Enthalpy and Entropy Barriers Explain the Effects of Topology on the Kinetics of Zeolite-Catalyzed Reactions
The methylation of ethene, propene, and trans‐2‐butene on zeolites H‐ZSM‐58 (DDR), H‐ZSM‐22 (TON), and H‐ZSM‐5 (MFI) is studied to elucidate the particular influence of topology on the kinetics of zeolite‐catalyzed reactions. H‐ZSM‐58 and H‐ZSM‐22 are found to display overall lower methylation rates...
Saved in:
Published in | Chemistry : a European journal Vol. 19; no. 35; pp. 11568 - 11576 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
26.08.2013
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The methylation of ethene, propene, and trans‐2‐butene on zeolites H‐ZSM‐58 (DDR), H‐ZSM‐22 (TON), and H‐ZSM‐5 (MFI) is studied to elucidate the particular influence of topology on the kinetics of zeolite‐catalyzed reactions. H‐ZSM‐58 and H‐ZSM‐22 are found to display overall lower methylation rates compared to H‐ZSM‐5 and also different trends in methylation rates with increasing alkene size. These variations may be rationalized based on a decomposition of the free‐energy barriers into enthalpic and entropic contributions, which reveals that the lower methylation rates on H‐ZSM‐58 and H‐ZSM‐22 have virtually opposite reasons. On H‐ZSM‐58, the lower methylation rates are caused by higher enthalpy barriers, owing to inefficient stabilization of the reaction intermediates in the large cage‐like pores. On the other hand, on H‐ZSM‐22, the methylation rates mostly suffer from higher entropy barriers, because excessive entropy losses are incurred inside the narrow‐channel structure. These results show that the kinetics of crucial elementary steps hinge on the balance between proper stabilization of the reaction intermediates inside the zeolite pores and the resulting entropy losses. These fundamental insights into their inner workings are indispensable for ultimately selecting or designing better zeolite catalysts.
Breaking it down: The methylation of ethene, propene, and trans‐2‐butene on zeolites H‐ZSM‐58 (DDR), H‐ZSM‐22 (TON), and H‐ZSM‐5 (MFI) was studied to elucidate the influence of topology on the kinetics of zeolite‐catalyzed reactions. Analysis of the free‐energy barriers revealed that methylation rates are determined by the interplay between the stabilization of reaction intermediates inside the zeolite pores and the resulting entropy losses. |
---|---|
AbstractList | Abstract
The methylation of ethene, propene, and
trans
‐2‐butene on zeolites H‐ZSM‐58 (DDR), H‐ZSM‐22 (TON), and H‐ZSM‐5 (MFI) is studied to elucidate the particular influence of topology on the kinetics of zeolite‐catalyzed reactions. H‐ZSM‐58 and H‐ZSM‐22 are found to display overall lower methylation rates compared to H‐ZSM‐5 and also different trends in methylation rates with increasing alkene size. These variations may be rationalized based on a decomposition of the free‐energy barriers into enthalpic and entropic contributions, which reveals that the lower methylation rates on H‐ZSM‐58 and H‐ZSM‐22 have virtually opposite reasons. On H‐ZSM‐58, the lower methylation rates are caused by higher enthalpy barriers, owing to inefficient stabilization of the reaction intermediates in the large cage‐like pores. On the other hand, on H‐ZSM‐22, the methylation rates mostly suffer from higher entropy barriers, because excessive entropy losses are incurred inside the narrow‐channel structure. These results show that the kinetics of crucial elementary steps hinge on the balance between proper stabilization of the reaction intermediates inside the zeolite pores and the resulting entropy losses. These fundamental insights into their inner workings are indispensable for ultimately selecting or designing better zeolite catalysts. The methylation of ethene, propene, and trans-2-butene on zeolites H-ZSM-58 (DDR), H-ZSM-22 (TON), and H-ZSM-5 (MFI) is studied to elucidate the particular influence of topology on the kinetics of zeolite-catalyzed reactions. H-ZSM-58 and H-ZSM-22 are found to display overall lower methylation rates compared to H-ZSM-5 and also different trends in methylation rates with increasing alkene size. These variations may be rationalized based on a decomposition of the free-energy barriers into enthalpic and entropic contributions, which reveals that the lower methylation rates on H-ZSM-58 and H-ZSM-22 have virtually opposite reasons. On H-ZSM-58, the lower methylation rates are caused by higher enthalpy barriers, owing to inefficient stabilization of the reaction intermediates in the large cage-like pores. On the other hand, on H-ZSM-22, the methylation rates mostly suffer from higher entropy barriers, because excessive entropy losses are incurred inside the narrow-channel structure. These results show that the kinetics of crucial elementary steps hinge on the balance between proper stabilization of the reaction intermediates inside the zeolite pores and the resulting entropy losses. These fundamental insights into their inner workings are indispensable for ultimately selecting or designing better zeolite catalysts. [PUBLICATION ABSTRACT] The methylation of ethene, propene, and trans‐2‐butene on zeolites H‐ZSM‐58 (DDR), H‐ZSM‐22 (TON), and H‐ZSM‐5 (MFI) is studied to elucidate the particular influence of topology on the kinetics of zeolite‐catalyzed reactions. H‐ZSM‐58 and H‐ZSM‐22 are found to display overall lower methylation rates compared to H‐ZSM‐5 and also different trends in methylation rates with increasing alkene size. These variations may be rationalized based on a decomposition of the free‐energy barriers into enthalpic and entropic contributions, which reveals that the lower methylation rates on H‐ZSM‐58 and H‐ZSM‐22 have virtually opposite reasons. On H‐ZSM‐58, the lower methylation rates are caused by higher enthalpy barriers, owing to inefficient stabilization of the reaction intermediates in the large cage‐like pores. On the other hand, on H‐ZSM‐22, the methylation rates mostly suffer from higher entropy barriers, because excessive entropy losses are incurred inside the narrow‐channel structure. These results show that the kinetics of crucial elementary steps hinge on the balance between proper stabilization of the reaction intermediates inside the zeolite pores and the resulting entropy losses. These fundamental insights into their inner workings are indispensable for ultimately selecting or designing better zeolite catalysts. Breaking it down: The methylation of ethene, propene, and trans‐2‐butene on zeolites H‐ZSM‐58 (DDR), H‐ZSM‐22 (TON), and H‐ZSM‐5 (MFI) was studied to elucidate the influence of topology on the kinetics of zeolite‐catalyzed reactions. Analysis of the free‐energy barriers revealed that methylation rates are determined by the interplay between the stabilization of reaction intermediates inside the zeolite pores and the resulting entropy losses. The methylation of ethene, propene, and trans-2-butene on zeolites H-ZSM-58 (DDR), H-ZSM-22 (TON), and H-ZSM-5 (MFI) is studied to elucidate the particular influence of topology on the kinetics of zeolite-catalyzed reactions. H-ZSM-58 and H-ZSM-22 are found to display overall lower methylation rates compared to H-ZSM-5 and also different trends in methylation rates with increasing alkene size. These variations may be rationalized based on a decomposition of the free-energy barriers into enthalpic and entropic contributions, which reveals that the lower methylation rates on H-ZSM-58 and H-ZSM-22 have virtually opposite reasons. On H-ZSM-58, the lower methylation rates are caused by higher enthalpy barriers, owing to inefficient stabilization of the reaction intermediates in the large cage-like pores. On the other hand, on H-ZSM-22, the methylation rates mostly suffer from higher entropy barriers, because excessive entropy losses are incurred inside the narrow-channel structure. These results show that the kinetics of crucial elementary steps hinge on the balance between proper stabilization of the reaction intermediates inside the zeolite pores and the resulting entropy losses. These fundamental insights into their inner workings are indispensable for ultimately selecting or designing better zeolite catalysts. |
Author | Van der Mynsbrugge, Jeroen Waroquier, Michel Van Speybroeck, Veronique De Ridder, Jeroen Hemelsoet, Karen |
Author_xml | – sequence: 1 givenname: Jeroen surname: Van der Mynsbrugge fullname: Van der Mynsbrugge, Jeroen organization: Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium - QCMM Alliance, Ghent-Brussels (Belgium), Fax: (+32) 9-264-66-97 – sequence: 2 givenname: Jeroen surname: De Ridder fullname: De Ridder, Jeroen organization: Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium - QCMM Alliance, Ghent-Brussels (Belgium), Fax: (+32) 9-264-66-97 – sequence: 3 givenname: Karen surname: Hemelsoet fullname: Hemelsoet, Karen organization: Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium - QCMM Alliance, Ghent-Brussels (Belgium), Fax: (+32) 9-264-66-97 – sequence: 4 givenname: Michel surname: Waroquier fullname: Waroquier, Michel organization: Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium - QCMM Alliance, Ghent-Brussels (Belgium), Fax: (+32) 9-264-66-97 – sequence: 5 givenname: Veronique surname: Van Speybroeck fullname: Van Speybroeck, Veronique email: veronique.vanspeybroeck@ugent.be organization: Center for Molecular Modeling (CMM), Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium - QCMM Alliance, Ghent-Brussels (Belgium), Fax: (+32) 9-264-66-97 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23897717$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1v1DAQxS3Uim4XrhyRJS5csvgjdpIjXaUtYrdIsBISF8txJqyLNw52Vm361zdL2hXiwmlmNL_3NJp3jk5a3wJCbyhZUELYB7OF3YIRygllGXuBZlQwmvBMihM0I0WaJVLw4gydx3hLCCkk5y_RGeN5kWU0myFXtv1Wu27Auq3xOAQ_9hc6BAsh4vK-c9q2uN8CLpsGTB-xb_DGd975nwP20-qzbaG35s_uB3hne0iWutdueIAafwVteuvb-AqdNtpFeP1U52hzWW6W18nqy9Wn5cdVYtI0Z0kum4qnklW0KkTVEJ2ndQq8NhVrCjl2RAgtOdS5YcAqRmohmGY1L3RdGcLn6P1k2wX_ew-xVzsbDTinW_D7qGjKpKCpzOmIvvsHvfX70I7HHSiRy0yOL5ujxUSZ4GMM0Kgu2J0Og6JEHWJQhxjUMYZR8PbJdl_toD7iz38fgWIC7qyD4T92anldrv82TyatjT3cH7U6_FIy45lQ32-u1ObihqxX_Jta80fBr6VM |
CODEN | CEUJED |
CitedBy_id | crossref_primary_10_1021_acs_jpcc_6b00211 crossref_primary_10_1021_jacs_4c00373 crossref_primary_10_1016_j_mcat_2021_111762 crossref_primary_10_1016_j_jcat_2019_04_021 crossref_primary_10_1016_j_chempr_2020_09_025 crossref_primary_10_1016_j_mcat_2020_110948 crossref_primary_10_1039_C7CY00377C crossref_primary_10_1039_D2CY01530G crossref_primary_10_1039_C9CY01803D crossref_primary_10_1016_S1872_2067_18_63064_5 crossref_primary_10_1039_D2CY00207H crossref_primary_10_1039_C7CY02047C crossref_primary_10_1002_anie_201405360 crossref_primary_10_1016_j_mcat_2017_12_034 crossref_primary_10_1039_C9CY00534J crossref_primary_10_1016_j_cattod_2018_02_042 crossref_primary_10_1016_j_jcat_2015_01_013 crossref_primary_10_1039_C5EE00240K crossref_primary_10_1016_j_jcat_2021_11_029 crossref_primary_10_1021_acs_jpcc_8b12230 crossref_primary_10_1021_acscatal_2c03410 crossref_primary_10_1021_cs5014267 crossref_primary_10_1021_acscatal_7b02877 crossref_primary_10_1039_C5CY02140E crossref_primary_10_1021_acs_jpcc_5b10299 crossref_primary_10_1007_s11705_016_1557_3 crossref_primary_10_1002_cctc_201500793 crossref_primary_10_1002_cctc_202100009 crossref_primary_10_1021_acs_jpcc_0c03405 crossref_primary_10_1039_C4CY01692K crossref_primary_10_1016_j_micromeso_2018_11_026 crossref_primary_10_1039_C4CP02085E crossref_primary_10_1039_D0CY02366C crossref_primary_10_1039_C5CY00483G crossref_primary_10_1002_chem_201500473 crossref_primary_10_1016_j_jcat_2014_04_006 crossref_primary_10_1039_C5CY01420D crossref_primary_10_1039_C8CP00572A crossref_primary_10_1039_D0CY02374D crossref_primary_10_1016_j_apcata_2015_01_035 crossref_primary_10_1021_acs_jpcc_6b07273 crossref_primary_10_1021_acs_jpcc_9b01874 crossref_primary_10_1021_cs501677b crossref_primary_10_1021_acs_jpcc_6b09059 crossref_primary_10_1016_j_jcat_2017_03_007 crossref_primary_10_1039_C5CS00029G crossref_primary_10_1007_s11244_021_01473_6 crossref_primary_10_1016_j_cattod_2018_02_007 crossref_primary_10_1039_C5CY02073E crossref_primary_10_1021_acscatal_7b01643 crossref_primary_10_1039_C4CS00146J crossref_primary_10_1002_cphc_201701020 crossref_primary_10_1016_j_jcat_2021_08_048 crossref_primary_10_1021_jp505696m crossref_primary_10_1021_cs501232r crossref_primary_10_1039_C5CY01419K crossref_primary_10_1002_ange_201405360 crossref_primary_10_1021_acs_jpcc_6b08154 crossref_primary_10_1039_C6CY00465B crossref_primary_10_1002_cctc_201402146 crossref_primary_10_3390_catal8120626 crossref_primary_10_1016_j_jcat_2018_11_018 crossref_primary_10_1021_jp502804q |
Cites_doi | 10.1126/science.271.5254.1395 10.1002/cphc.201201023 10.1016/j.jcat.2007.04.006 10.1016/j.jcat.2012.04.009 10.1021/jp960365z 10.1021/ci100099g 10.1016/S0009-2614(97)00006-7 10.1016/j.jcat.2004.02.022 10.1021/jp004601o 10.1021/ct0501203 10.1039/c000503g 10.1016/j.apcata.2010.07.023 10.1016/j.apcata.2005.01.006 10.1016/j.jcat.2011.09.018 10.1039/c0cp02984j 10.1002/anie.200705453 10.1007/BF00769305 10.1039/b902364j 10.1039/a605200b 10.1021/ja807695p 10.1002/cctc.201000286 10.1007/s11244-011-9751-5 10.1002/ange.200705453 10.1016/S0009-2614(97)01398-5 10.1021/ci8000748 10.1021/cs200016u 10.1002/anie.201103657 10.1002/cctc.200900057 10.1021/ar020006o 10.1002/anie.200702628 10.1021/jp970711s 10.1021/cs200517u 10.1002/anie.200604309 10.1039/B807755J 10.1021/jp809746a 10.1016/j.micromeso.2010.07.013 10.1021/ja010668t 10.1039/b009589n 10.1002/ange.200702628 10.1002/ange.201103657 10.1021/cm0003267 10.1002/ange.200602488 10.1002/ange.200604309 10.1021/ja1073992 10.1081/CR-100100264 10.1021/ja065810a 10.1007/s11244-011-9697-7 10.1002/anie.200602488 10.1016/j.jcat.2012.05.015 10.1021/cs300317p 10.1016/S1387-1811(99)00235-8 10.1023/B:CATL.0000016945.28495.f0 10.1002/chem.200901723 10.1039/b810189b 10.1021/jp2123828 10.1142/p267 10.1021/cs3006583 10.1016/j.jcat.2005.06.028 |
ContentType | Journal Article |
Copyright | Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL NPM AAYXX CITATION 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/chem.201301272 |
DatabaseName | Istex PubMed CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | 11576 |
ExternalDocumentID | 3048384301 10_1002_chem_201301272 23897717 CHEM201301272 ark_67375_WNG_TBN0ML3S_M |
Genre | article Journal Article |
GrantInformation_xml | – fundername: European Research Council – fundername: BELSPO funderid: IAP 7/05 – fundername: Research Foundation Flanders – fundername: Research Board of Ghent University – fundername: European Community′s Seventh Framework Programme funderid: 240483 – fundername: Stevin Supercomputer Infrastructure – fundername: BOF – fundername: Ghent University – fundername: FWO |
GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT NPM AAYXX CITATION 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c4482-86fb3462b1b95bf0a84d4e3dcb2f964e3055a63ed8c2e2b20d552a2d39adbc03 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 |
IngestDate | Fri Aug 16 11:51:12 EDT 2024 Thu Oct 10 18:12:25 EDT 2024 Fri Aug 23 02:36:52 EDT 2024 Sat Sep 28 07:54:44 EDT 2024 Sat Aug 24 00:55:46 EDT 2024 Wed Oct 30 09:57:12 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 35 |
Keywords | density functional calculations ab initio calculations chemical kinetics zeolites methylation |
Language | English |
License | Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4482-86fb3462b1b95bf0a84d4e3dcb2f964e3055a63ed8c2e2b20d552a2d39adbc03 |
Notes | Ghent University European Community′s Seventh Framework Programme - No. 240483 ark:/67375/WNG-TBN0ML3S-M European Research Council BOF ArticleID:CHEM201301272 istex:021B5C75D52D0578241EFFAA945ECFF56C13472E Research Board of Ghent University BELSPO - No. IAP 7/05 Research Foundation Flanders Stevin Supercomputer Infrastructure FWO ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23897717 |
PQID | 1425867696 |
PQPubID | 986340 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1426514681 proquest_journals_1425867696 crossref_primary_10_1002_chem_201301272 pubmed_primary_23897717 wiley_primary_10_1002_chem_201301272_CHEM201301272 istex_primary_ark_67375_WNG_TBN0ML3S_M |
PublicationCentury | 2000 |
PublicationDate | August 26, 2013 |
PublicationDateYYYYMMDD | 2013-08-26 |
PublicationDate_xml | – month: 08 year: 2013 text: August 26, 2013 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chem. Eur. J |
PublicationYear | 2013 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
References | C. M. Nguyen, M.-F. Reyniers, G. B. Marin, Phys. Chem. Chem. Phys. 2010, 12, 9481-9493. M. Bjørgen, U. Olsbye, S. Svelle, S. Kolboe, Catal. Lett. 2004, 93, 37-40. T. Verstraelen, V. Van Speybroeck, M. Waroquier, J. Chem. Inf. Model. 2008, 48, 1530-1541. Angew. Chem. Int. Ed. 2012, 51, 5810-5831. I. Stich, J. D. Gale, K. Terakura, M. C. Payne, Chem. Phys. Lett. 1998, 283, 402-408. S. Svelle, P. O. Rønning, S. Kolboe, J. Catal. 2004, 224, 115-123. D. Lesthaeghe, A. Horre, M. Waroquier, G. B. Marin, V. Van Speybroeck, Chem. Eur. J. 2009, 15, 10803-10808. I. M. Hill, S. A. Hashimi, A. Bhan, J. Catal. 2012, 291, 155-157. I. M. Hill, S. A. Hashimi, A. Bhan, J. Catal. 2012, 285, 115-123. Angew. Chem. Int. Ed. 2008, 47, 5179-5182. Z.-M. Cui, Q. Liu, W.-G. Song, L.-J. Wan, Angew. Chem. 2006, 118, 6662-6665 S. Ilias, A. Bhan, ACS Catal. 2013, 3, 18-31. J. T. Fermann, T. Moniz, O. Kiowski, T. J. McIntire, S. M. Auerbach, T. Vreven, M. J. Frisch, J. Chem. Theory Comput. 2005, 1, 1232-1239. D. Lesthaeghe, B. De Sterck, V. Van Speybroeck, G. B. Marin, M. Waroquier, Angew. Chem. 2007, 119, 1333-1336 Angew. Chem. Int. Ed. 2007, 46, 1311-1314. D. A. McQuarrie, Statistical Mechanics, University Science Books, Sausalito, CA 2000. I. M. Hill, Y. S. Ng, A. Bhan, ACS Catal. 2012, 2, 1742-1748. M. Bjørgen, S. Svelle, F. Joensen, J. Nerlov, S. Kolboe, F. Bonino, L. Palumbo, S. Bordiga, U. Olsbye, J. Catal. 2007, 249, 195-207. G. C. Bond, M. A. Keane, H. Kral, J. A. Lercher, Catal. Rev. Sci. Eng. 2000, 42, 323-383. S. Sklenak, J. Dědeček, C. Li, B. Wichterlová, V. Gábová, M. Sierka, J. Sauer, Angew. Chem. 2007, 119, 7424-7427 J. Dědeček, D. Kaucký, B. Wichterlová, Chem. Commun. 2001, 970-971. D. Lesthaeghe, J. Van der Mynsbrugge, M. Vandichel, M. Waroquier, V. Van Speybroeck, ChemCatChem 2011, 3, 208-212. T. Maihom, B. Boekfa, J. Sirijaraensre, T. Nanok, M. Probst, J. Limtrakul, J. Phys. Chem. C 2009, 113, 6654-6662. Angew. Chem. Int. Ed. 2007, 46, 7286-7289. A. Ghysels, T. Verstraelen, K. Hemelsoet, V. Van Speybroeck, M. Waroquier, J. Chem. Inf. Model. 2010, 50, 1736-1750. U. Olsbye, S. Svelle, M. Bjørgen, P. Beato, T. V. W. Janssens, F. Joensen, S. Bordiga, K. P. Lillerud, Angew. Chem. 2012, 124, 5910-5933 D. Lesthaeghe, V. Van Speybroeck, M. Waroquier, Phys. Chem. Chem. Phys. 2009, 11, 5222-5226. J. F. Haw, W. Song, D. M. Marcus, J. B. Nicholas, Acc. Chem. Res. 2003, 36, 317-326. S. Svelle, P. Rønning, U. Olsbye, S. Kolboe, P. O. Rønning, J. Catal. 2005, 234, 385-400. C.-C. Lee, R. J. Gorte, W. E. Farneth, J. Phys. Chem. B 1997, 101, 3811-3817. F. Haase, J. Sauer, J. Hutter, Chem. Phys. Lett. 1997, 266, 397-402. S. Saepurahman, M. Visur, U. Olsbye, M. Bjørgen, S. Svelle, Top. Catal. 2011, 54, 1293-1301. R. Shah, J. D. Gale, M. C. Payne, Chem. Commun. 1997, 131-132. V. V. Mihaleva, R. A. van Santen, A. P. J. Jansen, J. Phys. Chem. B 2001, 105, 6874-6879. J.-D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 2008, 10, 6615-6620. L. Goerigk, S. Grimme, Phys. Chem. Chem. Phys. 2011, 13, 6670-6688. K. Hemelsoet, J. Van der Mynsbrugge, K. De Wispelaere, M. Waroquier, V. Van Speybroeck, ChemPhysChem. 2013, 14, 1526-1545. R. Shah, M. C. Payne, M. H. Lee, J. D. Gale, Science 1996, 271, 1395-1397. Angew. Chem. Int. Ed. 2006, 45, 6512-6515. W. Dai, X. Wang, G. Wu, N. Guan, M. Hunger, L. Li, ACS Catal. 2011, 1, 292-299. S. Teketel, S. Svelle, K.-P. Lillerud, U. Olsbye, ChemCatChem 2009, 1, 78-81. A. T. Aguayo, A. G. Gayubo, R. Vivanco, M. Olazar, J. Bilbao, Appl. Catal. A 2005, 283, 197-207. F. Haase, J. Sauer, Microporous Mesoporous Mater. 2000, 35-6, 379-385. S. Svelle, M. Visur, U. Olsbye, M. Bjørgen, Top. Catal. 2011, 54, 897-906. S. Teketel, U. Olsbye, K.-P. Lillerud, P. Beato, S. Svelle, Microporous Mesoporous Mater. 2010, 136, 33-41. S. Teketel, W. Skistad, S. Benard, U. Olsbye, K. P. Lillerud, P. Beato, S. Svelle, ACS Catal. 2012, 2, 26-37. S. Svelle, C. Tuma, X. Rozanska, T. Kerber, J. Sauer, J. Am. Chem. Soc. 2009, 131, 816-825. Z. Zhu, M. Hartmann, L. Kevan, Chem. Mater. 2000, 12, 2781-2787. S. Svelle, F. Joensen, J. Nerlov, U. Olsbye, K.-P. Lillerud, S. Kolboe, M. Bjørgen, J. Am. Chem. Soc. 2006, 128, 14770-14771. S. Sklenak, J. Dedeček, C. Li, B. Wichterlová, V. Gábová, M. Sierka, J. Sauer, Phys. Chem. Chem. Phys. 2009, 11, 1237-1247. B. Arstad, S. Kolboe, J. Am. Chem. Soc. 2001, 123, 8137-8138. M. Guisnet, J. P. Gilson, Zeolites for Cleaner Technologies, Imperial College Press, London 2002. V. Van Speybroeck, J. Van der Mynsbrugge, M. Vandichel, K. Hemelsoet, D. Lesthaeghe, A. Ghysels, G. B. Marin, M. Waroquier, J. Am. Chem. Soc. 2011, 133, 888-899. I. M. Dahl, S. Kolboe, Catal. Lett. 1993, 20, 329-336. J. Van der Mynsbrugge, K. Hemelsoet, M. Vandichel, M. Waroquier, V. Van Speybroeck, J. Phys. Chem. C 2012, 116, 5499-5508. J. Van der Mynsbrugge, M. Visur, U. Olsbye, P. Beato, M. Bjørgen, V. Van Speybroeck, S. Svelle, J. Catal. 2012, 292, 201-212. D. M. McCann, D. Lesthaeghe, P. W. W. Kletnieks, D. R. R. Guenther, M. J. J. Hayman, V. Van Speybroeck, M. Waroquier, J. F. F. Haw, Angew. Chem. 2008, 120, 5257-5260 R. Shah, J. D. J. D. Gale, M. C. Payne, J. Phys. Chem. 1996, 100, 11688-11697. Y. Kumita, J. Gascon, E. Stavitski, J. a. Moulijn, F. Kapteijn, Appl. Catal. A 2011, 391, 234-243. 2010; 12 2012; 285 2013; 3 1993; 20 2000; 42 2011; 54 2009; 113 1996; 100 2011; 13 2011; 391 2006 2006; 118 45 2001; 105 2009; 11 2013; 14 2001 2000 2000; 12 2012; 291 2012; 292 1997; 266 1997; 101 2006; 128 1998; 283 2009; 15 2001; 123 2004; 224 2011; 1 2007; 249 2005; 234 2003; 36 1997 2008; 10 2002 2009; 131 2011; 3 2011; 133 2012; 2 2005; 283 2004; 93 2010; 136 1996; 271 2008; 48 2005; 1 2012 2012; 124 51 2000; 35–6 2007 2007; 119 46 2009; 1 2012; 116 2008 2008; 120 47 2010; 50 e_1_2_6_51_2 e_1_2_6_53_2 e_1_2_6_30_2 e_1_2_6_19_3 e_1_2_6_19_2 e_1_2_6_34_3 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_55_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_57_2 e_1_2_6_20_2 e_1_2_6_41_2 Guisnet M. (e_1_2_6_1_2) 2002 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_3_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_47_2 McQuarrie D. A. (e_1_2_6_58_2) 2000 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_50_2 e_1_2_6_52_2 e_1_2_6_31_2 e_1_2_6_18_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_10_3 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_54_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_56_2 e_1_2_6_42_2 e_1_2_6_40_2 e_1_2_6_8_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_2_3 e_1_2_6_6_2 e_1_2_6_23_2 e_1_2_6_48_2 e_1_2_6_2_2 e_1_2_6_21_3 e_1_2_6_21_2 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_25_2 e_1_2_6_46_2 |
References_xml | – volume: 271 start-page: 1395 year: 1996 end-page: 1397 publication-title: Science – volume: 285 start-page: 115 year: 2012 end-page: 123 publication-title: J. Catal. – volume: 113 start-page: 6654 year: 2009 end-page: 6662 publication-title: J. Phys. Chem. C – volume: 123 start-page: 8137 year: 2001 end-page: 8138 publication-title: J. Am. Chem. Soc. – volume: 116 start-page: 5499 year: 2012 end-page: 5508 publication-title: J. Phys. Chem. C – volume: 48 start-page: 1530 year: 2008 end-page: 1541 publication-title: J. Chem. Inf. Model. – volume: 118 45 start-page: 6662 6512 year: 2006 2006 end-page: 6665 6515 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 136 start-page: 33 year: 2010 end-page: 41 publication-title: Microporous Mesoporous Mater. – volume: 291 start-page: 155 year: 2012 end-page: 157 publication-title: J. Catal. – volume: 14 start-page: 1526 year: 2013 end-page: 1545 publication-title: ChemPhysChem. – start-page: 970 year: 2001 end-page: 971 publication-title: Chem. Commun. – volume: 391 start-page: 234 year: 2011 end-page: 243 publication-title: Appl. Catal. A – volume: 3 start-page: 208 year: 2011 end-page: 212 publication-title: ChemCatChem – volume: 11 start-page: 5222 year: 2009 end-page: 5226 publication-title: Phys. Chem. Chem. Phys. – volume: 133 start-page: 888 year: 2011 end-page: 899 publication-title: J. Am. Chem. Soc. – volume: 283 start-page: 197 year: 2005 end-page: 207 publication-title: Appl. Catal. A – volume: 249 start-page: 195 year: 2007 end-page: 207 publication-title: J. Catal. – volume: 234 start-page: 385 year: 2005 end-page: 400 publication-title: J. Catal. – volume: 10 start-page: 6615 year: 2008 end-page: 6620 publication-title: Phys. Chem. Chem. Phys. – volume: 1 start-page: 292 year: 2011 end-page: 299 publication-title: ACS Catal. – volume: 50 start-page: 1736 year: 2010 end-page: 1750 publication-title: J. Chem. Inf. Model. – volume: 224 start-page: 115 year: 2004 end-page: 123 publication-title: J. Catal. – volume: 93 start-page: 37 year: 2004 end-page: 40 publication-title: Catal. Lett. – volume: 2 start-page: 26 year: 2012 end-page: 37 publication-title: ACS Catal. – volume: 266 start-page: 397 year: 1997 end-page: 402 publication-title: Chem. Phys. Lett. – volume: 20 start-page: 329 year: 1993 end-page: 336 publication-title: Catal. Lett. – volume: 13 start-page: 6670 year: 2011 end-page: 6688 publication-title: Phys. Chem. Chem. Phys. – volume: 54 start-page: 1293 year: 2011 end-page: 1301 publication-title: Top. Catal. – volume: 42 start-page: 323 year: 2000 end-page: 383 publication-title: Catal. Rev. Sci. Eng. – volume: 3 start-page: 18 year: 2013 end-page: 31 publication-title: ACS Catal. – year: 2000 – volume: 119 46 start-page: 7424 7286 year: 2007 2007 end-page: 7427 7289 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 128 start-page: 14770 year: 2006 end-page: 14771 publication-title: J. Am. Chem. Soc. – volume: 124 51 start-page: 5910 5810 year: 2012 2012 end-page: 5933 5831 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 100 start-page: 11688 year: 1996 end-page: 11697 publication-title: J. Phys. Chem. – start-page: 131 year: 1997 end-page: 132 publication-title: Chem. Commun. – volume: 2 start-page: 1742 year: 2012 end-page: 1748 publication-title: ACS Catal. – volume: 12 start-page: 2781 year: 2000 end-page: 2787 publication-title: Chem. Mater. – volume: 35–6 start-page: 379 year: 2000 end-page: 385 publication-title: Microporous Mesoporous Mater. – volume: 101 start-page: 3811 year: 1997 end-page: 3817 publication-title: J. Phys. Chem. B – volume: 1 start-page: 1232 year: 2005 end-page: 1239 publication-title: J. Chem. Theory Comput. – volume: 11 start-page: 1237 year: 2009 end-page: 1247 publication-title: Phys. Chem. Chem. Phys. – volume: 283 start-page: 402 year: 1998 end-page: 408 publication-title: Chem. Phys. Lett. – volume: 105 start-page: 6874 year: 2001 end-page: 6879 publication-title: J. Phys. Chem. B – volume: 54 start-page: 897 year: 2011 end-page: 906 publication-title: Top. Catal. – year: 2002 – volume: 119 46 start-page: 1333 1311 year: 2007 2007 end-page: 1336 1314 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 12 start-page: 9481 year: 2010 end-page: 9493 publication-title: Phys. Chem. Chem. Phys. – volume: 292 start-page: 201 year: 2012 end-page: 212 publication-title: J. Catal. – volume: 36 start-page: 317 year: 2003 end-page: 326 publication-title: Acc. Chem. Res. – volume: 15 start-page: 10803 year: 2009 end-page: 10808 publication-title: Chem. Eur. J. – volume: 120 47 start-page: 5257 5179 year: 2008 2008 end-page: 5260 5182 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 131 start-page: 816 year: 2009 end-page: 825 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 78 year: 2009 end-page: 81 publication-title: ChemCatChem – ident: e_1_2_6_40_2 doi: 10.1126/science.271.5254.1395 – ident: e_1_2_6_11_2 doi: 10.1002/cphc.201201023 – ident: e_1_2_6_18_2 doi: 10.1016/j.jcat.2007.04.006 – ident: e_1_2_6_30_2 doi: 10.1016/j.jcat.2012.04.009 – ident: e_1_2_6_41_2 doi: 10.1021/jp960365z – ident: e_1_2_6_57_2 doi: 10.1021/ci100099g – ident: e_1_2_6_42_2 doi: 10.1016/S0009-2614(97)00006-7 – ident: e_1_2_6_24_2 doi: 10.1016/j.jcat.2004.02.022 – ident: e_1_2_6_43_2 doi: 10.1021/jp004601o – ident: e_1_2_6_50_2 doi: 10.1021/ct0501203 – ident: e_1_2_6_45_2 doi: 10.1039/c000503g – ident: e_1_2_6_6_2 doi: 10.1016/j.apcata.2010.07.023 – ident: e_1_2_6_8_2 doi: 10.1016/j.apcata.2005.01.006 – ident: e_1_2_6_29_2 doi: 10.1016/j.jcat.2011.09.018 – ident: e_1_2_6_52_2 doi: 10.1039/c0cp02984j – ident: e_1_2_6_21_3 doi: 10.1002/anie.200705453 – ident: e_1_2_6_13_2 doi: 10.1007/BF00769305 – ident: e_1_2_6_20_2 doi: 10.1039/b902364j – ident: e_1_2_6_46_2 doi: 10.1039/a605200b – ident: e_1_2_6_26_2 doi: 10.1021/ja807695p – ident: e_1_2_6_23_2 doi: 10.1002/cctc.201000286 – ident: e_1_2_6_38_2 doi: 10.1007/s11244-011-9751-5 – ident: e_1_2_6_21_2 doi: 10.1002/ange.200705453 – ident: e_1_2_6_47_2 doi: 10.1016/S0009-2614(97)01398-5 – ident: e_1_2_6_56_2 doi: 10.1021/ci8000748 – ident: e_1_2_6_9_2 doi: 10.1021/cs200016u – ident: e_1_2_6_10_3 doi: 10.1002/anie.201103657 – ident: e_1_2_6_3_2 doi: 10.1002/cctc.200900057 – ident: e_1_2_6_14_2 doi: 10.1021/ar020006o – ident: e_1_2_6_34_3 doi: 10.1002/anie.200702628 – ident: e_1_2_6_48_2 doi: 10.1021/jp970711s – ident: e_1_2_6_55_2 – ident: e_1_2_6_5_2 doi: 10.1021/cs200517u – ident: e_1_2_6_19_3 doi: 10.1002/anie.200604309 – ident: e_1_2_6_35_2 doi: 10.1039/B807755J – ident: e_1_2_6_37_2 doi: 10.1021/jp809746a – ident: e_1_2_6_4_2 doi: 10.1016/j.micromeso.2010.07.013 – ident: e_1_2_6_15_2 doi: 10.1021/ja010668t – ident: e_1_2_6_33_2 doi: 10.1039/b009589n – ident: e_1_2_6_34_2 doi: 10.1002/ange.200702628 – ident: e_1_2_6_10_2 doi: 10.1002/ange.201103657 – ident: e_1_2_6_32_2 – ident: e_1_2_6_7_2 doi: 10.1021/cm0003267 – ident: e_1_2_6_2_2 doi: 10.1002/ange.200602488 – ident: e_1_2_6_19_2 doi: 10.1002/ange.200604309 – ident: e_1_2_6_27_2 doi: 10.1021/ja1073992 – ident: e_1_2_6_39_2 doi: 10.1081/CR-100100264 – ident: e_1_2_6_54_2 – volume-title: Statistical Mechanics year: 2000 ident: e_1_2_6_58_2 contributor: fullname: McQuarrie D. A. – ident: e_1_2_6_17_2 doi: 10.1021/ja065810a – ident: e_1_2_6_36_2 doi: 10.1007/s11244-011-9697-7 – ident: e_1_2_6_2_3 doi: 10.1002/anie.200602488 – ident: e_1_2_6_28_2 doi: 10.1016/j.jcat.2012.05.015 – ident: e_1_2_6_31_2 doi: 10.1021/cs300317p – ident: e_1_2_6_53_2 – ident: e_1_2_6_44_2 doi: 10.1016/S1387-1811(99)00235-8 – ident: e_1_2_6_16_2 doi: 10.1023/B:CATL.0000016945.28495.f0 – ident: e_1_2_6_22_2 doi: 10.1002/chem.200901723 – ident: e_1_2_6_51_2 doi: 10.1039/b810189b – ident: e_1_2_6_49_2 doi: 10.1021/jp2123828 – volume-title: Zeolites for Cleaner Technologies year: 2002 ident: e_1_2_6_1_2 doi: 10.1142/p267 contributor: fullname: Guisnet M. – ident: e_1_2_6_12_2 doi: 10.1021/cs3006583 – ident: e_1_2_6_25_2 doi: 10.1016/j.jcat.2005.06.028 |
SSID | ssj0009633 |
Score | 2.4048793 |
Snippet | The methylation of ethene, propene, and trans‐2‐butene on zeolites H‐ZSM‐58 (DDR), H‐ZSM‐22 (TON), and H‐ZSM‐5 (MFI) is studied to elucidate the particular... The methylation of ethene, propene, and trans-2-butene on zeolites H-ZSM-58 (DDR), H-ZSM-22 (TON), and H-ZSM-5 (MFI) is studied to elucidate the particular... Abstract The methylation of ethene, propene, and trans ‐2‐butene on zeolites H‐ZSM‐58 (DDR), H‐ZSM‐22 (TON), and H‐ZSM‐5 (MFI) is studied to elucidate the... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 11568 |
SubjectTerms | ab initio calculations chemical kinetics Chemistry density functional calculations Entropy methylation Topology X-rays Zeolites |
Title | Enthalpy and Entropy Barriers Explain the Effects of Topology on the Kinetics of Zeolite-Catalyzed Reactions |
URI | https://api.istex.fr/ark:/67375/WNG-TBN0ML3S-M/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201301272 https://www.ncbi.nlm.nih.gov/pubmed/23897717 https://www.proquest.com/docview/1425867696 https://search.proquest.com/docview/1426514681 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQOcCF_59AQUZCcErr2LGdPdJlSwXsHsoiKi6WHTuiapWtNrsS21Mfoc_IkzATb1IWISHBLZFtxZ7xjGecmW8IeRlYESoGglQ469I8iDK1cBClgVVeBiG05JjvPJ6og8_5-yN59EsWf8SH6C_cUDJafY0Cbl2zewUaCmvCTHLQwRnXqIQzoTGm6-3hFX4U7K5YSz7XKWKwdqiNjO9uDt84la4jgb__yeTctGDbI2j_NrHd5GPkycnOcuF2yvPfcB3_Z3V3yK21fUrfxA11l1wL9T1yY9iVhbtP6lG9-GZPz1bU1p6OMNAdnvfsHEvfNRRj-uxxTcGupBEZuaGzik5jLYYVncWmDzBBBIjGtq8BY_DCj4vLId4lrc6Dp4chJlw0D8h0fzQdHqTrog1pCZ4eaFdVOZEr7jI3kK5itsg9bAFfOl4NFDwxKa0SwRclD9xx5qXklnsxsN6VTDwkW_WsDo8Jtdq7nPlKiwBObLAD8JRk5vOs1FaoqkjI645n5ixCc5gIwswNks_05EvIq5alfTc7P8GANi3Nl8k7M92bsPFH8cmME7Ld8dysZbkB54jLAiOBVUJe9M1Adfy1YuswW7Z9lMQstiwhj-Je6T8GRhEY2ZlOCG85_pfJGsTC6N-e_Mugp-Qmb6t2gBJU22RrMV-GZ2A7LdzzVj5-AqV2EU8 |
link.rule.ids | 315,783,787,1378,27938,27939,46308,46732 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6h9lAuvB-BAkZCcErr2HGSPdJly0J391AWgbhYduwIVJSt9iGxPfET-I38EmbiTapFSEhwS2RbsWc84xln5huAZ54XvuIoSIU1Nk69LGODB1HseeWUlzJXgvKdx5Ns-D59-1G10YSUCxPwIboLN5KMRl-TgNOF9OElaiguilLJUQknIkctvIsyL6mIwavTSwQp3F-hmnyax4TC2uI2cnG4PX7rXNolEn_7k9G5bcM2h9DxdbDt9EPsydnBamkPyovfkB3_a3034NrGRGUvw566CVd8fQv2-m1luNtQD-rlZ_P1fM1M7diAYt3x-cjMqfrdglFYn_lSMzQtWQBHXrBZxaahHMOazULTCc6QMKKp7ZOnMDz_8_uPPl0nrS-8Y6c-5Fws7sD0eDDtD-NN3Ya4RGcPFWxWWZlmwia2p2zFTZE63AWutKLqZfjElTKZ9K4ohRdWcKeUMMLJnnG25PIu7NSz2t8HZnJnU-6qXHr0Y73pobOkEpcmZW5kVhURvGiZps8DOocOOMxCE_l0R74Injc87bqZ-RnFtOVKf5i81tOjCR-P5Ds9jmC_ZbreiPMC_SOhCgoGziJ42jUj1enviqn9bNX0yRQlsiUR3AubpfsY2kVoZyd5BKJh-V8mqwkOo3t78C-DnsDecDoe6dGbyclDuCqaIh6oE7N92FnOV_4RmlJL-7gRll-tyhVp |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwELfQJgEvY_xdYICREDxlc-zYSR9Z1zLYWqFRxMSLZceOQENp1T8S3RMfgc-4T8Jd3GQUISHBWyLbin3nO985d78j5LlnuS8ZCFJujY1TL4rYwEEUe1Y66YXIJMd858FQHX1I357Js1-y-AM-RHvhhpJR62sU8Ikr969AQ2FNmEkOOjjhGSjhzVQJhkFdh6dXAFKwvUIx-TSLEYS1gW1kfH99_NqxtIkU_vYnm3PdhK3PoP4tYprZh9CT873F3O4VF78BO_7P8rbJ1spApa_CjrpNrvnqDrnRberC3SVVr5p_Nl8nS2oqR3sY6Q7PB2aKte9mFIP6zJeKgmFJAzTyjI5LOgrFGJZ0HJqOYYKIEI1tnzwG4fnL7z-6eJm0vPCOnvqQcTG7R0b93qh7FK-qNsQFuHqgXlVpRaq4TWxH2pKZPHWwB1xhedlR8MSkNEp4lxfcc8uZk5Ib7kTHOFswcZ9sVOPK7xBqMmdT5spMePBivemAqyQTlyZFZoQq84i8bHimJwGbQwcUZq6RfLolX0Re1Cxtu5npOUa0ZVJ_HL7Wo4MhG5yI93oQkd2G53olzDPwjrjMMRRYReRZ2wxUx38rpvLjRd1HSUxjSyLyIOyV9mNgFYGVnWQR4TXH_zJZjWAY7dvDfxn0lFx_d9jXJ2-Gx4_ITV5X8ACFqHbJxny68I_BjprbJ7Wo_ARZ1BQY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enthalpy+and+Entropy+Barriers+Explain+the+Effects+of+Topology+on+the+Kinetics+of+Zeolite%E2%80%90Catalyzed+Reactions&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Van%E2%80%85der%E2%80%85Mynsbrugge%2C+Jeroen&rft.au=De%E2%80%85Ridder%2C+Jeroen&rft.au=Hemelsoet%2C+Karen&rft.au=Waroquier%2C+Michel&rft.date=2013-08-26&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=19&rft.issue=35&rft.spage=11568&rft.epage=11576&rft_id=info:doi/10.1002%2Fchem.201301272&rft.externalDBID=10.1002%252Fchem.201301272&rft.externalDocID=CHEM201301272 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |