alliance, Ghent-Brussels (Belgium), Fax: (+32) 9-264-66-97
– sequence: 5
  givenname: Veronique
  surname: Van Speybroeck
  fullname: Van Speybroeck, Veronique
  email: veronique.vanspeybroeck@ugent.be
  organization: Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium - QCMM Alliance, Ghent-Brussels (Belgium), Fax: (+32) 9-264-66-97
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23897717$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1v1DAQxS3Uim4XrhyRJS5csvgjdpIjXaUtYrdIsBISF8txJqyLNw52Vm361zdL2hXiwmlmNL_3NJp3jk5a3wJCbyhZUELYB7OF3YIRygllGXuBZlQwmvBMihM0I0WaJVLw4gydx3hLCCkk5y_RGeN5kWU0myFXtv1Wu27Auq3xOAQ_9hc6BAsh4vK-c9q2uN8CLpsGTB-xb_DGd975nwP20-qzbaG35s_uB3hne0iWutdueIAafwVteuvb-AqdNtpFeP1U52hzWW6W18nqy9Wn5cdVYtI0Z0kum4qnklW0KkTVEJ2ndQq8NhVrCjl2RAgtOdS5YcAqRmohmGY1L3RdGcLn6P1k2wX_ew-xVzsbDTinW_D7qGjKpKCpzOmIvvsHvfX70I7HHSiRy0yOL5ujxUSZ4GMM0Kgu2J0Og6JEHWJQhxjUMYZR8PbJdl_toD7iz38fgWIC7qyD4T92anldrv82TyatjT3cH7U6_FIy45lQ32-u1ObihqxX_Jta80fBr6VM
CODEN CEUJED
CitedBy_id crossref_primary_10_1021_acs_jpcc_6b00211
crossref_primary_10_1021_jacs_4c00373
crossref_primary_10_1016_j_mcat_2021_111762
crossref_primary_10_1016_j_jcat_2019_04_021
crossref_primary_10_1016_j_chempr_2020_09_025
crossref_primary_10_1016_j_mcat_2020_110948
crossref_primary_10_1039_C7CY00377C
crossref_primary_10_1039_D2CY01530G
crossref_primary_10_1039_C9CY01803D
crossref_primary_10_1016_S1872_2067_18_63064_5
crossref_primary_10_1039_D2CY00207H
crossref_primary_10_1039_C7CY02047C
crossref_primary_10_1002_anie_201405360
crossref_primary_10_1016_j_mcat_2017_12_034
crossref_primary_10_1039_C9CY00534J
crossref_primary_10_1016_j_cattod_2018_02_042
crossref_primary_10_1016_j_jcat_2015_01_013
crossref_primary_10_1039_C5EE00240K
crossref_primary_10_1016_j_jcat_2021_11_029
crossref_primary_10_1021_acs_jpcc_8b12230
crossref_primary_10_1021_acscatal_2c03410
crossref_primary_10_1021_cs5014267
crossref_primary_10_1021_acscatal_7b02877
crossref_primary_10_1039_C5CY02140E
crossref_primary_10_1021_acs_jpcc_5b10299
crossref_primary_10_1007_s11705_016_1557_3
crossref_primary_10_1002_cctc_201500793
crossref_primary_10_1002_cctc_202100009
crossref_primary_10_1021_acs_jpcc_0c03405
crossref_primary_10_1039_C4CY01692K
crossref_primary_10_1016_j_micromeso_2018_11_026
crossref_primary_10_1039_C4CP02085E
crossref_primary_10_1039_D0CY02366C
crossref_primary_10_1039_C5CY00483G
crossref_primary_10_1002_chem_201500473
crossref_primary_10_1016_j_jcat_2014_04_006
crossref_primary_10_1039_C5CY01420D
crossref_primary_10_1039_C8CP00572A
crossref_primary_10_1039_D0CY02374D
crossref_primary_10_1016_j_apcata_2015_01_035
crossref_primary_10_1021_acs_jpcc_6b07273
crossref_primary_10_1021_acs_jpcc_9b01874
crossref_primary_10_1021_cs501677b
crossref_primary_10_1021_acs_jpcc_6b09059
crossref_primary_10_1016_j_jcat_2017_03_007
crossref_primary_10_1039_C5CS00029G
crossref_primary_10_1007_s11244_021_01473_6
crossref_primary_10_1016_j_cattod_2018_02_007
crossref_primary_10_1039_C5CY02073E
crossref_primary_10_1021_acscatal_7b01643
crossref_primary_10_1039_C4CS00146J
crossref_primary_10_1002_cphc_201701020
crossref_primary_10_1016_j_jcat_2021_08_048
crossref_primary_10_1021_jp505696m
crossref_primary_10_1021_cs501232r
crossref_primary_10_1039_C5CY01419K
crossref_primary_10_1002_ange_201405360
crossref_primary_10_1021_acs_jpcc_6b08154
crossref_primary_10_1039_C6CY00465B
crossref_primary_10_1002_cctc_201402146
crossref_primary_10_3390_catal8120626
crossref_primary_10_1016_j_jcat_2018_11_018
crossref_primary_10_1021_jp502804q
Cites_doi 10.1126/science.271.5254.1395
10.1002/cphc.201201023
10.1016/j.jcat.2007.04.006
10.1016/j.jcat.2012.04.009
10.1021/jp960365z
10.1021/ci100099g
10.1016/S0009-2614(97)00006-7
10.1016/j.jcat.2004.02.022
10.1021/jp004601o
10.1021/ct0501203
10.1039/c000503g
10.1016/j.apcata.2010.07.023
10.1016/j.apcata.2005.01.006
10.1016/j.jcat.2011.09.018
10.1039/c0cp02984j
10.1002/anie.200705453
10.1007/BF00769305
10.1039/b902364j
10.1039/a605200b
10.1021/ja807695p
10.1002/cctc.201000286
10.1007/s11244-011-9751-5
10.1002/ange.200705453
10.1016/S0009-2614(97)01398-5
10.1021/ci8000748
10.1021/cs200016u
10.1002/anie.201103657
10.1002/cctc.200900057
10.1021/ar020006o
10.1002/anie.200702628
10.1021/jp970711s
10.1021/cs200517u
10.1002/anie.200604309
10.1039/B807755J
10.1021/jp809746a
10.1016/j.micromeso.2010.07.013
10.1021/ja010668t
10.1039/b009589n
10.1002/ange.200702628
10.1002/ange.201103657
10.1021/cm0003267
10.1002/ange.200602488
10.1002/ange.200604309
10.1021/ja1073992
10.1081/CR-100100264
10.1021/ja065810a
10.1007/s11244-011-9697-7
10.1002/anie.200602488
10.1016/j.jcat.2012.05.015
10.1021/cs300317p
10.1016/S1387-1811(99)00235-8
10.1023/B:CATL.0000016945.28495.f0
10.1002/chem.200901723
10.1039/b810189b
10.1021/jp2123828
10.1142/p267
10.1021/cs3006583
10.1016/j.jcat.2005.06.028
ContentType Journal Article
Copyright Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.201301272
DatabaseName Istex
PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 11576
ExternalDocumentID 3048384301
10_1002_chem_201301272
23897717
CHEM201301272
ark_67375_WNG_TBN0ML3S_M
Genre article
Journal Article
GrantInformation_xml – fundername: European Research Council
– fundername: BELSPO
  funderid: IAP 7/05
– fundername: Research Foundation Flanders
– fundername: Research Board of Ghent University
– fundername: European Community′s Seventh Framework Programme
  funderid: 240483
– fundername: Stevin Supercomputer Infrastructure
– fundername: BOF
– fundername: Ghent University
– fundername: FWO
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c4482-86fb3462b1b95bf0a84d4e3dcb2f964e3055a63ed8c2e2b20d552a2d39adbc03
IEDL.DBID DR2
ISSN 0947-6539
IngestDate Fri Aug 16 11:51:12 EDT 2024
Thu Oct 10 18:12:25 EDT 2024
Fri Aug 23 02:36:52 EDT 2024
Sat Sep 28 07:54:44 EDT 2024
Sat Aug 24 00:55:46 EDT 2024
Wed Oct 30 09:57:12 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 35
Keywords density functional calculations
ab initio calculations
chemical kinetics
zeolites
methylation
Language English
License Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4482-86fb3462b1b95bf0a84d4e3dcb2f964e3055a63ed8c2e2b20d552a2d39adbc03
Notes Ghent University
European Community′s Seventh Framework Programme - No. 240483
ark:/67375/WNG-TBN0ML3S-M
European Research Council
BOF
ArticleID:CHEM201301272
istex:021B5C75D52D0578241EFFAA945ECFF56C13472E
Research Board of Ghent University
BELSPO - No. IAP 7/05
Research Foundation Flanders
Stevin Supercomputer Infrastructure
FWO
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23897717
PQID 1425867696
PQPubID 986340
PageCount 9
ParticipantIDs proquest_miscellaneous_1426514681
proquest_journals_1425867696
crossref_primary_10_1002_chem_201301272
pubmed_primary_23897717
wiley_primary_10_1002_chem_201301272_CHEM201301272
istex_primary_ark_67375_WNG_TBN0ML3S_M
PublicationCentury 2000
PublicationDate August 26, 2013
PublicationDateYYYYMMDD 2013-08-26
PublicationDate_xml – month: 08
  year: 2013
  text: August 26, 2013
  day: 26
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chem. Eur. J
PublicationYear 2013
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References C. M. Nguyen, M.-F. Reyniers, G. B. Marin, Phys. Chem. Chem. Phys. 2010, 12, 9481-9493.
M. Bjørgen, U. Olsbye, S. Svelle, S. Kolboe, Catal. Lett. 2004, 93, 37-40.
T. Verstraelen, V. Van Speybroeck, M. Waroquier, J. Chem. Inf. Model. 2008, 48, 1530-1541.
Angew. Chem. Int. Ed. 2012, 51, 5810-5831.
I. Stich, J. D. Gale, K. Terakura, M. C. Payne, Chem. Phys. Lett. 1998, 283, 402-408.
S. Svelle, P. O. Rønning, S. Kolboe, J. Catal. 2004, 224, 115-123.
D. Lesthaeghe, A. Horre, M. Waroquier, G. B. Marin, V. Van Speybroeck, Chem. Eur. J. 2009, 15, 10803-10808.
I. M. Hill, S. A. Hashimi, A. Bhan, J. Catal. 2012, 291, 155-157.
I. M. Hill, S. A. Hashimi, A. Bhan, J. Catal. 2012, 285, 115-123.
Angew. Chem. Int. Ed. 2008, 47, 5179-5182.
Z.-M. Cui, Q. Liu, W.-G. Song, L.-J. Wan, Angew. Chem. 2006, 118, 6662-6665
S. Ilias, A. Bhan, ACS Catal. 2013, 3, 18-31.
J. T. Fermann, T. Moniz, O. Kiowski, T. J. McIntire, S. M. Auerbach, T. Vreven, M. J. Frisch, J. Chem. Theory Comput. 2005, 1, 1232-1239.
D. Lesthaeghe, B. De Sterck, V. Van Speybroeck, G. B. Marin, M. Waroquier, Angew. Chem. 2007, 119, 1333-1336
Angew. Chem. Int. Ed. 2007, 46, 1311-1314.
D. A. McQuarrie, Statistical Mechanics, University Science Books, Sausalito, CA 2000.
I. M. Hill, Y. S. Ng, A. Bhan, ACS Catal. 2012, 2, 1742-1748.
M. Bjørgen, S. Svelle, F. Joensen, J. Nerlov, S. Kolboe, F. Bonino, L. Palumbo, S. Bordiga, U. Olsbye, J. Catal. 2007, 249, 195-207.
G. C. Bond, M. A. Keane, H. Kral, J. A. Lercher, Catal. Rev. Sci. Eng. 2000, 42, 323-383.
S. Sklenak, J. Dědeček, C. Li, B. Wichterlová, V. Gábová, M. Sierka, J. Sauer, Angew. Chem. 2007, 119, 7424-7427
J. Dědeček, D. Kaucký, B. Wichterlová, Chem. Commun. 2001, 970-971.
D. Lesthaeghe, J. Van der Mynsbrugge, M. Vandichel, M. Waroquier, V. Van Speybroeck, ChemCatChem 2011, 3, 208-212.
T. Maihom, B. Boekfa, J. Sirijaraensre, T. Nanok, M. Probst, J. Limtrakul, J. Phys. Chem. C 2009, 113, 6654-6662.
Angew. Chem. Int. Ed. 2007, 46, 7286-7289.
A. Ghysels, T. Verstraelen, K. Hemelsoet, V. Van Speybroeck, M. Waroquier, J. Chem. Inf. Model. 2010, 50, 1736-1750.
U. Olsbye, S. Svelle, M. Bjørgen, P. Beato, T. V. W. Janssens, F. Joensen, S. Bordiga, K. P. Lillerud, Angew. Chem. 2012, 124, 5910-5933
D. Lesthaeghe, V. Van Speybroeck, M. Waroquier, Phys. Chem. Chem. Phys. 2009, 11, 5222-5226.
J. F. Haw, W. Song, D. M. Marcus, J. B. Nicholas, Acc. Chem. Res. 2003, 36, 317-326.
S. Svelle, P. Rønning, U. Olsbye, S. Kolboe, P. O. Rønning, J. Catal. 2005, 234, 385-400.
C.-C. Lee, R. J. Gorte, W. E. Farneth, J. Phys. Chem. B 1997, 101, 3811-3817.
F. Haase, J. Sauer, J. Hutter, Chem. Phys. Lett. 1997, 266, 397-402.
S. Saepurahman, M. Visur, U. Olsbye, M. Bjørgen, S. Svelle, Top. Catal. 2011, 54, 1293-1301.
R. Shah, J. D. Gale, M. C. Payne, Chem. Commun. 1997, 131-132.
V. V. Mihaleva, R. A. van Santen, A. P. J. Jansen, J. Phys. Chem. B 2001, 105, 6874-6879.
J.-D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 2008, 10, 6615-6620.
L. Goerigk, S. Grimme, Phys. Chem. Chem. Phys. 2011, 13, 6670-6688.
K. Hemelsoet, J. Van der Mynsbrugge, K. De Wispelaere, M. Waroquier, V. Van Speybroeck, ChemPhysChem. 2013, 14, 1526-1545.
R. Shah, M. C. Payne, M. H. Lee, J. D. Gale, Science 1996, 271, 1395-1397.
Angew. Chem. Int. Ed. 2006, 45, 6512-6515.
W. Dai, X. Wang, G. Wu, N. Guan, M. Hunger, L. Li, ACS Catal. 2011, 1, 292-299.
S. Teketel, S. Svelle, K.-P. Lillerud, U. Olsbye, ChemCatChem 2009, 1, 78-81.
A. T. Aguayo, A. G. Gayubo, R. Vivanco, M. Olazar, J. Bilbao, Appl. Catal. A 2005, 283, 197-207.
F. Haase, J. Sauer, Microporous Mesoporous Mater. 2000, 35-6, 379-385.
S. Svelle, M. Visur, U. Olsbye, M. Bjørgen, Top. Catal. 2011, 54, 897-906.
S. Teketel, U. Olsbye, K.-P. Lillerud, P. Beato, S. Svelle, Microporous Mesoporous Mater. 2010, 136, 33-41.
S. Teketel, W. Skistad, S. Benard, U. Olsbye, K. P. Lillerud, P. Beato, S. Svelle, ACS Catal. 2012, 2, 26-37.
S. Svelle, C. Tuma, X. Rozanska, T. Kerber, J. Sauer, J. Am. Chem. Soc. 2009, 131, 816-825.
Z. Zhu, M. Hartmann, L. Kevan, Chem. Mater. 2000, 12, 2781-2787.
S. Svelle, F. Joensen, J. Nerlov, U. Olsbye, K.-P. Lillerud, S. Kolboe, M. Bjørgen, J. Am. Chem. Soc. 2006, 128, 14770-14771.
S. Sklenak, J. Dedeček, C. Li, B. Wichterlová, V. Gábová, M. Sierka, J. Sauer, Phys. Chem. Chem. Phys. 2009, 11, 1237-1247.
B. Arstad, S. Kolboe, J. Am. Chem. Soc. 2001, 123, 8137-8138.
M. Guisnet, J. P. Gilson, Zeolites for Cleaner Technologies, Imperial College Press, London 2002.
V. Van Speybroeck, J. Van der Mynsbrugge, M. Vandichel, K. Hemelsoet, D. Lesthaeghe, A. Ghysels, G. B. Marin, M. Waroquier, J. Am. Chem. Soc. 2011, 133, 888-899.
I. M. Dahl, S. Kolboe, Catal. Lett. 1993, 20, 329-336.
J. Van der Mynsbrugge, K. Hemelsoet, M. Vandichel, M. Waroquier, V. Van Speybroeck, J. Phys. Chem. C 2012, 116, 5499-5508.
J. Van der Mynsbrugge, M. Visur, U. Olsbye, P. Beato, M. Bjørgen, V. Van Speybroeck, S. Svelle, J. Catal. 2012, 292, 201-212.
D. M. McCann, D. Lesthaeghe, P. W. W. Kletnieks, D. R. R. Guenther, M. J. J. Hayman, V. Van Speybroeck, M. Waroquier, J. F. F. Haw, Angew. Chem. 2008, 120, 5257-5260
R. Shah, J. D. J. D. Gale, M. C. Payne, J. Phys. Chem. 1996, 100, 11688-11697.
Y. Kumita, J. Gascon, E. Stavitski, J. a. Moulijn, F. Kapteijn, Appl. Catal. A 2011, 391, 234-243.
2010; 12
2012; 285
2013; 3
1993; 20
2000; 42
2011; 54
2009; 113
1996; 100
2011; 13
2011; 391
2006 2006; 118 45
2001; 105
2009; 11
2013; 14
2001
2000
2000; 12
2012; 291
2012; 292
1997; 266
1997; 101
2006; 128
1998; 283
2009; 15
2001; 123
2004; 224
2011; 1
2007; 249
2005; 234
2003; 36
1997
2008; 10
2002
2009; 131
2011; 3
2011; 133
2012; 2
2005; 283
2004; 93
2010; 136
1996; 271
2008; 48
2005; 1
2012 2012; 124 51
2000; 35–6
2007 2007; 119 46
2009; 1
2012; 116
2008 2008; 120 47
2010; 50
e_1_2_6_51_2
e_1_2_6_53_2
e_1_2_6_30_2
e_1_2_6_19_3
e_1_2_6_19_2
e_1_2_6_34_3
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_55_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_57_2
e_1_2_6_20_2
e_1_2_6_41_2
Guisnet M. (e_1_2_6_1_2) 2002
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_3_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_47_2
McQuarrie D. A. (e_1_2_6_58_2) 2000
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_50_2
e_1_2_6_52_2
e_1_2_6_31_2
e_1_2_6_18_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_10_3
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_56_2
e_1_2_6_42_2
e_1_2_6_40_2
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_2_3
e_1_2_6_6_2
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_2_2
e_1_2_6_21_3
e_1_2_6_21_2
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_25_2
e_1_2_6_46_2
References_xml – volume: 271
  start-page: 1395
  year: 1996
  end-page: 1397
  publication-title: Science
– volume: 285
  start-page: 115
  year: 2012
  end-page: 123
  publication-title: J. Catal.
– volume: 113
  start-page: 6654
  year: 2009
  end-page: 6662
  publication-title: J. Phys. Chem. C
– volume: 123
  start-page: 8137
  year: 2001
  end-page: 8138
  publication-title: J. Am. Chem. Soc.
– volume: 116
  start-page: 5499
  year: 2012
  end-page: 5508
  publication-title: J. Phys. Chem. C
– volume: 48
  start-page: 1530
  year: 2008
  end-page: 1541
  publication-title: J. Chem. Inf. Model.
– volume: 118 45
  start-page: 6662 6512
  year: 2006 2006
  end-page: 6665 6515
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 136
  start-page: 33
  year: 2010
  end-page: 41
  publication-title: Microporous Mesoporous Mater.
– volume: 291
  start-page: 155
  year: 2012
  end-page: 157
  publication-title: J. Catal.
– volume: 14
  start-page: 1526
  year: 2013
  end-page: 1545
  publication-title: ChemPhysChem.
– start-page: 970
  year: 2001
  end-page: 971
  publication-title: Chem. Commun.
– volume: 391
  start-page: 234
  year: 2011
  end-page: 243
  publication-title: Appl. Catal. A
– volume: 3
  start-page: 208
  year: 2011
  end-page: 212
  publication-title: ChemCatChem
– volume: 11
  start-page: 5222
  year: 2009
  end-page: 5226
  publication-title: Phys. Chem. Chem. Phys.
– volume: 133
  start-page: 888
  year: 2011
  end-page: 899
  publication-title: J. Am. Chem. Soc.
– volume: 283
  start-page: 197
  year: 2005
  end-page: 207
  publication-title: Appl. Catal. A
– volume: 249
  start-page: 195
  year: 2007
  end-page: 207
  publication-title: J. Catal.
– volume: 234
  start-page: 385
  year: 2005
  end-page: 400
  publication-title: J. Catal.
– volume: 10
  start-page: 6615
  year: 2008
  end-page: 6620
  publication-title: Phys. Chem. Chem. Phys.
– volume: 1
  start-page: 292
  year: 2011
  end-page: 299
  publication-title: ACS Catal.
– volume: 50
  start-page: 1736
  year: 2010
  end-page: 1750
  publication-title: J. Chem. Inf. Model.
– volume: 224
  start-page: 115
  year: 2004
  end-page: 123
  publication-title: J. Catal.
– volume: 93
  start-page: 37
  year: 2004
  end-page: 40
  publication-title: Catal. Lett.
– volume: 2
  start-page: 26
  year: 2012
  end-page: 37
  publication-title: ACS Catal.
– volume: 266
  start-page: 397
  year: 1997
  end-page: 402
  publication-title: Chem. Phys. Lett.
– volume: 20
  start-page: 329
  year: 1993
  end-page: 336
  publication-title: Catal. Lett.
– volume: 13
  start-page: 6670
  year: 2011
  end-page: 6688
  publication-title: Phys. Chem. Chem. Phys.
– volume: 54
  start-page: 1293
  year: 2011
  end-page: 1301
  publication-title: Top. Catal.
– volume: 42
  start-page: 323
  year: 2000
  end-page: 383
  publication-title: Catal. Rev. Sci. Eng.
– volume: 3
  start-page: 18
  year: 2013
  end-page: 31
  publication-title: ACS Catal.
– year: 2000
– volume: 119 46
  start-page: 7424 7286
  year: 2007 2007
  end-page: 7427 7289
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 128
  start-page: 14770
  year: 2006
  end-page: 14771
  publication-title: J. Am. Chem. Soc.
– volume: 124 51
  start-page: 5910 5810
  year: 2012 2012
  end-page: 5933 5831
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 100
  start-page: 11688
  year: 1996
  end-page: 11697
  publication-title: J. Phys. Chem.
– start-page: 131
  year: 1997
  end-page: 132
  publication-title: Chem. Commun.
– volume: 2
  start-page: 1742
  year: 2012
  end-page: 1748
  publication-title: ACS Catal.
– volume: 12
  start-page: 2781
  year: 2000
  end-page: 2787
  publication-title: Chem. Mater.
– volume: 35–6
  start-page: 379
  year: 2000
  end-page: 385
  publication-title: Microporous Mesoporous Mater.
– volume: 101
  start-page: 3811
  year: 1997
  end-page: 3817
  publication-title: J. Phys. Chem. B
– volume: 1
  start-page: 1232
  year: 2005
  end-page: 1239
  publication-title: J. Chem. Theory Comput.
– volume: 11
  start-page: 1237
  year: 2009
  end-page: 1247
  publication-title: Phys. Chem. Chem. Phys.
– volume: 283
  start-page: 402
  year: 1998
  end-page: 408
  publication-title: Chem. Phys. Lett.
– volume: 105
  start-page: 6874
  year: 2001
  end-page: 6879
  publication-title: J. Phys. Chem. B
– volume: 54
  start-page: 897
  year: 2011
  end-page: 906
  publication-title: Top. Catal.
– year: 2002
– volume: 119 46
  start-page: 1333 1311
  year: 2007 2007
  end-page: 1336 1314
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 12
  start-page: 9481
  year: 2010
  end-page: 9493
  publication-title: Phys. Chem. Chem. Phys.
– volume: 292
  start-page: 201
  year: 2012
  end-page: 212
  publication-title: J. Catal.
– volume: 36
  start-page: 317
  year: 2003
  end-page: 326
  publication-title: Acc. Chem. Res.
– volume: 15
  start-page: 10803
  year: 2009
  end-page: 10808
  publication-title: Chem. Eur. J.
– volume: 120 47
  start-page: 5257 5179
  year: 2008 2008
  end-page: 5260 5182
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 131
  start-page: 816
  year: 2009
  end-page: 825
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 78
  year: 2009
  end-page: 81
  publication-title: ChemCatChem
– ident: e_1_2_6_40_2
  doi: 10.1126/science.271.5254.1395
– ident: e_1_2_6_11_2
  doi: 10.1002/cphc.201201023
– ident: e_1_2_6_18_2
  doi: 10.1016/j.jcat.2007.04.006
– ident: e_1_2_6_30_2
  doi: 10.1016/j.jcat.2012.04.009
– ident: e_1_2_6_41_2
  doi: 10.1021/jp960365z
– ident: e_1_2_6_57_2
  doi: 10.1021/ci100099g
– ident: e_1_2_6_42_2
  doi: 10.1016/S0009-2614(97)00006-7
– ident: e_1_2_6_24_2
  doi: 10.1016/j.jcat.2004.02.022
– ident: e_1_2_6_43_2
  doi: 10.1021/jp004601o
– ident: e_1_2_6_50_2
  doi: 10.1021/ct0501203
– ident: e_1_2_6_45_2
  doi: 10.1039/c000503g
– ident: e_1_2_6_6_2
  doi: 10.1016/j.apcata.2010.07.023
– ident: e_1_2_6_8_2
  doi: 10.1016/j.apcata.2005.01.006
– ident: e_1_2_6_29_2
  doi: 10.1016/j.jcat.2011.09.018
– ident: e_1_2_6_52_2
  doi: 10.1039/c0cp02984j
– ident: e_1_2_6_21_3
  doi: 10.1002/anie.200705453
– ident: e_1_2_6_13_2
  doi: 10.1007/BF00769305
– ident: e_1_2_6_20_2
  doi: 10.1039/b902364j
– ident: e_1_2_6_46_2
  doi: 10.1039/a605200b
– ident: e_1_2_6_26_2
  doi: 10.1021/ja807695p
– ident: e_1_2_6_23_2
  doi: 10.1002/cctc.201000286
– ident: e_1_2_6_38_2
  doi: 10.1007/s11244-011-9751-5
– ident: e_1_2_6_21_2
  doi: 10.1002/ange.200705453
– ident: e_1_2_6_47_2
  doi: 10.1016/S0009-2614(97)01398-5
– ident: e_1_2_6_56_2
  doi: 10.1021/ci8000748
– ident: e_1_2_6_9_2
  doi: 10.1021/cs200016u
– ident: e_1_2_6_10_3
  doi: 10.1002/anie.201103657
– ident: e_1_2_6_3_2
  doi: 10.1002/cctc.200900057
– ident: e_1_2_6_14_2
  doi: 10.1021/ar020006o
– ident: e_1_2_6_34_3
  doi: 10.1002/anie.200702628
– ident: e_1_2_6_48_2
  doi: 10.1021/jp970711s
– ident: e_1_2_6_55_2
– ident: e_1_2_6_5_2
  doi: 10.1021/cs200517u
– ident: e_1_2_6_19_3
  doi: 10.1002/anie.200604309
– ident: e_1_2_6_35_2
  doi: 10.1039/B807755J
– ident: e_1_2_6_37_2
  doi: 10.1021/jp809746a
– ident: e_1_2_6_4_2
  doi: 10.1016/j.micromeso.2010.07.013
– ident: e_1_2_6_15_2
  doi: 10.1021/ja010668t
– ident: e_1_2_6_33_2
  doi: 10.1039/b009589n
– ident: e_1_2_6_34_2
  doi: 10.1002/ange.200702628
– ident: e_1_2_6_10_2
  doi: 10.1002/ange.201103657
– ident: e_1_2_6_32_2
– ident: e_1_2_6_7_2
  doi: 10.1021/cm0003267
– ident: e_1_2_6_2_2
  doi: 10.1002/ange.200602488
– ident: e_1_2_6_19_2
  doi: 10.1002/ange.200604309
– ident: e_1_2_6_27_2
  doi: 10.1021/ja1073992
– ident: e_1_2_6_39_2
  doi: 10.1081/CR-100100264
– ident: e_1_2_6_54_2
– volume-title: Statistical Mechanics
  year: 2000
  ident: e_1_2_6_58_2
  contributor:
    fullname: McQuarrie D. A.
– ident: e_1_2_6_17_2
  doi: 10.1021/ja065810a
– ident: e_1_2_6_36_2
  doi: 10.1007/s11244-011-9697-7
– ident: e_1_2_6_2_3
  doi: 10.1002/anie.200602488
– ident: e_1_2_6_28_2
  doi: 10.1016/j.jcat.2012.05.015
– ident: e_1_2_6_31_2
  doi: 10.1021/cs300317p
– ident: e_1_2_6_53_2
– ident: e_1_2_6_44_2
  doi: 10.1016/S1387-1811(99)00235-8
– ident: e_1_2_6_16_2
  doi: 10.1023/B:CATL.0000016945.28495.f0
– ident: e_1_2_6_22_2
  doi: 10.1002/chem.200901723
– ident: e_1_2_6_51_2
  doi: 10.1039/b810189b
– ident: e_1_2_6_49_2
  doi: 10.1021/jp2123828
– volume-title: Zeolites for Cleaner Technologies
  year: 2002
  ident: e_1_2_6_1_2
  doi: 10.1142/p267
  contributor:
    fullname: Guisnet M.
– ident: e_1_2_6_12_2
  doi: 10.1021/cs3006583
– ident: e_1_2_6_25_2
  doi: 10.1016/j.jcat.2005.06.028
SSID ssj0009633
Score 2.4048793
Snippet The methylation of ethene, propene, and trans‐2‐butene on zeolites H‐ZSM‐58 (DDR), H‐ZSM‐22 (TON), and H‐ZSM‐5 (MFI) is studied to elucidate the particular...
The methylation of ethene, propene, and trans-2-butene on zeolites H-ZSM-58 (DDR), H-ZSM-22 (TON), and H-ZSM-5 (MFI) is studied to elucidate the particular...
Abstract The methylation of ethene, propene, and trans ‐2‐butene on zeolites H‐ZSM‐58 (DDR), H‐ZSM‐22 (TON), and H‐ZSM‐5 (MFI) is studied to elucidate the...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 11568
SubjectTerms ab initio calculations
chemical kinetics
Chemistry
density functional calculations
Entropy
methylation
Topology
X-rays
Zeolites
Title Enthalpy and Entropy Barriers Explain the Effects of Topology on the Kinetics of Zeolite-Catalyzed Reactions
URI https://api.istex.fr/ark:/67375/WNG-TBN0ML3S-M/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201301272
https://www.ncbi.nlm.nih.gov/pubmed/23897717
https://www.proquest.com/docview/1425867696
https://search.proquest.com/docview/1426514681
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQOcCF_59AQUZCcErr2LGdPdJlSwXsHsoiKi6WHTuiapWtNrsS21Mfoc_IkzATb1IWISHBLZFtxZ7xjGecmW8IeRlYESoGglQ469I8iDK1cBClgVVeBiG05JjvPJ6og8_5-yN59EsWf8SH6C_cUDJafY0Cbl2zewUaCmvCTHLQwRnXqIQzoTGm6-3hFX4U7K5YSz7XKWKwdqiNjO9uDt84la4jgb__yeTctGDbI2j_NrHd5GPkycnOcuF2yvPfcB3_Z3V3yK21fUrfxA11l1wL9T1yY9iVhbtP6lG9-GZPz1bU1p6OMNAdnvfsHEvfNRRj-uxxTcGupBEZuaGzik5jLYYVncWmDzBBBIjGtq8BY_DCj4vLId4lrc6Dp4chJlw0D8h0fzQdHqTrog1pCZ4eaFdVOZEr7jI3kK5itsg9bAFfOl4NFDwxKa0SwRclD9xx5qXklnsxsN6VTDwkW_WsDo8Jtdq7nPlKiwBObLAD8JRk5vOs1FaoqkjI645n5ixCc5gIwswNks_05EvIq5alfTc7P8GANi3Nl8k7M92bsPFH8cmME7Ld8dysZbkB54jLAiOBVUJe9M1Adfy1YuswW7Z9lMQstiwhj-Je6T8GRhEY2ZlOCG85_pfJGsTC6N-e_Mugp-Qmb6t2gBJU22RrMV-GZ2A7LdzzVj5-AqV2EU8
link.rule.ids 315,783,787,1378,27938,27939,46308,46732
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6h9lAuvB-BAkZCcErr2HGSPdJly0J391AWgbhYduwIVJSt9iGxPfET-I38EmbiTapFSEhwS2RbsWc84xln5huAZ54XvuIoSIU1Nk69LGODB1HseeWUlzJXgvKdx5Ns-D59-1G10YSUCxPwIboLN5KMRl-TgNOF9OElaiguilLJUQknIkctvIsyL6mIwavTSwQp3F-hmnyax4TC2uI2cnG4PX7rXNolEn_7k9G5bcM2h9DxdbDt9EPsydnBamkPyovfkB3_a3034NrGRGUvw566CVd8fQv2-m1luNtQD-rlZ_P1fM1M7diAYt3x-cjMqfrdglFYn_lSMzQtWQBHXrBZxaahHMOazULTCc6QMKKp7ZOnMDz_8_uPPl0nrS-8Y6c-5Fws7sD0eDDtD-NN3Ya4RGcPFWxWWZlmwia2p2zFTZE63AWutKLqZfjElTKZ9K4ohRdWcKeUMMLJnnG25PIu7NSz2t8HZnJnU-6qXHr0Y73pobOkEpcmZW5kVhURvGiZps8DOocOOMxCE_l0R74Injc87bqZ-RnFtOVKf5i81tOjCR-P5Ds9jmC_ZbreiPMC_SOhCgoGziJ42jUj1enviqn9bNX0yRQlsiUR3AubpfsY2kVoZyd5BKJh-V8mqwkOo3t78C-DnsDecDoe6dGbyclDuCqaIh6oE7N92FnOV_4RmlJL-7gRll-tyhVp
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwELfQJgEvY_xdYICREDxlc-zYSR9Z1zLYWqFRxMSLZceOQENp1T8S3RMfgc-4T8Jd3GQUISHBWyLbin3nO985d78j5LlnuS8ZCFJujY1TL4rYwEEUe1Y66YXIJMd858FQHX1I357Js1-y-AM-RHvhhpJR62sU8Ikr969AQ2FNmEkOOjjhGSjhzVQJhkFdh6dXAFKwvUIx-TSLEYS1gW1kfH99_NqxtIkU_vYnm3PdhK3PoP4tYprZh9CT873F3O4VF78BO_7P8rbJ1spApa_CjrpNrvnqDrnRberC3SVVr5p_Nl8nS2oqR3sY6Q7PB2aKte9mFIP6zJeKgmFJAzTyjI5LOgrFGJZ0HJqOYYKIEI1tnzwG4fnL7z-6eJm0vPCOnvqQcTG7R0b93qh7FK-qNsQFuHqgXlVpRaq4TWxH2pKZPHWwB1xhedlR8MSkNEp4lxfcc8uZk5Ib7kTHOFswcZ9sVOPK7xBqMmdT5spMePBivemAqyQTlyZFZoQq84i8bHimJwGbQwcUZq6RfLolX0Re1Cxtu5npOUa0ZVJ_HL7Wo4MhG5yI93oQkd2G53olzDPwjrjMMRRYReRZ2wxUx38rpvLjRd1HSUxjSyLyIOyV9mNgFYGVnWQR4TXH_zJZjWAY7dvDfxn0lFx_d9jXJ2-Gx4_ITV5X8ACFqHbJxny68I_BjprbJ7Wo_ARZ1BQY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enthalpy+and+Entropy+Barriers+Explain+the+Effects+of+Topology+on+the+Kinetics+of+Zeolite%E2%80%90Catalyzed+Reactions&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Van%E2%80%85der%E2%80%85Mynsbrugge%2C+Jeroen&rft.au=De%E2%80%85Ridder%2C+Jeroen&rft.au=Hemelsoet%2C+Karen&rft.au=Waroquier%2C+Michel&rft.date=2013-08-26&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=19&rft.issue=35&rft.spage=11568&rft.epage=11576&rft_id=info:doi/10.1002%2Fchem.201301272&rft.externalDBID=10.1002%252Fchem.201301272&rft.externalDocID=CHEM201301272
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon