The age of bioinspired molybdenum‐involved nanozymes: Synthesis, catalytic mechanisms, and biomedical applications

Molybdenum (Mo), as a nontoxic and low‐cost transition metal, has been employed for synthesis of various Mo‐based nanomaterials with unique structures and physicochemical features to achieve various properties. Especially, bioinspired Mo‐based nanomaterials show great potential for the construction...

Full description

Saved in:
Bibliographic Details
Published inView (Beijing, China) Vol. 2; no. 3
Main Authors Zu, Yan, Yao, Huiqin, Wang, Yifan, Yan, Liang, Gu, Zhanjun, Chen, Chunying, Gao, Lizeng, Yin, Wenyan
Format Journal Article
LanguageEnglish
Published Wiley 01.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Molybdenum (Mo), as a nontoxic and low‐cost transition metal, has been employed for synthesis of various Mo‐based nanomaterials with unique structures and physicochemical features to achieve various properties. Especially, bioinspired Mo‐based nanomaterials show great potential for the construction of novel nanozyme catalysts due to their variable oxidation states. Overcoming drawbacks of natural enzymes, bioinspired Mo‐based nanozymes not only provide effective catalytic sites or multivalent elements to mimic natural enzymes, but also present multiple functions for interfacing with various biomicroenvironments. Construction of vast Mo‐based nanozymes has attracted enormous interest in biomedicine. Exogenous/endogenous stimuli enable the user to tailor the catalytic activities of Mo‐based nanozymes. Additionally, tunable physicochemical properties also have a significant influence on their enzyme‐like activity. In this review, we comprehensively summarize typical synthesis strategies, catalytic mechanism, and types of enzyme‐like activity of the bioinspired Mo‐based nanozymes. We mainly highlight desired merits of bioinspired Mo‐based nanozymes related to tunable enzyme‐like activity, stability, and multifunctionality through regulating their physicochemical properties. Furthermore, we intend to discuss their biomedical applications in biosensing and detection, oncotherapy, and combating bacteria. Finally, current challenges and future perspectives of the Mo‐based nanozymes are also proposed. Mo‐based nanomaterials have shown great potential for the construction of novel nanozyme catalysts due to their variable oxidation states. Overcoming drawbacks of natural enzymes, Mo‐based nanozymes not only provide effective catalytic sites or multivalent elements to mimic natural enzymes, but also present multiple functions for interfacing with various biomicroenvironments. In this review, we summarize recent advances in synthesis, catalytic mechanisms, and biomedical applications of Mo‐based nanozymes and discuss the challenges and future prospects in this booming field.
AbstractList Molybdenum (Mo), as a nontoxic and low‐cost transition metal, has been employed for synthesis of various Mo‐based nanomaterials with unique structures and physicochemical features to achieve various properties. Especially, bioinspired Mo‐based nanomaterials show great potential for the construction of novel nanozyme catalysts due to their variable oxidation states. Overcoming drawbacks of natural enzymes, bioinspired Mo‐based nanozymes not only provide effective catalytic sites or multivalent elements to mimic natural enzymes, but also present multiple functions for interfacing with various biomicroenvironments. Construction of vast Mo‐based nanozymes has attracted enormous interest in biomedicine. Exogenous/endogenous stimuli enable the user to tailor the catalytic activities of Mo‐based nanozymes. Additionally, tunable physicochemical properties also have a significant influence on their enzyme‐like activity. In this review, we comprehensively summarize typical synthesis strategies, catalytic mechanism, and types of enzyme‐like activity of the bioinspired Mo‐based nanozymes. We mainly highlight desired merits of bioinspired Mo‐based nanozymes related to tunable enzyme‐like activity, stability, and multifunctionality through regulating their physicochemical properties. Furthermore, we intend to discuss their biomedical applications in biosensing and detection, oncotherapy, and combating bacteria. Finally, current challenges and future perspectives of the Mo‐based nanozymes are also proposed.
Abstract Molybdenum (Mo), as a nontoxic and low‐cost transition metal, has been employed for synthesis of various Mo‐based nanomaterials with unique structures and physicochemical features to achieve various properties. Especially, bioinspired Mo‐based nanomaterials show great potential for the construction of novel nanozyme catalysts due to their variable oxidation states. Overcoming drawbacks of natural enzymes, bioinspired Mo‐based nanozymes not only provide effective catalytic sites or multivalent elements to mimic natural enzymes, but also present multiple functions for interfacing with various biomicroenvironments. Construction of vast Mo‐based nanozymes has attracted enormous interest in biomedicine. Exogenous/endogenous stimuli enable the user to tailor the catalytic activities of Mo‐based nanozymes. Additionally, tunable physicochemical properties also have a significant influence on their enzyme‐like activity. In this review, we comprehensively summarize typical synthesis strategies, catalytic mechanism, and types of enzyme‐like activity of the bioinspired Mo‐based nanozymes. We mainly highlight desired merits of bioinspired Mo‐based nanozymes related to tunable enzyme‐like activity, stability, and multifunctionality through regulating their physicochemical properties. Furthermore, we intend to discuss their biomedical applications in biosensing and detection, oncotherapy, and combating bacteria. Finally, current challenges and future perspectives of the Mo‐based nanozymes are also proposed.
Molybdenum (Mo), as a nontoxic and low‐cost transition metal, has been employed for synthesis of various Mo‐based nanomaterials with unique structures and physicochemical features to achieve various properties. Especially, bioinspired Mo‐based nanomaterials show great potential for the construction of novel nanozyme catalysts due to their variable oxidation states. Overcoming drawbacks of natural enzymes, bioinspired Mo‐based nanozymes not only provide effective catalytic sites or multivalent elements to mimic natural enzymes, but also present multiple functions for interfacing with various biomicroenvironments. Construction of vast Mo‐based nanozymes has attracted enormous interest in biomedicine. Exogenous/endogenous stimuli enable the user to tailor the catalytic activities of Mo‐based nanozymes. Additionally, tunable physicochemical properties also have a significant influence on their enzyme‐like activity. In this review, we comprehensively summarize typical synthesis strategies, catalytic mechanism, and types of enzyme‐like activity of the bioinspired Mo‐based nanozymes. We mainly highlight desired merits of bioinspired Mo‐based nanozymes related to tunable enzyme‐like activity, stability, and multifunctionality through regulating their physicochemical properties. Furthermore, we intend to discuss their biomedical applications in biosensing and detection, oncotherapy, and combating bacteria. Finally, current challenges and future perspectives of the Mo‐based nanozymes are also proposed. Mo‐based nanomaterials have shown great potential for the construction of novel nanozyme catalysts due to their variable oxidation states. Overcoming drawbacks of natural enzymes, Mo‐based nanozymes not only provide effective catalytic sites or multivalent elements to mimic natural enzymes, but also present multiple functions for interfacing with various biomicroenvironments. In this review, we summarize recent advances in synthesis, catalytic mechanisms, and biomedical applications of Mo‐based nanozymes and discuss the challenges and future prospects in this booming field.
Author Gao, Lizeng
Zu, Yan
Yin, Wenyan
Yan, Liang
Yao, Huiqin
Chen, Chunying
Gu, Zhanjun
Wang, Yifan
Author_xml – sequence: 1
  givenname: Yan
  surname: Zu
  fullname: Zu, Yan
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Huiqin
  surname: Yao
  fullname: Yao, Huiqin
  organization: Ningxia Medical University
– sequence: 3
  givenname: Yifan
  surname: Wang
  fullname: Wang, Yifan
  organization: Ningxia Medical University
– sequence: 4
  givenname: Liang
  surname: Yan
  fullname: Yan, Liang
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Zhanjun
  surname: Gu
  fullname: Gu, Zhanjun
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Chunying
  surname: Chen
  fullname: Chen, Chunying
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Lizeng
  surname: Gao
  fullname: Gao, Lizeng
  organization: Chinese Academy of Sciences
– sequence: 8
  givenname: Wenyan
  orcidid: 0000-0001-6726-3938
  surname: Yin
  fullname: Yin, Wenyan
  email: yinwy@ihep.ac.cn
  organization: Chinese Academy of Sciences
BookMark eNp9kcFO3DAQhi1EpVLKrQ-QB2Cp7Tix01uFKKyExAFauEVje8waOfYqTkHhxCP0Gfsk9bLQA1J7sce__vk8o_8D2Y0pIiGfGD1ilPLPP5bXR5xySplSO2SPt0otynGz-1LXnVLvyUHOd7TYG8Zk1-yR6WqFFdxilVylffIxr_2IthpSmLXF-HP4_fTLx_sU7osaIabHecD8pbqc47TC7PNhZWCCME_eVAOaFUSfh6JCtBvigNYbCBWs16EUk08xfyTvHISMBy_3Pvn-7eTq-GxxfnG6PP56vjBCKL4QXWc4c84JBdIJKYVjWmFbRJTUypq1LaAAoyVnAq3TosFGC63qFhnv6n2y3HJtgrt-PfoBxrlP4PtnIY23PYxl7oA9N8a0FMBSLoWuBXRUomtabTvVNWAK63DLMmPKeUT3l8dovwmgLwH0rwEUO39jN3563n4awYd_NbFt04MPOP_3g82DM8rrP_hGnQM
CitedBy_id crossref_primary_10_1021_acsanm_4c01363
crossref_primary_10_1016_j_cclet_2021_12_057
crossref_primary_10_1021_acsabm_3c00341
crossref_primary_10_1016_j_jtemb_2023_127368
crossref_primary_10_1039_D2RA00963C
crossref_primary_10_1039_D2TB02751H
crossref_primary_10_3390_met12071065
crossref_primary_10_1002_smll_202302640
crossref_primary_10_3390_catal12050505
crossref_primary_10_1007_s12274_022_4666_y
crossref_primary_10_1016_j_talanta_2021_123003
crossref_primary_10_1016_j_cclet_2023_108793
crossref_primary_10_1002_adma_202203236
crossref_primary_10_1021_acs_inorgchem_3c02023
crossref_primary_10_1002_adsr_202200052
crossref_primary_10_1016_j_apmt_2021_101029
crossref_primary_10_1016_j_nantod_2023_101875
crossref_primary_10_1039_D1DT02757C
crossref_primary_10_1016_j_cej_2024_153884
crossref_primary_10_1002_ange_202413661
crossref_primary_10_1002_advs_202308677
crossref_primary_10_1002_adfm_202206670
crossref_primary_10_1002_INMD_20230020
crossref_primary_10_1039_D3BM01766D
crossref_primary_10_1002_smll_202207544
crossref_primary_10_1186_s12951_023_02246_x
crossref_primary_10_1002_tcr_202300034
crossref_primary_10_1021_acs_inorgchem_3c04332
crossref_primary_10_1002_anie_202115939
crossref_primary_10_1002_smtd_202301121
crossref_primary_10_1021_acsnano_3c08147
crossref_primary_10_1021_acs_inorgchem_1c03228
crossref_primary_10_1016_j_biomaterials_2024_122909
crossref_primary_10_1039_D4TB02062F
crossref_primary_10_1002_adhm_202202911
crossref_primary_10_1002_smtd_202301049
crossref_primary_10_1021_acs_inorgchem_2c01091
crossref_primary_10_1007_s12274_024_6601_x
crossref_primary_10_1039_D1EN00714A
crossref_primary_10_1007_s12274_023_6283_9
crossref_primary_10_1016_j_ccr_2024_215755
crossref_primary_10_3390_ma15010337
crossref_primary_10_1002_anie_202413661
crossref_primary_10_1021_acsomega_3c09987
crossref_primary_10_1126_sciadv_abp9882
crossref_primary_10_1016_j_cej_2023_143774
crossref_primary_10_1021_acsanm_3c01642
crossref_primary_10_1016_j_procbio_2023_06_014
crossref_primary_10_1002_adfm_202306392
crossref_primary_10_1002_adfm_202309338
crossref_primary_10_1002_ange_202115939
crossref_primary_10_1038_s41467_024_53047_1
crossref_primary_10_1039_D2NR01597H
crossref_primary_10_1002_adfm_202314686
crossref_primary_10_3390_chemosensors11060349
Cites_doi 10.1016/j.ccr.2019.213092
10.1002/adma.200903783
10.1016/j.snb.2019.04.148
10.1021/acs.inorgchem.8b03193
10.1021/acs.bioconjchem.7b00673
10.1039/C7TB02676E
10.1016/j.snb.2018.08.051
10.1002/adfm.201900518
10.1039/C9AY01493D
10.1016/j.jcis.2018.05.068
10.1021/jacs.8b08994
10.1002/adma.201805368
10.1039/C7RA12584D
10.1088/1361-6463/ab03b3
10.7150/thno.39701
10.1021/cr400443z
10.1021/acssuschemeng.9b04462
10.1016/j.aca.2018.06.028
10.7150/thno.11802
10.1021/acs.est.7b01466
10.1039/C5NR02694F
10.1007/s00604-017-2562-z
10.1021/acsami.0c01789
10.1007/s00604-016-1886-4
10.2174/1874842202007010001
10.1016/j.bios.2016.01.037
10.1039/c4tb00541d
10.1039/C5AN02457A
10.1016/j.saa.2019.117412
10.1016/j.scib.2018.02.014
10.1007/s00604-018-2792-8
10.1021/nn501235j
10.1002/chem.201902828
10.1039/C6NR00860G
10.1016/j.ica.2018.09.045
10.1016/j.bios.2015.06.043
10.1021/acs.analchem.5b03484
10.1007/s00604-019-3660-x
10.1016/j.biomaterials.2015.10.048
10.1007/978-981-15-1490-6_10
10.1039/C9CC03763B
10.1021/acsnano.7b01536
10.1039/C5NR08038J
10.1002/cssc.201902706
10.1016/j.talanta.2017.08.107
10.1038/nnano.2007.260
10.1016/j.jcis.2018.12.093
10.1002/asia.201300174
10.1021/pr700818f
10.1021/ar400250z
10.1021/ac402114c
10.1039/C4RA13575J
10.1016/j.mcat.2019.110492
10.1039/C4AN01950D
10.3390/nano8120976
10.1016/j.cej.2020.127240
10.1039/C8CY00603B
10.1021/acsnano.0c03094
10.1039/D0NR00192A
10.1021/acschembio.7b00437
10.1002/smll.202001099
10.1016/j.snb.2019.127512
10.3389/fbioe.2020.00013
10.1021/acsami.8b01245
10.1002/chem.201402680
10.1039/C9NR05054J
10.1039/C7TB02434G
10.1002/anie.200800023
10.1039/C7NR01460K
10.1021/jacs.5b11411
10.1016/j.snb.2018.01.092
10.1021/ac702203f
10.1039/C6RA03507H
10.1002/cbic.201800471
10.1021/acs.accounts.9b00140
10.3390/catal9121057
10.1039/C7NR06807G
10.1039/C9NR06596B
10.1002/elan.202000008
10.1016/j.snb.2019.127530
10.1039/C4CS00350K
10.1021/jacs.7b00601
10.1002/cjoc.201600694
10.1021/ja104924b
10.1016/j.saa.2017.05.071
10.3390/pharmaceutics12070665
10.1002/anie.201908289
10.1016/j.bios.2020.112201
10.1016/j.aca.2020.01.035
10.1039/c3cs35486e
10.1021/acssuschemeng.8b03823
10.1007/s11427-019-9518-0
10.1021/acsnano.9b05075
10.1039/c4ra01746c
10.1039/C8NJ03996H
10.1021/acsami.9b03004
10.1039/C3CS60249D
10.1007/s00604-020-04376-7
10.1021/nn501647j
10.7150/thno.19738
10.1021/acs.jpcc.6b08343
10.1016/j.apsusc.2019.06.163
10.1039/C4NR03393K
10.1002/asia.201901753
10.1039/C7NJ00899F
10.1016/j.msec.2019.02.086
10.1007/s40820-019-0324-7
10.1002/adma.202005423
10.1002/cbic.202000195
10.1007/s13204-020-01389-9
10.1021/jacs.9b13586
10.1002/smll.201802290
10.1039/C7CP00644F
10.1021/acs.chemrev.8b00672
10.1002/smll.202005739
10.1016/j.bios.2015.12.034
10.1016/j.bios.2017.09.048
10.1021/acsnano.6b05810
10.1021/acsami.9b10373
10.1039/C8CS00457A
10.1007/s12161-020-01806-3
10.1039/C6RA18050G
10.1021/acsami.8b10560
10.1007/s10853-020-04507-8
10.1002/anie.201712469
10.1016/j.biomaterials.2019.119752
10.1039/C7NR07927C
10.1007/s11427-019-1570-7
10.1002/adma.201305842
10.1039/D0MH00105H
10.1002/anie.201510597
10.1016/j.microc.2019.104019
10.1021/acs.analchem.0c01028
10.1039/C7AY00484B
10.1021/acsbiomaterials.9b00372
10.1002/anie.201905645
10.1016/j.apmt.2017.01.006
10.1016/j.scib.2017.12.012
10.1021/acsami.8b15443
10.1016/j.electacta.2017.08.044
10.1016/j.talanta.2015.03.055
10.1007/s12011-019-01742-2
10.1039/D0CC05152G
10.1007/s00604-019-4041-1
10.1360/N032015-00058
10.1002/anie.201914768
10.1007/s00604-019-4078-1
10.1002/chem.201803040
10.1186/s11671-019-2896-z
10.1021/acs.bioconjchem.9b00171
10.1002/smll.201905938
10.1021/acsami.9b05978
10.1021/bi00168a001
10.1016/j.snb.2018.02.085
ContentType Journal Article
Copyright 2021 The Authors. published by Shanghai Fuji Technology Consulting Co., Ltd, authorized by Professional Community of Experimental Medicine, National Association of Health Industry and Enterprise Management (PCEM) and John Wiley & Sons Australia, Ltd.
Copyright_xml – notice: 2021 The Authors. published by Shanghai Fuji Technology Consulting Co., Ltd, authorized by Professional Community of Experimental Medicine, National Association of Health Industry and Enterprise Management (PCEM) and John Wiley & Sons Australia, Ltd.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1002/VIW.20200188
DatabaseName Wiley-Blackwell Open Access Titles
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2688-268X
EndPage n/a
ExternalDocumentID oai_doaj_org_article_2ccc60aad0274b34a907ef56bd9895ac
10_1002_VIW_20200188
VIW2102
Genre reviewArticle
GrantInformation_xml – fundername: Scientific Research Project of the Ningxia Higher Education Institutions of China
– fundername: Natural Science Foundation of Ningxia Province
  funderid: 2020AAC03115
– fundername: National Basic Research Programs of China
– fundername: National Natural Science Foundation of China
  funderid: 51772293; U1932112
– fundername: Natural Science Foundation of Beijing Municipality
  funderid: 2202064
– fundername: CAS Key Laboratory of Nano‐BioInterface
  funderid: 20NBI01
GroupedDBID 0R~
1OC
24P
7X7
8FI
8FJ
AAHHS
ABUWG
ACCFJ
ACCMX
ACXQS
ADKYN
ADPDF
ADZMN
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
BENPR
CCPQU
EBS
FYUFA
GROUPED_DOAJ
HMCUK
IAO
IHR
INH
ITC
M~E
OVD
PIMPY
TEORI
UKHRP
WIN
AAYXX
CITATION
IGS
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
PUEGO
ID FETCH-LOGICAL-c4482-499c21fff48a7f4774f1b8e6c21e70d73166ae4acb7214edfb45e5b4b836e1293
IEDL.DBID DOA
ISSN 2688-3988
2688-268X
IngestDate Wed Aug 27 01:23:31 EDT 2025
Tue Jul 01 02:42:39 EDT 2025
Thu Apr 24 23:09:05 EDT 2025
Wed Jan 22 16:29:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4482-499c21fff48a7f4774f1b8e6c21e70d73166ae4acb7214edfb45e5b4b836e1293
ORCID 0000-0001-6726-3938
OpenAccessLink https://doaj.org/article/2ccc60aad0274b34a907ef56bd9895ac
PageCount 27
ParticipantIDs doaj_primary_oai_doaj_org_article_2ccc60aad0274b34a907ef56bd9895ac
crossref_primary_10_1002_VIW_20200188
crossref_citationtrail_10_1002_VIW_20200188
wiley_primary_10_1002_VIW_20200188_VIW2102
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2021
2021-06-00
2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationTitle View (Beijing, China)
PublicationYear 2021
Publisher Wiley
Publisher_xml – name: Wiley
References 2015; 140
2015; 141
2019; 11
2019; 99
2019; 13
2015; 74
2019; 15
2017; 89
2019; 14
2020; 17
2014; 26
2020; 16
2020; 15
2020; 14
2020; 13
2020; 12
2020; 10
2013; 8
2018; 42
2016; 141
2014; 20
2018; 6
2010; 22
2018; 8
2019; 20
2018; 178
2020; 92
2015; 87
2019; 25
2019; 29
2007; 2
2020; 1105
2019; 7
2018; 185
2018; 100
2019; 9
2019; 5
2019; 31
2019; 30
2020; 142
2013; 85
2016; 10
2014; 47
2020; 305
2017; 250
2020; 32
2014; 43
2017; 139
2019; 186
2018; 24
2019; 187
2017; 51
2016; 6
2019; 48
2008; 47
2020; 159
2020; 21
2018; 10
2016; 8
2019; 296
2018; 14
2018; 13
2018; 1035
2017; 7
2017; 8
2017; 41
2020; 63
2019; 52
2019; 55
2019; 58
2016; 76
2020; 59
2008; 7
2020; 403
2018; 528
2020; 56
2020; 55
2017; 9
2020; 408
2019; 484
2016; 183
2020; 8
2015; 45
2020; 7
2014; 4
2019; 62
2014; 2
2015; 44
2017; 35
1994; 33
2019; 119
2016; 80
2017; 121
2014; 8
2014; 6
2019; 232
2019; 475
2018; 263
2015; 5
2018; 140
2018; 260
2017; 28
2020; 187
2013; 42
2019; 149
2018; 63
2020; 224
2020; 862
2015; 7
2014; 114
2016; 55
2018; 275
2019; 539
2020
2017; 11
2020; 194
2010; 132
2017; 19
2017; 185
2016; 138
2019; 491
2008; 80
2018; 57
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
Zhu X. Y. (e_1_2_9_119_1) 2020; 862
e_1_2_9_6_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_138_1
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_115_1
e_1_2_9_157_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_130_1
e_1_2_9_153_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_129_1
e_1_2_9_144_1
e_1_2_9_106_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_5_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_156_1
e_1_2_9_9_1
e_1_2_9_152_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_128_1
e_1_2_9_105_1
e_1_2_9_124_1
e_1_2_9_147_1
e_1_2_9_39_1
Wang Y. (e_1_2_9_59_1) 2014; 6
e_1_2_9_120_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_143_1
Chen Y. (e_1_2_9_80_1) 2019; 15
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_113_1
e_1_2_9_117_1
e_1_2_9_155_1
e_1_2_9_136_1
e_1_2_9_151_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_127_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_104_1
e_1_2_9_146_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_142_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_112_1
e_1_2_9_139_1
e_1_2_9_116_1
e_1_2_9_135_1
e_1_2_9_158_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_154_1
e_1_2_9_48_1
e_1_2_9_29_1
e_1_2_9_150_1
References_xml – volume: 59
  start-page: 2565
  year: 2020
  publication-title: Angew. Chem. Int. Edit.
– volume: 140
  start-page: 1119
  year: 2015
  publication-title: Analyst
– volume: 8
  start-page: 1
  year: 2017
  publication-title: Appl. Mater. Today
– volume: 11
  start-page: 102
  year: 2019
  publication-title: Nano‐Micro Lett
– volume: 159
  year: 2020
  publication-title: Biosens. Bioelectron.
– volume: 7
  start-page: 1834
  year: 2020
  publication-title: Mater. Horiz.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 141
  start-page: 47
  year: 2015
  publication-title: Talanta
– start-page: 331
  year: 2020
  end-page: 365
– volume: 13
  start-page: 215
  year: 2018
  publication-title: ACS. Chem. Biol.
– volume: 13
  start-page: 2028
  year: 2020
  publication-title: Food Anal. Method
– volume: 114
  start-page: 3963
  year: 2014
  publication-title: Chem. Rev.
– volume: 33
  start-page: 389
  year: 1994
  publication-title: Biochemistry
– volume: 45
  start-page: 1026
  year: 2015
  publication-title: Sci. Sin. Chim.
– volume: 5
  start-page: 931
  year: 2015
  publication-title: Theranostics
– volume: 6
  year: 2014
  publication-title: Nanoscale
– volume: 20
  start-page: 9627
  year: 2014
  publication-title: Chem. Eur. J.
– volume: 183
  start-page: 2481
  year: 2016
  publication-title: Microchim. Acta
– volume: 250
  start-page: 152
  year: 2017
  publication-title: Electrochim. Acta
– volume: 52
  start-page: 2190
  year: 2019
  publication-title: Accounts Chem. Res.
– volume: 14
  year: 2020
  publication-title: ACS Nano
– volume: 51
  start-page: 8229
  year: 2017
  publication-title: Environ. Sci. Technol.
– volume: 22
  start-page: 2206
  year: 2010
  publication-title: Adv. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 89
  start-page: 652
  year: 2017
  publication-title: Biosens. Bioelectron.
– volume: 119
  start-page: 4357
  year: 2019
  publication-title: Chem. Rev.
– volume: 30
  start-page: 1273
  year: 2019
  publication-title: Bioconjugate Chem
– volume: 26
  start-page: 3662
  year: 2014
  publication-title: Adv. Mater.
– volume: 185
  start-page: 287
  year: 2018
  publication-title: Microchim. Acta
– volume: 80
  start-page: 2250
  year: 2008
  publication-title: Anal. Chem.
– volume: 178
  start-page: 992
  year: 2018
  publication-title: Talanta
– volume: 2
  start-page: 4442
  year: 2014
  publication-title: J. Mater. Chem. B
– volume: 862
  start-page: 11
  year: 2020
  publication-title: J. Electroanal. Chem.
– volume: 149
  year: 2019
  publication-title: Microchem. J.
– volume: 11
  year: 2019
  publication-title: Nanoscale
– volume: 8
  start-page: 976
  year: 2018
  publication-title: Nanomaterials
– volume: 8
  start-page: 5938
  year: 2016
  publication-title: Nanoscale
– volume: 15
  start-page: 11
  year: 2019
  publication-title: Small
– volume: 7
  start-page: 1388
  year: 2008
  publication-title: J. Proteome Res.
– volume: 21
  start-page: 2373
  year: 2020
  publication-title: ChemBioChem
– volume: 99
  start-page: 1424
  year: 2019
  publication-title: Mat. Sci. Eng. C‐Mater.
– volume: 13
  start-page: 1379
  year: 2020
  publication-title: ChemSusChem
– volume: 42
  year: 2018
  publication-title: New J. Chem.
– volume: 43
  start-page: 676
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 305
  year: 2020
  publication-title: Sensor. Actuat. B‐Chem.
– volume: 63
  start-page: 433
  year: 2018
  publication-title: Sci. Bull.
– volume: 8
  start-page: 3685
  year: 2016
  publication-title: Nanoscale
– volume: 59
  start-page: 2
  year: 2020
  publication-title: Angew. Chem. Int. Edit.
– volume: 63
  start-page: 1183
  year: 2020
  publication-title: Sci. China Life Sci.
– volume: 260
  start-page: 676
  year: 2018
  publication-title: Sensor. Actuat. B‐Chem.
– volume: 7
  start-page: 3207
  year: 2017
  publication-title: Theranostics
– volume: 11
  start-page: 4926
  year: 2017
  publication-title: ACS Nano
– volume: 1105
  start-page: 162
  year: 2020
  publication-title: Anal. Chim. Acta
– volume: 12
  start-page: 665
  year: 2020
  publication-title: Pharmaceutics
– volume: 20
  start-page: 1861
  year: 2019
  publication-title: Chembiochem
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 6
  year: 2016
  publication-title: RSC Adv.
– volume: 187
  start-page: 424
  year: 2020
  publication-title: Microchim. Acta
– volume: 62
  start-page: 710
  year: 2019
  publication-title: Sci. China Life Sci.
– volume: 539
  start-page: 575
  year: 2019
  publication-title: J. Colloid Interf. Sci.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 87
  year: 2015
  publication-title: Anal. Chem.
– volume: 48
  start-page: 1004
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 35
  start-page: 605
  year: 2017
  publication-title: Chinese J.Chem.
– volume: 224
  year: 2020
  publication-title: Spectrochim. Acta A
– volume: 55
  start-page: 2122
  year: 2016
  publication-title: Angew. Chem. Int. Edit.
– volume: 5
  start-page: 3079
  year: 2019
  publication-title: ACS Biomater. Sci. Eng.
– volume: 58
  start-page: 1638
  year: 2019
  publication-title: Inorg. Chem.
– volume: 491
  start-page: 138
  year: 2019
  publication-title: Appl. Surf. Sci.
– volume: 8
  start-page: 13
  year: 2020
  publication-title: Front. Bioeng. Biotechnol.
– volume: 14
  start-page: 67
  year: 2019
  publication-title: Nanoscale Res. Lett.
– volume: 57
  start-page: 9224
  year: 2018
  publication-title: Angew. Chem. Int. Edit.
– volume: 8
  start-page: 7252
  year: 2018
  publication-title: RSC Adv
– volume: 185
  start-page: 271
  year: 2017
  publication-title: Spectrochim. Acta A
– volume: 263
  start-page: 109
  year: 2018
  publication-title: Sensor. Actuat. B‐Chem.
– volume: 55
  start-page: 7226
  year: 2020
  publication-title: J. Mater. Sci.
– volume: 56
  year: 2020
  publication-title: Chem. Commun.
– volume: 6
  start-page: 487
  year: 2018
  publication-title: J. Mater. Chem. B
– volume: 42
  start-page: 6060
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 194
  start-page: 121
  year: 2020
  publication-title: Biol. Trace Elem. Res.
– volume: 6
  year: 2018
  publication-title: ACS Sustain. Chem. Eng.
– volume: 186
  start-page: 572
  year: 2019
  publication-title: Microchim. Acta
– volume: 63
  start-page: 133
  year: 2018
  publication-title: Sci. Bull.
– volume: 141
  start-page: 1822
  year: 2016
  publication-title: Analyst
– volume: 132
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 296
  year: 2019
  publication-title: Sensor. Actuat. B‐Chem.
– volume: 2
  start-page: 577
  year: 2007
  publication-title: Nat. Nanotechnol.
– volume: 275
  start-page: 155
  year: 2018
  publication-title: Sensor. Actuat. B‐Chem.
– volume: 19
  start-page: 9232
  year: 2017
  publication-title: Phys. Chem. Chem. Phys.
– volume: 8
  start-page: 6922
  year: 2014
  publication-title: ACS Nano
– volume: 9
  start-page: 5927
  year: 2017
  publication-title: Nanoscale
– volume: 9
  start-page: 2939
  year: 2017
  publication-title: Anal. Methods
– volume: 15
  start-page: 1315
  year: 2020
  publication-title: Chem. Asian J.
– volume: 121
  start-page: 2154
  year: 2017
  publication-title: J. Phys. Chem. C
– volume: 16
  year: 2020
  publication-title: Small
– volume: 24
  year: 2018
  publication-title: Chem. Eur. J.
– volume: 10
  start-page: 1517
  year: 2018
  publication-title: Nanoscale
– volume: 10
  year: 2016
  publication-title: ACS Nano
– volume: 528
  start-page: 410
  year: 2018
  publication-title: J. Colloid Interf. Sci.
– volume: 187
  start-page: 111
  year: 2020
  publication-title: Microchim. Acta
– volume: 7
  year: 2019
  publication-title: ACS Sustain. Chem. Eng.
– volume: 10
  start-page: 757
  year: 2020
  publication-title: Theranostics
– volume: 232
  year: 2019
  publication-title: Biomaterials
– volume: 74
  start-page: 207
  year: 2015
  publication-title: Biosens. Bioelectron.
– volume: 100
  start-page: 512
  year: 2018
  publication-title: Biosens. Bioelectron.
– volume: 6
  start-page: 105
  year: 2018
  publication-title: J. Mater. Chem. B
– volume: 8
  start-page: 5182
  year: 2014
  publication-title: ACS Nano
– volume: 187
  start-page: 74
  year: 2019
  publication-title: Microchim. Acta
– volume: 403
  year: 2020
  publication-title: Coordin. Chem. Rev.
– volume: 76
  start-page: 11
  year: 2016
  publication-title: Biomaterials
– volume: 9
  year: 2017
  publication-title: Nanoscale
– volume: 138
  start-page: 2064
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 5081
  year: 2019
  publication-title: Anal. Methods
– volume: 408
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 32
  start-page: 1243
  year: 2020
  publication-title: Electroanalysis
– volume: 5
  year: 2015
  publication-title: RSC Adv.
– volume: 47
  start-page: 5335
  year: 2008
  publication-title: Angew. Chem. Int. Edit.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Inter.
– volume: 10
  start-page: 2069
  year: 2020
  publication-title: Appl. Nanosci.
– volume: 52
  year: 2019
  publication-title: J. Phys. D: Appl. Phys.
– volume: 475
  year: 2019
  publication-title: Mol. Catal.
– volume: 7
  start-page: 1
  year: 2020
  publication-title: Chem
– volume: 80
  start-page: 111
  year: 2016
  publication-title: Biosens. Bioelectron.
– volume: 92
  start-page: 7822
  year: 2020
  publication-title: Anal. Chem.
– volume: 185
  start-page: 1
  year: 2017
  publication-title: Microchim. Acta
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Inter.
– volume: 55
  start-page: 8017
  year: 2019
  publication-title: Chem. Commun.
– volume: 9
  start-page: 1057
  year: 2019
  publication-title: Catalysts
– volume: 139
  start-page: 5412
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 13
  year: 2019
  publication-title: ACS Nano
– volume: 41
  start-page: 6700
  year: 2017
  publication-title: New J. Chem.
– volume: 484
  start-page: 283
  year: 2019
  publication-title: Inorg. Chim. Acta
– volume: 8
  start-page: 1780
  year: 2013
  publication-title: Chem. Asian J.
– volume: 4
  year: 2014
  publication-title: RSC Adv.
– volume: 58
  year: 2019
  publication-title: Angew. Chem. Int. Edit.
– volume: 44
  start-page: 2376
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 85
  year: 2013
  publication-title: Anal. Chem.
– volume: 25
  year: 2019
  publication-title: Chem. Eur. J.
– volume: 17
  year: 2020
  publication-title: Small
– volume: 140
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Inter.
– volume: 1035
  start-page: 146
  year: 2018
  publication-title: Anal. Chim. Acta
– volume: 47
  start-page: 1097
  year: 2014
  publication-title: Accounts Chem. Res.
– volume: 142
  start-page: 1636
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 7
  year: 2015
  publication-title: Nanoscale
– volume: 8
  start-page: 4645
  year: 2018
  publication-title: Catal. Sci. Technol.
– volume: 28
  start-page: 2903
  year: 2017
  publication-title: BioconjugateChem.
– volume: 12
  start-page: 8415
  year: 2020
  publication-title: Nanoscale
– ident: e_1_2_9_99_1
  doi: 10.1016/j.ccr.2019.213092
– ident: e_1_2_9_79_1
  doi: 10.1002/adma.200903783
– ident: e_1_2_9_82_1
  doi: 10.1016/j.snb.2019.04.148
– ident: e_1_2_9_117_1
  doi: 10.1021/acs.inorgchem.8b03193
– ident: e_1_2_9_46_1
  doi: 10.1021/acs.bioconjchem.7b00673
– ident: e_1_2_9_51_1
  doi: 10.1039/C7TB02676E
– ident: e_1_2_9_60_1
  doi: 10.1016/j.snb.2018.08.051
– ident: e_1_2_9_136_1
  doi: 10.1002/adfm.201900518
– ident: e_1_2_9_63_1
  doi: 10.1039/C9AY01493D
– ident: e_1_2_9_95_1
  doi: 10.1016/j.jcis.2018.05.068
– ident: e_1_2_9_129_1
  doi: 10.1021/jacs.8b08994
– ident: e_1_2_9_13_1
  doi: 10.1002/adma.201805368
– ident: e_1_2_9_148_1
  doi: 10.1039/C7RA12584D
– ident: e_1_2_9_20_1
  doi: 10.1088/1361-6463/ab03b3
– ident: e_1_2_9_133_1
  doi: 10.7150/thno.39701
– ident: e_1_2_9_7_1
  doi: 10.1021/cr400443z
– ident: e_1_2_9_70_1
  doi: 10.1021/acssuschemeng.9b04462
– ident: e_1_2_9_93_1
  doi: 10.1016/j.aca.2018.06.028
– ident: e_1_2_9_23_1
  doi: 10.7150/thno.11802
– ident: e_1_2_9_6_1
  doi: 10.1021/acs.est.7b01466
– ident: e_1_2_9_108_1
  doi: 10.1039/C5NR02694F
– volume: 15
  start-page: 11
  year: 2019
  ident: e_1_2_9_80_1
  publication-title: Small
– ident: e_1_2_9_107_1
  doi: 10.1007/s00604-017-2562-z
– ident: e_1_2_9_92_1
  doi: 10.1021/acsami.0c01789
– ident: e_1_2_9_153_1
  doi: 10.1007/s00604-016-1886-4
– ident: e_1_2_9_84_1
  doi: 10.2174/1874842202007010001
– ident: e_1_2_9_69_1
  doi: 10.1016/j.bios.2016.01.037
– ident: e_1_2_9_64_1
  doi: 10.1039/c4tb00541d
– ident: e_1_2_9_120_1
  doi: 10.1039/C5AN02457A
– ident: e_1_2_9_32_1
  doi: 10.1016/j.saa.2019.117412
– ident: e_1_2_9_34_1
  doi: 10.1016/j.scib.2018.02.014
– ident: e_1_2_9_149_1
  doi: 10.1007/s00604-018-2792-8
– ident: e_1_2_9_43_1
  doi: 10.1021/nn501235j
– ident: e_1_2_9_141_1
  doi: 10.1002/chem.201902828
– ident: e_1_2_9_78_1
  doi: 10.1039/C6NR00860G
– volume: 862
  start-page: 11
  year: 2020
  ident: e_1_2_9_119_1
  publication-title: J. Electroanal. Chem.
– ident: e_1_2_9_81_1
  doi: 10.1016/j.ica.2018.09.045
– ident: e_1_2_9_73_1
  doi: 10.1016/j.bios.2015.06.043
– ident: e_1_2_9_114_1
  doi: 10.1021/acs.analchem.5b03484
– ident: e_1_2_9_151_1
  doi: 10.1007/s00604-019-3660-x
– ident: e_1_2_9_101_1
  doi: 10.1016/j.biomaterials.2015.10.048
– ident: e_1_2_9_17_1
  doi: 10.1007/978-981-15-1490-6_10
– ident: e_1_2_9_37_1
  doi: 10.1039/C9CC03763B
– ident: e_1_2_9_111_1
  doi: 10.1021/acsnano.7b01536
– ident: e_1_2_9_100_1
  doi: 10.1039/C5NR08038J
– ident: e_1_2_9_4_1
  doi: 10.1002/cssc.201902706
– ident: e_1_2_9_96_1
  doi: 10.1016/j.talanta.2017.08.107
– ident: e_1_2_9_16_1
  doi: 10.1038/nnano.2007.260
– ident: e_1_2_9_42_1
  doi: 10.1016/j.jcis.2018.12.093
– ident: e_1_2_9_74_1
  doi: 10.1002/asia.201300174
– ident: e_1_2_9_112_1
  doi: 10.1021/pr700818f
– ident: e_1_2_9_12_1
  doi: 10.1021/ar400250z
– ident: e_1_2_9_66_1
  doi: 10.1021/ac402114c
– ident: e_1_2_9_21_1
  doi: 10.1039/C4RA13575J
– ident: e_1_2_9_49_1
  doi: 10.1016/j.mcat.2019.110492
– ident: e_1_2_9_77_1
  doi: 10.1039/C4AN01950D
– ident: e_1_2_9_57_1
  doi: 10.3390/nano8120976
– ident: e_1_2_9_157_1
  doi: 10.1016/j.cej.2020.127240
– volume: 6
  start-page: 123444
  year: 2014
  ident: e_1_2_9_59_1
  publication-title: Nanoscale
– ident: e_1_2_9_86_1
  doi: 10.1039/C8CY00603B
– ident: e_1_2_9_126_1
  doi: 10.1021/acsnano.0c03094
– ident: e_1_2_9_62_1
  doi: 10.1039/D0NR00192A
– ident: e_1_2_9_145_1
  doi: 10.1021/acschembio.7b00437
– ident: e_1_2_9_139_1
  doi: 10.1002/smll.202001099
– ident: e_1_2_9_147_1
  doi: 10.1016/j.snb.2019.127512
– ident: e_1_2_9_61_1
  doi: 10.3389/fbioe.2020.00013
– ident: e_1_2_9_44_1
  doi: 10.1021/acsami.8b01245
– ident: e_1_2_9_22_1
  doi: 10.1002/chem.201402680
– ident: e_1_2_9_30_1
  doi: 10.1039/C9NR05054J
– ident: e_1_2_9_31_1
  doi: 10.1039/C7TB02434G
– ident: e_1_2_9_89_1
  doi: 10.1002/anie.200800023
– ident: e_1_2_9_124_1
  doi: 10.1039/C7NR01460K
– ident: e_1_2_9_127_1
  doi: 10.1021/jacs.5b11411
– ident: e_1_2_9_116_1
  doi: 10.1016/j.snb.2018.01.092
– ident: e_1_2_9_103_1
  doi: 10.1021/ac702203f
– ident: e_1_2_9_75_1
  doi: 10.1039/C6RA03507H
– ident: e_1_2_9_110_1
  doi: 10.1002/cbic.201800471
– ident: e_1_2_9_67_1
  doi: 10.1021/acs.accounts.9b00140
– ident: e_1_2_9_91_1
  doi: 10.3390/catal9121057
– ident: e_1_2_9_135_1
  doi: 10.1039/C7NR06807G
– ident: e_1_2_9_27_1
  doi: 10.1039/C9NR06596B
– ident: e_1_2_9_33_1
  doi: 10.1002/elan.202000008
– ident: e_1_2_9_150_1
  doi: 10.1016/j.snb.2019.127530
– ident: e_1_2_9_3_1
  doi: 10.1039/C4CS00350K
– ident: e_1_2_9_143_1
  doi: 10.1021/jacs.7b00601
– ident: e_1_2_9_54_1
  doi: 10.1002/cjoc.201600694
– ident: e_1_2_9_113_1
  doi: 10.1021/ja104924b
– ident: e_1_2_9_118_1
  doi: 10.1016/j.saa.2017.05.071
– ident: e_1_2_9_144_1
  doi: 10.3390/pharmaceutics12070665
– ident: e_1_2_9_138_1
  doi: 10.1002/anie.201908289
– ident: e_1_2_9_154_1
  doi: 10.1016/j.bios.2020.112201
– ident: e_1_2_9_85_1
  doi: 10.1016/j.aca.2020.01.035
– ident: e_1_2_9_9_1
  doi: 10.1039/c3cs35486e
– ident: e_1_2_9_132_1
  doi: 10.1021/acssuschemeng.8b03823
– ident: e_1_2_9_142_1
  doi: 10.1007/s11427-019-9518-0
– ident: e_1_2_9_50_1
  doi: 10.1021/acsnano.9b05075
– ident: e_1_2_9_58_1
  doi: 10.1039/c4ra01746c
– ident: e_1_2_9_41_1
  doi: 10.1039/C8NJ03996H
– ident: e_1_2_9_104_1
  doi: 10.1021/acsami.9b03004
– ident: e_1_2_9_88_1
  doi: 10.1039/C3CS60249D
– ident: e_1_2_9_106_1
  doi: 10.1007/s00604-020-04376-7
– ident: e_1_2_9_38_1
  doi: 10.1021/nn501647j
– ident: e_1_2_9_48_1
  doi: 10.7150/thno.19738
– ident: e_1_2_9_90_1
  doi: 10.1021/acs.jpcc.6b08343
– ident: e_1_2_9_35_1
  doi: 10.1016/j.apsusc.2019.06.163
– ident: e_1_2_9_29_1
  doi: 10.1039/C4NR03393K
– ident: e_1_2_9_72_1
  doi: 10.1002/asia.201901753
– ident: e_1_2_9_97_1
  doi: 10.1039/C7NJ00899F
– ident: e_1_2_9_68_1
  doi: 10.1016/j.msec.2019.02.086
– ident: e_1_2_9_83_1
  doi: 10.1007/s40820-019-0324-7
– ident: e_1_2_9_65_1
  doi: 10.1002/adma.202005423
– ident: e_1_2_9_137_1
  doi: 10.1002/cbic.202000195
– ident: e_1_2_9_5_1
  doi: 10.1007/s13204-020-01389-9
– ident: e_1_2_9_40_1
  doi: 10.1021/jacs.9b13586
– ident: e_1_2_9_102_1
  doi: 10.1002/smll.201802290
– ident: e_1_2_9_146_1
  doi: 10.1039/C7CP00644F
– ident: e_1_2_9_18_1
  doi: 10.1021/acs.chemrev.8b00672
– ident: e_1_2_9_158_1
  doi: 10.1002/smll.202005739
– ident: e_1_2_9_36_1
  doi: 10.1016/j.bios.2015.12.034
– ident: e_1_2_9_105_1
  doi: 10.1016/j.bios.2017.09.048
– ident: e_1_2_9_28_1
  doi: 10.1021/acsnano.6b05810
– ident: e_1_2_9_131_1
  doi: 10.1021/acsami.9b10373
– ident: e_1_2_9_10_1
  doi: 10.1039/C8CS00457A
– ident: e_1_2_9_156_1
  doi: 10.1007/s12161-020-01806-3
– ident: e_1_2_9_98_1
  doi: 10.1039/C6RA18050G
– ident: e_1_2_9_122_1
  doi: 10.1021/acsami.8b10560
– ident: e_1_2_9_134_1
  doi: 10.1007/s10853-020-04507-8
– ident: e_1_2_9_14_1
  doi: 10.1002/anie.201712469
– ident: e_1_2_9_140_1
  doi: 10.1016/j.biomaterials.2019.119752
– ident: e_1_2_9_25_1
  doi: 10.1039/C7NR07927C
– ident: e_1_2_9_11_1
  doi: 10.1007/s11427-019-1570-7
– ident: e_1_2_9_115_1
  doi: 10.1002/adma.201305842
– ident: e_1_2_9_125_1
  doi: 10.1039/D0MH00105H
– ident: e_1_2_9_24_1
  doi: 10.1002/anie.201510597
– ident: e_1_2_9_56_1
  doi: 10.1016/j.microc.2019.104019
– ident: e_1_2_9_121_1
  doi: 10.1021/acs.analchem.0c01028
– ident: e_1_2_9_76_1
  doi: 10.1039/C7AY00484B
– ident: e_1_2_9_87_1
  doi: 10.1021/acsbiomaterials.9b00372
– ident: e_1_2_9_47_1
  doi: 10.1002/anie.201905645
– ident: e_1_2_9_39_1
  doi: 10.1016/j.apmt.2017.01.006
– ident: e_1_2_9_128_1
  doi: 10.1016/j.scib.2017.12.012
– ident: e_1_2_9_152_1
  doi: 10.1021/acsami.8b15443
– ident: e_1_2_9_55_1
  doi: 10.1016/j.electacta.2017.08.044
– ident: e_1_2_9_52_1
  doi: 10.1016/j.talanta.2015.03.055
– ident: e_1_2_9_26_1
  doi: 10.1007/s12011-019-01742-2
– ident: e_1_2_9_155_1
  doi: 10.1039/D0CC05152G
– ident: e_1_2_9_109_1
  doi: 10.1007/s00604-019-4041-1
– ident: e_1_2_9_15_1
  doi: 10.1360/N032015-00058
– ident: e_1_2_9_45_1
  doi: 10.1002/anie.201914768
– ident: e_1_2_9_71_1
  doi: 10.1007/s00604-019-4078-1
– ident: e_1_2_9_53_1
  doi: 10.1002/chem.201803040
– ident: e_1_2_9_123_1
  doi: 10.1186/s11671-019-2896-z
– ident: e_1_2_9_19_1
  doi: 10.1021/acs.bioconjchem.9b00171
– ident: e_1_2_9_130_1
  doi: 10.1002/smll.201905938
– ident: e_1_2_9_2_1
  doi: 10.1021/acsami.9b05978
– ident: e_1_2_9_8_1
  doi: 10.1021/bi00168a001
– ident: e_1_2_9_94_1
  doi: 10.1016/j.snb.2018.02.085
SSID ssj0002511795
Score 2.4146297
SecondaryResourceType review_article
Snippet Molybdenum (Mo), as a nontoxic and low‐cost transition metal, has been employed for synthesis of various Mo‐based nanomaterials with unique structures and...
Abstract Molybdenum (Mo), as a nontoxic and low‐cost transition metal, has been employed for synthesis of various Mo‐based nanomaterials with unique structures...
SourceID doaj
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
SubjectTerms biomedical applications
catalytic mechanisms
molybdenum
nanozyme
physicochemical properties
SummonAdditionalLinks – databaseName: Wiley-Blackwell Open Access Titles
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BbtQwELWgvXBBRS1iKUU-lEsh2qzjJE5vpWLVcqiQYGFv0dixUaRdB222lbYnPqHfyJd0xkm3uweQOGYysiWPx54Zz7xh7DgBZxIZ68jkkERSSogAlIxyAca5WJNNQdkWV9nFRH6eptM-4Ea1MB0-xDrgRpoRzmtScNDt8BE09PvlD3TvKCVIqadsl6prCTtfyC_rGAuZz3lovCIy3BBJoVSf-47_hpsDbN1KAbx_21gNt814jz3vzUR-1sn1BXti_T5bokw56j9vHNd1U3t6JbcVnzezla4op_3P77va44Fzg1QPvrldzW17yr-uPNp5bd1-4CFcs8JR-dxS0W_dzpEKvuJdIT7JjG--ah-wyfjTt_OLqO-aEBl0tUSELowRI-ecVJA7ieadG2llMyTaPK6oU1UGVoLR6PxJWzktU5tqqVWSWbr9X7Id33j7inHkQznmRUxdYWSmQRXWpEIniUlxpNGAvX9YtdL0kOLU2WJWdmDIosQ1Lh_WeMDerbl_dVAaf-H7SAJY8xAAdiA0i59lr0-lMMZkMUBFbrVOJKCTb12a6apQRQpmwE6C-P45E32Qy_v6f5gP2TNBeS0hEvOG7SwX1_YIDZOlfht23z28K9z1
  priority: 102
  providerName: Wiley-Blackwell
Title The age of bioinspired molybdenum‐involved nanozymes: Synthesis, catalytic mechanisms, and biomedical applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2FVIW.20200188
https://doaj.org/article/2ccc60aad0274b34a907ef56bd9895ac
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTsMwDI5gJy4IBIjxM-UAF6CiS9M_boA2DSQQEgy4VUmaSJVYithAGgfEI_CMPAl22sE4ABculepaaWW7sb_EsQnZCoRRAfelp2IReJxz4QmRcC9mQhnjS4wpMNviPOr1-elteDvV6gtzwqrywJXg9plSKvKFyBE_yYALQHPahJHM0yQNhcLZF3zeFJjCORgD59i1XGERmEKQJkmd9Q7P9q9PbgAZYjaRa7jy5Y9c2f7vYarzM90FMl8HiPSw-rBFMqPtEhmBNin8-bQ0VBZlYXF_XOd0UN6NZY7Z7O-vb4WFqeYJqFbY8nk80MMDejm2EOENi-EedQs1YxiVDjQe9y2GA6AKm9PqCD5qi07vZy-Tfrdzddzz6n4JngKQxTwAL4q1jTE8EbHhENiZtkx0BEQd-zn2qIqE5kJJgH1c50byUIeSyySINPr9FdKwpdWrhAIfaDBOfewHwyMpklSrkMkgUCGM1G6S3YnUMlUXE8eeFndZVQaZZSDjbCLjJtn-5L6vimj8wHeECvjkwdLXjgAGkdUGkf1lEE2y49T365vwBsHu2n-8cZ3MMcx0cWszG6QxenjUmxCqjGSLzDJ-0XK2Cdezl84H0pvnzg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwELbK9lAuCFSqLj_FB7iURmQdx3F6A8RqKRQhAS23yHZsFIl1ELsgLSceoc_Ik3TGCQscQOKYyciRPBl7vvH4G0LWE-VMwmMdmUwlEedcRUpJHmVMGedijTEFVlscicEZ_3Wenrd9TvEuTMMPMU24oWeE9RodHBPSW0-soX_2_wK-w5ogKWfIRy5Yhp7J-PE0yYLxcxY6rzABf0SSS9kWv8O7recDvNiWAnv_y2g1bDf9eTLXxol0uzHsAvlg_WcyBqNSWABo7aiu6srjMbkt6bC-nOgSi9of7v9VHlacW5B65eu7ydCOftKTiYdAb1SNftCQr5nAqHRo8dZvNRqCVPmSNjfx0Wj0-bH2Ijnr753uDqK2bUJkAGuxCDCMYT3nHJcqcxziO9fT0goQ2iwusVWVUJYrowH9cVs6zVObaq5lIixu_19Ix9fefiUU9MCQWR5jWxgutJK5NSnTSWJSGKnXJZuPs1aYllMcW1tcFg0bMitgjovHOe6Sjan2VcOl8YreDhpgqoMM2EFQX18UrUMVzBgjYqVKxNU64QpQvnWp0GUu81SZLvkezPfml_ABMe_Se5TXyKfB6e_D4nD_6GCZzDIscglpmRXSGV_f2FWIUsb6W_gT_wO0T-Bh
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA7qgngRRcX1mYNe1GK3TdvUm69lfbAIuipeSpImUnBTcVdhPfkT_I3-Emfauq4HBY-dDglk8vhmMvmGkA1fGOUzVzoqEr7DGBOOEJw5kSeUMa5ETIHZFu2w1WGnt8FtFXDDtzAlP8Qw4IYro9ivcYE_pmb3mzT0-uQG3DtMCeJ8nNSQKA9mdW3_unPXGUZZEEBHRekVL4Qp4cecV9nv8G93tIkf51JB3_8TrhbnTXOGTFdAke6Xlp0lY9rOkT5YlcIOQHNDZZZnFu_JdUq7-cNAppjV_vH2nlnYcl5AaoXNXwdd3dujlwMLSK-X9XZoEbAZQKu0q_HZb9brglTYlJZP8dFqdPRee550msdXhy2nqpvgKHC2PAecGOU1jDGMi8gwAHimIbkOQagjN8VaVaHQTCgJ7h_TqZEs0IFkkvuhxvN_gUzY3OpFQkEPLBnFLtaFYaEUPNYq8KTvqwBaatTJ9teoJaoiFcfaFg9JSYfsJTDGydcY18nmUPuxJNP4Re8ADTDUQQrsQpA_3SfViko8pVToCpGiYy19JsDN1yYIZRrzOBCqTrYK8_3ZE36g07v0H-V1Mnlx1EzOT9pny2TKwySXIiyzQib6T896FVBKX65VU_ETvk_hWQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+age+of+bioinspired+molybdenum%E2%80%90involved+nanozymes%3A+Synthesis%2C+catalytic+mechanisms%2C+and+biomedical+applications&rft.jtitle=View+%28Beijing%2C+China%29&rft.au=Yan+Zu&rft.au=Huiqin+Yao&rft.au=Yifan+Wang&rft.au=Liang+Yan&rft.date=2021-06-01&rft.pub=Wiley&rft.issn=2688-3988&rft.eissn=2688-268X&rft.volume=2&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2FVIW.20200188&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2ccc60aad0274b34a907ef56bd9895ac
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2688-3988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2688-3988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2688-3988&client=summon