Optimal design of polymer-based microneedle for improved collection of whole blood from human fingers

A highly applicable theoretical model and a simple, inexpensive mould-based method is introduced to design and fabricate the pyramid-shaped SU-8 microneedle. The main purpose is to be able to extract blood at point-of-care sites from up to 80% of typical nurse-home patients with a disorder of blood...

Full description

Saved in:
Bibliographic Details
Published inMicro & nano letters Vol. 9; no. 10; pp. 644 - 649
Main Authors Le Thanh, Hoa, Le The, Hai, Nguyen, Vy, Tran-Minh, Nhut, Wang, Kaiying, Karlsen, Frank
Format Journal Article
LanguageEnglish
Published Stevenage The Institution of Engineering and Technology 01.10.2014
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A highly applicable theoretical model and a simple, inexpensive mould-based method is introduced to design and fabricate the pyramid-shaped SU-8 microneedle. The main purpose is to be able to extract blood at point-of-care sites from up to 80% of typical nurse-home patients with a disorder of blood circulation in fingers and toes (Raynaud's phenomenon). Geometry optimisation was conducted based on the study of fracture force, which can be accurately predicted by the proposed theoretical model. The accuracy of the proposed theoretical model was confirmed by the finite element study and practical measurement. For practical verification, measurement of fracture force was conducted on fabricated SU-8 microneedles, including a 1470 µm-tall pyramid-shaped microneedle and a 1515 µm-tall traditional-shaped microneedle. The measurement results confirmed the improved strength of the proposed pyramid-shaped microneedle, especially of the pyramidal tips, which can exhibit significantly higher applied force with 2.82 N compared with the 0.51 N bevel tip. Practical tests of skin penetrability on human fingers showed that the microneedles fabricated with the proposed geometry may be sharp and strong enough to safely puncture human skin and long enough to reach the blood vessels.
AbstractList A highly applicable theoretical model and a simple, inexpensive mould-based method is introduced to design and fabricate the pyramid-shaped SU-8 microneedle. The main purpose is to be able to extract blood at point-of-care sites from up to 80% of typical nurse-home patients with a disorder of blood circulation in fingers and toes (Raynaud's phenomenon). Geometry optimisation was conducted based on the study of fracture force, which can be accurately predicted by the proposed theoretical model. The accuracy of the proposed theoretical model was confirmed by the finite element study and practical measurement. For practical verification, measurement of fracture force was conducted on fabricated SU-8 microneedles, including a 1470 µm-tall pyramid-shaped microneedle and a 1515 µm-tall traditional-shaped microneedle. The measurement results confirmed the improved strength of the proposed pyramid-shaped microneedle, especially of the pyramidal tips, which can exhibit significantly higher applied force with 2.82 N compared with the 0.51 N bevel tip. Practical tests of skin penetrability on human fingers showed that the microneedles fabricated with the proposed geometry may be sharp and strong enough to safely puncture human skin and long enough to reach the blood vessels.
A highly applicable theoretical model and a simple, inexpensive mould‐based method is introduced to design and fabricate the pyramid‐shaped SU‐8 microneedle. The main purpose is to be able to extract blood at point‐of‐care sites from up to 80% of typical nurse‐home patients with a disorder of blood circulation in fingers and toes (Raynaud's phenomenon). Geometry optimisation was conducted based on the study of fracture force, which can be accurately predicted by the proposed theoretical model. The accuracy of the proposed theoretical model was confirmed by the finite element study and practical measurement. For practical verification, measurement of fracture force was conducted on fabricated SU‐8 microneedles, including a 1470 µm‐tall pyramid‐shaped microneedle and a 1515 µm‐tall traditional‐shaped microneedle. The measurement results confirmed the improved strength of the proposed pyramid‐shaped microneedle, especially of the pyramidal tips, which can exhibit significantly higher applied force with 2.82 N compared with the 0.51 N bevel tip. Practical tests of skin penetrability on human fingers showed that the microneedles fabricated with the proposed geometry may be sharp and strong enough to safely puncture human skin and long enough to reach the blood vessels.
A highly applicable theoretical model and a simple, inexpensive mould-based method is introduced to design and fabricate the pyramid-shaped SU-8 microneedle. The main purpose is to be able to extract blood at point-of-care sites from up to 80% of typical nurse-home patients with a disorder of blood circulation in fingers and toes (Raynaud's phenomenon). Geometry optimisation was conducted based on the study of fracture force, which can be accurately predicted by the proposed theoretical model. The accuracy of the proposed theoretical model was confirmed by the finite element study and practical measurement. For practical verification, measurement of fracture force was conducted on fabricated SU-8 microneedles, including a 1470 mu m-tall pyramid-shaped microneedle and a 1515 mu m-tall traditional-shaped microneedle. The measurement results confirmed the improved strength of the proposed pyramid-shaped microneedle, especially of the pyramidal tips, which can exhibit significantly higher applied force with 2.82 N compared with the 0.51 N bevel tip. Practical tests of skin penetrability on human fingers showed that the microneedles fabricated with the proposed geometry may be sharp and strong enough to safely puncture human skin and long enough to reach the blood vessels.
Author Karlsen, Frank
Tran-Minh, Nhut
Le Thanh, Hoa
Nguyen, Vy
Le The, Hai
Wang, Kaiying
Author_xml – sequence: 1
  givenname: Hoa
  surname: Le Thanh
  fullname: Le Thanh, Hoa
  email: thanhhoa.hcmut@gmail.com
  organization: Department of Micro and Nano Systems Technology (IMST), Buskerud and Vestfold University College, Postboks 235, 3603 Kongsberg, Norway
– sequence: 2
  givenname: Hai
  surname: Le The
  fullname: Le The, Hai
  organization: Department of Micro and Nano Systems Technology (IMST), Buskerud and Vestfold University College, Postboks 235, 3603 Kongsberg, Norway
– sequence: 3
  givenname: Vy
  surname: Nguyen
  fullname: Nguyen, Vy
  organization: Department of Micro and Nano Systems Technology (IMST), Buskerud and Vestfold University College, Postboks 235, 3603 Kongsberg, Norway
– sequence: 4
  givenname: Nhut
  surname: Tran-Minh
  fullname: Tran-Minh, Nhut
  organization: Department of Micro and Nano Systems Technology (IMST), Buskerud and Vestfold University College, Postboks 235, 3603 Kongsberg, Norway
– sequence: 5
  givenname: Kaiying
  surname: Wang
  fullname: Wang, Kaiying
  organization: Department of Micro and Nano Systems Technology (IMST), Buskerud and Vestfold University College, Postboks 235, 3603 Kongsberg, Norway
– sequence: 6
  givenname: Frank
  surname: Karlsen
  fullname: Karlsen, Frank
  organization: Department of Micro and Nano Systems Technology (IMST), Buskerud and Vestfold University College, Postboks 235, 3603 Kongsberg, Norway
BookMark eNp90EtPxCAUBWBiNPG5dE9iTHTR8UJpaZc68ZWMunFPaHtRDC0VZjTz72UcFxNjXEHCd-Fw9sn24Ack5JjBhIGoL_rBTTgwMQEu-BbZY7KADITItzf2u2Q_xjcAIbms9wg-jXPba0c7jPZloN7Q0btljyFrdMSO9rYN6RnsHFLjA7X9GPxHOmi9c9jOrf8e-nz1CTTO-46a4Hv6uuj1QI0dXjDEQ7JjtIt49LMekOeb6-fpXTZ7ur2fXs6yVoiKZ3mjc9FwXZe5EEwaLmRRpR8VdSkAsS6bVrMca9RMNKaSLK-EQWhN15i6avMDcra-NkV8X2Ccq97GFp3TA_pFVKwsAWRecJnoyS_65hdhSOGSElDKooYiqWytUgcxBjRqDKmtsFQM1KpzlTpXq87VqvPky7X_tA6X_2P18HjJr24ACr4aPF0PWtxI8vA42_BjZ5I7_8P9HeYLtBigOA
CitedBy_id crossref_primary_10_1007_s11042_016_3300_y
crossref_primary_10_3390_mi14030615
crossref_primary_10_3390_mi15050619
crossref_primary_10_1016_j_apmt_2018_08_013
crossref_primary_10_1016_j_biomaterials_2019_119740
crossref_primary_10_1109_JMEMS_2015_2424926
Cites_doi 10.1007/s00542‐009‐0883‐5
10.1089/152091501300209606
10.1146/annurev.bioeng.2.1.289
10.1016/j.sna.2003.11.008
10.1088/0960‐1317/7/3/010
10.1023/A:1009907306184
10.1007/s10544‐005‐6077‐8
10.1088/0960‐1317/14/4/021
10.1109/JMEMS.2007.899339
10.1016/S0142‐9612(02)00565‐3
10.1007/s10544‐012‐9683‐2
10.1201/b11377
10.1088/0960‐1317/16/5/012
10.1109/JSEN.2008.2006261
10.1109/NEMS.2014.6908843
10.1109/TBME.2005.845240
10.1117/1.2117108
10.1088/0960‐1317/20/6/064006
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2014 The Institution of Engineering and Technology
Copyright The Institution of Engineering & Technology Oct 2014
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2014 The Institution of Engineering and Technology
– notice: Copyright The Institution of Engineering & Technology Oct 2014
DBID AAYXX
CITATION
7TB
7U5
8FD
F28
FR3
L7M
7SR
JG9
DOI 10.1049/mnl.2014.0242
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
Engineered Materials Abstracts
Materials Research Database
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Materials Research Database
Engineered Materials Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1750-0443
EndPage 649
ExternalDocumentID 3538298401
10_1049_mnl_2014_0242
MNA2BF00522
Genre shortCommunication
Feature
GroupedDBID -
0R
123
24P
29M
4.4
6IK
8FE
8FG
AAJGR
ABJCF
ACGFS
ACIWK
AENEX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BFFAM
BGLVJ
CS3
D1I
DU5
EBS
EJD
F5P
HCIFZ
HZ
IFIPE
IPLJI
JAVBF
KB.
L6V
LAI
LOTEE
LXI
LXU
M43
M7S
NADUK
NXXTH
O9-
OCL
P2P
P62
PDBOC
PTHSS
RIE
RIG
RNS
RUI
S0W
UNMZH
UNR
---
0R~
0ZK
1OC
AAHHS
AAHJG
ABMDY
ABQXS
ACCFJ
ACESK
ACXQS
ADEYR
AEEZP
AEQDE
AIWBW
AJBDE
ALUQN
AVUZU
CCPQU
GROUPED_DOAJ
HZ~
IAO
IFBGX
IGS
IHR
INH
MCNEO
M~E
OK1
ROL
AAYXX
CITATION
7TB
7U5
8FD
F28
FR3
L7M
7SR
JG9
ID FETCH-LOGICAL-c4482-3ba34b2a9634417f2475820159640ee96bca13e9ea14bf871384fe0cfdbf98c3
IEDL.DBID 24P
ISSN 1750-0443
IngestDate Fri Aug 16 21:02:37 EDT 2024
Fri Sep 13 10:14:03 EDT 2024
Fri Aug 23 02:16:18 EDT 2024
Sat Aug 24 01:04:44 EDT 2024
Tue Jan 05 21:53:10 EST 2021
Thu May 09 18:25:59 EDT 2019
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords needles
inexpensive mould-based method
force measurement
skin
size 1470 mum
finite element study
fracture
blood circulation
biomedical measurement
nurse-home patients
Raynaud phenomenon
practical verification
polymers
whole blood extraction
point-of-care sites
safely puncture human skin
skin penetrability
human fingers
practical measurement
blood vessels
finite element analysis
blood
haemorheology
fracture force measurement
optimal design
geometry optimisation
size 1515 mum
pyramid-shaped SU-8 microneedle
haemodynamics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4482-3ba34b2a9634417f2475820159640ee96bca13e9ea14bf871384fe0cfdbf98c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/mnl.2014.0242
PQID 1640675905
PQPubID 1916337
PageCount 6
ParticipantIDs proquest_journals_1640675905
crossref_primary_10_1049_mnl_2014_0242
iet_journals_10_1049_mnl_2014_0242
proquest_miscellaneous_1660073527
wiley_primary_10_1049_mnl_2014_0242_MNA2BF00522
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 20141000
October 2014
2014-10-00
20141001
PublicationDateYYYYMMDD 2014-10-01
PublicationDate_xml – month: 10
  year: 2014
  text: 20141000
PublicationDecade 2010
PublicationPlace Stevenage
PublicationPlace_xml – name: Stevenage
PublicationTitle Micro & nano letters
PublicationYear 2014
Publisher The Institution of Engineering and Technology
John Wiley & Sons, Inc
Publisher_xml – name: The Institution of Engineering and Technology
– name: John Wiley & Sons, Inc
References Kim, K.; Park, D.S.; Lu, H.M.; Che, W.; Kim, K.; Lee, J.B.; Ahn, C.H. (C13) 2004; 14
McAllister, D.V.; Allen, M.G.; Prausnitz, M.R. (C1) 2002; 2
Kim, K.; Park, D.S.; Lu, H.M.; Che, W.; Kim, K.; Lee, J.B.; Ahn, C.H. (C8) 2004; 14
Li, B.; Liu, M.; Chen, Q. (C22) 2005; 4
Zhang, P.; Dalton, C.; Jullien, G.A. (C4) 2009; 15
Cho, S.H.; Lu, H.M.; Cauller, L.; Romero-Ortega, M.I.; Lee, J.B.; Hughes, G.A. (C18) 2008; 8
Kuo, S.C.; Chou, Y. (C7) 2004; 7
Ji, J.; Tay, F.E.; Miao, J.; Iliescu, C. (C11) 2006; 16
Lorenz, H.; Despont, M.; Fahrni, N.; LaBianca, N.; Renaud, P.; Vettiger, P. (C16) 1997; 7
Voskerician, G.; Shive, M.S.; Shawgo, R.S.; Recum, H.V.; Anderson, J.M.; Cima, M.J.; Langer, R. (C17) 2003; 24
Mukerjee, E.; Collins, S.; Isseroff, R.; Smith, R. (C5) 2004; 114
Chaudhri, B.P.; Ceyssens, F.; De Moor, P.; Van Hoof, C.; Puers, R. (C14) 2010; 20
Luttge, R.; Berenschot, E.J.; de Boer, M.J.; Altpeter, D.M.; Vrouwe, E.X.; van den Berg, A.; Elwenspoek, M. (C19) 2007; 16
Zahn, J.; Talbot, N.; Liepmann, D.; Pisano, A. (C9) 2000; 2
Davis, S.P.; Martanto, W.; Allen, M.G.; Prausnitz, M.R. (C15) 2005; 52
Tsuchiya, K.; Nakanishi, N.; Uetsuji, Y.; Nakamachi, E. (C12) 2005; 7
Hamilton, J.G. (C2) 1995; 41
Tsuchiya, K.; Nakanishi, N.; Nakamachi, E. (C10) 2005; 5651
Prausnitz, M.R. (C3) 2001; 3
Li, C.G.; Lee, C.Y.; Lee, K.; Jung, H. (C6) 2013; 15
1995; 41
2010; 20
2013; 15
2004; 114
2011
2004; 14
2006; 16
2004; 7
2003; 24
2002; 2
2005; 52
2005; 4
2005; 7
2008; 8
2001; 3
2000; 2
2014
2005; 5651
2009; 15
1997; 7
2007; 16
e_1_2_7_5_2
e_1_2_7_4_2
Kuo S.C. (e_1_2_7_8_2) 2004; 7
e_1_2_7_2_2
e_1_2_7_9_2
e_1_2_7_7_2
e_1_2_7_6_2
e_1_2_7_19_2
e_1_2_7_18_2
Hamilton J.G. (e_1_2_7_3_2) 1995; 41
e_1_2_7_17_2
Mitra S.K. (e_1_2_7_22_2) 2011
e_1_2_7_16_2
e_1_2_7_15_2
e_1_2_7_14_2
e_1_2_7_13_2
e_1_2_7_12_2
e_1_2_7_23_2
e_1_2_7_10_2
e_1_2_7_21_2
e_1_2_7_20_2
Tsuchiya K. (e_1_2_7_11_2) 2005; 5651
References_xml – volume: 2
  start-page: 295
  year: 2000
  end-page: 303
  ident: C9
  article-title: Microfabricated polysilicon microneedles for minimally invasive biomedical devices
  publication-title: Biomedical Microdevices
  contributor:
    fullname: Zahn, J.; Talbot, N.; Liepmann, D.; Pisano, A.
– volume: 7
  start-page: 347
  issue: 4
  year: 2005
  end-page: 353
  ident: C12
  article-title: Development of blood extraction system for health monitoring system
  publication-title: Biomed. Microdevices
  contributor:
    fullname: Tsuchiya, K.; Nakanishi, N.; Uetsuji, Y.; Nakamachi, E.
– volume: 7
  start-page: 121
  issue: 3
  year: 1997
  ident: C16
  article-title: SU-8: a low-cost negative resist for MEMS
  publication-title: J. Micromech. Microeng.
  contributor:
    fullname: Lorenz, H.; Despont, M.; Fahrni, N.; LaBianca, N.; Renaud, P.; Vettiger, P.
– volume: 16
  start-page: 872
  issue: 4
  year: 2007
  end-page: 884
  ident: C19
  article-title: Integrated lithographic molding for microneedle-based devices
  publication-title: J. Microelectromech. Syst.
  contributor:
    fullname: Luttge, R.; Berenschot, E.J.; de Boer, M.J.; Altpeter, D.M.; Vrouwe, E.X.; van den Berg, A.; Elwenspoek, M.
– volume: 16
  start-page: 958
  issue: 5
  year: 2006
  ident: C11
  article-title: Microfabricated microneedle with porous tip for drug delivery
  publication-title: J. Micromech. Microeng.
  contributor:
    fullname: Ji, J.; Tay, F.E.; Miao, J.; Iliescu, C.
– volume: 7
  start-page: 95
  year: 2004
  end-page: 98
  ident: C7
  article-title: A novel polymer microneedle arrays and PDMS micromolding
  publication-title: Tamkang J. Sci. Eng.
  contributor:
    fullname: Kuo, S.C.; Chou, Y.
– volume: 24
  start-page: 1959
  issue: 11
  year: 2003
  end-page: 1967
  ident: C17
  article-title: Biocompatibility and biofouling of MEMS drug delivery devices
  publication-title: Biomaterials
  contributor:
    fullname: Voskerician, G.; Shive, M.S.; Shawgo, R.S.; Recum, H.V.; Anderson, J.M.; Cima, M.J.; Langer, R.
– volume: 15
  start-page: 17
  issue: 1
  year: 2013
  end-page: 25
  ident: C6
  article-title: An optimized hollow microneedle for minimally invasive blood extraction
  publication-title: Biomed. Microdevices
  contributor:
    fullname: Li, C.G.; Lee, C.Y.; Lee, K.; Jung, H.
– volume: 14
  start-page: 597
  issue: 4
  year: 2004
  end-page: 603
  ident: C8
  article-title: A tapered hollow metallic microneedle array using backside exposure of SU-8
  publication-title: J. Micromech. Microengineering
  contributor:
    fullname: Kim, K.; Park, D.S.; Lu, H.M.; Che, W.; Kim, K.; Lee, J.B.; Ahn, C.H.
– volume: 114
  start-page: 267
  issue: 2
  year: 2004
  end-page: 275
  ident: C5
  article-title: Microneedle array for transdermal biological fluid extraction and in situ analysis
  publication-title: Sens. Actuators A, Phys.
  contributor:
    fullname: Mukerjee, E.; Collins, S.; Isseroff, R.; Smith, R.
– volume: 8
  start-page: 1830
  issue: 11
  year: 2008
  end-page: 1836
  ident: C18
  article-title: Biocompatible SU-8-based microprobes for recording neural spike signals from regenerated peripheral nerve fibers
  publication-title: IEEE Sens. J.
  contributor:
    fullname: Cho, S.H.; Lu, H.M.; Cauller, L.; Romero-Ortega, M.I.; Lee, J.B.; Hughes, G.A.
– volume: 15
  start-page: 1073
  issue: 7
  year: 2009
  end-page: 1082
  ident: C4
  article-title: Design and fabrication of MEMS-based microneedle arrays for medical applications
  publication-title: Microsyst. Technol.
  contributor:
    fullname: Zhang, P.; Dalton, C.; Jullien, G.A.
– volume: 14
  start-page: 597
  issue: 4
  year: 2004
  ident: C13
  article-title: A tapered hollow metallic microneedle array using backside exposure of SU-8
  publication-title: J. Micromech. Microeng.
  contributor:
    fullname: Kim, K.; Park, D.S.; Lu, H.M.; Che, W.; Kim, K.; Lee, J.B.; Ahn, C.H.
– volume: 20
  start-page: 064006
  issue: 6
  year: 2010
  ident: C14
  article-title: A high aspect ratio SU-8 fabrication technique for hollow microneedles for transdermal drug delivery and blood extraction
  publication-title: J. Micromech. Microeng.
  contributor:
    fullname: Chaudhri, B.P.; Ceyssens, F.; De Moor, P.; Van Hoof, C.; Puers, R.
– volume: 52
  start-page: 909
  issue: 5
  year: 2005
  end-page: 915
  ident: C15
  article-title: Hollow metal microneedles for insulin delivery to diabetic rats
  publication-title: IEEE Trans. Biomed. Eng.
  contributor:
    fullname: Davis, S.P.; Martanto, W.; Allen, M.G.; Prausnitz, M.R.
– volume: 2
  start-page: 289
  issue: 1
  year: 2002
  end-page: 313
  ident: C1
  article-title: Microfabricated microneedles for gene and drug delivery
  publication-title: Ann. Rev. Biomed. Eng.
  contributor:
    fullname: McAllister, D.V.; Allen, M.G.; Prausnitz, M.R.
– volume: 4
  start-page: 043008
  issue: 4
  year: 2005
  end-page: 043008
  ident: C22
  article-title: Low-stress ultra-thick SU-8 UV photolithography process for MEMS
  publication-title: J. Micro/Nanolithography MEMS MOEMS
  contributor:
    fullname: Li, B.; Liu, M.; Chen, Q.
– volume: 3
  start-page: 233
  issue: 2
  year: 2001
  end-page: 236
  ident: C3
  article-title: Analysis: overcoming skin's barrier: the search for effective and user-friendly drug delivery
  publication-title: Diabetes Technol. Ther.
  contributor:
    fullname: Prausnitz, M.R.
– volume: 5651
  start-page: 379
  year: 2005
  end-page: 388
  ident: C10
  article-title: Development of blood extraction system designed by female mosquito's blood sampling mechanism for bio-MEMS
  publication-title: Biomed. Appl. Micro and Nanoeng.
  contributor:
    fullname: Tsuchiya, K.; Nakanishi, N.; Nakamachi, E.
– volume: 41
  start-page: 169
  issue: 2
  year: 1995
  end-page: 175
  ident: C2
  article-title: Needle phobia: a neglected diagnosis
  publication-title: J. Fam. Pract.
  contributor:
    fullname: Hamilton, J.G.
– volume: 24
  start-page: 1959
  issue: 11
  year: 2003
  end-page: 1967
  article-title: Biocompatibility and biofouling of MEMS drug delivery devices
  publication-title: Biomaterials
– year: 2011
– volume: 15
  start-page: 1073
  issue: 7
  year: 2009
  end-page: 1082
  article-title: Design and fabrication of MEMS‐based microneedle arrays for medical applications
  publication-title: Microsyst. Technol.
– volume: 7
  start-page: 347
  issue: 4
  year: 2005
  end-page: 353
  article-title: Development of blood extraction system for health monitoring system
  publication-title: Biomed. Microdevices
– start-page: 430
  year: 2014
  end-page: 435
  article-title: A novel design of hollow microneedle for blood extraction
– volume: 20
  start-page: 064006
  issue: 6
  year: 2010
  article-title: A high aspect ratio SU‐8 fabrication technique for hollow microneedles for transdermal drug delivery and blood extraction
  publication-title: J. Micromech. Microeng.
– volume: 16
  start-page: 872
  issue: 4
  year: 2007
  end-page: 884
  article-title: Integrated lithographic molding for microneedle‐based devices
  publication-title: J. Microelectromech. Syst.
– volume: 7
  start-page: 95
  year: 2004
  end-page: 98
  article-title: A novel polymer microneedle arrays and PDMS micromolding
  publication-title: Tamkang J. Sci. Eng.
– volume: 5651
  start-page: 379
  year: 2005
  end-page: 388
  article-title: Development of blood extraction system designed by female mosquito's blood sampling mechanism for bio‐MEMS
  publication-title: Biomed. Appl. Micro and Nanoeng.
– volume: 4
  start-page: 043008
  issue: 4
  year: 2005
  end-page: 043008
  article-title: Low‐stress ultra‐thick SU‐8 UV photolithography process for MEMS
  publication-title: J. Micro/Nanolithography MEMS MOEMS
– volume: 41
  start-page: 169
  issue: 2
  year: 1995
  end-page: 175
  article-title: Needle phobia: a neglected diagnosis
  publication-title: J. Fam. Pract.
– volume: 2
  start-page: 289
  issue: 1
  year: 2002
  end-page: 313
  article-title: Microfabricated microneedles for gene and drug delivery
  publication-title: Ann. Rev. Biomed. Eng.
– volume: 7
  start-page: 121
  issue: 3
  year: 1997
  article-title: SU‐8: a low‐cost negative resist for MEMS
  publication-title: J. Micromech. Microeng.
– volume: 2
  start-page: 295
  year: 2000
  end-page: 303
  article-title: Microfabricated polysilicon microneedles for minimally invasive biomedical devices
  publication-title: Biomedical Microdevices
– volume: 16
  start-page: 958
  issue: 5
  year: 2006
  article-title: Microfabricated microneedle with porous tip for drug delivery
  publication-title: J. Micromech. Microeng.
– volume: 3
  start-page: 233
  issue: 2
  year: 2001
  end-page: 236
  article-title: Analysis: overcoming skin's barrier: the search for effective and user‐friendly drug delivery
  publication-title: Diabetes Technol. Ther.
– volume: 8
  start-page: 1830
  issue: 11
  year: 2008
  end-page: 1836
  article-title: Biocompatible SU‐8‐based microprobes for recording neural spike signals from regenerated peripheral nerve fibers
  publication-title: IEEE Sens. J.
– volume: 14
  start-page: 597
  issue: 4
  year: 2004
  article-title: A tapered hollow metallic microneedle array using backside exposure of SU‐8
  publication-title: J. Micromech. Microeng.
– volume: 15
  start-page: 17
  issue: 1
  year: 2013
  end-page: 25
  article-title: An optimized hollow microneedle for minimally invasive blood extraction
  publication-title: Biomed. Microdevices
– volume: 52
  start-page: 909
  issue: 5
  year: 2005
  end-page: 915
  article-title: Hollow metal microneedles for insulin delivery to diabetic rats
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 114
  start-page: 267
  issue: 2
  year: 2004
  end-page: 275
  article-title: Microneedle array for transdermal biological fluid extraction and in situ analysis
  publication-title: Sens. Actuators A, Phys.
– volume: 14
  start-page: 597
  issue: 4
  year: 2004
  end-page: 603
  article-title: A tapered hollow metallic microneedle array using backside exposure of SU‐8
  publication-title: J. Micromech. Microengineering
– ident: e_1_2_7_5_2
  doi: 10.1007/s00542‐009‐0883‐5
– ident: e_1_2_7_4_2
  doi: 10.1089/152091501300209606
– ident: e_1_2_7_2_2
  doi: 10.1146/annurev.bioeng.2.1.289
– ident: e_1_2_7_6_2
  doi: 10.1016/j.sna.2003.11.008
– ident: e_1_2_7_17_2
  doi: 10.1088/0960‐1317/7/3/010
– volume: 41
  start-page: 169
  issue: 2
  year: 1995
  ident: e_1_2_7_3_2
  article-title: Needle phobia: a neglected diagnosis
  publication-title: J. Fam. Pract.
  contributor:
    fullname: Hamilton J.G.
– volume: 7
  start-page: 95
  year: 2004
  ident: e_1_2_7_8_2
  article-title: A novel polymer microneedle arrays and PDMS micromolding
  publication-title: Tamkang J. Sci. Eng.
  contributor:
    fullname: Kuo S.C.
– ident: e_1_2_7_10_2
  doi: 10.1023/A:1009907306184
– ident: e_1_2_7_13_2
  doi: 10.1007/s10544‐005‐6077‐8
– ident: e_1_2_7_14_2
  doi: 10.1088/0960‐1317/14/4/021
– ident: e_1_2_7_20_2
  doi: 10.1109/JMEMS.2007.899339
– ident: e_1_2_7_18_2
  doi: 10.1016/S0142‐9612(02)00565‐3
– ident: e_1_2_7_7_2
  doi: 10.1007/s10544‐012‐9683‐2
– volume-title: Microfluidics and nanofluidics handbook: fabrication, implementation, and applications
  year: 2011
  ident: e_1_2_7_22_2
  doi: 10.1201/b11377
  contributor:
    fullname: Mitra S.K.
– ident: e_1_2_7_9_2
  doi: 10.1088/0960‐1317/14/4/021
– ident: e_1_2_7_12_2
  doi: 10.1088/0960‐1317/16/5/012
– ident: e_1_2_7_19_2
  doi: 10.1109/JSEN.2008.2006261
– ident: e_1_2_7_21_2
  doi: 10.1109/NEMS.2014.6908843
– ident: e_1_2_7_16_2
  doi: 10.1109/TBME.2005.845240
– ident: e_1_2_7_23_2
  doi: 10.1117/1.2117108
– volume: 5651
  start-page: 379
  year: 2005
  ident: e_1_2_7_11_2
  article-title: Development of blood extraction system designed by female mosquito's blood sampling mechanism for bio‐MEMS
  publication-title: Biomed. Appl. Micro and Nanoeng.
  contributor:
    fullname: Tsuchiya K.
– ident: e_1_2_7_15_2
  doi: 10.1088/0960‐1317/20/6/064006
SSID ssj0047279
Score 2.0362833
Snippet A highly applicable theoretical model and a simple, inexpensive mould-based method is introduced to design and fabricate the pyramid-shaped SU-8 microneedle....
A highly applicable theoretical model and a simple, inexpensive mould‐based method is introduced to design and fabricate the pyramid‐shaped SU‐8 microneedle....
SourceID proquest
crossref
wiley
iet
SourceType Aggregation Database
Publisher
Enrichment Source
StartPage 644
SubjectTerms biomedical measurement
Blood
blood circulation
blood vessels
Fingers
finite element analysis
finite element study
force measurement
fracture
fracture force measurement
Fracture mechanics
geometry optimisation
haemodynamics
haemorheology
Human
human fingers
inexpensive mould‐based method
Mathematical models
Nanostructure
needles
nurse‐home patients
optimal design
Optimization
Patients
point‐of‐care sites
polymers
practical measurement
practical verification
pyramid‐shaped SU‐8 microneedle
Raynaud phenomenon
safely puncture human skin
size 1470 mum
size 1515 mum
skin
skin penetrability
Special Section of Expanded Papers from NEMS 2014
Vulnerability
whole blood extraction
Title Optimal design of polymer-based microneedle for improved collection of whole blood from human fingers
URI http://digital-library.theiet.org/content/journals/10.1049/mnl.2014.0242
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fmnl.2014.0242
https://www.proquest.com/docview/1640675905/abstract/
https://search.proquest.com/docview/1660073527
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LTsMwzIJxgQPiKQpjCghxK3RNOprjhjYhBGNCQ-JWpWmCJu0l2IS48Ql8I1-CnXawHUDi2sRpYsfxI44NcKIjrQ3XwucCLR1hVeRLLRSlEA1qqTbKZOTvuG3Xrh7E9WP0WNQ5pbcweX6Ib4cbcYY7r4nBVZpXIUGlFok4GNLNQVWckZRZhhVUbWLa1qHozI5igcJZuheREcUwCl4k2cQBzhfAF4TScs9MFvTNea3ViZ3WBqwX-iKr5wTehCUz3IK1uSyC2_B0h2w_wE6Zi8ZgI8vGo_7bwDx_vn-QlMrYgMLuECDrG4ZaKus5VwI20DZwwVgO7JWK5TIXy87o3QlzFfyYda6_lx3otprdyyu_qJ_gazS6Qp-nios0VMhjVGjMhgKNA1xzJGsiMEYiLVSVG2lUVaQWLSceC2sCbbPUyljzXSgNcW57wLiNAx1wsj0ioblGQhrCm1X4PZbGg9MZ_pJxniUjcbfbQiaI6IQQnRCAB8eI3aTgk5ffOlUWOt22b34ak3FmPSjPqDM3FC4KrR8ZRB4cfTcjs9ANiBqa0ZT6uHT8UXjhwbmj6t_TxV_Xw0aLfOfh_r8hDmCVvuehf2UoTZ6n5hBVmElacdu0AiuNZrtz_wVFsupa
link.rule.ids 315,786,790,11589,27957,27958,33779,33780,46087,46511,50849,50958
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LTsMwzOJxAA6IpyjPgBC3Qte4YzkCYhqwDQ5D4lalaYKQ2EMwhLjxCXwjX4KdbrAdQOLa2Gljx_Ujjg2wbxJjrDQYSiRPB51OQmVQcwnRqJwZq23O8Y5Gs1y7xcu75G7kFn9RH-I74MaS4f_XLOAckC4cTuQime0OHx2U8JDVzCRMc1dvFs0Yb4b_YiTtrPyVyISTGFEOqmzSBEdj6GNaafLB9scMzlGz1eud6gLMDwxGcVJweBEmbGcJ5kbKCC7D_TXJfZuAcp-OIbpO9LqPb2379Pn-wWoqF23OuyOE_NEKMlPFg48l0ADvA5-N5dFeuVuu8Mnsgi-eCN_CTzgf-3tegVb1vHVWCwcNFEJDXlccykxLzGJNQsadxlyM5B3QmhNVxshaRczQJWmV1SXMHLlOsoLORsblmVMVI1dhqkPftgZCukpkIsnOR4JGGuKkZbo5Tc8rygZwMKRf2ivKZKT-eBtVSoROmdApIwSwR9RNB4Ly_BvQ9hhQo1n_GUx7uQtgc8idkaloUeT-qCgJYPd7mKSFj0B0x3ZfGMbX40_i4wCOPFf__lx69Ul8WuXgebz-b4wdmKm1GvW0ftG82oBZhinyADdhqv_0YrfInuln237LfgF3Wewh
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LThsxcESIhNpDBZSqW16mqrhts1nPhvgYWqIUkpRDgqJeVl6vXSGRhyCo6q2f0G_slzDj3UByAKnX9dhrz3g8D49nAD6ZxBgrDYYSydJBp5NQGdScQjRqZMZqm7O_o9dvdIZ4PkpGZZ1TfgtT5Id4dLgxZ_jzmhl8lrvC3kTOkTme8M1BHT-zlKlAlTQNpG1dbV0NfwwXhzGSeFb-TWTCUYwoyzSbNERtZYAVsVS5tvMVjXNZb_WCp70Jb0qNUbQKEm_Bmp1sw-ulPIJv4ed3YvwxAeU-HkNMnZhNb36P7e2_P39ZTuVizIF31CG_sYL0VHHtnQnUwBvBh2P5br-4XK7w0eyCX54IX8NPOO_8u9uBQfts8KUTlhUUQkNmVxzKTEvMYk1cxqXGXIxkHtCaE9XAyFpF1NB1aZXVdcwc2U6yic5GxuWZU00j38H6hOb2HoR0zchEkq2PBI00RErLeHOavjeVDeB4gb90VuTJSP39NqqUEJ0yolPuEMBHwm5acsrdc0AHK0C9fvepMaV9EMDegjpLQ9GiyP5RURLA0WMzsQvfgeiJnd4zjE_In8QnAdQ8VV-eLv26FZ-22Xsef_jvHoewcfm1nXa_9S924RWDFHGAe7A-v723-6TPzLODcs8-ALf-7SI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+design+of+polymer-based+microneedle+for+improved+collection+of+whole+blood+from+human+fingers&rft.jtitle=Micro+%26+nano+letters&rft.au=Thanh%2C+Hoa+Le&rft.au=The%2C+Hai+Le&rft.au=Nguyen%2C+Vy&rft.au=Tran-Minh%2C+Nhut&rft.date=2014-10-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=1750-0443&rft.volume=9&rft.issue=10&rft.spage=644&rft_id=info:doi/10.1049%2Fmnl.2014.0242&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3538298401
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1750-0443&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1750-0443&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1750-0443&client=summon