The age of bioinspired molybdenum‐involved nanozymes: Synthesis, catalytic mechanisms, and biomedical applications
Molybdenum (Mo), as a nontoxic and low‐cost transition metal, has been employed for synthesis of various Mo‐based nanomaterials with unique structures and physicochemical features to achieve various properties. Especially, bioinspired Mo‐based nanomaterials show great potential for the construction...
Saved in:
Published in | View (Beijing, China) Vol. 2; no. 3 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Wiley
01.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Molybdenum (Mo), as a nontoxic and low‐cost transition metal, has been employed for synthesis of various Mo‐based nanomaterials with unique structures and physicochemical features to achieve various properties. Especially, bioinspired Mo‐based nanomaterials show great potential for the construction of novel nanozyme catalysts due to their variable oxidation states. Overcoming drawbacks of natural enzymes, bioinspired Mo‐based nanozymes not only provide effective catalytic sites or multivalent elements to mimic natural enzymes, but also present multiple functions for interfacing with various biomicroenvironments. Construction of vast Mo‐based nanozymes has attracted enormous interest in biomedicine. Exogenous/endogenous stimuli enable the user to tailor the catalytic activities of Mo‐based nanozymes. Additionally, tunable physicochemical properties also have a significant influence on their enzyme‐like activity. In this review, we comprehensively summarize typical synthesis strategies, catalytic mechanism, and types of enzyme‐like activity of the bioinspired Mo‐based nanozymes. We mainly highlight desired merits of bioinspired Mo‐based nanozymes related to tunable enzyme‐like activity, stability, and multifunctionality through regulating their physicochemical properties. Furthermore, we intend to discuss their biomedical applications in biosensing and detection, oncotherapy, and combating bacteria. Finally, current challenges and future perspectives of the Mo‐based nanozymes are also proposed.
Mo‐based nanomaterials have shown great potential for the construction of novel nanozyme catalysts due to their variable oxidation states. Overcoming drawbacks of natural enzymes, Mo‐based nanozymes not only provide effective catalytic sites or multivalent elements to mimic natural enzymes, but also present multiple functions for interfacing with various biomicroenvironments. In this review, we summarize recent advances in synthesis, catalytic mechanisms, and biomedical applications of Mo‐based nanozymes and discuss the challenges and future prospects in this booming field. |
---|---|
AbstractList | Molybdenum (Mo), as a nontoxic and low‐cost transition metal, has been employed for synthesis of various Mo‐based nanomaterials with unique structures and physicochemical features to achieve various properties. Especially, bioinspired Mo‐based nanomaterials show great potential for the construction of novel nanozyme catalysts due to their variable oxidation states. Overcoming drawbacks of natural enzymes, bioinspired Mo‐based nanozymes not only provide effective catalytic sites or multivalent elements to mimic natural enzymes, but also present multiple functions for interfacing with various biomicroenvironments. Construction of vast Mo‐based nanozymes has attracted enormous interest in biomedicine. Exogenous/endogenous stimuli enable the user to tailor the catalytic activities of Mo‐based nanozymes. Additionally, tunable physicochemical properties also have a significant influence on their enzyme‐like activity. In this review, we comprehensively summarize typical synthesis strategies, catalytic mechanism, and types of enzyme‐like activity of the bioinspired Mo‐based nanozymes. We mainly highlight desired merits of bioinspired Mo‐based nanozymes related to tunable enzyme‐like activity, stability, and multifunctionality through regulating their physicochemical properties. Furthermore, we intend to discuss their biomedical applications in biosensing and detection, oncotherapy, and combating bacteria. Finally, current challenges and future perspectives of the Mo‐based nanozymes are also proposed. Abstract Molybdenum (Mo), as a nontoxic and low‐cost transition metal, has been employed for synthesis of various Mo‐based nanomaterials with unique structures and physicochemical features to achieve various properties. Especially, bioinspired Mo‐based nanomaterials show great potential for the construction of novel nanozyme catalysts due to their variable oxidation states. Overcoming drawbacks of natural enzymes, bioinspired Mo‐based nanozymes not only provide effective catalytic sites or multivalent elements to mimic natural enzymes, but also present multiple functions for interfacing with various biomicroenvironments. Construction of vast Mo‐based nanozymes has attracted enormous interest in biomedicine. Exogenous/endogenous stimuli enable the user to tailor the catalytic activities of Mo‐based nanozymes. Additionally, tunable physicochemical properties also have a significant influence on their enzyme‐like activity. In this review, we comprehensively summarize typical synthesis strategies, catalytic mechanism, and types of enzyme‐like activity of the bioinspired Mo‐based nanozymes. We mainly highlight desired merits of bioinspired Mo‐based nanozymes related to tunable enzyme‐like activity, stability, and multifunctionality through regulating their physicochemical properties. Furthermore, we intend to discuss their biomedical applications in biosensing and detection, oncotherapy, and combating bacteria. Finally, current challenges and future perspectives of the Mo‐based nanozymes are also proposed. Molybdenum (Mo), as a nontoxic and low‐cost transition metal, has been employed for synthesis of various Mo‐based nanomaterials with unique structures and physicochemical features to achieve various properties. Especially, bioinspired Mo‐based nanomaterials show great potential for the construction of novel nanozyme catalysts due to their variable oxidation states. Overcoming drawbacks of natural enzymes, bioinspired Mo‐based nanozymes not only provide effective catalytic sites or multivalent elements to mimic natural enzymes, but also present multiple functions for interfacing with various biomicroenvironments. Construction of vast Mo‐based nanozymes has attracted enormous interest in biomedicine. Exogenous/endogenous stimuli enable the user to tailor the catalytic activities of Mo‐based nanozymes. Additionally, tunable physicochemical properties also have a significant influence on their enzyme‐like activity. In this review, we comprehensively summarize typical synthesis strategies, catalytic mechanism, and types of enzyme‐like activity of the bioinspired Mo‐based nanozymes. We mainly highlight desired merits of bioinspired Mo‐based nanozymes related to tunable enzyme‐like activity, stability, and multifunctionality through regulating their physicochemical properties. Furthermore, we intend to discuss their biomedical applications in biosensing and detection, oncotherapy, and combating bacteria. Finally, current challenges and future perspectives of the Mo‐based nanozymes are also proposed. Mo‐based nanomaterials have shown great potential for the construction of novel nanozyme catalysts due to their variable oxidation states. Overcoming drawbacks of natural enzymes, Mo‐based nanozymes not only provide effective catalytic sites or multivalent elements to mimic natural enzymes, but also present multiple functions for interfacing with various biomicroenvironments. In this review, we summarize recent advances in synthesis, catalytic mechanisms, and biomedical applications of Mo‐based nanozymes and discuss the challenges and future prospects in this booming field. |
Author | Gao, Lizeng Zu, Yan Yin, Wenyan Yan, Liang Yao, Huiqin Chen, Chunying Gu, Zhanjun Wang, Yifan |
Author_xml | – sequence: 1 givenname: Yan surname: Zu fullname: Zu, Yan organization: Chinese Academy of Sciences – sequence: 2 givenname: Huiqin surname: Yao fullname: Yao, Huiqin organization: Ningxia Medical University – sequence: 3 givenname: Yifan surname: Wang fullname: Wang, Yifan organization: Ningxia Medical University – sequence: 4 givenname: Liang surname: Yan fullname: Yan, Liang organization: Chinese Academy of Sciences – sequence: 5 givenname: Zhanjun surname: Gu fullname: Gu, Zhanjun organization: Chinese Academy of Sciences – sequence: 6 givenname: Chunying surname: Chen fullname: Chen, Chunying organization: Chinese Academy of Sciences – sequence: 7 givenname: Lizeng surname: Gao fullname: Gao, Lizeng organization: Chinese Academy of Sciences – sequence: 8 givenname: Wenyan orcidid: 0000-0001-6726-3938 surname: Yin fullname: Yin, Wenyan email: yinwy@ihep.ac.cn organization: Chinese Academy of Sciences |
BookMark | eNp9kcFO3DAQhi1EpVLKrQ-QB2Cp7Tix01uFKKyExAFauEVje8waOfYqTkHhxCP0Gfsk9bLQA1J7sce__vk8o_8D2Y0pIiGfGD1ilPLPP5bXR5xySplSO2SPt0otynGz-1LXnVLvyUHOd7TYG8Zk1-yR6WqFFdxilVylffIxr_2IthpSmLXF-HP4_fTLx_sU7osaIabHecD8pbqc47TC7PNhZWCCME_eVAOaFUSfh6JCtBvigNYbCBWs16EUk08xfyTvHISMBy_3Pvn-7eTq-GxxfnG6PP56vjBCKL4QXWc4c84JBdIJKYVjWmFbRJTUypq1LaAAoyVnAq3TosFGC63qFhnv6n2y3HJtgrt-PfoBxrlP4PtnIY23PYxl7oA9N8a0FMBSLoWuBXRUomtabTvVNWAK63DLMmPKeUT3l8dovwmgLwH0rwEUO39jN3563n4awYd_NbFt04MPOP_3g82DM8rrP_hGnQM |
CitedBy_id | crossref_primary_10_1021_acsanm_4c01363 crossref_primary_10_1016_j_cclet_2021_12_057 crossref_primary_10_1021_acsabm_3c00341 crossref_primary_10_1016_j_jtemb_2023_127368 crossref_primary_10_1039_D2RA00963C crossref_primary_10_1039_D2TB02751H crossref_primary_10_3390_met12071065 crossref_primary_10_1002_smll_202302640 crossref_primary_10_3390_catal12050505 crossref_primary_10_1007_s12274_022_4666_y crossref_primary_10_1016_j_talanta_2021_123003 crossref_primary_10_1016_j_cclet_2023_108793 crossref_primary_10_1002_adma_202203236 crossref_primary_10_1021_acs_inorgchem_3c02023 crossref_primary_10_1002_adsr_202200052 crossref_primary_10_1016_j_apmt_2021_101029 crossref_primary_10_1016_j_nantod_2023_101875 crossref_primary_10_1039_D1DT02757C crossref_primary_10_1016_j_cej_2024_153884 crossref_primary_10_1002_ange_202413661 crossref_primary_10_1002_advs_202308677 crossref_primary_10_1002_adfm_202206670 crossref_primary_10_1002_INMD_20230020 crossref_primary_10_1039_D3BM01766D crossref_primary_10_1002_smll_202207544 crossref_primary_10_1186_s12951_023_02246_x crossref_primary_10_1002_tcr_202300034 crossref_primary_10_1021_acs_inorgchem_3c04332 crossref_primary_10_1002_anie_202115939 crossref_primary_10_1002_smtd_202301121 crossref_primary_10_1021_acsnano_3c08147 crossref_primary_10_1021_acs_inorgchem_1c03228 crossref_primary_10_1016_j_biomaterials_2024_122909 crossref_primary_10_1039_D4TB02062F crossref_primary_10_1002_adhm_202202911 crossref_primary_10_1002_smtd_202301049 crossref_primary_10_1021_acs_inorgchem_2c01091 crossref_primary_10_1007_s12274_024_6601_x crossref_primary_10_1039_D1EN00714A crossref_primary_10_1007_s12274_023_6283_9 crossref_primary_10_1016_j_ccr_2024_215755 crossref_primary_10_3390_ma15010337 crossref_primary_10_1002_anie_202413661 crossref_primary_10_1021_acsomega_3c09987 crossref_primary_10_1126_sciadv_abp9882 crossref_primary_10_1016_j_cej_2023_143774 crossref_primary_10_1021_acsanm_3c01642 crossref_primary_10_1016_j_procbio_2023_06_014 crossref_primary_10_1002_adfm_202306392 crossref_primary_10_1002_adfm_202309338 crossref_primary_10_1002_ange_202115939 crossref_primary_10_1038_s41467_024_53047_1 crossref_primary_10_1039_D2NR01597H crossref_primary_10_1002_adfm_202314686 crossref_primary_10_3390_chemosensors11060349 |
Cites_doi | 10.1016/j.ccr.2019.213092 10.1002/adma.200903783 10.1016/j.snb.2019.04.148 10.1021/acs.inorgchem.8b03193 10.1021/acs.bioconjchem.7b00673 10.1039/C7TB02676E 10.1016/j.snb.2018.08.051 10.1002/adfm.201900518 10.1039/C9AY01493D 10.1016/j.jcis.2018.05.068 10.1021/jacs.8b08994 10.1002/adma.201805368 10.1039/C7RA12584D 10.1088/1361-6463/ab03b3 10.7150/thno.39701 10.1021/cr400443z 10.1021/acssuschemeng.9b04462 10.1016/j.aca.2018.06.028 10.7150/thno.11802 10.1021/acs.est.7b01466 10.1039/C5NR02694F 10.1007/s00604-017-2562-z 10.1021/acsami.0c01789 10.1007/s00604-016-1886-4 10.2174/1874842202007010001 10.1016/j.bios.2016.01.037 10.1039/c4tb00541d 10.1039/C5AN02457A 10.1016/j.saa.2019.117412 10.1016/j.scib.2018.02.014 10.1007/s00604-018-2792-8 10.1021/nn501235j 10.1002/chem.201902828 10.1039/C6NR00860G 10.1016/j.ica.2018.09.045 10.1016/j.bios.2015.06.043 10.1021/acs.analchem.5b03484 10.1007/s00604-019-3660-x 10.1016/j.biomaterials.2015.10.048 10.1007/978-981-15-1490-6_10 10.1039/C9CC03763B 10.1021/acsnano.7b01536 10.1039/C5NR08038J 10.1002/cssc.201902706 10.1016/j.talanta.2017.08.107 10.1038/nnano.2007.260 10.1016/j.jcis.2018.12.093 10.1002/asia.201300174 10.1021/pr700818f 10.1021/ar400250z 10.1021/ac402114c 10.1039/C4RA13575J 10.1016/j.mcat.2019.110492 10.1039/C4AN01950D 10.3390/nano8120976 10.1016/j.cej.2020.127240 10.1039/C8CY00603B 10.1021/acsnano.0c03094 10.1039/D0NR00192A 10.1021/acschembio.7b00437 10.1002/smll.202001099 10.1016/j.snb.2019.127512 10.3389/fbioe.2020.00013 10.1021/acsami.8b01245 10.1002/chem.201402680 10.1039/C9NR05054J 10.1039/C7TB02434G 10.1002/anie.200800023 10.1039/C7NR01460K 10.1021/jacs.5b11411 10.1016/j.snb.2018.01.092 10.1021/ac702203f 10.1039/C6RA03507H 10.1002/cbic.201800471 10.1021/acs.accounts.9b00140 10.3390/catal9121057 10.1039/C7NR06807G 10.1039/C9NR06596B 10.1002/elan.202000008 10.1016/j.snb.2019.127530 10.1039/C4CS00350K 10.1021/jacs.7b00601 10.1002/cjoc.201600694 10.1021/ja104924b 10.1016/j.saa.2017.05.071 10.3390/pharmaceutics12070665 10.1002/anie.201908289 10.1016/j.bios.2020.112201 10.1016/j.aca.2020.01.035 10.1039/c3cs35486e 10.1021/acssuschemeng.8b03823 10.1007/s11427-019-9518-0 10.1021/acsnano.9b05075 10.1039/c4ra01746c 10.1039/C8NJ03996H 10.1021/acsami.9b03004 10.1039/C3CS60249D 10.1007/s00604-020-04376-7 10.1021/nn501647j 10.7150/thno.19738 10.1021/acs.jpcc.6b08343 10.1016/j.apsusc.2019.06.163 10.1039/C4NR03393K 10.1002/asia.201901753 10.1039/C7NJ00899F 10.1016/j.msec.2019.02.086 10.1007/s40820-019-0324-7 10.1002/adma.202005423 10.1002/cbic.202000195 10.1007/s13204-020-01389-9 10.1021/jacs.9b13586 10.1002/smll.201802290 10.1039/C7CP00644F 10.1021/acs.chemrev.8b00672 10.1002/smll.202005739 10.1016/j.bios.2015.12.034 10.1016/j.bios.2017.09.048 10.1021/acsnano.6b05810 10.1021/acsami.9b10373 10.1039/C8CS00457A 10.1007/s12161-020-01806-3 10.1039/C6RA18050G 10.1021/acsami.8b10560 10.1007/s10853-020-04507-8 10.1002/anie.201712469 10.1016/j.biomaterials.2019.119752 10.1039/C7NR07927C 10.1007/s11427-019-1570-7 10.1002/adma.201305842 10.1039/D0MH00105H 10.1002/anie.201510597 10.1016/j.microc.2019.104019 10.1021/acs.analchem.0c01028 10.1039/C7AY00484B 10.1021/acsbiomaterials.9b00372 10.1002/anie.201905645 10.1016/j.apmt.2017.01.006 10.1016/j.scib.2017.12.012 10.1021/acsami.8b15443 10.1016/j.electacta.2017.08.044 10.1016/j.talanta.2015.03.055 10.1007/s12011-019-01742-2 10.1039/D0CC05152G 10.1007/s00604-019-4041-1 10.1360/N032015-00058 10.1002/anie.201914768 10.1007/s00604-019-4078-1 10.1002/chem.201803040 10.1186/s11671-019-2896-z 10.1021/acs.bioconjchem.9b00171 10.1002/smll.201905938 10.1021/acsami.9b05978 10.1021/bi00168a001 10.1016/j.snb.2018.02.085 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by Shanghai Fuji Technology Consulting Co., Ltd, authorized by Professional Community of Experimental Medicine, National Association of Health Industry and Enterprise Management (PCEM) and John Wiley & Sons Australia, Ltd. |
Copyright_xml | – notice: 2021 The Authors. published by Shanghai Fuji Technology Consulting Co., Ltd, authorized by Professional Community of Experimental Medicine, National Association of Health Industry and Enterprise Management (PCEM) and John Wiley & Sons Australia, Ltd. |
DBID | 24P AAYXX CITATION DOA |
DOI | 10.1002/VIW.20200188 |
DatabaseName | Wiley-Blackwell Open Access Titles CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2688-268X |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_2ccc60aad0274b34a907ef56bd9895ac 10_1002_VIW_20200188 VIW2102 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Scientific Research Project of the Ningxia Higher Education Institutions of China – fundername: Natural Science Foundation of Ningxia Province funderid: 2020AAC03115 – fundername: National Basic Research Programs of China – fundername: National Natural Science Foundation of China funderid: 51772293; U1932112 – fundername: Natural Science Foundation of Beijing Municipality funderid: 2202064 – fundername: CAS Key Laboratory of Nano‐BioInterface funderid: 20NBI01 |
GroupedDBID | 0R~ 1OC 24P 7X7 8FI 8FJ AAHHS ABUWG ACCFJ ACCMX ACXQS ADKYN ADPDF ADZMN AEEZP AEQDE AFKRA AIWBW AJBDE ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU BENPR CCPQU EBS FYUFA GROUPED_DOAJ HMCUK IAO IHR INH ITC M~E OVD PIMPY TEORI UKHRP WIN AAYXX CITATION IGS PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY PUEGO |
ID | FETCH-LOGICAL-c4482-499c21fff48a7f4774f1b8e6c21e70d73166ae4acb7214edfb45e5b4b836e1293 |
IEDL.DBID | DOA |
ISSN | 2688-3988 2688-268X |
IngestDate | Wed Aug 27 01:23:31 EDT 2025 Tue Jul 01 02:42:39 EDT 2025 Thu Apr 24 23:09:05 EDT 2025 Wed Jan 22 16:29:09 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4482-499c21fff48a7f4774f1b8e6c21e70d73166ae4acb7214edfb45e5b4b836e1293 |
ORCID | 0000-0001-6726-3938 |
OpenAccessLink | https://doaj.org/article/2ccc60aad0274b34a907ef56bd9895ac |
PageCount | 27 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2ccc60aad0274b34a907ef56bd9895ac crossref_primary_10_1002_VIW_20200188 crossref_citationtrail_10_1002_VIW_20200188 wiley_primary_10_1002_VIW_20200188_VIW2102 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2021 2021-06-00 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: June 2021 |
PublicationDecade | 2020 |
PublicationTitle | View (Beijing, China) |
PublicationYear | 2021 |
Publisher | Wiley |
Publisher_xml | – name: Wiley |
References | 2015; 140 2015; 141 2019; 11 2019; 99 2019; 13 2015; 74 2019; 15 2017; 89 2019; 14 2020; 17 2014; 26 2020; 16 2020; 15 2020; 14 2020; 13 2020; 12 2020; 10 2013; 8 2018; 42 2016; 141 2014; 20 2018; 6 2010; 22 2018; 8 2019; 20 2018; 178 2020; 92 2015; 87 2019; 25 2019; 29 2007; 2 2020; 1105 2019; 7 2018; 185 2018; 100 2019; 9 2019; 5 2019; 31 2019; 30 2020; 142 2013; 85 2016; 10 2014; 47 2020; 305 2017; 250 2020; 32 2014; 43 2017; 139 2019; 186 2018; 24 2019; 187 2017; 51 2016; 6 2019; 48 2008; 47 2020; 159 2020; 21 2018; 10 2016; 8 2019; 296 2018; 14 2018; 13 2018; 1035 2017; 7 2017; 8 2017; 41 2020; 63 2019; 52 2019; 55 2019; 58 2016; 76 2020; 59 2008; 7 2020; 403 2018; 528 2020; 56 2020; 55 2017; 9 2020; 408 2019; 484 2016; 183 2020; 8 2015; 45 2020; 7 2014; 4 2019; 62 2014; 2 2015; 44 2017; 35 1994; 33 2019; 119 2016; 80 2017; 121 2014; 8 2014; 6 2019; 232 2019; 475 2018; 263 2015; 5 2018; 140 2018; 260 2017; 28 2020; 187 2013; 42 2019; 149 2018; 63 2020; 224 2020; 862 2015; 7 2014; 114 2016; 55 2018; 275 2019; 539 2020 2017; 11 2020; 194 2010; 132 2017; 19 2017; 185 2016; 138 2019; 491 2008; 80 2018; 57 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 Zhu X. Y. (e_1_2_9_119_1) 2020; 862 e_1_2_9_6_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_138_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_115_1 e_1_2_9_157_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_130_1 e_1_2_9_153_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_106_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_5_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_128_1 e_1_2_9_105_1 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_39_1 Wang Y. (e_1_2_9_59_1) 2014; 6 e_1_2_9_120_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_143_1 Chen Y. (e_1_2_9_80_1) 2019; 15 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_113_1 e_1_2_9_117_1 e_1_2_9_155_1 e_1_2_9_136_1 e_1_2_9_151_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_127_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_104_1 e_1_2_9_146_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_142_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_112_1 e_1_2_9_139_1 e_1_2_9_116_1 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_154_1 e_1_2_9_48_1 e_1_2_9_29_1 e_1_2_9_150_1 |
References_xml | – volume: 59 start-page: 2565 year: 2020 publication-title: Angew. Chem. Int. Edit. – volume: 140 start-page: 1119 year: 2015 publication-title: Analyst – volume: 8 start-page: 1 year: 2017 publication-title: Appl. Mater. Today – volume: 11 start-page: 102 year: 2019 publication-title: Nano‐Micro Lett – volume: 159 year: 2020 publication-title: Biosens. Bioelectron. – volume: 7 start-page: 1834 year: 2020 publication-title: Mater. Horiz. – volume: 14 year: 2018 publication-title: Small – volume: 141 start-page: 47 year: 2015 publication-title: Talanta – start-page: 331 year: 2020 end-page: 365 – volume: 13 start-page: 215 year: 2018 publication-title: ACS. Chem. Biol. – volume: 13 start-page: 2028 year: 2020 publication-title: Food Anal. Method – volume: 114 start-page: 3963 year: 2014 publication-title: Chem. Rev. – volume: 33 start-page: 389 year: 1994 publication-title: Biochemistry – volume: 45 start-page: 1026 year: 2015 publication-title: Sci. Sin. Chim. – volume: 5 start-page: 931 year: 2015 publication-title: Theranostics – volume: 6 year: 2014 publication-title: Nanoscale – volume: 20 start-page: 9627 year: 2014 publication-title: Chem. Eur. J. – volume: 183 start-page: 2481 year: 2016 publication-title: Microchim. Acta – volume: 250 start-page: 152 year: 2017 publication-title: Electrochim. Acta – volume: 52 start-page: 2190 year: 2019 publication-title: Accounts Chem. Res. – volume: 14 year: 2020 publication-title: ACS Nano – volume: 51 start-page: 8229 year: 2017 publication-title: Environ. Sci. Technol. – volume: 22 start-page: 2206 year: 2010 publication-title: Adv. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 89 start-page: 652 year: 2017 publication-title: Biosens. Bioelectron. – volume: 119 start-page: 4357 year: 2019 publication-title: Chem. Rev. – volume: 30 start-page: 1273 year: 2019 publication-title: Bioconjugate Chem – volume: 26 start-page: 3662 year: 2014 publication-title: Adv. Mater. – volume: 185 start-page: 287 year: 2018 publication-title: Microchim. Acta – volume: 80 start-page: 2250 year: 2008 publication-title: Anal. Chem. – volume: 178 start-page: 992 year: 2018 publication-title: Talanta – volume: 2 start-page: 4442 year: 2014 publication-title: J. Mater. Chem. B – volume: 862 start-page: 11 year: 2020 publication-title: J. Electroanal. Chem. – volume: 149 year: 2019 publication-title: Microchem. J. – volume: 11 year: 2019 publication-title: Nanoscale – volume: 8 start-page: 976 year: 2018 publication-title: Nanomaterials – volume: 8 start-page: 5938 year: 2016 publication-title: Nanoscale – volume: 15 start-page: 11 year: 2019 publication-title: Small – volume: 7 start-page: 1388 year: 2008 publication-title: J. Proteome Res. – volume: 21 start-page: 2373 year: 2020 publication-title: ChemBioChem – volume: 99 start-page: 1424 year: 2019 publication-title: Mat. Sci. Eng. C‐Mater. – volume: 13 start-page: 1379 year: 2020 publication-title: ChemSusChem – volume: 42 year: 2018 publication-title: New J. Chem. – volume: 43 start-page: 676 year: 2014 publication-title: Chem. Soc. Rev. – volume: 305 year: 2020 publication-title: Sensor. Actuat. B‐Chem. – volume: 63 start-page: 433 year: 2018 publication-title: Sci. Bull. – volume: 8 start-page: 3685 year: 2016 publication-title: Nanoscale – volume: 59 start-page: 2 year: 2020 publication-title: Angew. Chem. Int. Edit. – volume: 63 start-page: 1183 year: 2020 publication-title: Sci. China Life Sci. – volume: 260 start-page: 676 year: 2018 publication-title: Sensor. Actuat. B‐Chem. – volume: 7 start-page: 3207 year: 2017 publication-title: Theranostics – volume: 11 start-page: 4926 year: 2017 publication-title: ACS Nano – volume: 1105 start-page: 162 year: 2020 publication-title: Anal. Chim. Acta – volume: 12 start-page: 665 year: 2020 publication-title: Pharmaceutics – volume: 20 start-page: 1861 year: 2019 publication-title: Chembiochem – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 6 year: 2016 publication-title: RSC Adv. – volume: 187 start-page: 424 year: 2020 publication-title: Microchim. Acta – volume: 62 start-page: 710 year: 2019 publication-title: Sci. China Life Sci. – volume: 539 start-page: 575 year: 2019 publication-title: J. Colloid Interf. Sci. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 87 year: 2015 publication-title: Anal. Chem. – volume: 48 start-page: 1004 year: 2019 publication-title: Chem. Soc. Rev. – volume: 35 start-page: 605 year: 2017 publication-title: Chinese J.Chem. – volume: 224 year: 2020 publication-title: Spectrochim. Acta A – volume: 55 start-page: 2122 year: 2016 publication-title: Angew. Chem. Int. Edit. – volume: 5 start-page: 3079 year: 2019 publication-title: ACS Biomater. Sci. Eng. – volume: 58 start-page: 1638 year: 2019 publication-title: Inorg. Chem. – volume: 491 start-page: 138 year: 2019 publication-title: Appl. Surf. Sci. – volume: 8 start-page: 13 year: 2020 publication-title: Front. Bioeng. Biotechnol. – volume: 14 start-page: 67 year: 2019 publication-title: Nanoscale Res. Lett. – volume: 57 start-page: 9224 year: 2018 publication-title: Angew. Chem. Int. Edit. – volume: 8 start-page: 7252 year: 2018 publication-title: RSC Adv – volume: 185 start-page: 271 year: 2017 publication-title: Spectrochim. Acta A – volume: 263 start-page: 109 year: 2018 publication-title: Sensor. Actuat. B‐Chem. – volume: 55 start-page: 7226 year: 2020 publication-title: J. Mater. Sci. – volume: 56 year: 2020 publication-title: Chem. Commun. – volume: 6 start-page: 487 year: 2018 publication-title: J. Mater. Chem. B – volume: 42 start-page: 6060 year: 2013 publication-title: Chem. Soc. Rev. – volume: 194 start-page: 121 year: 2020 publication-title: Biol. Trace Elem. Res. – volume: 6 year: 2018 publication-title: ACS Sustain. Chem. Eng. – volume: 186 start-page: 572 year: 2019 publication-title: Microchim. Acta – volume: 63 start-page: 133 year: 2018 publication-title: Sci. Bull. – volume: 141 start-page: 1822 year: 2016 publication-title: Analyst – volume: 132 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 296 year: 2019 publication-title: Sensor. Actuat. B‐Chem. – volume: 2 start-page: 577 year: 2007 publication-title: Nat. Nanotechnol. – volume: 275 start-page: 155 year: 2018 publication-title: Sensor. Actuat. B‐Chem. – volume: 19 start-page: 9232 year: 2017 publication-title: Phys. Chem. Chem. Phys. – volume: 8 start-page: 6922 year: 2014 publication-title: ACS Nano – volume: 9 start-page: 5927 year: 2017 publication-title: Nanoscale – volume: 9 start-page: 2939 year: 2017 publication-title: Anal. Methods – volume: 15 start-page: 1315 year: 2020 publication-title: Chem. Asian J. – volume: 121 start-page: 2154 year: 2017 publication-title: J. Phys. Chem. C – volume: 16 year: 2020 publication-title: Small – volume: 24 year: 2018 publication-title: Chem. Eur. J. – volume: 10 start-page: 1517 year: 2018 publication-title: Nanoscale – volume: 10 year: 2016 publication-title: ACS Nano – volume: 528 start-page: 410 year: 2018 publication-title: J. Colloid Interf. Sci. – volume: 187 start-page: 111 year: 2020 publication-title: Microchim. Acta – volume: 7 year: 2019 publication-title: ACS Sustain. Chem. Eng. – volume: 10 start-page: 757 year: 2020 publication-title: Theranostics – volume: 232 year: 2019 publication-title: Biomaterials – volume: 74 start-page: 207 year: 2015 publication-title: Biosens. Bioelectron. – volume: 100 start-page: 512 year: 2018 publication-title: Biosens. Bioelectron. – volume: 6 start-page: 105 year: 2018 publication-title: J. Mater. Chem. B – volume: 8 start-page: 5182 year: 2014 publication-title: ACS Nano – volume: 187 start-page: 74 year: 2019 publication-title: Microchim. Acta – volume: 403 year: 2020 publication-title: Coordin. Chem. Rev. – volume: 76 start-page: 11 year: 2016 publication-title: Biomaterials – volume: 9 year: 2017 publication-title: Nanoscale – volume: 138 start-page: 2064 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 5081 year: 2019 publication-title: Anal. Methods – volume: 408 year: 2020 publication-title: Chem. Eng. J. – volume: 32 start-page: 1243 year: 2020 publication-title: Electroanalysis – volume: 5 year: 2015 publication-title: RSC Adv. – volume: 47 start-page: 5335 year: 2008 publication-title: Angew. Chem. Int. Edit. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Inter. – volume: 10 start-page: 2069 year: 2020 publication-title: Appl. Nanosci. – volume: 52 year: 2019 publication-title: J. Phys. D: Appl. Phys. – volume: 475 year: 2019 publication-title: Mol. Catal. – volume: 7 start-page: 1 year: 2020 publication-title: Chem – volume: 80 start-page: 111 year: 2016 publication-title: Biosens. Bioelectron. – volume: 92 start-page: 7822 year: 2020 publication-title: Anal. Chem. – volume: 185 start-page: 1 year: 2017 publication-title: Microchim. Acta – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Inter. – volume: 55 start-page: 8017 year: 2019 publication-title: Chem. Commun. – volume: 9 start-page: 1057 year: 2019 publication-title: Catalysts – volume: 139 start-page: 5412 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 13 year: 2019 publication-title: ACS Nano – volume: 41 start-page: 6700 year: 2017 publication-title: New J. Chem. – volume: 484 start-page: 283 year: 2019 publication-title: Inorg. Chim. Acta – volume: 8 start-page: 1780 year: 2013 publication-title: Chem. Asian J. – volume: 4 year: 2014 publication-title: RSC Adv. – volume: 58 year: 2019 publication-title: Angew. Chem. Int. Edit. – volume: 44 start-page: 2376 year: 2015 publication-title: Chem. Soc. Rev. – volume: 85 year: 2013 publication-title: Anal. Chem. – volume: 25 year: 2019 publication-title: Chem. Eur. J. – volume: 17 year: 2020 publication-title: Small – volume: 140 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Inter. – volume: 1035 start-page: 146 year: 2018 publication-title: Anal. Chim. Acta – volume: 47 start-page: 1097 year: 2014 publication-title: Accounts Chem. Res. – volume: 142 start-page: 1636 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 7 year: 2015 publication-title: Nanoscale – volume: 8 start-page: 4645 year: 2018 publication-title: Catal. Sci. Technol. – volume: 28 start-page: 2903 year: 2017 publication-title: BioconjugateChem. – volume: 12 start-page: 8415 year: 2020 publication-title: Nanoscale – ident: e_1_2_9_99_1 doi: 10.1016/j.ccr.2019.213092 – ident: e_1_2_9_79_1 doi: 10.1002/adma.200903783 – ident: e_1_2_9_82_1 doi: 10.1016/j.snb.2019.04.148 – ident: e_1_2_9_117_1 doi: 10.1021/acs.inorgchem.8b03193 – ident: e_1_2_9_46_1 doi: 10.1021/acs.bioconjchem.7b00673 – ident: e_1_2_9_51_1 doi: 10.1039/C7TB02676E – ident: e_1_2_9_60_1 doi: 10.1016/j.snb.2018.08.051 – ident: e_1_2_9_136_1 doi: 10.1002/adfm.201900518 – ident: e_1_2_9_63_1 doi: 10.1039/C9AY01493D – ident: e_1_2_9_95_1 doi: 10.1016/j.jcis.2018.05.068 – ident: e_1_2_9_129_1 doi: 10.1021/jacs.8b08994 – ident: e_1_2_9_13_1 doi: 10.1002/adma.201805368 – ident: e_1_2_9_148_1 doi: 10.1039/C7RA12584D – ident: e_1_2_9_20_1 doi: 10.1088/1361-6463/ab03b3 – ident: e_1_2_9_133_1 doi: 10.7150/thno.39701 – ident: e_1_2_9_7_1 doi: 10.1021/cr400443z – ident: e_1_2_9_70_1 doi: 10.1021/acssuschemeng.9b04462 – ident: e_1_2_9_93_1 doi: 10.1016/j.aca.2018.06.028 – ident: e_1_2_9_23_1 doi: 10.7150/thno.11802 – ident: e_1_2_9_6_1 doi: 10.1021/acs.est.7b01466 – ident: e_1_2_9_108_1 doi: 10.1039/C5NR02694F – volume: 15 start-page: 11 year: 2019 ident: e_1_2_9_80_1 publication-title: Small – ident: e_1_2_9_107_1 doi: 10.1007/s00604-017-2562-z – ident: e_1_2_9_92_1 doi: 10.1021/acsami.0c01789 – ident: e_1_2_9_153_1 doi: 10.1007/s00604-016-1886-4 – ident: e_1_2_9_84_1 doi: 10.2174/1874842202007010001 – ident: e_1_2_9_69_1 doi: 10.1016/j.bios.2016.01.037 – ident: e_1_2_9_64_1 doi: 10.1039/c4tb00541d – ident: e_1_2_9_120_1 doi: 10.1039/C5AN02457A – ident: e_1_2_9_32_1 doi: 10.1016/j.saa.2019.117412 – ident: e_1_2_9_34_1 doi: 10.1016/j.scib.2018.02.014 – ident: e_1_2_9_149_1 doi: 10.1007/s00604-018-2792-8 – ident: e_1_2_9_43_1 doi: 10.1021/nn501235j – ident: e_1_2_9_141_1 doi: 10.1002/chem.201902828 – ident: e_1_2_9_78_1 doi: 10.1039/C6NR00860G – volume: 862 start-page: 11 year: 2020 ident: e_1_2_9_119_1 publication-title: J. Electroanal. Chem. – ident: e_1_2_9_81_1 doi: 10.1016/j.ica.2018.09.045 – ident: e_1_2_9_73_1 doi: 10.1016/j.bios.2015.06.043 – ident: e_1_2_9_114_1 doi: 10.1021/acs.analchem.5b03484 – ident: e_1_2_9_151_1 doi: 10.1007/s00604-019-3660-x – ident: e_1_2_9_101_1 doi: 10.1016/j.biomaterials.2015.10.048 – ident: e_1_2_9_17_1 doi: 10.1007/978-981-15-1490-6_10 – ident: e_1_2_9_37_1 doi: 10.1039/C9CC03763B – ident: e_1_2_9_111_1 doi: 10.1021/acsnano.7b01536 – ident: e_1_2_9_100_1 doi: 10.1039/C5NR08038J – ident: e_1_2_9_4_1 doi: 10.1002/cssc.201902706 – ident: e_1_2_9_96_1 doi: 10.1016/j.talanta.2017.08.107 – ident: e_1_2_9_16_1 doi: 10.1038/nnano.2007.260 – ident: e_1_2_9_42_1 doi: 10.1016/j.jcis.2018.12.093 – ident: e_1_2_9_74_1 doi: 10.1002/asia.201300174 – ident: e_1_2_9_112_1 doi: 10.1021/pr700818f – ident: e_1_2_9_12_1 doi: 10.1021/ar400250z – ident: e_1_2_9_66_1 doi: 10.1021/ac402114c – ident: e_1_2_9_21_1 doi: 10.1039/C4RA13575J – ident: e_1_2_9_49_1 doi: 10.1016/j.mcat.2019.110492 – ident: e_1_2_9_77_1 doi: 10.1039/C4AN01950D – ident: e_1_2_9_57_1 doi: 10.3390/nano8120976 – ident: e_1_2_9_157_1 doi: 10.1016/j.cej.2020.127240 – volume: 6 start-page: 123444 year: 2014 ident: e_1_2_9_59_1 publication-title: Nanoscale – ident: e_1_2_9_86_1 doi: 10.1039/C8CY00603B – ident: e_1_2_9_126_1 doi: 10.1021/acsnano.0c03094 – ident: e_1_2_9_62_1 doi: 10.1039/D0NR00192A – ident: e_1_2_9_145_1 doi: 10.1021/acschembio.7b00437 – ident: e_1_2_9_139_1 doi: 10.1002/smll.202001099 – ident: e_1_2_9_147_1 doi: 10.1016/j.snb.2019.127512 – ident: e_1_2_9_61_1 doi: 10.3389/fbioe.2020.00013 – ident: e_1_2_9_44_1 doi: 10.1021/acsami.8b01245 – ident: e_1_2_9_22_1 doi: 10.1002/chem.201402680 – ident: e_1_2_9_30_1 doi: 10.1039/C9NR05054J – ident: e_1_2_9_31_1 doi: 10.1039/C7TB02434G – ident: e_1_2_9_89_1 doi: 10.1002/anie.200800023 – ident: e_1_2_9_124_1 doi: 10.1039/C7NR01460K – ident: e_1_2_9_127_1 doi: 10.1021/jacs.5b11411 – ident: e_1_2_9_116_1 doi: 10.1016/j.snb.2018.01.092 – ident: e_1_2_9_103_1 doi: 10.1021/ac702203f – ident: e_1_2_9_75_1 doi: 10.1039/C6RA03507H – ident: e_1_2_9_110_1 doi: 10.1002/cbic.201800471 – ident: e_1_2_9_67_1 doi: 10.1021/acs.accounts.9b00140 – ident: e_1_2_9_91_1 doi: 10.3390/catal9121057 – ident: e_1_2_9_135_1 doi: 10.1039/C7NR06807G – ident: e_1_2_9_27_1 doi: 10.1039/C9NR06596B – ident: e_1_2_9_33_1 doi: 10.1002/elan.202000008 – ident: e_1_2_9_150_1 doi: 10.1016/j.snb.2019.127530 – ident: e_1_2_9_3_1 doi: 10.1039/C4CS00350K – ident: e_1_2_9_143_1 doi: 10.1021/jacs.7b00601 – ident: e_1_2_9_54_1 doi: 10.1002/cjoc.201600694 – ident: e_1_2_9_113_1 doi: 10.1021/ja104924b – ident: e_1_2_9_118_1 doi: 10.1016/j.saa.2017.05.071 – ident: e_1_2_9_144_1 doi: 10.3390/pharmaceutics12070665 – ident: e_1_2_9_138_1 doi: 10.1002/anie.201908289 – ident: e_1_2_9_154_1 doi: 10.1016/j.bios.2020.112201 – ident: e_1_2_9_85_1 doi: 10.1016/j.aca.2020.01.035 – ident: e_1_2_9_9_1 doi: 10.1039/c3cs35486e – ident: e_1_2_9_132_1 doi: 10.1021/acssuschemeng.8b03823 – ident: e_1_2_9_142_1 doi: 10.1007/s11427-019-9518-0 – ident: e_1_2_9_50_1 doi: 10.1021/acsnano.9b05075 – ident: e_1_2_9_58_1 doi: 10.1039/c4ra01746c – ident: e_1_2_9_41_1 doi: 10.1039/C8NJ03996H – ident: e_1_2_9_104_1 doi: 10.1021/acsami.9b03004 – ident: e_1_2_9_88_1 doi: 10.1039/C3CS60249D – ident: e_1_2_9_106_1 doi: 10.1007/s00604-020-04376-7 – ident: e_1_2_9_38_1 doi: 10.1021/nn501647j – ident: e_1_2_9_48_1 doi: 10.7150/thno.19738 – ident: e_1_2_9_90_1 doi: 10.1021/acs.jpcc.6b08343 – ident: e_1_2_9_35_1 doi: 10.1016/j.apsusc.2019.06.163 – ident: e_1_2_9_29_1 doi: 10.1039/C4NR03393K – ident: e_1_2_9_72_1 doi: 10.1002/asia.201901753 – ident: e_1_2_9_97_1 doi: 10.1039/C7NJ00899F – ident: e_1_2_9_68_1 doi: 10.1016/j.msec.2019.02.086 – ident: e_1_2_9_83_1 doi: 10.1007/s40820-019-0324-7 – ident: e_1_2_9_65_1 doi: 10.1002/adma.202005423 – ident: e_1_2_9_137_1 doi: 10.1002/cbic.202000195 – ident: e_1_2_9_5_1 doi: 10.1007/s13204-020-01389-9 – ident: e_1_2_9_40_1 doi: 10.1021/jacs.9b13586 – ident: e_1_2_9_102_1 doi: 10.1002/smll.201802290 – ident: e_1_2_9_146_1 doi: 10.1039/C7CP00644F – ident: e_1_2_9_18_1 doi: 10.1021/acs.chemrev.8b00672 – ident: e_1_2_9_158_1 doi: 10.1002/smll.202005739 – ident: e_1_2_9_36_1 doi: 10.1016/j.bios.2015.12.034 – ident: e_1_2_9_105_1 doi: 10.1016/j.bios.2017.09.048 – ident: e_1_2_9_28_1 doi: 10.1021/acsnano.6b05810 – ident: e_1_2_9_131_1 doi: 10.1021/acsami.9b10373 – ident: e_1_2_9_10_1 doi: 10.1039/C8CS00457A – ident: e_1_2_9_156_1 doi: 10.1007/s12161-020-01806-3 – ident: e_1_2_9_98_1 doi: 10.1039/C6RA18050G – ident: e_1_2_9_122_1 doi: 10.1021/acsami.8b10560 – ident: e_1_2_9_134_1 doi: 10.1007/s10853-020-04507-8 – ident: e_1_2_9_14_1 doi: 10.1002/anie.201712469 – ident: e_1_2_9_140_1 doi: 10.1016/j.biomaterials.2019.119752 – ident: e_1_2_9_25_1 doi: 10.1039/C7NR07927C – ident: e_1_2_9_11_1 doi: 10.1007/s11427-019-1570-7 – ident: e_1_2_9_115_1 doi: 10.1002/adma.201305842 – ident: e_1_2_9_125_1 doi: 10.1039/D0MH00105H – ident: e_1_2_9_24_1 doi: 10.1002/anie.201510597 – ident: e_1_2_9_56_1 doi: 10.1016/j.microc.2019.104019 – ident: e_1_2_9_121_1 doi: 10.1021/acs.analchem.0c01028 – ident: e_1_2_9_76_1 doi: 10.1039/C7AY00484B – ident: e_1_2_9_87_1 doi: 10.1021/acsbiomaterials.9b00372 – ident: e_1_2_9_47_1 doi: 10.1002/anie.201905645 – ident: e_1_2_9_39_1 doi: 10.1016/j.apmt.2017.01.006 – ident: e_1_2_9_128_1 doi: 10.1016/j.scib.2017.12.012 – ident: e_1_2_9_152_1 doi: 10.1021/acsami.8b15443 – ident: e_1_2_9_55_1 doi: 10.1016/j.electacta.2017.08.044 – ident: e_1_2_9_52_1 doi: 10.1016/j.talanta.2015.03.055 – ident: e_1_2_9_26_1 doi: 10.1007/s12011-019-01742-2 – ident: e_1_2_9_155_1 doi: 10.1039/D0CC05152G – ident: e_1_2_9_109_1 doi: 10.1007/s00604-019-4041-1 – ident: e_1_2_9_15_1 doi: 10.1360/N032015-00058 – ident: e_1_2_9_45_1 doi: 10.1002/anie.201914768 – ident: e_1_2_9_71_1 doi: 10.1007/s00604-019-4078-1 – ident: e_1_2_9_53_1 doi: 10.1002/chem.201803040 – ident: e_1_2_9_123_1 doi: 10.1186/s11671-019-2896-z – ident: e_1_2_9_19_1 doi: 10.1021/acs.bioconjchem.9b00171 – ident: e_1_2_9_130_1 doi: 10.1002/smll.201905938 – ident: e_1_2_9_2_1 doi: 10.1021/acsami.9b05978 – ident: e_1_2_9_8_1 doi: 10.1021/bi00168a001 – ident: e_1_2_9_94_1 doi: 10.1016/j.snb.2018.02.085 |
SSID | ssj0002511795 |
Score | 2.4146297 |
SecondaryResourceType | review_article |
Snippet | Molybdenum (Mo), as a nontoxic and low‐cost transition metal, has been employed for synthesis of various Mo‐based nanomaterials with unique structures and... Abstract Molybdenum (Mo), as a nontoxic and low‐cost transition metal, has been employed for synthesis of various Mo‐based nanomaterials with unique structures... |
SourceID | doaj crossref wiley |
SourceType | Open Website Enrichment Source Index Database Publisher |
SubjectTerms | biomedical applications catalytic mechanisms molybdenum nanozyme physicochemical properties |
SummonAdditionalLinks | – databaseName: Wiley-Blackwell Open Access Titles dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BbtQwELWgvXBBRS1iKUU-lEsh2qzjJE5vpWLVcqiQYGFv0dixUaRdB222lbYnPqHfyJd0xkm3uweQOGYysiWPx54Zz7xh7DgBZxIZ68jkkERSSogAlIxyAca5WJNNQdkWV9nFRH6eptM-4Ea1MB0-xDrgRpoRzmtScNDt8BE09PvlD3TvKCVIqadsl6prCTtfyC_rGAuZz3lovCIy3BBJoVSf-47_hpsDbN1KAbx_21gNt814jz3vzUR-1sn1BXti_T5bokw56j9vHNd1U3t6JbcVnzezla4op_3P77va44Fzg1QPvrldzW17yr-uPNp5bd1-4CFcs8JR-dxS0W_dzpEKvuJdIT7JjG--ah-wyfjTt_OLqO-aEBl0tUSELowRI-ecVJA7ieadG2llMyTaPK6oU1UGVoLR6PxJWzktU5tqqVWSWbr9X7Id33j7inHkQznmRUxdYWSmQRXWpEIniUlxpNGAvX9YtdL0kOLU2WJWdmDIosQ1Lh_WeMDerbl_dVAaf-H7SAJY8xAAdiA0i59lr0-lMMZkMUBFbrVOJKCTb12a6apQRQpmwE6C-P45E32Qy_v6f5gP2TNBeS0hEvOG7SwX1_YIDZOlfht23z28K9z1 priority: 102 providerName: Wiley-Blackwell |
Title | The age of bioinspired molybdenum‐involved nanozymes: Synthesis, catalytic mechanisms, and biomedical applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2FVIW.20200188 https://doaj.org/article/2ccc60aad0274b34a907ef56bd9895ac |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTsMwDI5gJy4IBIjxM-UAF6CiS9M_boA2DSQQEgy4VUmaSJVYithAGgfEI_CMPAl22sE4ABculepaaWW7sb_EsQnZCoRRAfelp2IReJxz4QmRcC9mQhnjS4wpMNviPOr1-elteDvV6gtzwqrywJXg9plSKvKFyBE_yYALQHPahJHM0yQNhcLZF3zeFJjCORgD59i1XGERmEKQJkmd9Q7P9q9PbgAZYjaRa7jy5Y9c2f7vYarzM90FMl8HiPSw-rBFMqPtEhmBNin8-bQ0VBZlYXF_XOd0UN6NZY7Z7O-vb4WFqeYJqFbY8nk80MMDejm2EOENi-EedQs1YxiVDjQe9y2GA6AKm9PqCD5qi07vZy-Tfrdzddzz6n4JngKQxTwAL4q1jTE8EbHhENiZtkx0BEQd-zn2qIqE5kJJgH1c50byUIeSyySINPr9FdKwpdWrhAIfaDBOfewHwyMpklSrkMkgUCGM1G6S3YnUMlUXE8eeFndZVQaZZSDjbCLjJtn-5L6vimj8wHeECvjkwdLXjgAGkdUGkf1lEE2y49T365vwBsHu2n-8cZ3MMcx0cWszG6QxenjUmxCqjGSLzDJ-0XK2Cdezl84H0pvnzg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwELbK9lAuCFSqLj_FB7iURmQdx3F6A8RqKRQhAS23yHZsFIl1ELsgLSceoc_Ik3TGCQscQOKYyciRPBl7vvH4G0LWE-VMwmMdmUwlEedcRUpJHmVMGedijTEFVlscicEZ_3Wenrd9TvEuTMMPMU24oWeE9RodHBPSW0-soX_2_wK-w5ogKWfIRy5Yhp7J-PE0yYLxcxY6rzABf0SSS9kWv8O7recDvNiWAnv_y2g1bDf9eTLXxol0uzHsAvlg_WcyBqNSWABo7aiu6srjMbkt6bC-nOgSi9of7v9VHlacW5B65eu7ydCOftKTiYdAb1SNftCQr5nAqHRo8dZvNRqCVPmSNjfx0Wj0-bH2Ijnr753uDqK2bUJkAGuxCDCMYT3nHJcqcxziO9fT0goQ2iwusVWVUJYrowH9cVs6zVObaq5lIixu_19Ix9fefiUU9MCQWR5jWxgutJK5NSnTSWJSGKnXJZuPs1aYllMcW1tcFg0bMitgjovHOe6Sjan2VcOl8YreDhpgqoMM2EFQX18UrUMVzBgjYqVKxNU64QpQvnWp0GUu81SZLvkezPfml_ABMe_Se5TXyKfB6e_D4nD_6GCZzDIscglpmRXSGV_f2FWIUsb6W_gT_wO0T-Bh |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA7qgngRRcX1mYNe1GK3TdvUm69lfbAIuipeSpImUnBTcVdhPfkT_I3-Emfauq4HBY-dDglk8vhmMvmGkA1fGOUzVzoqEr7DGBOOEJw5kSeUMa5ETIHZFu2w1WGnt8FtFXDDtzAlP8Qw4IYro9ivcYE_pmb3mzT0-uQG3DtMCeJ8nNSQKA9mdW3_unPXGUZZEEBHRekVL4Qp4cecV9nv8G93tIkf51JB3_8TrhbnTXOGTFdAke6Xlp0lY9rOkT5YlcIOQHNDZZZnFu_JdUq7-cNAppjV_vH2nlnYcl5AaoXNXwdd3dujlwMLSK-X9XZoEbAZQKu0q_HZb9brglTYlJZP8dFqdPRee550msdXhy2nqpvgKHC2PAecGOU1jDGMi8gwAHimIbkOQagjN8VaVaHQTCgJ7h_TqZEs0IFkkvuhxvN_gUzY3OpFQkEPLBnFLtaFYaEUPNYq8KTvqwBaatTJ9teoJaoiFcfaFg9JSYfsJTDGydcY18nmUPuxJNP4Re8ADTDUQQrsQpA_3SfViko8pVToCpGiYy19JsDN1yYIZRrzOBCqTrYK8_3ZE36g07v0H-V1Mnlx1EzOT9pny2TKwySXIiyzQib6T896FVBKX65VU_ETvk_hWQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+age+of+bioinspired+molybdenum%E2%80%90involved+nanozymes%3A+Synthesis%2C+catalytic+mechanisms%2C+and+biomedical+applications&rft.jtitle=View+%28Beijing%2C+China%29&rft.au=Yan+Zu&rft.au=Huiqin+Yao&rft.au=Yifan+Wang&rft.au=Liang+Yan&rft.date=2021-06-01&rft.pub=Wiley&rft.issn=2688-3988&rft.eissn=2688-268X&rft.volume=2&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2FVIW.20200188&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2ccc60aad0274b34a907ef56bd9895ac |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2688-3988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2688-3988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2688-3988&client=summon |