α‐synuclein suppresses microglial autophagy and promotes neurodegeneration in a mouse model of Parkinson’s disease

The cell‐to‐cell transfer of α‐synuclein (α‐Syn) greatly contributes to Parkinson's disease (PD) pathogenesis and underlies the spread of α‐Syn pathology. During this process, extracellular α‐Syn can activate microglia and neuroinflammation, which plays an important role in PD. However, the eff...

Full description

Saved in:
Bibliographic Details
Published inAging cell Vol. 20; no. 12; pp. e13522 - n/a
Main Authors Tu, Hai‐Yue, Yuan, Bao‐Shi, Hou, Xiao‐Ou, Zhang, Xiao‐Jun, Pei, Chong‐Shuang, Ma, Ya‐Ting, Yang, Ya‐Ping, Fan, Yi, Qin, Zheng‐Hong, Liu, Chun‐Feng, Hu, Li‐Fang
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.12.2021
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN1474-9718
1474-9726
1474-9726
DOI10.1111/acel.13522

Cover

Loading…
Abstract The cell‐to‐cell transfer of α‐synuclein (α‐Syn) greatly contributes to Parkinson's disease (PD) pathogenesis and underlies the spread of α‐Syn pathology. During this process, extracellular α‐Syn can activate microglia and neuroinflammation, which plays an important role in PD. However, the effect of extracellular α‐Syn on microglia autophagy is poorly understood. In the present study, we reported that extracellular α‐Syn inhibited the autophagy initiation, as indicated by LC3‐II reduction and p62 protein elevation in BV2 and cultured primary microglia. The in vitro findings were verified in microglia‐enriched population isolated from α‐Syn‐overexpressing mice induced by adeno‐associated virus (AAV2/9)‐encoded wildtype human α‐Syn injection into the substantia nigra (SN). Mechanistically, α‐Syn led to microglial autophagic impairment through activating toll‐like receptor 4 (Tlr4) and its downstream p38 and Akt‐mTOR signaling because Tlr4 knockout and inhibition of p38, Akt as well as mTOR prevented α‐Syn‐induced autophagy inhibition. Moreover, inhibition of Akt reversed the mTOR activation but failed to affect p38 phosphorylation triggered by α‐Syn. Functionally, the in vivo evidence showed that lysozyme 2 Cre (Lyz2cre)‐mediated depletion of autophagy‐related gene 5 (Atg5) in microglia aggravated the neuroinflammation and dopaminergic neuron losses in the SN and exacerbated the locomotor deficit in α‐Syn‐overexpressing mice. Taken together, the results suggest that extracellular α‐Syn, via Tlr4‐dependent p38 and Akt‐mTOR signaling cascades, disrupts microglial autophagy activity which synergistically contributes to neuroinflammation and PD development. Autophagy‐dependent and independent machinery synergistically contribute to hα‐Syn‐caused neuroinflammation in PD. The basal autophagy activity restricts microglia inflammation. Extracellular hα‐Syn interacts with and activates Tlr4, resulting in inflammatory responses, as well as autophagy suppression in microglia via Tlr4‐dependent p38 and Akt/mTOR signaling cascades. This impairs the inhibitory effect of autophagy on inflammation, and thus aggravating hα‐Syn‐induced inflammatory responses.
AbstractList The cell-to-cell transfer of α-synuclein (α-Syn) greatly contributes to Parkinson's disease (PD) pathogenesis and underlies the spread of α-Syn pathology. During this process, extracellular α-Syn can activate microglia and neuroinflammation, which plays an important role in PD. However, the effect of extracellular α-Syn on microglia autophagy is poorly understood. In the present study, we reported that extracellular α-Syn inhibited the autophagy initiation, as indicated by LC3-II reduction and p62 protein elevation in BV2 and cultured primary microglia. The in vitro findings were verified in microglia-enriched population isolated from α-Syn-overexpressing mice induced by adeno-associated virus (AAV2/9)-encoded wildtype human α-Syn injection into the substantia nigra (SN). Mechanistically, α-Syn led to microglial autophagic impairment through activating toll-like receptor 4 (Tlr4) and its downstream p38 and Akt-mTOR signaling because Tlr4 knockout and inhibition of p38, Akt as well as mTOR prevented α-Syn-induced autophagy inhibition. Moreover, inhibition of Akt reversed the mTOR activation but failed to affect p38 phosphorylation triggered by α-Syn. Functionally, the in vivo evidence showed that lysozyme 2 Cre (Lyz2 )-mediated depletion of autophagy-related gene 5 (Atg5) in microglia aggravated the neuroinflammation and dopaminergic neuron losses in the SN and exacerbated the locomotor deficit in α-Syn-overexpressing mice. Taken together, the results suggest that extracellular α-Syn, via Tlr4-dependent p38 and Akt-mTOR signaling cascades, disrupts microglial autophagy activity which synergistically contributes to neuroinflammation and PD development.
The cell‐to‐cell transfer of α‐synuclein (α‐Syn) greatly contributes to Parkinson's disease (PD) pathogenesis and underlies the spread of α‐Syn pathology. During this process, extracellular α‐Syn can activate microglia and neuroinflammation, which plays an important role in PD. However, the effect of extracellular α‐Syn on microglia autophagy is poorly understood. In the present study, we reported that extracellular α‐Syn inhibited the autophagy initiation, as indicated by LC3‐II reduction and p62 protein elevation in BV2 and cultured primary microglia. The in vitro findings were verified in microglia‐enriched population isolated from α ‐ Syn ‐overexpressing mice induced by adeno‐associated virus (AAV2/9)‐encoded wildtype human α ‐ Syn injection into the substantia nigra (SN). Mechanistically, α‐Syn led to microglial autophagic impairment through activating toll‐like receptor 4 (Tlr4) and its downstream p38 and Akt‐mTOR signaling because Tlr4 knockout and inhibition of p38, Akt as well as mTOR prevented α‐Syn‐induced autophagy inhibition. Moreover, inhibition of Akt reversed the mTOR activation but failed to affect p38 phosphorylation triggered by α‐Syn. Functionally, the in vivo evidence showed that lysozyme 2 Cre ( Lyz2 cre )‐mediated depletion of autophagy ‐ related gene 5 ( Atg5) in microglia aggravated the neuroinflammation and dopaminergic neuron losses in the SN and exacerbated the locomotor deficit in α ‐ Syn ‐overexpressing mice. Taken together, the results suggest that extracellular α‐Syn, via Tlr4‐dependent p38 and Akt‐mTOR signaling cascades, disrupts microglial autophagy activity which synergistically contributes to neuroinflammation and PD development.
The cell‐to‐cell transfer of α‐synuclein (α‐Syn) greatly contributes to Parkinson's disease (PD) pathogenesis and underlies the spread of α‐Syn pathology. During this process, extracellular α‐Syn can activate microglia and neuroinflammation, which plays an important role in PD. However, the effect of extracellular α‐Syn on microglia autophagy is poorly understood. In the present study, we reported that extracellular α‐Syn inhibited the autophagy initiation, as indicated by LC3‐II reduction and p62 protein elevation in BV2 and cultured primary microglia. The in vitro findings were verified in microglia‐enriched population isolated from α‐Syn‐overexpressing mice induced by adeno‐associated virus (AAV2/9)‐encoded wildtype human α‐Syn injection into the substantia nigra (SN). Mechanistically, α‐Syn led to microglial autophagic impairment through activating toll‐like receptor 4 (Tlr4) and its downstream p38 and Akt‐mTOR signaling because Tlr4 knockout and inhibition of p38, Akt as well as mTOR prevented α‐Syn‐induced autophagy inhibition. Moreover, inhibition of Akt reversed the mTOR activation but failed to affect p38 phosphorylation triggered by α‐Syn. Functionally, the in vivo evidence showed that lysozyme 2 Cre (Lyz2cre)‐mediated depletion of autophagy‐related gene 5 (Atg5) in microglia aggravated the neuroinflammation and dopaminergic neuron losses in the SN and exacerbated the locomotor deficit in α‐Syn‐overexpressing mice. Taken together, the results suggest that extracellular α‐Syn, via Tlr4‐dependent p38 and Akt‐mTOR signaling cascades, disrupts microglial autophagy activity which synergistically contributes to neuroinflammation and PD development.
The cell‐to‐cell transfer of α‐synuclein (α‐Syn) greatly contributes to Parkinson's disease (PD) pathogenesis and underlies the spread of α‐Syn pathology. During this process, extracellular α‐Syn can activate microglia and neuroinflammation, which plays an important role in PD. However, the effect of extracellular α‐Syn on microglia autophagy is poorly understood. In the present study, we reported that extracellular α‐Syn inhibited the autophagy initiation, as indicated by LC3‐II reduction and p62 protein elevation in BV2 and cultured primary microglia. The in vitro findings were verified in microglia‐enriched population isolated from α‐Syn‐overexpressing mice induced by adeno‐associated virus (AAV2/9)‐encoded wildtype human α‐Syn injection into the substantia nigra (SN). Mechanistically, α‐Syn led to microglial autophagic impairment through activating toll‐like receptor 4 (Tlr4) and its downstream p38 and Akt‐mTOR signaling because Tlr4 knockout and inhibition of p38, Akt as well as mTOR prevented α‐Syn‐induced autophagy inhibition. Moreover, inhibition of Akt reversed the mTOR activation but failed to affect p38 phosphorylation triggered by α‐Syn. Functionally, the in vivo evidence showed that lysozyme 2 Cre (Lyz2cre)‐mediated depletion of autophagy‐related gene 5 (Atg5) in microglia aggravated the neuroinflammation and dopaminergic neuron losses in the SN and exacerbated the locomotor deficit in α‐Syn‐overexpressing mice. Taken together, the results suggest that extracellular α‐Syn, via Tlr4‐dependent p38 and Akt‐mTOR signaling cascades, disrupts microglial autophagy activity which synergistically contributes to neuroinflammation and PD development. Autophagy‐dependent and independent machinery synergistically contribute to hα‐Syn‐caused neuroinflammation in PD. The basal autophagy activity restricts microglia inflammation. Extracellular hα‐Syn interacts with and activates Tlr4, resulting in inflammatory responses, as well as autophagy suppression in microglia via Tlr4‐dependent p38 and Akt/mTOR signaling cascades. This impairs the inhibitory effect of autophagy on inflammation, and thus aggravating hα‐Syn‐induced inflammatory responses.
The cell-to-cell transfer of α-synuclein (α-Syn) greatly contributes to Parkinson's disease (PD) pathogenesis and underlies the spread of α-Syn pathology. During this process, extracellular α-Syn can activate microglia and neuroinflammation, which plays an important role in PD. However, the effect of extracellular α-Syn on microglia autophagy is poorly understood. In the present study, we reported that extracellular α-Syn inhibited the autophagy initiation, as indicated by LC3-II reduction and p62 protein elevation in BV2 and cultured primary microglia. The in vitro findings were verified in microglia-enriched population isolated from α-Syn-overexpressing mice induced by adeno-associated virus (AAV2/9)-encoded wildtype human α-Syn injection into the substantia nigra (SN). Mechanistically, α-Syn led to microglial autophagic impairment through activating toll-like receptor 4 (Tlr4) and its downstream p38 and Akt-mTOR signaling because Tlr4 knockout and inhibition of p38, Akt as well as mTOR prevented α-Syn-induced autophagy inhibition. Moreover, inhibition of Akt reversed the mTOR activation but failed to affect p38 phosphorylation triggered by α-Syn. Functionally, the in vivo evidence showed that lysozyme 2 Cre (Lyz2cre )-mediated depletion of autophagy-related gene 5 (Atg5) in microglia aggravated the neuroinflammation and dopaminergic neuron losses in the SN and exacerbated the locomotor deficit in α-Syn-overexpressing mice. Taken together, the results suggest that extracellular α-Syn, via Tlr4-dependent p38 and Akt-mTOR signaling cascades, disrupts microglial autophagy activity which synergistically contributes to neuroinflammation and PD development.The cell-to-cell transfer of α-synuclein (α-Syn) greatly contributes to Parkinson's disease (PD) pathogenesis and underlies the spread of α-Syn pathology. During this process, extracellular α-Syn can activate microglia and neuroinflammation, which plays an important role in PD. However, the effect of extracellular α-Syn on microglia autophagy is poorly understood. In the present study, we reported that extracellular α-Syn inhibited the autophagy initiation, as indicated by LC3-II reduction and p62 protein elevation in BV2 and cultured primary microglia. The in vitro findings were verified in microglia-enriched population isolated from α-Syn-overexpressing mice induced by adeno-associated virus (AAV2/9)-encoded wildtype human α-Syn injection into the substantia nigra (SN). Mechanistically, α-Syn led to microglial autophagic impairment through activating toll-like receptor 4 (Tlr4) and its downstream p38 and Akt-mTOR signaling because Tlr4 knockout and inhibition of p38, Akt as well as mTOR prevented α-Syn-induced autophagy inhibition. Moreover, inhibition of Akt reversed the mTOR activation but failed to affect p38 phosphorylation triggered by α-Syn. Functionally, the in vivo evidence showed that lysozyme 2 Cre (Lyz2cre )-mediated depletion of autophagy-related gene 5 (Atg5) in microglia aggravated the neuroinflammation and dopaminergic neuron losses in the SN and exacerbated the locomotor deficit in α-Syn-overexpressing mice. Taken together, the results suggest that extracellular α-Syn, via Tlr4-dependent p38 and Akt-mTOR signaling cascades, disrupts microglial autophagy activity which synergistically contributes to neuroinflammation and PD development.
The cell‐to‐cell transfer of α‐synuclein (α‐Syn) greatly contributes to Parkinson's disease (PD) pathogenesis and underlies the spread of α‐Syn pathology. During this process, extracellular α‐Syn can activate microglia and neuroinflammation, which plays an important role in PD. However, the effect of extracellular α‐Syn on microglia autophagy is poorly understood. In the present study, we reported that extracellular α‐Syn inhibited the autophagy initiation, as indicated by LC3‐II reduction and p62 protein elevation in BV2 and cultured primary microglia. The in vitro findings were verified in microglia‐enriched population isolated from α ‐ Syn ‐overexpressing mice induced by adeno‐associated virus (AAV2/9)‐encoded wildtype human α ‐ Syn injection into the substantia nigra (SN). Mechanistically, α‐Syn led to microglial autophagic impairment through activating toll‐like receptor 4 (Tlr4) and its downstream p38 and Akt‐mTOR signaling because Tlr4 knockout and inhibition of p38, Akt as well as mTOR prevented α‐Syn‐induced autophagy inhibition. Moreover, inhibition of Akt reversed the mTOR activation but failed to affect p38 phosphorylation triggered by α‐Syn. Functionally, the in vivo evidence showed that lysozyme 2 Cre ( Lyz2 cre )‐mediated depletion of autophagy ‐ related gene 5 ( Atg5) in microglia aggravated the neuroinflammation and dopaminergic neuron losses in the SN and exacerbated the locomotor deficit in α ‐ Syn ‐overexpressing mice. Taken together, the results suggest that extracellular α‐Syn, via Tlr4‐dependent p38 and Akt‐mTOR signaling cascades, disrupts microglial autophagy activity which synergistically contributes to neuroinflammation and PD development. Autophagy‐dependent and independent machinery synergistically contribute to hα‐Syn‐caused neuroinflammation in PD. The basal autophagy activity restricts microglia inflammation. Extracellular hα‐Syn interacts with and activates Tlr4, resulting in inflammatory responses, as well as autophagy suppression in microglia via Tlr4‐dependent p38 and Akt/mTOR signaling cascades. This impairs the inhibitory effect of autophagy on inflammation, and thus aggravating hα‐Syn‐induced inflammatory responses.
Author Qin, Zheng‐Hong
Tu, Hai‐Yue
Pei, Chong‐Shuang
Hu, Li‐Fang
Zhang, Xiao‐Jun
Yuan, Bao‐Shi
Hou, Xiao‐Ou
Liu, Chun‐Feng
Yang, Ya‐Ping
Fan, Yi
Ma, Ya‐Ting
AuthorAffiliation 1 Department of Neurology and Clinical Research Center of Neurological Disease The Second Affiliated Hospital of Soochow University Suzhou Jiangsu China
4 Department of Pharmacology Nanjing Medical University Nanjing Jiangsu China
2 Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience Soochow University Suzhou Jiangsu China
3 Department of Pharmacology College of Pharmaceutical Sciences Soochow University Suzhou Jiangsu China
AuthorAffiliation_xml – name: 1 Department of Neurology and Clinical Research Center of Neurological Disease The Second Affiliated Hospital of Soochow University Suzhou Jiangsu China
– name: 4 Department of Pharmacology Nanjing Medical University Nanjing Jiangsu China
– name: 3 Department of Pharmacology College of Pharmaceutical Sciences Soochow University Suzhou Jiangsu China
– name: 2 Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience Soochow University Suzhou Jiangsu China
Author_xml – sequence: 1
  givenname: Hai‐Yue
  surname: Tu
  fullname: Tu, Hai‐Yue
  organization: Soochow University
– sequence: 2
  givenname: Bao‐Shi
  surname: Yuan
  fullname: Yuan, Bao‐Shi
  organization: Soochow University
– sequence: 3
  givenname: Xiao‐Ou
  surname: Hou
  fullname: Hou, Xiao‐Ou
  organization: Soochow University
– sequence: 4
  givenname: Xiao‐Jun
  surname: Zhang
  fullname: Zhang, Xiao‐Jun
  organization: Soochow University
– sequence: 5
  givenname: Chong‐Shuang
  surname: Pei
  fullname: Pei, Chong‐Shuang
  organization: Soochow University
– sequence: 6
  givenname: Ya‐Ting
  surname: Ma
  fullname: Ma, Ya‐Ting
  organization: Soochow University
– sequence: 7
  givenname: Ya‐Ping
  surname: Yang
  fullname: Yang, Ya‐Ping
  organization: The Second Affiliated Hospital of Soochow University
– sequence: 8
  givenname: Yi
  surname: Fan
  fullname: Fan, Yi
  organization: Nanjing Medical University
– sequence: 9
  givenname: Zheng‐Hong
  surname: Qin
  fullname: Qin, Zheng‐Hong
  organization: Soochow University
– sequence: 10
  givenname: Chun‐Feng
  orcidid: 0000-0002-8364-0219
  surname: Liu
  fullname: Liu, Chun‐Feng
  organization: Soochow University
– sequence: 11
  givenname: Li‐Fang
  orcidid: 0000-0001-8326-7779
  surname: Hu
  fullname: Hu, Li‐Fang
  email: hulifang@suda.edu.cn
  organization: Soochow University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34811872$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1uFDEQhS0URH5gwwGQJTYIaYLt9tjuDVI0Cj_SSLCAtVXTXT1xcNuN3Z1odjkCW47BRThEToKTCSOIEF7YJfmrp6r3DsleiAEJecrZMS_nFTToj3k1F-IBOeBSy1mthdrb1dzsk8OczxnjumbVI7JfScO50eKAXP78cX31LW_C1Hh0geZpGBLmjJn2rklx7R14CtMYhzNYbyiElg4p9nEsRMApxRbXGDDB6GKgRQFoH6eM5W7R09jRj5C-uJBjuL76nmnrMkLGx-RhBz7jk7v3iHx-c_pp8W62_PD2_eJkOWukNGImhQbgNWs0qlrplss5a7qVVNVKG81ASamhMyignivNhMDWSNSiuLGSTFfVEXm91R2mVY9tg2FM4O2QXA9pYyM4-_dPcGd2HS-sUVporYrAizuBFL9OmEfbu1wM9xCw7GmFYrxMWnFT0Of30PM4pVDWKxRnTFQ1F4V69udEu1F-Z1KAl1ug2J9zwm6HcGZvArc3gdvbwAvM7sGNG2-zKNs4_-8Wvm25dB43_xG3J4vT5bbnFxH6waE
CitedBy_id crossref_primary_10_1007_s11064_023_03960_6
crossref_primary_10_1080_13880209_2022_2098344
crossref_primary_10_1016_j_xcrm_2024_101782
crossref_primary_10_52711_0974_360X_2024_00791
crossref_primary_10_1002_glia_24648
crossref_primary_10_3389_fnins_2024_1506358
crossref_primary_10_1186_s13024_024_00780_2
crossref_primary_10_3892_ijmm_2023_5253
crossref_primary_10_1111_cns_14763
crossref_primary_10_3389_fcell_2024_1510897
crossref_primary_10_1016_j_biopha_2022_113412
crossref_primary_10_1016_j_freeradbiomed_2024_02_023
crossref_primary_10_1089_ars_2022_0174
crossref_primary_10_1016_j_arr_2024_102214
crossref_primary_10_1016_j_bcp_2023_115698
crossref_primary_10_3389_fimmu_2023_1305933
crossref_primary_10_1016_j_cytogfr_2023_06_002
crossref_primary_10_1186_s13024_025_00827_y
crossref_primary_10_3389_fnagi_2022_1039780
crossref_primary_10_1159_000541991
crossref_primary_10_3390_nu14194108
crossref_primary_10_1016_j_ijbiomac_2023_128311
crossref_primary_10_3390_biom13101435
crossref_primary_10_2174_0115672050336499240903113255
crossref_primary_10_1093_brain_awae177
crossref_primary_10_1016_j_neubiorev_2024_105834
crossref_primary_10_1007_s10753_024_02156_6
crossref_primary_10_1016_j_archger_2024_105738
crossref_primary_10_1016_j_ejphar_2024_177098
crossref_primary_10_3389_fcell_2025_1518991
crossref_primary_10_1016_j_jneuroim_2023_578047
crossref_primary_10_1016_j_semcancer_2024_07_005
crossref_primary_10_1007_s12035_022_03134_5
crossref_primary_10_1016_j_brainresbull_2024_110988
crossref_primary_10_3389_fnagi_2022_1065183
crossref_primary_10_3390_biomedicines10102649
crossref_primary_10_3390_cells11182908
crossref_primary_10_1080_01677063_2025_2465536
crossref_primary_10_1038_s41392_024_02071_0
crossref_primary_10_1152_jn_00497_2024
crossref_primary_10_1002_jev2_70018
crossref_primary_10_1007_s12264_022_00957_z
crossref_primary_10_1111_jnc_15984
crossref_primary_10_1038_s41380_023_02242_5
crossref_primary_10_1038_s41392_024_01743_1
crossref_primary_10_1038_s41531_024_00650_0
crossref_primary_10_1016_j_apsb_2024_05_012
crossref_primary_10_1080_17460441_2023_2160440
crossref_primary_10_1093_brain_awac261
crossref_primary_10_1186_s40035_023_00392_8
crossref_primary_10_1016_j_intimp_2023_109976
crossref_primary_10_1016_j_intimp_2025_114201
crossref_primary_10_3389_fphar_2024_1408152
crossref_primary_10_1111_cns_14548
crossref_primary_10_4103_REGENMED_REGENMED_D_24_00005
crossref_primary_10_1016_j_brainres_2023_148320
crossref_primary_10_3389_fnagi_2022_919343
crossref_primary_10_3389_fncel_2022_903469
crossref_primary_10_1016_j_expneurol_2024_115007
crossref_primary_10_1016_j_brainres_2024_149414
crossref_primary_10_3389_fnagi_2024_1411104
crossref_primary_10_1007_s00401_024_02781_3
crossref_primary_10_1016_j_arr_2024_102232
crossref_primary_10_1155_2022_7165387
crossref_primary_10_4103_1673_5374_391334
crossref_primary_10_1007_s00011_022_01676_x
crossref_primary_10_3390_ijms25020986
crossref_primary_10_3389_fcell_2024_1421360
crossref_primary_10_3390_ijms24108593
crossref_primary_10_1016_j_jmb_2022_167930
crossref_primary_10_1126_sciadv_abn1298
crossref_primary_10_3390_ijms25084330
crossref_primary_10_2147_JIR_S478683
crossref_primary_10_1016_j_heliyon_2025_e41981
crossref_primary_10_1016_j_jes_2023_09_036
crossref_primary_10_1186_s12974_024_03268_4
crossref_primary_10_3389_fnagi_2022_1018848
crossref_primary_10_1016_j_bbr_2022_114059
crossref_primary_10_1111_cns_70088
crossref_primary_10_2147_NDT_S476969
crossref_primary_10_3390_cells12040621
crossref_primary_10_1126_scitranslmed_adm8563
crossref_primary_10_1111_cpr_13278
crossref_primary_10_3389_fimmu_2022_1077335
crossref_primary_10_3233_JPD_223237
crossref_primary_10_3389_fnut_2024_1496616
crossref_primary_10_1016_j_neuropharm_2025_110346
crossref_primary_10_3390_biomedicines12051074
crossref_primary_10_1016_j_isci_2023_108130
Cites_doi 10.1016/j.bbi.2020.10.010
10.1083/jcb.201701049
10.1074/jbc.M115.705095
10.15252/embj.201899430
10.1186/s13024-019-0335-3
10.3389/fnagi.2018.00378
10.1038/nature04724
10.1523/JNEUROSCI.0209-12.2012
10.1523/JNEUROSCI.1292-12.2012
10.1080/15548627.2017.1402992
10.1093/brain/awv346
10.1111/jnc.13266
10.1080/15548627.2020.1719723
10.1093/brain/awaa090
10.1038/s41593-019-0566-1
10.1523/JNEUROSCI.0692-05.2005
10.4161/auto.29647
10.1186/s40478-019-0865-5
10.1080/15548627.2018.1556946
10.1016/j.bbi.2017.07.159
10.1038/mp.2016.103
10.1016/j.tox.2017.06.011
10.1007/s00401-020-02227-6
10.1186/s13024-018-0241-0
10.1016/j.immuni.2007.05.022
10.1038/ncomms2534
10.1111/j.1471-4159.2010.06695.x
10.1038/s41467-020-15119-w
10.1038/s41593-018-0332-9
10.1080/15548627.2019.1635384
10.1016/j.neuron.2018.09.014
10.1038/nature10324
10.1073/pnas.2023418118
10.1080/15548627.2015.1100930
10.1007/978-1-4939-6786-5_23
10.1007/s00401-018-1907-y
10.1016/j.neurobiolaging.2006.11.013
10.1093/ijnp/pyu103
10.1002/glia.22437
10.1038/nature04723
10.1111/jnc.14222
10.1016/j.neuron.2013.06.046
ContentType Journal Article
Copyright 2021 The Authors. published by Anatomical Society and John Wiley & Sons Ltd.
2021 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd.
2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by Anatomical Society and John Wiley & Sons Ltd.
– notice: 2021 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd.
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1111/acel.13522
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
Publicly Available Content Database

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (WRLC)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1474-9726
EndPage n/a
ExternalDocumentID PMC8672776
34811872
10_1111_acel_13522
ACEL13522
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Six Major Talents Peak in Jiangsu Province
  funderid: YY‐053
– fundername: Discipline Construction Program of the Second Affiliated Hospital of Soochow University
  funderid: XKTJTD202004
– fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
– fundername: Jiangsu Province’s Young Medical Talents Program
  funderid: QNRC2016872
– fundername: National Natural Science Foundation of China
  funderid: 81571233; 81870997; 82171251
– fundername: National Key R&D Program of China
  funderid: 2016YFC1306000
– fundername: Six Major Talents Peak in Jiangsu Province
  grantid: YY‐053
– fundername: Jiangsu Province’s Young Medical Talents Program
  grantid: QNRC2016872
– fundername: ;
  grantid: 81571233; 81870997; 82171251
– fundername: Discipline Construction Program of the Second Affiliated Hospital of Soochow University
  grantid: XKTJTD202004
– fundername: National Key R&D Program of China
  grantid: 2016YFC1306000
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
23M
24P
2WC
31~
36B
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52W
52X
53G
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FH
8UM
930
A01
A03
AAHHS
AAZKR
ABCQN
ABDBF
ABEML
ABJNI
ACCFJ
ACCMX
ACGFO
ACGFS
ACPRK
ACSCC
ACUHS
ACXQS
ADBBV
ADKYN
ADRAZ
ADZMN
ADZOD
AEEZP
AEGXH
AENEX
AEQDE
AFBPY
AFEBI
AFKRA
AFZJQ
AIAGR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BFHJK
BHPHI
BY8
CAG
CCPQU
COF
CS3
D-6
D-7
D-E
D-F
DIK
DR2
E3Z
EAD
EAP
EBD
EBS
EJD
EMB
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FIJ
GODZA
GROUPED_DOAJ
GX1
HCIFZ
HF~
HOLLA
HZ~
IAO
IHE
IHR
IPNFZ
ITC
IX1
J0M
K.9
KQ8
LC2
LC3
LH4
LK8
LP6
LP7
LW6
M48
M7P
MK4
N04
N05
N9A
O9-
OBS
OIG
OK1
OVD
P2P
P2X
P2Z
P4B
P4D
PIMPY
Q11
ROL
RPM
RX1
SUPJJ
SV3
TEORI
TR2
TUS
UB1
V8K
W8V
WIN
WQJ
WRC
WXI
XG1
YFH
YUY
~IA
~WT
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c4482-427aa190c7e6967d1450cfb463b7870a6447af8e2a9567022ed84e72135b40733
IEDL.DBID M48
ISSN 1474-9718
1474-9726
IngestDate Thu Aug 21 18:32:40 EDT 2025
Fri Jul 11 15:20:30 EDT 2025
Wed Aug 13 06:20:22 EDT 2025
Wed Feb 19 02:26:30 EST 2025
Tue Jul 01 01:49:17 EDT 2025
Thu Apr 24 22:53:44 EDT 2025
Wed Jan 22 16:26:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Parkinson's disease
autophagy
neuroinflammation
microglia
α-synuclein
Language English
License Attribution
2021 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4482-427aa190c7e6967d1450cfb463b7870a6447af8e2a9567022ed84e72135b40733
Notes Hai‐Yue Tu, Bao‐Shi Yuan and Xiao‐Ou Hou are contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8326-7779
0000-0002-8364-0219
OpenAccessLink https://www.proquest.com/docview/2610023912?pq-origsite=%requestingapplication%
PMID 34811872
PQID 2610023912
PQPubID 1036381
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8672776
proquest_miscellaneous_2601482318
proquest_journals_2610023912
pubmed_primary_34811872
crossref_primary_10_1111_acel_13522
crossref_citationtrail_10_1111_acel_13522
wiley_primary_10_1111_acel_13522_ACEL13522
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2021
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
– name: Hoboken
PublicationTitle Aging cell
PublicationTitleAlternate Aging Cell
PublicationYear 2021
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2019; 7
2011; 477
2018; 100
2013; 4
2020; 140
2020; 143
2017; 22
2013; 61
2019; 15
2015; 11
2019; 14
2020; 16
2019; 38
2017; 391
2020; 11
2018; 67
2012; 32
2005; 25
2021; 91
2019; 22
2013; 79
2018; 217
2008; 29
2010; 113
2021; 118
2019; 137
2018
2016; 139
2017; 1559
2020; 23
2014; 18
2017; 143
2016; 291
2018; 10
2006; 441
2014; 10
2018; 14
2007; 27
2018; 13
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Young K. (e_1_2_9_43_1) 2018
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 61
  start-page: 349
  issue: 3
  year: 2013
  end-page: 360
  article-title: Toll‐like receptor 4 is required for alpha‐synuclein dependent activation of microglia and astroglia
  publication-title: Glia
– volume: 18
  issue: 6
  year: 2014
  article-title: Toll‐like receptor expression in the blood and brain of patients and a mouse model of Parkinson's disease
  publication-title: International Journal of Neuropsychopharmacology
– volume: 4
  start-page: 1562
  year: 2013
  article-title: Neuron‐released oligomeric alpha‐synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia
  publication-title: Nature Communications
– volume: 27
  start-page: 135
  issue: 1
  year: 2007
  end-page: 144
  article-title: Toll‐like receptor 4 is a sensor for autophagy associated with innate immunity
  publication-title: Immunity
– volume: 118
  issue: 27
  year: 2021
  article-title: Autophagy deficiency modulates microglial lipid homeostasis and aggravates tau pathology and spreading
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 139
  start-page: 481
  issue: Pt 2
  year: 2016
  end-page: 494
  article-title: Induction of alpha‐synuclein aggregate formation by CSF exosomes from patients with Parkinson's disease and dementia with Lewy bodies
  publication-title: Brain
– volume: 38
  issue: 4
  year: 2019
  article-title: Beclin1‐driven autophagy modulates the inflammatory response of microglia via NLRP3
  publication-title: EMBO Journal
– volume: 11
  start-page: 2057
  issue: 11
  year: 2015
  end-page: 2073
  article-title: A pivotal role of FOS‐mediated BECN1/Beclin 1 upregulation in dopamine D2 and D3 receptor agonist‐induced autophagy activation
  publication-title: Autophagy
– volume: 22
  start-page: 1576
  issue: 11
  year: 2017
  end-page: 1584
  article-title: Deficient autophagy in microglia impairs synaptic pruning and causes social behavioral defects
  publication-title: Molecular Psychiatry
– volume: 477
  start-page: 107
  issue: 7362
  year: 2011
  end-page: 110
  article-title: Alpha‐synuclein occurs physiologically as a helically folded tetramer that resists aggregation
  publication-title: Nature
– volume: 140
  start-page: 831
  issue: 6
  year: 2020
  end-page: 849
  article-title: Neuronal activity modulates alpha‐synuclein aggregation and spreading in organotypic brain slice cultures and in vivo
  publication-title: Acta Neuropathologica
– volume: 29
  start-page: 739
  issue: 5
  year: 2008
  end-page: 752
  article-title: Alpha‐synuclein activates stress signaling protein kinases in THP‐1 cells and microglia
  publication-title: Neurobiology of Aging
– volume: 32
  start-page: 16503
  issue: 46
  year: 2012
  end-page: 16509
  article-title: Development and characterization of a new Parkinson's disease model resulting from impaired autophagy
  publication-title: Journal of Neuroscience
– volume: 67
  start-page: 77
  year: 2018
  end-page: 90
  article-title: Impaired CBS‐H2S signaling axis contributes to MPTP‐induced neurodegeneration in a mouse model of Parkinson's disease
  publication-title: Brain, Behavior, and Immunity
– volume: 391
  start-page: 109
  year: 2017
  end-page: 115
  article-title: Mitochondrial dysfunction in glial cells: Implications for neuronal homeostasis and survival
  publication-title: Toxicology
– volume: 1559
  start-page: 333
  year: 2017
  end-page: 342
  article-title: Isolation of microglia and immune infiltrates from mouse and primate central nervous system
  publication-title: Methods in Molecular Biology
– volume: 139
  start-page: 91
  issue: Suppl 1
  year: 2016
  end-page: 107
  article-title: Genes associated with Parkinson's disease: Regulation of autophagy and beyond
  publication-title: Journal of Neurochemistry
– volume: 14
  start-page: 34
  issue: 1
  year: 2019
  article-title: Microglia affect alpha‐synuclein cell‐to‐cell transfer in a mouse model of Parkinson's disease
  publication-title: Molecular Neurodegeneration
– volume: 16
  start-page: 38
  issue: 1
  year: 2020
  end-page: 51
  article-title: New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD
  publication-title: Autophagy
– volume: 291
  start-page: 4374
  issue: 9
  year: 2016
  end-page: 4385
  article-title: Effects of serine 129 phosphorylation on alpha‐synuclein aggregation, membrane association, and internalization
  publication-title: Journal of Biological Chemistry
– volume: 14
  start-page: 243
  issue: 2
  year: 2018
  end-page: 251
  article-title: Autophagy balances inflammation in innate immunity
  publication-title: Autophagy
– volume: 441
  start-page: 885
  issue: 7095
  year: 2006
  end-page: 889
  article-title: Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice
  publication-title: Nature
– volume: 217
  start-page: 315
  issue: 1
  year: 2018
  end-page: 328
  article-title: P38 MAPK inhibits autophagy and promotes microglial inflammatory responses by phosphorylating ULK1
  publication-title: Journal of Cell Biology
– volume: 11
  start-page: 1386
  issue: 1
  year: 2020
  article-title: Microglia clear neuron‐released alpha‐synuclein via selective autophagy and prevent neurodegeneration
  publication-title: Nature Communications
– volume: 91
  start-page: 324
  year: 2021
  end-page: 338
  article-title: Impaired autophagy in microglia aggravates dopaminergic neurodegeneration by regulating NLRP3 inflammasome activation in experimental models of Parkinson's disease
  publication-title: Brain, Behavior, and Immunity
– volume: 10
  start-page: 378
  year: 2018
  article-title: A critical role of autophagy in regulating microglia polarization in neurodegeneration
  publication-title: Frontiers in Aging Neuroscience
– volume: 7
  start-page: 213
  issue: 1
  year: 2019
  article-title: Organotypic slice culture model demonstrates inter‐neuronal spreading of alpha‐synuclein aggregates
  publication-title: Acta Neuropathologica Communications
– volume: 32
  start-page: 13454
  issue: 39
  year: 2012
  end-page: 13469
  article-title: Antibody‐aided clearance of extracellular alpha‐synuclein prevents cell‐to‐cell aggregate transmission
  publication-title: Journal of Neuroscience
– volume: 113
  start-page: 1263
  issue: 5
  year: 2010
  end-page: 1274
  article-title: Non‐classical exocytosis of alpha‐synuclein is sensitive to folding states and promoted under stress conditions
  publication-title: Journal of Neurochemistry
– volume: 441
  start-page: 880
  issue: 7095
  year: 2006
  end-page: 884
  article-title: Loss of autophagy in the central nervous system causes neurodegeneration in mice
  publication-title: Nature
– volume: 23
  start-page: 194
  issue: 2
  year: 2020
  end-page: 208
  article-title: Lipid‐droplet‐accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain
  publication-title: Nature Neuroscience
– volume: 10
  start-page: 1761
  issue: 10
  year: 2014
  end-page: 1775
  article-title: Autophagy in microglia degrades extracellular beta‐amyloid fibrils and regulates the NLRP3 inflammasome
  publication-title: Autophagy
– volume: 22
  start-page: 401
  issue: 3
  year: 2019
  end-page: 412
  article-title: Mitophagy inhibits amyloid‐beta and tau pathology and reverses cognitive deficits in models of Alzheimer's disease
  publication-title: Nature Neuroscience
– volume: 143
  start-page: 1476
  issue: 5
  year: 2020
  end-page: 1497
  article-title: Microglial exosomes facilitate alpha‐synuclein transmission in Parkinson's disease
  publication-title: Brain
– volume: 143
  start-page: 584
  issue: 5
  year: 2017
  end-page: 594
  article-title: DJ‐1 deficiency impairs autophagy and reduces alpha‐synuclein phagocytosis by microglia
  publication-title: Journal of Neurochemistry
– volume: 13
  start-page: 9
  issue: 1
  year: 2018
  article-title: Extracellular alpha‐synuclein levels are regulated by neuronal activity
  publication-title: Molecular Neurodegeneration
– volume: 137
  start-page: 103
  issue: 1
  year: 2019
  end-page: 120
  article-title: Picomolar concentrations of oligomeric alpha‐synuclein sensitizes TLR4 to play an initiating role in Parkinson's disease pathogenesis
  publication-title: Acta Neuropathologica
– volume: 16
  start-page: 2193
  issue: 12
  year: 2020
  end-page: 2205
  article-title: Microglial autophagy defect causes Parkinson disease‐like symptoms by accelerating inflammasome activation in mice
  publication-title: Autophagy
– volume: 25
  start-page: 6016
  issue: 25
  year: 2005
  end-page: 6024
  article-title: Intravesicular localization and exocytosis of alpha‐synuclein and its aggregates
  publication-title: Journal of Neuroscience
– volume: 15
  start-page: 753
  issue: 5
  year: 2019
  end-page: 770
  article-title: Tlr4 (toll‐like receptor 4) activation suppresses autophagy through inhibition of FOXO3 and impairs phagocytic capacity of microglia
  publication-title: Autophagy
– volume: 100
  start-page: 75
  issue: 1
  year: 2018
  end-page: 90 e75
  article-title: Abrogating native alpha‐synuclein tetramers in mice causes a L‐DOPA‐responsive motor syndrome closely resembling Parkinson's disease
  publication-title: Neuron
– volume: 79
  start-page: 873
  issue: 5
  year: 2013
  end-page: 886
  article-title: Microglial beclin 1 regulates retromer trafficking and phagocytosis and is impaired in Alzheimer's disease
  publication-title: Neuron
– start-page: 57648
  issue: 136
  year: 2018
  article-title: Quantifying microglia morphology from photomicrographs of immunohistochemistry prepared tissue using ImageJ
  publication-title: Journal of Visualized Experiments
– ident: e_1_2_9_34_1
  doi: 10.1016/j.bbi.2020.10.010
– ident: e_1_2_9_18_1
  doi: 10.1083/jcb.201701049
– ident: e_1_2_9_36_1
  doi: 10.1074/jbc.M115.705095
– ident: e_1_2_9_19_1
  doi: 10.15252/embj.201899430
– ident: e_1_2_9_15_1
  doi: 10.1186/s13024-019-0335-3
– ident: e_1_2_9_22_1
  doi: 10.3389/fnagi.2018.00378
– ident: e_1_2_9_17_1
  doi: 10.1038/nature04724
– ident: e_1_2_9_2_1
  doi: 10.1523/JNEUROSCI.0209-12.2012
– ident: e_1_2_9_3_1
  doi: 10.1523/JNEUROSCI.1292-12.2012
– start-page: 57648
  issue: 136
  year: 2018
  ident: e_1_2_9_43_1
  article-title: Quantifying microglia morphology from photomicrographs of immunohistochemistry prepared tissue using ImageJ
  publication-title: Journal of Visualized Experiments
– ident: e_1_2_9_9_1
  doi: 10.1080/15548627.2017.1402992
– ident: e_1_2_9_37_1
  doi: 10.1093/brain/awv346
– ident: e_1_2_9_5_1
  doi: 10.1111/jnc.13266
– ident: e_1_2_9_6_1
  doi: 10.1080/15548627.2020.1719723
– ident: e_1_2_9_16_1
  doi: 10.1093/brain/awaa090
– ident: e_1_2_9_31_1
  doi: 10.1038/s41593-019-0566-1
– ident: e_1_2_9_28_1
  doi: 10.1523/JNEUROSCI.0692-05.2005
– ident: e_1_2_9_7_1
  doi: 10.4161/auto.29647
– ident: e_1_2_9_11_1
  doi: 10.1186/s40478-019-0865-5
– ident: e_1_2_9_29_1
  doi: 10.1080/15548627.2018.1556946
– ident: e_1_2_9_44_1
  doi: 10.1016/j.bbi.2017.07.159
– ident: e_1_2_9_24_1
  doi: 10.1038/mp.2016.103
– ident: e_1_2_9_35_1
  doi: 10.1016/j.tox.2017.06.011
– ident: e_1_2_9_39_1
  doi: 10.1007/s00401-020-02227-6
– ident: e_1_2_9_42_1
  doi: 10.1186/s13024-018-0241-0
– ident: e_1_2_9_40_1
  doi: 10.1016/j.immuni.2007.05.022
– ident: e_1_2_9_23_1
  doi: 10.1038/ncomms2534
– ident: e_1_2_9_21_1
  doi: 10.1111/j.1471-4159.2010.06695.x
– ident: e_1_2_9_8_1
  doi: 10.1038/s41467-020-15119-w
– ident: e_1_2_9_12_1
  doi: 10.1038/s41593-018-0332-9
– ident: e_1_2_9_27_1
  doi: 10.1080/15548627.2019.1635384
– ident: e_1_2_9_33_1
  doi: 10.1016/j.neuron.2018.09.014
– ident: e_1_2_9_4_1
  doi: 10.1038/nature10324
– ident: e_1_2_9_41_1
  doi: 10.1073/pnas.2023418118
– ident: e_1_2_9_38_1
  doi: 10.1080/15548627.2015.1100930
– ident: e_1_2_9_14_1
  doi: 10.1007/978-1-4939-6786-5_23
– ident: e_1_2_9_20_1
  doi: 10.1007/s00401-018-1907-y
– ident: e_1_2_9_25_1
  doi: 10.1016/j.neurobiolaging.2006.11.013
– ident: e_1_2_9_10_1
  doi: 10.1093/ijnp/pyu103
– ident: e_1_2_9_13_1
  doi: 10.1002/glia.22437
– ident: e_1_2_9_26_1
  doi: 10.1038/nature04723
– ident: e_1_2_9_32_1
  doi: 10.1111/jnc.14222
– ident: e_1_2_9_30_1
  doi: 10.1016/j.neuron.2013.06.046
SSID ssj0017903
Score 2.6212068
Snippet The cell‐to‐cell transfer of α‐synuclein (α‐Syn) greatly contributes to Parkinson's disease (PD) pathogenesis and underlies the spread of α‐Syn pathology....
The cell-to-cell transfer of α-synuclein (α-Syn) greatly contributes to Parkinson's disease (PD) pathogenesis and underlies the spread of α-Syn pathology....
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e13522
SubjectTerms AKT protein
alpha-Synuclein - metabolism
Animals
Autophagy
Autophagy - genetics
Disease Models, Animal
Dopamine receptors
Inflammation
Lysozyme
Mice
Microglia
Movement disorders
Neurodegeneration
Neurodegenerative diseases
neuroinflammation
Neuroinflammatory Diseases - genetics
Original
Original Papers
p62 Protein
Parkinson Disease - genetics
Parkinson's disease
Phagocytosis
Phosphorylation
Substantia nigra
Synuclein
TLR4 protein
Toll-like receptors
TOR protein
α‐synuclein
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3RatswFBVrwqAvY93WLl07VLaXDUxj5dpynkYWEsIoYYwF8mYkS04LmZPVDSNv-YS99jP6I_uIfsnuVRRvoSVvASuJ7XMlXekencPY-zbIlpVWBxnkOgAd2yAxQJZhArSN21muHct3GA9G8GUcjf2GW-lplZsx0Q3UZpbRHvk5ZvruIGYoPs1_BuQaRdVVb6Gxx-o4BCcY4fXPveHXb1UdQbadN3IIEoI2DsNeoJS4PCqzU3J9EGJ7SnqQZz6kS_6fxrp5qP-cPfMJJO-sET9gT2zxgj1dW0ouX7Jff-7uV7_LZUE6xVcFLxdzR3W1Jf9B3LvJFAOOqwXpCajJkqvC8Lmj5GELJ25p7MRJURNiHH9BcdodsNx55vBZzumgtDszdr-6Lbmv8Lxio37ve3cQeHMFRAUwqwYhlcJsIJOISCxNCFETgYG4pakPK8yTpMoTKxSuoCTO9NYkYHG92Io0kNPjIasVs8K-ZjyLlElCEM3MCIgjoyPs1BpA4FQnozxpsA-b95tmXnmcDDCm6WYFQlikDosGe1e1na_1Nh5tdbKBKfV9rkz_RUiDnVWXsbdQCUQVFt9VSgJqQJVPvKmjNarV39CR5DCR-G25hXfVgJS4t68UV5dOkTuheraMG-yji4wdd552ur0L9-l49zO8YfuC6DOOOXPCajfXC3uK-c-NfuuD_C_nRAiu
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSsQwEA6iCF7Ef9c_InpRKNg4bbrgRUQREfGg4K0kbboKa3exLrK3fQSvPoYv4kPskzgz7VYXRfBWyKQt-TLJJDPzjRC7TdCHTjvrJZBZD2zovCgFKhmmwLqwmWSWo3yvwvNbuLgL7ibE0SgXpuSHqC_cSDN4vSYFN7b4puQmcW2q2qBwAZ6i3Fqa5Qquax-CbnJdZB80eE1cgityUorj-eo7vh39sDF_hkp-N2F5DzqbE7OV8SiPS7TnxYTLF8R0WU6yvyhePt6Hg9einxNH8UMui16Xw1xdIR8p7q7VxskmTY-4BEyrL02eyi6H46EEE1umrsU01ISWxDcYSTcDTnK9HNnJJCVJc77YcPBWyMq7syRuz05vTs69qrACIgJoUYPSxqAlkGhEI9SpD8EBgoJDaEl_DdpI2mSRUwZPTxp3eZdG4PCseBhYoCqPy2Iy7-RuVcgkMGnkgzpIUgVhkNoAFdoCKNzmdJBFDbE3Gt84qVjHqfhFOx6dPgiLmLFoiJ1atltybfwqtTGCKa70rYjxHMhpuj42b9fNqCnk_jC5w7GKiTwNyOuJP7VSolp_htKR_Uhjbz2Gdy1ALNzjLfnDPbNxR-TL1mFD7PPM-OPP4-OT00t-WvuP8LqYURRIwzE0G2Ly-annNtESerZbPOE_AVbsCEs
  priority: 102
  providerName: Wiley-Blackwell
Title α‐synuclein suppresses microglial autophagy and promotes neurodegeneration in a mouse model of Parkinson’s disease
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Facel.13522
https://www.ncbi.nlm.nih.gov/pubmed/34811872
https://www.proquest.com/docview/2610023912
https://www.proquest.com/docview/2601482318
https://pubmed.ncbi.nlm.nih.gov/PMC8672776
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTttAEB5RUKVeKgr9SYFoq3JpJVd4M_Y6B1RRFISqFiHUSNysXXudIqUmxURtbjwCVx6DF-lD8CTMTOzQCFT1ElnatWPvt-Od8cx-H8BmF03HG--CDAsXoIt9kOTIkmEanY-7WeGkyvcg3u_j5-PoeAEa_c56AKsHQzvWk-qfDT_8_jn5SAa_3VTl2MwPWb9B06t4iVYkwxIOX_Eum2C6opAcosGgSy_jmqZ0_tz5hemet3m_aPJvZ1ZWo71leFq7kWpnivszWPDlCjyeCktOVuHXn-ubi8tqUjJb8UmpqvFICl59pX5wBd5gSNNO2TGzCtjBRNkyVyMpzKMeQnGZ-4EQUjNuiq5gFX8j8EqUc9RpoXi7tOwcu7m4qlSd53kO_b3et939oJZYIGyQfGvUxlryCTJDuMQmDzHaIngw7ji2ZEvekrFF4rWlOMrQeu_zBD1FjZ3IIes9voDF8rT0r0Blkc2TEPVWlmuMo9xFZNoOUdOCZ6IiacG7ZnzTrOYfZxmMYdrEIYxFKli04O2s72jKuvFgr_UGprSZOClFhLJhN6TmN7NmshlOhNjS01ilTKOGnP-km3o5RXX2N7wxOUwMnW3m8J51YD7u-Zby5Lvwciec1TZxC97LzPjHnac7u70vcvT6v550DZ5orqWRMpp1WDw_G_sNcobOXRseaTxsw9Kn3sHhUVs-KfDvkW6LDdwCGkUQEg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VVAguiPIbKGURcADJot6Mvc4BoVJSpTRECLVSb-6uvQ6VghNwoyq3PkKvfQkkXoSH6JMws_6BqKi33ix5Y092ZndmPTPfB_Cii6pjlTVegpnx0ITWi1JkyjCJxobdJDOuyncY9vfw436wvwQ_614YLqus90S3UaeThL-Rv6FI3zVi-vLd9LvHrFGcXa0pNEqz2LHzYzqyFW-3P5B-X0q51dvd7HsVqwCJgxROolRakxtMFIkSqtTHYJ0kwrBj2Hg1BQhKZ5GVmo4OilycTSO0dFDqBAaZ4pCeew2WsUOhQguW3_eGn780eQvVdVzMPir0urTtV4CoXDukEztmlgkpF13ghbj2Ynnmv2Gz83tbt-FWFbCKjdLCVmDJ5nfgeklhOb8Lx79_nZ-cFvOccZEPc1HMpq601hbiG9f6jcZk4ELPGL9Aj-ZC56mYuhJAGuHANFM7ctDXbCGCnqAFf42wwnH0iEkmuDHb9aidn5wVosoo3YO9K5n2-9DKJ7l9CCIJdBr5KNeTVGIYpCagTcQgSnKtKsiiNryq5zdOKqRzJtwYx_WJh3URO1204Xkzdlrie_x31Gqtprha40X81yLb8Ky5TauTUy46tzRXMQO2IWdaSagHpVab13ALtB8p-rVa0HczgJG_F-_kh18dAnjE-XMVtuG1s4xLJI83NnsDd_Xo8v_wFG70dz8N4sH2cOcx3JRcuuOqdlahdfRjZp9Q7HVk1iqDF3Bw1WvsDzIKQp8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwELYQFVUviPJTFigYwaWVIhHvJM5KvSBgBS1CHEDiFtmxsyAtYUVYob3xCFz7GH2RPgRP0plJNrCiQuIWyeMk8uexx56Zb4TY7oBue-1tkEFuA7CxDxIHVDJMgfVxJ8stR_mexIfn8PMiupgSP8a5MBU_RHPhRprB6zUp-MDlL5TcZL5PVRsULsAfyNtH81vBaeND0B2uixyChqCDS3BNTkpxPM99J7ejVzbm61DJlyYs70HdOTFbG49yt0L7s5jyxbyYqcpJjhbE_d8_Tw-P5aggjuKrQpbDAYe5-lJeU9xdr4-TTZohcQmY3kiawskBh-OhBBNbOt9jGmpCS-IbjKSbAS-5Xo68ySUlSXO-2NPD71LW3p1Fcd49ONs7DOrCCogIoEUNShuDlkCmEY1YuxCiHQQF4rYl_TVoI2mTJ14ZPD1p3OW9S8DjWbEdWaAqj0tiurgp_LKQWWRcEoLayZyCOHI2QoW2AAq3OR3lSUt8G49vmtWs41T8op-OTx-ERcpYtMRWIzuouDb-K7U2himt9a1M8RzIabohNm82zagp5P4whcexSok8DcjriT_1pUK1-QylI4eJxt56Au9GgFi4J1uKq0tm407Il63jlvjOM-ONP0939w6O-WnlPcIb4uPpfjc9Pjr5tSo-KYqp4XCaNTF9dzv0X9EourPrPPf_Af1jCuk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%CE%B1%E2%80%90synuclein+suppresses+microglial+autophagy+and+promotes+neurodegeneration+in+a+mouse+model+of+Parkinson%E2%80%99s+disease&rft.jtitle=Aging+cell&rft.au=Tu%2C+Hai%E2%80%90Yue&rft.au=Yuan%2C+Bao%E2%80%90Shi&rft.au=Hou%2C+Xiao%E2%80%90Ou&rft.au=Zhang%2C+Xiao%E2%80%90Jun&rft.date=2021-12-01&rft.issn=1474-9718&rft.eissn=1474-9726&rft.volume=20&rft.issue=12&rft_id=info:doi/10.1111%2Facel.13522&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_acel_13522
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-9718&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-9718&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-9718&client=summon