α‐synuclein suppresses microglial autophagy and promotes neurodegeneration in a mouse model of Parkinson’s disease
The cell‐to‐cell transfer of α‐synuclein (α‐Syn) greatly contributes to Parkinson's disease (PD) pathogenesis and underlies the spread of α‐Syn pathology. During this process, extracellular α‐Syn can activate microglia and neuroinflammation, which plays an important role in PD. However, the eff...
Saved in:
Published in | Aging cell Vol. 20; no. 12; pp. e13522 - n/a |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley & Sons, Inc
01.12.2021
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1474-9718 1474-9726 1474-9726 |
DOI | 10.1111/acel.13522 |
Cover
Loading…
Abstract | The cell‐to‐cell transfer of α‐synuclein (α‐Syn) greatly contributes to Parkinson's disease (PD) pathogenesis and underlies the spread of α‐Syn pathology. During this process, extracellular α‐Syn can activate microglia and neuroinflammation, which plays an important role in PD. However, the effect of extracellular α‐Syn on microglia autophagy is poorly understood. In the present study, we reported that extracellular α‐Syn inhibited the autophagy initiation, as indicated by LC3‐II reduction and p62 protein elevation in BV2 and cultured primary microglia. The in vitro findings were verified in microglia‐enriched population isolated from α‐Syn‐overexpressing mice induced by adeno‐associated virus (AAV2/9)‐encoded wildtype human α‐Syn injection into the substantia nigra (SN). Mechanistically, α‐Syn led to microglial autophagic impairment through activating toll‐like receptor 4 (Tlr4) and its downstream p38 and Akt‐mTOR signaling because Tlr4 knockout and inhibition of p38, Akt as well as mTOR prevented α‐Syn‐induced autophagy inhibition. Moreover, inhibition of Akt reversed the mTOR activation but failed to affect p38 phosphorylation triggered by α‐Syn. Functionally, the in vivo evidence showed that lysozyme 2 Cre (Lyz2cre)‐mediated depletion of autophagy‐related gene 5 (Atg5) in microglia aggravated the neuroinflammation and dopaminergic neuron losses in the SN and exacerbated the locomotor deficit in α‐Syn‐overexpressing mice. Taken together, the results suggest that extracellular α‐Syn, via Tlr4‐dependent p38 and Akt‐mTOR signaling cascades, disrupts microglial autophagy activity which synergistically contributes to neuroinflammation and PD development.
Autophagy‐dependent and independent machinery synergistically contribute to hα‐Syn‐caused neuroinflammation in PD. The basal autophagy activity restricts microglia inflammation. Extracellular hα‐Syn interacts with and activates Tlr4, resulting in inflammatory responses, as well as autophagy suppression in microglia via Tlr4‐dependent p38 and Akt/mTOR signaling cascades. This impairs the inhibitory effect of autophagy on inflammation, and thus aggravating hα‐Syn‐induced inflammatory responses. |
---|---|
AbstractList | The cell-to-cell transfer of α-synuclein (α-Syn) greatly contributes to Parkinson's disease (PD) pathogenesis and underlies the spread of α-Syn pathology. During this process, extracellular α-Syn can activate microglia and neuroinflammation, which plays an important role in PD. However, the effect of extracellular α-Syn on microglia autophagy is poorly understood. In the present study, we reported that extracellular α-Syn inhibited the autophagy initiation, as indicated by LC3-II reduction and p62 protein elevation in BV2 and cultured primary microglia. The in vitro findings were verified in microglia-enriched population isolated from α-Syn-overexpressing mice induced by adeno-associated virus (AAV2/9)-encoded wildtype human α-Syn injection into the substantia nigra (SN). Mechanistically, α-Syn led to microglial autophagic impairment through activating toll-like receptor 4 (Tlr4) and its downstream p38 and Akt-mTOR signaling because Tlr4 knockout and inhibition of p38, Akt as well as mTOR prevented α-Syn-induced autophagy inhibition. Moreover, inhibition of Akt reversed the mTOR activation but failed to affect p38 phosphorylation triggered by α-Syn. Functionally, the in vivo evidence showed that lysozyme 2 Cre (Lyz2
)-mediated depletion of autophagy-related gene 5 (Atg5) in microglia aggravated the neuroinflammation and dopaminergic neuron losses in the SN and exacerbated the locomotor deficit in α-Syn-overexpressing mice. Taken together, the results suggest that extracellular α-Syn, via Tlr4-dependent p38 and Akt-mTOR signaling cascades, disrupts microglial autophagy activity which synergistically contributes to neuroinflammation and PD development. The cell‐to‐cell transfer of α‐synuclein (α‐Syn) greatly contributes to Parkinson's disease (PD) pathogenesis and underlies the spread of α‐Syn pathology. During this process, extracellular α‐Syn can activate microglia and neuroinflammation, which plays an important role in PD. However, the effect of extracellular α‐Syn on microglia autophagy is poorly understood. In the present study, we reported that extracellular α‐Syn inhibited the autophagy initiation, as indicated by LC3‐II reduction and p62 protein elevation in BV2 and cultured primary microglia. The in vitro findings were verified in microglia‐enriched population isolated from α ‐ Syn ‐overexpressing mice induced by adeno‐associated virus (AAV2/9)‐encoded wildtype human α ‐ Syn injection into the substantia nigra (SN). Mechanistically, α‐Syn led to microglial autophagic impairment through activating toll‐like receptor 4 (Tlr4) and its downstream p38 and Akt‐mTOR signaling because Tlr4 knockout and inhibition of p38, Akt as well as mTOR prevented α‐Syn‐induced autophagy inhibition. Moreover, inhibition of Akt reversed the mTOR activation but failed to affect p38 phosphorylation triggered by α‐Syn. Functionally, the in vivo evidence showed that lysozyme 2 Cre ( Lyz2 cre )‐mediated depletion of autophagy ‐ related gene 5 ( Atg5) in microglia aggravated the neuroinflammation and dopaminergic neuron losses in the SN and exacerbated the locomotor deficit in α ‐ Syn ‐overexpressing mice. Taken together, the results suggest that extracellular α‐Syn, via Tlr4‐dependent p38 and Akt‐mTOR signaling cascades, disrupts microglial autophagy activity which synergistically contributes to neuroinflammation and PD development. The cell‐to‐cell transfer of α‐synuclein (α‐Syn) greatly contributes to Parkinson's disease (PD) pathogenesis and underlies the spread of α‐Syn pathology. During this process, extracellular α‐Syn can activate microglia and neuroinflammation, which plays an important role in PD. However, the effect of extracellular α‐Syn on microglia autophagy is poorly understood. In the present study, we reported that extracellular α‐Syn inhibited the autophagy initiation, as indicated by LC3‐II reduction and p62 protein elevation in BV2 and cultured primary microglia. The in vitro findings were verified in microglia‐enriched population isolated from α‐Syn‐overexpressing mice induced by adeno‐associated virus (AAV2/9)‐encoded wildtype human α‐Syn injection into the substantia nigra (SN). Mechanistically, α‐Syn led to microglial autophagic impairment through activating toll‐like receptor 4 (Tlr4) and its downstream p38 and Akt‐mTOR signaling because Tlr4 knockout and inhibition of p38, Akt as well as mTOR prevented α‐Syn‐induced autophagy inhibition. Moreover, inhibition of Akt reversed the mTOR activation but failed to affect p38 phosphorylation triggered by α‐Syn. Functionally, the in vivo evidence showed that lysozyme 2 Cre (Lyz2cre)‐mediated depletion of autophagy‐related gene 5 (Atg5) in microglia aggravated the neuroinflammation and dopaminergic neuron losses in the SN and exacerbated the locomotor deficit in α‐Syn‐overexpressing mice. Taken together, the results suggest that extracellular α‐Syn, via Tlr4‐dependent p38 and Akt‐mTOR signaling cascades, disrupts microglial autophagy activity which synergistically contributes to neuroinflammation and PD development. The cell‐to‐cell transfer of α‐synuclein (α‐Syn) greatly contributes to Parkinson's disease (PD) pathogenesis and underlies the spread of α‐Syn pathology. During this process, extracellular α‐Syn can activate microglia and neuroinflammation, which plays an important role in PD. However, the effect of extracellular α‐Syn on microglia autophagy is poorly understood. In the present study, we reported that extracellular α‐Syn inhibited the autophagy initiation, as indicated by LC3‐II reduction and p62 protein elevation in BV2 and cultured primary microglia. The in vitro findings were verified in microglia‐enriched population isolated from α‐Syn‐overexpressing mice induced by adeno‐associated virus (AAV2/9)‐encoded wildtype human α‐Syn injection into the substantia nigra (SN). Mechanistically, α‐Syn led to microglial autophagic impairment through activating toll‐like receptor 4 (Tlr4) and its downstream p38 and Akt‐mTOR signaling because Tlr4 knockout and inhibition of p38, Akt as well as mTOR prevented α‐Syn‐induced autophagy inhibition. Moreover, inhibition of Akt reversed the mTOR activation but failed to affect p38 phosphorylation triggered by α‐Syn. Functionally, the in vivo evidence showed that lysozyme 2 Cre (Lyz2cre)‐mediated depletion of autophagy‐related gene 5 (Atg5) in microglia aggravated the neuroinflammation and dopaminergic neuron losses in the SN and exacerbated the locomotor deficit in α‐Syn‐overexpressing mice. Taken together, the results suggest that extracellular α‐Syn, via Tlr4‐dependent p38 and Akt‐mTOR signaling cascades, disrupts microglial autophagy activity which synergistically contributes to neuroinflammation and PD development. Autophagy‐dependent and independent machinery synergistically contribute to hα‐Syn‐caused neuroinflammation in PD. The basal autophagy activity restricts microglia inflammation. Extracellular hα‐Syn interacts with and activates Tlr4, resulting in inflammatory responses, as well as autophagy suppression in microglia via Tlr4‐dependent p38 and Akt/mTOR signaling cascades. This impairs the inhibitory effect of autophagy on inflammation, and thus aggravating hα‐Syn‐induced inflammatory responses. The cell-to-cell transfer of α-synuclein (α-Syn) greatly contributes to Parkinson's disease (PD) pathogenesis and underlies the spread of α-Syn pathology. During this process, extracellular α-Syn can activate microglia and neuroinflammation, which plays an important role in PD. However, the effect of extracellular α-Syn on microglia autophagy is poorly understood. In the present study, we reported that extracellular α-Syn inhibited the autophagy initiation, as indicated by LC3-II reduction and p62 protein elevation in BV2 and cultured primary microglia. The in vitro findings were verified in microglia-enriched population isolated from α-Syn-overexpressing mice induced by adeno-associated virus (AAV2/9)-encoded wildtype human α-Syn injection into the substantia nigra (SN). Mechanistically, α-Syn led to microglial autophagic impairment through activating toll-like receptor 4 (Tlr4) and its downstream p38 and Akt-mTOR signaling because Tlr4 knockout and inhibition of p38, Akt as well as mTOR prevented α-Syn-induced autophagy inhibition. Moreover, inhibition of Akt reversed the mTOR activation but failed to affect p38 phosphorylation triggered by α-Syn. Functionally, the in vivo evidence showed that lysozyme 2 Cre (Lyz2cre )-mediated depletion of autophagy-related gene 5 (Atg5) in microglia aggravated the neuroinflammation and dopaminergic neuron losses in the SN and exacerbated the locomotor deficit in α-Syn-overexpressing mice. Taken together, the results suggest that extracellular α-Syn, via Tlr4-dependent p38 and Akt-mTOR signaling cascades, disrupts microglial autophagy activity which synergistically contributes to neuroinflammation and PD development.The cell-to-cell transfer of α-synuclein (α-Syn) greatly contributes to Parkinson's disease (PD) pathogenesis and underlies the spread of α-Syn pathology. During this process, extracellular α-Syn can activate microglia and neuroinflammation, which plays an important role in PD. However, the effect of extracellular α-Syn on microglia autophagy is poorly understood. In the present study, we reported that extracellular α-Syn inhibited the autophagy initiation, as indicated by LC3-II reduction and p62 protein elevation in BV2 and cultured primary microglia. The in vitro findings were verified in microglia-enriched population isolated from α-Syn-overexpressing mice induced by adeno-associated virus (AAV2/9)-encoded wildtype human α-Syn injection into the substantia nigra (SN). Mechanistically, α-Syn led to microglial autophagic impairment through activating toll-like receptor 4 (Tlr4) and its downstream p38 and Akt-mTOR signaling because Tlr4 knockout and inhibition of p38, Akt as well as mTOR prevented α-Syn-induced autophagy inhibition. Moreover, inhibition of Akt reversed the mTOR activation but failed to affect p38 phosphorylation triggered by α-Syn. Functionally, the in vivo evidence showed that lysozyme 2 Cre (Lyz2cre )-mediated depletion of autophagy-related gene 5 (Atg5) in microglia aggravated the neuroinflammation and dopaminergic neuron losses in the SN and exacerbated the locomotor deficit in α-Syn-overexpressing mice. Taken together, the results suggest that extracellular α-Syn, via Tlr4-dependent p38 and Akt-mTOR signaling cascades, disrupts microglial autophagy activity which synergistically contributes to neuroinflammation and PD development. The cell‐to‐cell transfer of α‐synuclein (α‐Syn) greatly contributes to Parkinson's disease (PD) pathogenesis and underlies the spread of α‐Syn pathology. During this process, extracellular α‐Syn can activate microglia and neuroinflammation, which plays an important role in PD. However, the effect of extracellular α‐Syn on microglia autophagy is poorly understood. In the present study, we reported that extracellular α‐Syn inhibited the autophagy initiation, as indicated by LC3‐II reduction and p62 protein elevation in BV2 and cultured primary microglia. The in vitro findings were verified in microglia‐enriched population isolated from α ‐ Syn ‐overexpressing mice induced by adeno‐associated virus (AAV2/9)‐encoded wildtype human α ‐ Syn injection into the substantia nigra (SN). Mechanistically, α‐Syn led to microglial autophagic impairment through activating toll‐like receptor 4 (Tlr4) and its downstream p38 and Akt‐mTOR signaling because Tlr4 knockout and inhibition of p38, Akt as well as mTOR prevented α‐Syn‐induced autophagy inhibition. Moreover, inhibition of Akt reversed the mTOR activation but failed to affect p38 phosphorylation triggered by α‐Syn. Functionally, the in vivo evidence showed that lysozyme 2 Cre ( Lyz2 cre )‐mediated depletion of autophagy ‐ related gene 5 ( Atg5) in microglia aggravated the neuroinflammation and dopaminergic neuron losses in the SN and exacerbated the locomotor deficit in α ‐ Syn ‐overexpressing mice. Taken together, the results suggest that extracellular α‐Syn, via Tlr4‐dependent p38 and Akt‐mTOR signaling cascades, disrupts microglial autophagy activity which synergistically contributes to neuroinflammation and PD development. Autophagy‐dependent and independent machinery synergistically contribute to hα‐Syn‐caused neuroinflammation in PD. The basal autophagy activity restricts microglia inflammation. Extracellular hα‐Syn interacts with and activates Tlr4, resulting in inflammatory responses, as well as autophagy suppression in microglia via Tlr4‐dependent p38 and Akt/mTOR signaling cascades. This impairs the inhibitory effect of autophagy on inflammation, and thus aggravating hα‐Syn‐induced inflammatory responses. |
Author | Qin, Zheng‐Hong Tu, Hai‐Yue Pei, Chong‐Shuang Hu, Li‐Fang Zhang, Xiao‐Jun Yuan, Bao‐Shi Hou, Xiao‐Ou Liu, Chun‐Feng Yang, Ya‐Ping Fan, Yi Ma, Ya‐Ting |
AuthorAffiliation | 1 Department of Neurology and Clinical Research Center of Neurological Disease The Second Affiliated Hospital of Soochow University Suzhou Jiangsu China 4 Department of Pharmacology Nanjing Medical University Nanjing Jiangsu China 2 Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience Soochow University Suzhou Jiangsu China 3 Department of Pharmacology College of Pharmaceutical Sciences Soochow University Suzhou Jiangsu China |
AuthorAffiliation_xml | – name: 1 Department of Neurology and Clinical Research Center of Neurological Disease The Second Affiliated Hospital of Soochow University Suzhou Jiangsu China – name: 4 Department of Pharmacology Nanjing Medical University Nanjing Jiangsu China – name: 3 Department of Pharmacology College of Pharmaceutical Sciences Soochow University Suzhou Jiangsu China – name: 2 Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience Soochow University Suzhou Jiangsu China |
Author_xml | – sequence: 1 givenname: Hai‐Yue surname: Tu fullname: Tu, Hai‐Yue organization: Soochow University – sequence: 2 givenname: Bao‐Shi surname: Yuan fullname: Yuan, Bao‐Shi organization: Soochow University – sequence: 3 givenname: Xiao‐Ou surname: Hou fullname: Hou, Xiao‐Ou organization: Soochow University – sequence: 4 givenname: Xiao‐Jun surname: Zhang fullname: Zhang, Xiao‐Jun organization: Soochow University – sequence: 5 givenname: Chong‐Shuang surname: Pei fullname: Pei, Chong‐Shuang organization: Soochow University – sequence: 6 givenname: Ya‐Ting surname: Ma fullname: Ma, Ya‐Ting organization: Soochow University – sequence: 7 givenname: Ya‐Ping surname: Yang fullname: Yang, Ya‐Ping organization: The Second Affiliated Hospital of Soochow University – sequence: 8 givenname: Yi surname: Fan fullname: Fan, Yi organization: Nanjing Medical University – sequence: 9 givenname: Zheng‐Hong surname: Qin fullname: Qin, Zheng‐Hong organization: Soochow University – sequence: 10 givenname: Chun‐Feng orcidid: 0000-0002-8364-0219 surname: Liu fullname: Liu, Chun‐Feng organization: Soochow University – sequence: 11 givenname: Li‐Fang orcidid: 0000-0001-8326-7779 surname: Hu fullname: Hu, Li‐Fang email: hulifang@suda.edu.cn organization: Soochow University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34811872$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1uFDEQhS0URH5gwwGQJTYIaYLt9tjuDVI0Cj_SSLCAtVXTXT1xcNuN3Z1odjkCW47BRThEToKTCSOIEF7YJfmrp6r3DsleiAEJecrZMS_nFTToj3k1F-IBOeBSy1mthdrb1dzsk8OczxnjumbVI7JfScO50eKAXP78cX31LW_C1Hh0geZpGBLmjJn2rklx7R14CtMYhzNYbyiElg4p9nEsRMApxRbXGDDB6GKgRQFoH6eM5W7R09jRj5C-uJBjuL76nmnrMkLGx-RhBz7jk7v3iHx-c_pp8W62_PD2_eJkOWukNGImhQbgNWs0qlrplss5a7qVVNVKG81ASamhMyignivNhMDWSNSiuLGSTFfVEXm91R2mVY9tg2FM4O2QXA9pYyM4-_dPcGd2HS-sUVporYrAizuBFL9OmEfbu1wM9xCw7GmFYrxMWnFT0Of30PM4pVDWKxRnTFQ1F4V69udEu1F-Z1KAl1ug2J9zwm6HcGZvArc3gdvbwAvM7sGNG2-zKNs4_-8Wvm25dB43_xG3J4vT5bbnFxH6waE |
CitedBy_id | crossref_primary_10_1007_s11064_023_03960_6 crossref_primary_10_1080_13880209_2022_2098344 crossref_primary_10_1016_j_xcrm_2024_101782 crossref_primary_10_52711_0974_360X_2024_00791 crossref_primary_10_1002_glia_24648 crossref_primary_10_3389_fnins_2024_1506358 crossref_primary_10_1186_s13024_024_00780_2 crossref_primary_10_3892_ijmm_2023_5253 crossref_primary_10_1111_cns_14763 crossref_primary_10_3389_fcell_2024_1510897 crossref_primary_10_1016_j_biopha_2022_113412 crossref_primary_10_1016_j_freeradbiomed_2024_02_023 crossref_primary_10_1089_ars_2022_0174 crossref_primary_10_1016_j_arr_2024_102214 crossref_primary_10_1016_j_bcp_2023_115698 crossref_primary_10_3389_fimmu_2023_1305933 crossref_primary_10_1016_j_cytogfr_2023_06_002 crossref_primary_10_1186_s13024_025_00827_y crossref_primary_10_3389_fnagi_2022_1039780 crossref_primary_10_1159_000541991 crossref_primary_10_3390_nu14194108 crossref_primary_10_1016_j_ijbiomac_2023_128311 crossref_primary_10_3390_biom13101435 crossref_primary_10_2174_0115672050336499240903113255 crossref_primary_10_1093_brain_awae177 crossref_primary_10_1016_j_neubiorev_2024_105834 crossref_primary_10_1007_s10753_024_02156_6 crossref_primary_10_1016_j_archger_2024_105738 crossref_primary_10_1016_j_ejphar_2024_177098 crossref_primary_10_3389_fcell_2025_1518991 crossref_primary_10_1016_j_jneuroim_2023_578047 crossref_primary_10_1016_j_semcancer_2024_07_005 crossref_primary_10_1007_s12035_022_03134_5 crossref_primary_10_1016_j_brainresbull_2024_110988 crossref_primary_10_3389_fnagi_2022_1065183 crossref_primary_10_3390_biomedicines10102649 crossref_primary_10_3390_cells11182908 crossref_primary_10_1080_01677063_2025_2465536 crossref_primary_10_1038_s41392_024_02071_0 crossref_primary_10_1152_jn_00497_2024 crossref_primary_10_1002_jev2_70018 crossref_primary_10_1007_s12264_022_00957_z crossref_primary_10_1111_jnc_15984 crossref_primary_10_1038_s41380_023_02242_5 crossref_primary_10_1038_s41392_024_01743_1 crossref_primary_10_1038_s41531_024_00650_0 crossref_primary_10_1016_j_apsb_2024_05_012 crossref_primary_10_1080_17460441_2023_2160440 crossref_primary_10_1093_brain_awac261 crossref_primary_10_1186_s40035_023_00392_8 crossref_primary_10_1016_j_intimp_2023_109976 crossref_primary_10_1016_j_intimp_2025_114201 crossref_primary_10_3389_fphar_2024_1408152 crossref_primary_10_1111_cns_14548 crossref_primary_10_4103_REGENMED_REGENMED_D_24_00005 crossref_primary_10_1016_j_brainres_2023_148320 crossref_primary_10_3389_fnagi_2022_919343 crossref_primary_10_3389_fncel_2022_903469 crossref_primary_10_1016_j_expneurol_2024_115007 crossref_primary_10_1016_j_brainres_2024_149414 crossref_primary_10_3389_fnagi_2024_1411104 crossref_primary_10_1007_s00401_024_02781_3 crossref_primary_10_1016_j_arr_2024_102232 crossref_primary_10_1155_2022_7165387 crossref_primary_10_4103_1673_5374_391334 crossref_primary_10_1007_s00011_022_01676_x crossref_primary_10_3390_ijms25020986 crossref_primary_10_3389_fcell_2024_1421360 crossref_primary_10_3390_ijms24108593 crossref_primary_10_1016_j_jmb_2022_167930 crossref_primary_10_1126_sciadv_abn1298 crossref_primary_10_3390_ijms25084330 crossref_primary_10_2147_JIR_S478683 crossref_primary_10_1016_j_heliyon_2025_e41981 crossref_primary_10_1016_j_jes_2023_09_036 crossref_primary_10_1186_s12974_024_03268_4 crossref_primary_10_3389_fnagi_2022_1018848 crossref_primary_10_1016_j_bbr_2022_114059 crossref_primary_10_1111_cns_70088 crossref_primary_10_2147_NDT_S476969 crossref_primary_10_3390_cells12040621 crossref_primary_10_1126_scitranslmed_adm8563 crossref_primary_10_1111_cpr_13278 crossref_primary_10_3389_fimmu_2022_1077335 crossref_primary_10_3233_JPD_223237 crossref_primary_10_3389_fnut_2024_1496616 crossref_primary_10_1016_j_neuropharm_2025_110346 crossref_primary_10_3390_biomedicines12051074 crossref_primary_10_1016_j_isci_2023_108130 |
Cites_doi | 10.1016/j.bbi.2020.10.010 10.1083/jcb.201701049 10.1074/jbc.M115.705095 10.15252/embj.201899430 10.1186/s13024-019-0335-3 10.3389/fnagi.2018.00378 10.1038/nature04724 10.1523/JNEUROSCI.0209-12.2012 10.1523/JNEUROSCI.1292-12.2012 10.1080/15548627.2017.1402992 10.1093/brain/awv346 10.1111/jnc.13266 10.1080/15548627.2020.1719723 10.1093/brain/awaa090 10.1038/s41593-019-0566-1 10.1523/JNEUROSCI.0692-05.2005 10.4161/auto.29647 10.1186/s40478-019-0865-5 10.1080/15548627.2018.1556946 10.1016/j.bbi.2017.07.159 10.1038/mp.2016.103 10.1016/j.tox.2017.06.011 10.1007/s00401-020-02227-6 10.1186/s13024-018-0241-0 10.1016/j.immuni.2007.05.022 10.1038/ncomms2534 10.1111/j.1471-4159.2010.06695.x 10.1038/s41467-020-15119-w 10.1038/s41593-018-0332-9 10.1080/15548627.2019.1635384 10.1016/j.neuron.2018.09.014 10.1038/nature10324 10.1073/pnas.2023418118 10.1080/15548627.2015.1100930 10.1007/978-1-4939-6786-5_23 10.1007/s00401-018-1907-y 10.1016/j.neurobiolaging.2006.11.013 10.1093/ijnp/pyu103 10.1002/glia.22437 10.1038/nature04723 10.1111/jnc.14222 10.1016/j.neuron.2013.06.046 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by Anatomical Society and John Wiley & Sons Ltd. 2021 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd. 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. published by Anatomical Society and John Wiley & Sons Ltd. – notice: 2021 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd. – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7TK 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1111/acel.13522 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Neurosciences Abstracts ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access (WRLC) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1474-9726 |
EndPage | n/a |
ExternalDocumentID | PMC8672776 34811872 10_1111_acel_13522 ACEL13522 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Six Major Talents Peak in Jiangsu Province funderid: YY‐053 – fundername: Discipline Construction Program of the Second Affiliated Hospital of Soochow University funderid: XKTJTD202004 – fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) – fundername: Jiangsu Province’s Young Medical Talents Program funderid: QNRC2016872 – fundername: National Natural Science Foundation of China funderid: 81571233; 81870997; 82171251 – fundername: National Key R&D Program of China funderid: 2016YFC1306000 – fundername: Six Major Talents Peak in Jiangsu Province grantid: YY‐053 – fundername: Jiangsu Province’s Young Medical Talents Program grantid: QNRC2016872 – fundername: ; grantid: 81571233; 81870997; 82171251 – fundername: Discipline Construction Program of the Second Affiliated Hospital of Soochow University grantid: XKTJTD202004 – fundername: National Key R&D Program of China grantid: 2016YFC1306000 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 23M 24P 2WC 31~ 36B 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FH 8UM 930 A01 A03 AAHHS AAZKR ABCQN ABDBF ABEML ABJNI ACCFJ ACCMX ACGFO ACGFS ACPRK ACSCC ACUHS ACXQS ADBBV ADKYN ADRAZ ADZMN ADZOD AEEZP AEGXH AENEX AEQDE AFBPY AFEBI AFKRA AFZJQ AIAGR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BAWUL BBNVY BCNDV BENPR BFHJK BHPHI BY8 CAG CCPQU COF CS3 D-6 D-7 D-E D-F DIK DR2 E3Z EAD EAP EBD EBS EJD EMB EMK EMOBN EST ESX F00 F01 F04 F5P FIJ GODZA GROUPED_DOAJ GX1 HCIFZ HF~ HOLLA HZ~ IAO IHE IHR IPNFZ ITC IX1 J0M K.9 KQ8 LC2 LC3 LH4 LK8 LP6 LP7 LW6 M48 M7P MK4 N04 N05 N9A O9- OBS OIG OK1 OVD P2P P2X P2Z P4B P4D PIMPY Q11 ROL RPM RX1 SUPJJ SV3 TEORI TR2 TUS UB1 V8K W8V WIN WQJ WRC WXI XG1 YFH YUY ~IA ~WT AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QP 7TK AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO GNUQQ PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c4482-427aa190c7e6967d1450cfb463b7870a6447af8e2a9567022ed84e72135b40733 |
IEDL.DBID | M48 |
ISSN | 1474-9718 1474-9726 |
IngestDate | Thu Aug 21 18:32:40 EDT 2025 Fri Jul 11 15:20:30 EDT 2025 Wed Aug 13 06:20:22 EDT 2025 Wed Feb 19 02:26:30 EST 2025 Tue Jul 01 01:49:17 EDT 2025 Thu Apr 24 22:53:44 EDT 2025 Wed Jan 22 16:26:58 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Parkinson's disease autophagy neuroinflammation microglia α-synuclein |
Language | English |
License | Attribution 2021 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4482-427aa190c7e6967d1450cfb463b7870a6447af8e2a9567022ed84e72135b40733 |
Notes | Hai‐Yue Tu, Bao‐Shi Yuan and Xiao‐Ou Hou are contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8326-7779 0000-0002-8364-0219 |
OpenAccessLink | https://www.proquest.com/docview/2610023912?pq-origsite=%requestingapplication% |
PMID | 34811872 |
PQID | 2610023912 |
PQPubID | 1036381 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8672776 proquest_miscellaneous_2601482318 proquest_journals_2610023912 pubmed_primary_34811872 crossref_primary_10_1111_acel_13522 crossref_citationtrail_10_1111_acel_13522 wiley_primary_10_1111_acel_13522_ACEL13522 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2021 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London – name: Hoboken |
PublicationTitle | Aging cell |
PublicationTitleAlternate | Aging Cell |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | 2019; 7 2011; 477 2018; 100 2013; 4 2020; 140 2020; 143 2017; 22 2013; 61 2019; 15 2015; 11 2019; 14 2020; 16 2019; 38 2017; 391 2020; 11 2018; 67 2012; 32 2005; 25 2021; 91 2019; 22 2013; 79 2018; 217 2008; 29 2010; 113 2021; 118 2019; 137 2018 2016; 139 2017; 1559 2020; 23 2014; 18 2017; 143 2016; 291 2018; 10 2006; 441 2014; 10 2018; 14 2007; 27 2018; 13 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 Young K. (e_1_2_9_43_1) 2018 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 61 start-page: 349 issue: 3 year: 2013 end-page: 360 article-title: Toll‐like receptor 4 is required for alpha‐synuclein dependent activation of microglia and astroglia publication-title: Glia – volume: 18 issue: 6 year: 2014 article-title: Toll‐like receptor expression in the blood and brain of patients and a mouse model of Parkinson's disease publication-title: International Journal of Neuropsychopharmacology – volume: 4 start-page: 1562 year: 2013 article-title: Neuron‐released oligomeric alpha‐synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia publication-title: Nature Communications – volume: 27 start-page: 135 issue: 1 year: 2007 end-page: 144 article-title: Toll‐like receptor 4 is a sensor for autophagy associated with innate immunity publication-title: Immunity – volume: 118 issue: 27 year: 2021 article-title: Autophagy deficiency modulates microglial lipid homeostasis and aggravates tau pathology and spreading publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 139 start-page: 481 issue: Pt 2 year: 2016 end-page: 494 article-title: Induction of alpha‐synuclein aggregate formation by CSF exosomes from patients with Parkinson's disease and dementia with Lewy bodies publication-title: Brain – volume: 38 issue: 4 year: 2019 article-title: Beclin1‐driven autophagy modulates the inflammatory response of microglia via NLRP3 publication-title: EMBO Journal – volume: 11 start-page: 2057 issue: 11 year: 2015 end-page: 2073 article-title: A pivotal role of FOS‐mediated BECN1/Beclin 1 upregulation in dopamine D2 and D3 receptor agonist‐induced autophagy activation publication-title: Autophagy – volume: 22 start-page: 1576 issue: 11 year: 2017 end-page: 1584 article-title: Deficient autophagy in microglia impairs synaptic pruning and causes social behavioral defects publication-title: Molecular Psychiatry – volume: 477 start-page: 107 issue: 7362 year: 2011 end-page: 110 article-title: Alpha‐synuclein occurs physiologically as a helically folded tetramer that resists aggregation publication-title: Nature – volume: 140 start-page: 831 issue: 6 year: 2020 end-page: 849 article-title: Neuronal activity modulates alpha‐synuclein aggregation and spreading in organotypic brain slice cultures and in vivo publication-title: Acta Neuropathologica – volume: 29 start-page: 739 issue: 5 year: 2008 end-page: 752 article-title: Alpha‐synuclein activates stress signaling protein kinases in THP‐1 cells and microglia publication-title: Neurobiology of Aging – volume: 32 start-page: 16503 issue: 46 year: 2012 end-page: 16509 article-title: Development and characterization of a new Parkinson's disease model resulting from impaired autophagy publication-title: Journal of Neuroscience – volume: 67 start-page: 77 year: 2018 end-page: 90 article-title: Impaired CBS‐H2S signaling axis contributes to MPTP‐induced neurodegeneration in a mouse model of Parkinson's disease publication-title: Brain, Behavior, and Immunity – volume: 391 start-page: 109 year: 2017 end-page: 115 article-title: Mitochondrial dysfunction in glial cells: Implications for neuronal homeostasis and survival publication-title: Toxicology – volume: 1559 start-page: 333 year: 2017 end-page: 342 article-title: Isolation of microglia and immune infiltrates from mouse and primate central nervous system publication-title: Methods in Molecular Biology – volume: 139 start-page: 91 issue: Suppl 1 year: 2016 end-page: 107 article-title: Genes associated with Parkinson's disease: Regulation of autophagy and beyond publication-title: Journal of Neurochemistry – volume: 14 start-page: 34 issue: 1 year: 2019 article-title: Microglia affect alpha‐synuclein cell‐to‐cell transfer in a mouse model of Parkinson's disease publication-title: Molecular Neurodegeneration – volume: 16 start-page: 38 issue: 1 year: 2020 end-page: 51 article-title: New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD publication-title: Autophagy – volume: 291 start-page: 4374 issue: 9 year: 2016 end-page: 4385 article-title: Effects of serine 129 phosphorylation on alpha‐synuclein aggregation, membrane association, and internalization publication-title: Journal of Biological Chemistry – volume: 14 start-page: 243 issue: 2 year: 2018 end-page: 251 article-title: Autophagy balances inflammation in innate immunity publication-title: Autophagy – volume: 441 start-page: 885 issue: 7095 year: 2006 end-page: 889 article-title: Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice publication-title: Nature – volume: 217 start-page: 315 issue: 1 year: 2018 end-page: 328 article-title: P38 MAPK inhibits autophagy and promotes microglial inflammatory responses by phosphorylating ULK1 publication-title: Journal of Cell Biology – volume: 11 start-page: 1386 issue: 1 year: 2020 article-title: Microglia clear neuron‐released alpha‐synuclein via selective autophagy and prevent neurodegeneration publication-title: Nature Communications – volume: 91 start-page: 324 year: 2021 end-page: 338 article-title: Impaired autophagy in microglia aggravates dopaminergic neurodegeneration by regulating NLRP3 inflammasome activation in experimental models of Parkinson's disease publication-title: Brain, Behavior, and Immunity – volume: 10 start-page: 378 year: 2018 article-title: A critical role of autophagy in regulating microglia polarization in neurodegeneration publication-title: Frontiers in Aging Neuroscience – volume: 7 start-page: 213 issue: 1 year: 2019 article-title: Organotypic slice culture model demonstrates inter‐neuronal spreading of alpha‐synuclein aggregates publication-title: Acta Neuropathologica Communications – volume: 32 start-page: 13454 issue: 39 year: 2012 end-page: 13469 article-title: Antibody‐aided clearance of extracellular alpha‐synuclein prevents cell‐to‐cell aggregate transmission publication-title: Journal of Neuroscience – volume: 113 start-page: 1263 issue: 5 year: 2010 end-page: 1274 article-title: Non‐classical exocytosis of alpha‐synuclein is sensitive to folding states and promoted under stress conditions publication-title: Journal of Neurochemistry – volume: 441 start-page: 880 issue: 7095 year: 2006 end-page: 884 article-title: Loss of autophagy in the central nervous system causes neurodegeneration in mice publication-title: Nature – volume: 23 start-page: 194 issue: 2 year: 2020 end-page: 208 article-title: Lipid‐droplet‐accumulating microglia represent a dysfunctional and proinflammatory state in the aging brain publication-title: Nature Neuroscience – volume: 10 start-page: 1761 issue: 10 year: 2014 end-page: 1775 article-title: Autophagy in microglia degrades extracellular beta‐amyloid fibrils and regulates the NLRP3 inflammasome publication-title: Autophagy – volume: 22 start-page: 401 issue: 3 year: 2019 end-page: 412 article-title: Mitophagy inhibits amyloid‐beta and tau pathology and reverses cognitive deficits in models of Alzheimer's disease publication-title: Nature Neuroscience – volume: 143 start-page: 1476 issue: 5 year: 2020 end-page: 1497 article-title: Microglial exosomes facilitate alpha‐synuclein transmission in Parkinson's disease publication-title: Brain – volume: 143 start-page: 584 issue: 5 year: 2017 end-page: 594 article-title: DJ‐1 deficiency impairs autophagy and reduces alpha‐synuclein phagocytosis by microglia publication-title: Journal of Neurochemistry – volume: 13 start-page: 9 issue: 1 year: 2018 article-title: Extracellular alpha‐synuclein levels are regulated by neuronal activity publication-title: Molecular Neurodegeneration – volume: 137 start-page: 103 issue: 1 year: 2019 end-page: 120 article-title: Picomolar concentrations of oligomeric alpha‐synuclein sensitizes TLR4 to play an initiating role in Parkinson's disease pathogenesis publication-title: Acta Neuropathologica – volume: 16 start-page: 2193 issue: 12 year: 2020 end-page: 2205 article-title: Microglial autophagy defect causes Parkinson disease‐like symptoms by accelerating inflammasome activation in mice publication-title: Autophagy – volume: 25 start-page: 6016 issue: 25 year: 2005 end-page: 6024 article-title: Intravesicular localization and exocytosis of alpha‐synuclein and its aggregates publication-title: Journal of Neuroscience – volume: 15 start-page: 753 issue: 5 year: 2019 end-page: 770 article-title: Tlr4 (toll‐like receptor 4) activation suppresses autophagy through inhibition of FOXO3 and impairs phagocytic capacity of microglia publication-title: Autophagy – volume: 100 start-page: 75 issue: 1 year: 2018 end-page: 90 e75 article-title: Abrogating native alpha‐synuclein tetramers in mice causes a L‐DOPA‐responsive motor syndrome closely resembling Parkinson's disease publication-title: Neuron – volume: 79 start-page: 873 issue: 5 year: 2013 end-page: 886 article-title: Microglial beclin 1 regulates retromer trafficking and phagocytosis and is impaired in Alzheimer's disease publication-title: Neuron – start-page: 57648 issue: 136 year: 2018 article-title: Quantifying microglia morphology from photomicrographs of immunohistochemistry prepared tissue using ImageJ publication-title: Journal of Visualized Experiments – ident: e_1_2_9_34_1 doi: 10.1016/j.bbi.2020.10.010 – ident: e_1_2_9_18_1 doi: 10.1083/jcb.201701049 – ident: e_1_2_9_36_1 doi: 10.1074/jbc.M115.705095 – ident: e_1_2_9_19_1 doi: 10.15252/embj.201899430 – ident: e_1_2_9_15_1 doi: 10.1186/s13024-019-0335-3 – ident: e_1_2_9_22_1 doi: 10.3389/fnagi.2018.00378 – ident: e_1_2_9_17_1 doi: 10.1038/nature04724 – ident: e_1_2_9_2_1 doi: 10.1523/JNEUROSCI.0209-12.2012 – ident: e_1_2_9_3_1 doi: 10.1523/JNEUROSCI.1292-12.2012 – start-page: 57648 issue: 136 year: 2018 ident: e_1_2_9_43_1 article-title: Quantifying microglia morphology from photomicrographs of immunohistochemistry prepared tissue using ImageJ publication-title: Journal of Visualized Experiments – ident: e_1_2_9_9_1 doi: 10.1080/15548627.2017.1402992 – ident: e_1_2_9_37_1 doi: 10.1093/brain/awv346 – ident: e_1_2_9_5_1 doi: 10.1111/jnc.13266 – ident: e_1_2_9_6_1 doi: 10.1080/15548627.2020.1719723 – ident: e_1_2_9_16_1 doi: 10.1093/brain/awaa090 – ident: e_1_2_9_31_1 doi: 10.1038/s41593-019-0566-1 – ident: e_1_2_9_28_1 doi: 10.1523/JNEUROSCI.0692-05.2005 – ident: e_1_2_9_7_1 doi: 10.4161/auto.29647 – ident: e_1_2_9_11_1 doi: 10.1186/s40478-019-0865-5 – ident: e_1_2_9_29_1 doi: 10.1080/15548627.2018.1556946 – ident: e_1_2_9_44_1 doi: 10.1016/j.bbi.2017.07.159 – ident: e_1_2_9_24_1 doi: 10.1038/mp.2016.103 – ident: e_1_2_9_35_1 doi: 10.1016/j.tox.2017.06.011 – ident: e_1_2_9_39_1 doi: 10.1007/s00401-020-02227-6 – ident: e_1_2_9_42_1 doi: 10.1186/s13024-018-0241-0 – ident: e_1_2_9_40_1 doi: 10.1016/j.immuni.2007.05.022 – ident: e_1_2_9_23_1 doi: 10.1038/ncomms2534 – ident: e_1_2_9_21_1 doi: 10.1111/j.1471-4159.2010.06695.x – ident: e_1_2_9_8_1 doi: 10.1038/s41467-020-15119-w – ident: e_1_2_9_12_1 doi: 10.1038/s41593-018-0332-9 – ident: e_1_2_9_27_1 doi: 10.1080/15548627.2019.1635384 – ident: e_1_2_9_33_1 doi: 10.1016/j.neuron.2018.09.014 – ident: e_1_2_9_4_1 doi: 10.1038/nature10324 – ident: e_1_2_9_41_1 doi: 10.1073/pnas.2023418118 – ident: e_1_2_9_38_1 doi: 10.1080/15548627.2015.1100930 – ident: e_1_2_9_14_1 doi: 10.1007/978-1-4939-6786-5_23 – ident: e_1_2_9_20_1 doi: 10.1007/s00401-018-1907-y – ident: e_1_2_9_25_1 doi: 10.1016/j.neurobiolaging.2006.11.013 – ident: e_1_2_9_10_1 doi: 10.1093/ijnp/pyu103 – ident: e_1_2_9_13_1 doi: 10.1002/glia.22437 – ident: e_1_2_9_26_1 doi: 10.1038/nature04723 – ident: e_1_2_9_32_1 doi: 10.1111/jnc.14222 – ident: e_1_2_9_30_1 doi: 10.1016/j.neuron.2013.06.046 |
SSID | ssj0017903 |
Score | 2.6212068 |
Snippet | The cell‐to‐cell transfer of α‐synuclein (α‐Syn) greatly contributes to Parkinson's disease (PD) pathogenesis and underlies the spread of α‐Syn pathology.... The cell-to-cell transfer of α-synuclein (α-Syn) greatly contributes to Parkinson's disease (PD) pathogenesis and underlies the spread of α-Syn pathology.... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e13522 |
SubjectTerms | AKT protein alpha-Synuclein - metabolism Animals Autophagy Autophagy - genetics Disease Models, Animal Dopamine receptors Inflammation Lysozyme Mice Microglia Movement disorders Neurodegeneration Neurodegenerative diseases neuroinflammation Neuroinflammatory Diseases - genetics Original Original Papers p62 Protein Parkinson Disease - genetics Parkinson's disease Phagocytosis Phosphorylation Substantia nigra Synuclein TLR4 protein Toll-like receptors TOR protein α‐synuclein |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3RatswFBVrwqAvY93WLl07VLaXDUxj5dpynkYWEsIoYYwF8mYkS04LmZPVDSNv-YS99jP6I_uIfsnuVRRvoSVvASuJ7XMlXekencPY-zbIlpVWBxnkOgAd2yAxQJZhArSN21muHct3GA9G8GUcjf2GW-lplZsx0Q3UZpbRHvk5ZvruIGYoPs1_BuQaRdVVb6Gxx-o4BCcY4fXPveHXb1UdQbadN3IIEoI2DsNeoJS4PCqzU3J9EGJ7SnqQZz6kS_6fxrp5qP-cPfMJJO-sET9gT2zxgj1dW0ouX7Jff-7uV7_LZUE6xVcFLxdzR3W1Jf9B3LvJFAOOqwXpCajJkqvC8Lmj5GELJ25p7MRJURNiHH9BcdodsNx55vBZzumgtDszdr-6Lbmv8Lxio37ve3cQeHMFRAUwqwYhlcJsIJOISCxNCFETgYG4pakPK8yTpMoTKxSuoCTO9NYkYHG92Io0kNPjIasVs8K-ZjyLlElCEM3MCIgjoyPs1BpA4FQnozxpsA-b95tmXnmcDDCm6WYFQlikDosGe1e1na_1Nh5tdbKBKfV9rkz_RUiDnVWXsbdQCUQVFt9VSgJqQJVPvKmjNarV39CR5DCR-G25hXfVgJS4t68UV5dOkTuheraMG-yji4wdd552ur0L9-l49zO8YfuC6DOOOXPCajfXC3uK-c-NfuuD_C_nRAiu priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSsQwEA6iCF7Ef9c_InpRKNg4bbrgRUQREfGg4K0kbboKa3exLrK3fQSvPoYv4kPskzgz7VYXRfBWyKQt-TLJJDPzjRC7TdCHTjvrJZBZD2zovCgFKhmmwLqwmWSWo3yvwvNbuLgL7ibE0SgXpuSHqC_cSDN4vSYFN7b4puQmcW2q2qBwAZ6i3Fqa5Qquax-CbnJdZB80eE1cgityUorj-eo7vh39sDF_hkp-N2F5DzqbE7OV8SiPS7TnxYTLF8R0WU6yvyhePt6Hg9einxNH8UMui16Xw1xdIR8p7q7VxskmTY-4BEyrL02eyi6H46EEE1umrsU01ISWxDcYSTcDTnK9HNnJJCVJc77YcPBWyMq7syRuz05vTs69qrACIgJoUYPSxqAlkGhEI9SpD8EBgoJDaEl_DdpI2mSRUwZPTxp3eZdG4PCseBhYoCqPy2Iy7-RuVcgkMGnkgzpIUgVhkNoAFdoCKNzmdJBFDbE3Gt84qVjHqfhFOx6dPgiLmLFoiJ1atltybfwqtTGCKa70rYjxHMhpuj42b9fNqCnk_jC5w7GKiTwNyOuJP7VSolp_htKR_Uhjbz2Gdy1ALNzjLfnDPbNxR-TL1mFD7PPM-OPP4-OT00t-WvuP8LqYURRIwzE0G2Ly-annNtESerZbPOE_AVbsCEs priority: 102 providerName: Wiley-Blackwell |
Title | α‐synuclein suppresses microglial autophagy and promotes neurodegeneration in a mouse model of Parkinson’s disease |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Facel.13522 https://www.ncbi.nlm.nih.gov/pubmed/34811872 https://www.proquest.com/docview/2610023912 https://www.proquest.com/docview/2601482318 https://pubmed.ncbi.nlm.nih.gov/PMC8672776 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTttAEB5RUKVeKgr9SYFoq3JpJVd4M_Y6B1RRFISqFiHUSNysXXudIqUmxURtbjwCVx6DF-lD8CTMTOzQCFT1ElnatWPvt-Od8cx-H8BmF03HG--CDAsXoIt9kOTIkmEanY-7WeGkyvcg3u_j5-PoeAEa_c56AKsHQzvWk-qfDT_8_jn5SAa_3VTl2MwPWb9B06t4iVYkwxIOX_Eum2C6opAcosGgSy_jmqZ0_tz5hemet3m_aPJvZ1ZWo71leFq7kWpnivszWPDlCjyeCktOVuHXn-ubi8tqUjJb8UmpqvFICl59pX5wBd5gSNNO2TGzCtjBRNkyVyMpzKMeQnGZ-4EQUjNuiq5gFX8j8EqUc9RpoXi7tOwcu7m4qlSd53kO_b3et939oJZYIGyQfGvUxlryCTJDuMQmDzHaIngw7ji2ZEvekrFF4rWlOMrQeu_zBD1FjZ3IIes9voDF8rT0r0Blkc2TEPVWlmuMo9xFZNoOUdOCZ6IiacG7ZnzTrOYfZxmMYdrEIYxFKli04O2s72jKuvFgr_UGprSZOClFhLJhN6TmN7NmshlOhNjS01ilTKOGnP-km3o5RXX2N7wxOUwMnW3m8J51YD7u-Zby5Lvwciec1TZxC97LzPjHnac7u70vcvT6v550DZ5orqWRMpp1WDw_G_sNcobOXRseaTxsw9Kn3sHhUVs-KfDvkW6LDdwCGkUQEg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VVAguiPIbKGURcADJot6Mvc4BoVJSpTRECLVSb-6uvQ6VghNwoyq3PkKvfQkkXoSH6JMws_6BqKi33ix5Y092ZndmPTPfB_Cii6pjlTVegpnx0ITWi1JkyjCJxobdJDOuyncY9vfw436wvwQ_614YLqus90S3UaeThL-Rv6FI3zVi-vLd9LvHrFGcXa0pNEqz2LHzYzqyFW-3P5B-X0q51dvd7HsVqwCJgxROolRakxtMFIkSqtTHYJ0kwrBj2Hg1BQhKZ5GVmo4OilycTSO0dFDqBAaZ4pCeew2WsUOhQguW3_eGn780eQvVdVzMPir0urTtV4CoXDukEztmlgkpF13ghbj2Ynnmv2Gz83tbt-FWFbCKjdLCVmDJ5nfgeklhOb8Lx79_nZ-cFvOccZEPc1HMpq601hbiG9f6jcZk4ELPGL9Aj-ZC56mYuhJAGuHANFM7ctDXbCGCnqAFf42wwnH0iEkmuDHb9aidn5wVosoo3YO9K5n2-9DKJ7l9CCIJdBr5KNeTVGIYpCagTcQgSnKtKsiiNryq5zdOKqRzJtwYx_WJh3URO1204Xkzdlrie_x31Gqtprha40X81yLb8Ky5TauTUy46tzRXMQO2IWdaSagHpVab13ALtB8p-rVa0HczgJG_F-_kh18dAnjE-XMVtuG1s4xLJI83NnsDd_Xo8v_wFG70dz8N4sH2cOcx3JRcuuOqdlahdfRjZp9Q7HVk1iqDF3Bw1WvsDzIKQp8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwELYQFVUviPJTFigYwaWVIhHvJM5KvSBgBS1CHEDiFtmxsyAtYUVYob3xCFz7GH2RPgRP0plJNrCiQuIWyeMk8uexx56Zb4TY7oBue-1tkEFuA7CxDxIHVDJMgfVxJ8stR_mexIfn8PMiupgSP8a5MBU_RHPhRprB6zUp-MDlL5TcZL5PVRsULsAfyNtH81vBaeND0B2uixyChqCDS3BNTkpxPM99J7ejVzbm61DJlyYs70HdOTFbG49yt0L7s5jyxbyYqcpJjhbE_d8_Tw-P5aggjuKrQpbDAYe5-lJeU9xdr4-TTZohcQmY3kiawskBh-OhBBNbOt9jGmpCS-IbjKSbAS-5Xo68ySUlSXO-2NPD71LW3p1Fcd49ONs7DOrCCogIoEUNShuDlkCmEY1YuxCiHQQF4rYl_TVoI2mTJ14ZPD1p3OW9S8DjWbEdWaAqj0tiurgp_LKQWWRcEoLayZyCOHI2QoW2AAq3OR3lSUt8G49vmtWs41T8op-OTx-ERcpYtMRWIzuouDb-K7U2himt9a1M8RzIabohNm82zagp5P4whcexSok8DcjriT_1pUK1-QylI4eJxt56Au9GgFi4J1uKq0tm407Il63jlvjOM-ONP0939w6O-WnlPcIb4uPpfjc9Pjr5tSo-KYqp4XCaNTF9dzv0X9EourPrPPf_Af1jCuk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%CE%B1%E2%80%90synuclein+suppresses+microglial+autophagy+and+promotes+neurodegeneration+in+a+mouse+model+of+Parkinson%E2%80%99s+disease&rft.jtitle=Aging+cell&rft.au=Tu%2C+Hai%E2%80%90Yue&rft.au=Yuan%2C+Bao%E2%80%90Shi&rft.au=Hou%2C+Xiao%E2%80%90Ou&rft.au=Zhang%2C+Xiao%E2%80%90Jun&rft.date=2021-12-01&rft.issn=1474-9718&rft.eissn=1474-9726&rft.volume=20&rft.issue=12&rft_id=info:doi/10.1111%2Facel.13522&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_acel_13522 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-9718&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-9718&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-9718&client=summon |