Mathematical Biology Models of Parkinson's Disease
Parkinsons disease (PD) is a progressive neurodegenerative disease with substantial and growing socio‐economic burden. In this multifactorial disease, aging, environmental, and genetic factors contribute to neurodegeneration and dopamine (DA) deficiency in the brain. Treatments aimed at DA restorati...
Saved in:
Published in | CPT: pharmacometrics and systems pharmacology Vol. 8; no. 2; pp. 77 - 86 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
John Wiley & Sons, Inc
01.02.2019
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Parkinsons disease (PD) is a progressive neurodegenerative disease with substantial and growing socio‐economic burden. In this multifactorial disease, aging, environmental, and genetic factors contribute to neurodegeneration and dopamine (DA) deficiency in the brain. Treatments aimed at DA restoration provide symptomatic relief, however, no disease modifying treatments are available, and PD remains incurable to date. Mathematical modeling can help understand such complex multifactorial neurological diseases. We review mathematical modeling efforts in PD with a focus on mechanistic models of pathogenic processes. We consider models of α‐synuclein (Asyn) aggregation, feedbacks among Asyn, DA, and mitochondria and proteolytic systems, as well as pathology propagation through the brain. We hope that critical understanding of existing literature will pave the way to the development of quantitative systems pharmacology models to aid PD drug discovery and development. |
---|---|
AbstractList | Parkinsons disease (PD) is a progressive neurodegenerative disease with substantial and growing socio‐economic burden. In this multifactorial disease, aging, environmental, and genetic factors contribute to neurodegeneration and dopamine (DA) deficiency in the brain. Treatments aimed at DA restoration provide symptomatic relief, however, no disease modifying treatments are available, and PD remains incurable to date. Mathematical modeling can help understand such complex multifactorial neurological diseases. We review mathematical modeling efforts in PD with a focus on mechanistic models of pathogenic processes. We consider models of α‐synuclein (Asyn) aggregation, feedbacks among Asyn, DA, and mitochondria and proteolytic systems, as well as pathology propagation through the brain. We hope that critical understanding of existing literature will pave the way to the development of quantitative systems pharmacology models to aid PD drug discovery and development. Parkinsons disease (PD) is a progressive neurodegenerative disease with substantial and growing socio-economic burden. In this multifactorial disease, aging, environmental, and genetic factors contribute to neurodegeneration and dopamine (DA) deficiency in the brain. Treatments aimed at DA restoration provide symptomatic relief, however, no disease modifying treatments are available, and PD remains incurable to date. Mathematical modeling can help understand such complex multifactorial neurological diseases. We review mathematical modeling efforts in PD with a focus on mechanistic models of pathogenic processes. We consider models of α-synuclein (Asyn) aggregation, feedbacks among Asyn, DA, and mitochondria and proteolytic systems, as well as pathology propagation through the brain. We hope that critical understanding of existing literature will pave the way to the development of quantitative systems pharmacology models to aid PD drug discovery and development.Parkinsons disease (PD) is a progressive neurodegenerative disease with substantial and growing socio-economic burden. In this multifactorial disease, aging, environmental, and genetic factors contribute to neurodegeneration and dopamine (DA) deficiency in the brain. Treatments aimed at DA restoration provide symptomatic relief, however, no disease modifying treatments are available, and PD remains incurable to date. Mathematical modeling can help understand such complex multifactorial neurological diseases. We review mathematical modeling efforts in PD with a focus on mechanistic models of pathogenic processes. We consider models of α-synuclein (Asyn) aggregation, feedbacks among Asyn, DA, and mitochondria and proteolytic systems, as well as pathology propagation through the brain. We hope that critical understanding of existing literature will pave the way to the development of quantitative systems pharmacology models to aid PD drug discovery and development. Parkinsons disease ( PD ) is a progressive neurodegenerative disease with substantial and growing socio‐economic burden. In this multifactorial disease, aging, environmental, and genetic factors contribute to neurodegeneration and dopamine ( DA ) deficiency in the brain. Treatments aimed at DA restoration provide symptomatic relief, however, no disease modifying treatments are available, and PD remains incurable to date. Mathematical modeling can help understand such complex multifactorial neurological diseases. We review mathematical modeling efforts in PD with a focus on mechanistic models of pathogenic processes. We consider models of α‐synuclein (Asyn) aggregation, feedbacks among Asyn, DA , and mitochondria and proteolytic systems, as well as pathology propagation through the brain. We hope that critical understanding of existing literature will pave the way to the development of quantitative systems pharmacology models to aid PD drug discovery and development. |
Author | Graaf, Piet H. Bakshi, Suruchi Chelliah, Vijayalakshmi Chen, Chao |
AuthorAffiliation | 2 Systems Biomedicine and Pharmacology Leiden Academic Centre for Drug Research (LACDR) Leiden University Leiden The Netherlands 5 Certara QSP Canterbury 4 Clinical Pharmacology Modelling & Simulation GlaxoSmithKline Uxbridge UK 3 Certara QSP Sheffield UK 1 Certara QSP Breda The Netherlands |
AuthorAffiliation_xml | – name: 2 Systems Biomedicine and Pharmacology Leiden Academic Centre for Drug Research (LACDR) Leiden University Leiden The Netherlands – name: 3 Certara QSP Sheffield UK – name: 1 Certara QSP Breda The Netherlands – name: 4 Clinical Pharmacology Modelling & Simulation GlaxoSmithKline Uxbridge UK – name: 5 Certara QSP Canterbury |
Author_xml | – sequence: 1 givenname: Suruchi surname: Bakshi fullname: Bakshi, Suruchi email: Suruchi.Bakshi@certara.com organization: Leiden University – sequence: 2 givenname: Vijayalakshmi surname: Chelliah fullname: Chelliah, Vijayalakshmi organization: Certara QSP – sequence: 3 givenname: Chao surname: Chen fullname: Chen, Chao organization: GlaxoSmithKline – sequence: 4 givenname: Piet H. surname: Graaf fullname: Graaf, Piet H. organization: Certara QSP |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30358157$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kV9LIzEUxYMo6lZf9gMsAz64LLQmNzNJ5kXwz-oKFgvqc0gzdzSaTupkuku_vamt4oqYlwTyO4dz7_lG1pvQICHfGR0wSuFgGqf5gAEXsEa2gQneV5yK9XfvLbIb4wNNR-aUlXSTbHHKC8UKuU1gaLp7nJjOWeOzYxd8uJtnw1Chj1mos5FpH10TQ7Mfs1MX0UTcIRu18RF3V3eP3J79vjn507-8Or84Obrs2zxX0GecCVkwBVUFBsYlFlKynKKwYiyUEYJKVac8JQpZF0UuDSgxroDZElDZivfI4dJ3OhtPsLLYdK3xetq6iWnnOhin__9p3L2-C3-14KrkuUoGP1cGbXiaYez0xEWL3psGwyxqYFBAqTjwhO59QB_CrG3SeBpACJClEixRP94neovyus4E0CVg2xBji7W2rku7DYuAzmtG9aI0vShNv5SWJL8-SF5dP4XZEv7nPM6_IPXoepQvNc_xxaQ8 |
CitedBy_id | crossref_primary_10_1016_j_coisb_2024_100539 crossref_primary_10_1109_ACCESS_2025_3542634 crossref_primary_10_1140_epjs_s11734_022_00720_5 crossref_primary_10_1098_rsif_2020_0091 crossref_primary_10_3390_axioms13020075 crossref_primary_10_3934_mmc_2023010 crossref_primary_10_1007_s11538_024_01307_y crossref_primary_10_1109_TNB_2020_2975942 crossref_primary_10_3390_biomimetics8030322 crossref_primary_10_1002_psp4_13108 crossref_primary_10_1016_j_mbs_2021_108754 crossref_primary_10_1080_10236198_2023_2228926 crossref_primary_10_1002_psp4_12852 crossref_primary_10_1002_psp4_13223 crossref_primary_10_1016_j_biosystems_2023_105036 crossref_primary_10_1111_ejn_16136 crossref_primary_10_1002_wsbm_1625 crossref_primary_10_1038_s41598_021_81185_9 crossref_primary_10_1007_s12272_024_01527_9 crossref_primary_10_3389_fnagi_2020_00136 crossref_primary_10_3389_fncom_2021_756881 crossref_primary_10_3390_math11204226 crossref_primary_10_3389_fams_2022_1060489 crossref_primary_10_1016_j_conb_2023_102808 |
Cites_doi | 10.1155/2018/4784268 10.1002/mds.21065 10.1016/j.tox.2013.11.003 10.1093/brain/awp209 10.1371/journal.pone.0013175 10.1016/j.celrep.2014.12.034 10.1038/nm.4269 10.1007/s10827-009-0152-8 10.1016/j.bbapap.2008.10.016 10.1155/2013/897658 10.1002/mds.26644 10.1016/j.jtbi.2015.03.037 10.1080/10255842.2015.1043628 10.1371/journal.pone.0076595 10.1016/j.jneumeth.2008.12.014 10.1111/bph.14345 10.1007/s10827-013-0453-9 10.1007/s12035-013-8489-4 10.1021/bi701899y 10.1371/journal.pone.0192518 10.1016/S1474-4422(17)30328-9 10.1371/journal.pcbi.1002124 10.1523/JNEUROSCI.1788-16.2017 10.1002/psp4.12155 10.1186/1471-2202-14-136 10.1073/pnas.1107748108 10.3390/ijms18020469 10.1001/archneur.58.10.1611 10.1007/s10571-018-0589-2 10.1002/(SICI)1520-6602(1998)1:1<3::AID-INBI2>3.0.CO;2-9 10.1371/journal.pcbi.1004609 10.1016/j.nbd.2011.08.003 10.1016/j.cell.2012.03.037 10.1016/j.neuroscience.2006.06.052 10.1002/wsbm.107 10.1103/PhysRevE.89.032712 10.1007/s11095-011-0467-9 10.1007/s11095-017-2216-1 10.3233/JPD-130198 10.1371/journal.pone.0069146 10.1007/s11517-015-1401-9 10.1088/1478-3975/6/3/036005 10.3389/fcell.2017.00110 10.1038/s41467-017-02416-0 10.1016/j.mbs.2016.05.002 10.1038/nrn983 10.1111/jnc.14308 10.1093/brain/awn349 10.1007/s00285-016-1011-7 10.1073/pnas.1524128113 10.1049/iet-syb.2011.0076 10.1186/1742-4682-6-21 10.1371/journal.pone.0123444 10.1016/j.neuron.2012.03.004 10.1016/j.compbiomed.2008.08.008 10.1038/nprot.2016.010 10.1038/nchembio.1750 10.1016/j.neuron.2011.12.040 10.1523/JNEUROSCI.1787-16.2017 10.1002/mds.27360 10.1186/1752-0509-8-54 10.1021/ja411577t 10.1049/iet-syb.2011.0075 10.1186/1752-0509-1-17 10.1113/jphysiol.1952.sp004764 10.1016/j.neuroscience.2007.08.028 10.1016/0169-2607(86)90008-8 10.1073/pnas.1604645113 10.3389/fphar.2016.00006 10.1002/mds.26370 10.1016/S1353-8020(13)70025-7 10.1371/journal.pone.0002444 10.1208/s12248-017-0058-8 10.3390/genes9050250 10.1021/acs.jpcc.6b12021 10.1002/syn.20686 10.1016/j.bpc.2008.11.003 10.1016/j.compbiolchem.2015.04.003 10.1016/S0022-2836(62)80112-0 10.1103/PhysRevE.91.042111 |
ContentType | Journal Article |
Copyright | 2018 The Authors published by Wiley Periodicals, Inc. on behalf of the American Society for Clinical Pharmacology and Therapeutics. 2018 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of the American Society for Clinical Pharmacology and Therapeutics. 2019. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2018 The Authors published by Wiley Periodicals, Inc. on behalf of the American Society for Clinical Pharmacology and Therapeutics. – notice: 2018 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of the American Society for Clinical Pharmacology and Therapeutics. – notice: 2019. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 3V. 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1002/psp4.12362 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X7 name: Health & Medical Collection url: https://search.proquest.com/healthcomplete sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 2163-8306 |
EndPage | 86 |
ExternalDocumentID | PMC6389348 30358157 10_1002_psp4_12362 PSP412362 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: GSK Early talent postdoctoral scheme |
GroupedDBID | 0R~ 1OC 24P 5VS 7X7 8FI 8FJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADPDF ADRAZ ADZMN ADZOD AEEZP AEQDE AFKRA AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU DIK EBS EJD FYUFA GODZA GROUPED_DOAJ GX1 HMCUK HYE IAO IHR INH ITC KQ8 M48 M~E O9- OK1 OVD PIMPY PQQKQ PROAC RNTTT RPM TEORI TUS UKHRP WIN AAYXX CITATION PHGZM PHGZT NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c4482-131675182dd2a2b9e577140e6c6b68a66078f0199e67f5547a286bd21c92e8cd3 |
IEDL.DBID | M48 |
ISSN | 2163-8306 |
IngestDate | Thu Aug 21 13:52:58 EDT 2025 Fri Jul 11 03:05:53 EDT 2025 Fri Jul 25 03:24:40 EDT 2025 Thu Apr 03 06:56:27 EDT 2025 Tue Jul 01 02:21:37 EDT 2025 Thu Apr 24 23:12:56 EDT 2025 Wed Jan 22 16:56:51 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution-NonCommercial 2018 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of the American Society for Clinical Pharmacology and Therapeutics. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4482-131675182dd2a2b9e577140e6c6b68a66078f0199e67f5547a286bd21c92e8cd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2266279861?pq-origsite=%requestingapplication% |
PMID | 30358157 |
PQID | 2266279861 |
PQPubID | 4368367 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6389348 proquest_miscellaneous_2125298323 proquest_journals_2266279861 pubmed_primary_30358157 crossref_citationtrail_10_1002_psp4_12362 crossref_primary_10_1002_psp4_12362 wiley_primary_10_1002_psp4_12362_PSP412362 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2019 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: February 2019 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | CPT: pharmacometrics and systems pharmacology |
PublicationTitleAlternate | CPT Pharmacometrics Syst Pharmacol |
PublicationYear | 2019 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | 2017; 5 2017; 6 2013; 3 2007; 149 1952; 117 2008; 38 1975 2016; 31 2016; 73 2008; 3 2013; 8 2014; 136 2014; 20 2018; 175 2018; 9 2013; 14 2017; 37 2013; 2013 2006; 21 2015; 376 2017; 34 2016; 113 2016; 278 2015; 91 2017; 121 2011; 28 2014; 8 2007; 1 2018; 33 2010; 5 2001; 58 2018; 38 2009; 1794 2015; 56 2018; 144 2011; 135 2014; 315 2009; 63 2016; 19 1962; 4 2015; 11 2017; 23 2015; 10 2014; 49 2016; 54 2009; 132 2002; 3 2009; 178 2011; 3 2012; 149 2014; 89 2009; 27 2011; 7 2016; 11 2012; 73 2016; 7 2018; 2018 2011; 108 2013; 35 1986; 22 2017; 16 2008; 47 2006; 142 2017; 19 2009; 140 2009; 6 2017; 18 1998; 1 2012; 6 2012; 45 2018; 13 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Finnerty N.J. (e_1_2_7_38_1) 2013; 3 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 Cohen S.I.A. (e_1_2_7_21_1) 2011; 135 e_1_2_7_35_1 e_1_2_7_56_1 Cohen S.I.A. (e_1_2_7_22_1) 2011; 135 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_79_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_82_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 Oosawa F. (e_1_2_7_10_1) 1975 |
References_xml | – volume: 113 start-page: 10328 year: 2016 end-page: 10333 article-title: Mutations associated with familial Parkinson's disease alter the initiation and amplification steps of α‐synuclein aggregation publication-title: Proc. Natl. Acad. Sci. USA – volume: 13 start-page: 1 year: 2018 end-page: 15 article-title: Computational modelling of pathogenic protein spread in neurodegenerative diseases publication-title: PLoS One – volume: 16 start-page: 908 year: 2017 end-page: 916 article-title: Large‐scale identification of clinical and genetic predictors of motor progression in patients with newly diagnosed Parkinson's disease: a longitudinal cohort study and validation publication-title: Lancet Neurol. – volume: 7 start-page: e1002124 year: 2011 article-title: Alterations in brain connectivity underlying beta oscillations in Parkinsonism publication-title: PLoS Comput. Biol. – volume: 149 start-page: 917 year: 2007 end-page: 930 article-title: Integrating glutathione metabolism and mitochondrial dysfunction with implications for Parkinson's disease: a dynamic model publication-title: Neuroscience – volume: 8 start-page: 54 year: 2014 article-title: In silico modeling of the effects of alpha‐synuclein oligomerization on dopaminergic neuronal homeostasis publication-title: BMC Syst. Biol. – volume: 315 start-page: 92 year: 2014 end-page: 101 article-title: Rotenone and paraquat perturb dopamine metabolism: a computational analysis of pesticide toxicity publication-title: Toxicology – volume: 2018 start-page: 4784268 year: 2018 article-title: Linking neuroinflammation and neurodegeneration in Parkinson's disease publication-title: J. Immunol. Res. – volume: 376 start-page: 48 year: 2015 end-page: 65 article-title: A spatially distributed computational model of brain cellular metabolism publication-title: J. Theor. Biol. – volume: 113 start-page: E1206 year: 2016 end-page: E1215 article-title: Kinetic model of the aggregation of alpha‐synuclein provides insights into prion‐like spreading publication-title: Proc. Natl. Acad. Sci. USA – volume: 3 start-page: 932 year: 2002 end-page: 942 article-title: Pathogenesis of Parkinson's disease: dopamine, vesicles and α‐synuclein publication-title: Nat. Rev. Neurosci. – volume: 132 start-page: 2970 year: 2009 end-page: 2979 article-title: Longitudinal progression of sporadic Parkinson's disease: a multi‐tracer positron emission tomography study publication-title: Brain – year: 1975 – volume: 142 start-page: 859 year: 2006 end-page: 870 article-title: Dynamic modeling of alpha‐synuclein aggregation for the sporadic and genetic forms of Parkinson's disease publication-title: Neuroscience – volume: 89 start-page: 1 year: 2014 end-page: 6 article-title: Nucleation‐conversion‐polymerization reactions of biological macromolecules with prenucleation clusters publication-title: Phys. Rev. E Stat. Nonlin. Soft Matter Phys. – volume: 11 start-page: 252 year: 2016 end-page: 272 article-title: Molecular mechanisms of protein aggregation from global fitting of kinetic models publication-title: Nat. Protoc. – volume: 149 start-page: 1048 year: 2012 end-page: 1059 article-title: Direct observation of the interconversion of normal and toxic forms of α‐synuclein publication-title: Cell – volume: 4 start-page: 10 year: 1962 end-page: 21 article-title: A theory of linear and helical aggregations of macromolecules publication-title: J. Mol. Biol. – volume: 11 start-page: 229 year: 2015 end-page: 234 article-title: Lipid vesicles trigger α‐synuclein aggregation by stimulating primary nucleation publication-title: Nat. Chem. Biol. – volume: 135 start-page: 1 year: 2011 end-page: 18 article-title: Nucleated polymerization with secondary pathways. II. Determination of self‐consistent solutions to growth processes described by non‐linear master equations publication-title: J. Chem. Phys. – volume: 136 start-page: 3859 year: 2014 end-page: 3868 article-title: The role of stable α‐synuclein oligomers in the molecular events underlying amyloid formation publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 1460 year: 2011 end-page: 1464 article-title: Systems pharmacology: bridging systems biology and pharmacokinetics‐pharmacodynamics (PKPD) in drug discovery and development publication-title: Pharm. Res. – volume: 73 start-page: 1216 year: 2012 end-page: 1227 article-title: Predicting regional neurodegeneration from the healthy brain functional connectome publication-title: Neuron – volume: 47 start-page: 2413 year: 2008 end-page: 2427 article-title: Fitting neurological protein aggregation kinetic data via a 2‐step, minimal/”Ockham's razor” model: the Finke–Watzky mechanism of nucleation followed by autocatalytic surface growth publication-title: Biochemistry – volume: 178 start-page: 366 year: 2009 end-page: 377 article-title: A pragmatic approach to biochemical systems theory applied to an α‐synuclein‐based model of Parkinson's disease publication-title: J. Neurosci. Methods – volume: 37 start-page: 9808 year: 2017 end-page: 9818 article-title: Prying into the prion hypothesis for Parkinson's disease publication-title: J. Neurosci. – volume: 38 start-page: 1197 year: 2018 end-page: 1206 article-title: Gut, microbiome, and brain regulatory axis: relevance to neurodegenerative and psychiatric disorders publication-title: Cell. Mol. Neurobiol. – volume: 278 start-page: 22 year: 2016 end-page: 29 article-title: What can trigger the onset of Parkinson's disease – a modeling study based on a compartmental model of alpha‐synuclein transport and aggregation in neurons publication-title: Math. Biosci. – volume: 10 start-page: 359 year: 2015 end-page: 369 article-title: Network diffusion model of progression predicts longitudinal patterns of atrophy and metabolism in Alzheimer's disease publication-title: Cell Rep. – volume: 23 start-page: 1 year: 2017 end-page: 13 article-title: Α‐synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies publication-title: Nat. Med. – volume: 108 start-page: 11620 year: 2011 end-page: 11625 article-title: Striatal origin of the pathologic beta oscillations in Parkinson's disease publication-title: Proc. Natl. Acad. Sci. USA – volume: 20 start-page: 1 year: 2014 end-page: 12 article-title: Blood‐based biomarkers for PD publication-title: Parkinsonism Relat. Disord. – volume: 132 start-page: 1093 year: 2009 end-page: 1101 article-title: Detection of elevated levels of soluble α‐synuclein oligomers in post‐mortem brain extracts from patients with dementia with Lewy bodies publication-title: Brain – volume: 56 start-page: 84 year: 2015 end-page: 97 article-title: A mathematical model of insulin resistance in Parkinson's disease publication-title: Comput. Biol. Chem. – volume: 6 start-page: 73 year: 2017 end-page: 86 article-title: The impact of mathematical modeling in understanding the mechanisms underlying neurodegeneration: evolving dimensions and future directions publication-title: CPT Pharmacometrics Syst. Pharmacol. – volume: 3 start-page: e2444 year: 2008 article-title: Computational systems analysis of dopamine metabolism publication-title: PLoS One – volume: 6 start-page: 65 year: 2012 end-page: 72 article-title: Dynamic modelling of protein and oxidative metabolisms simulates the pathogenesis of Parkinson's disease publication-title: IET Syst. Biol. – volume: 35 start-page: 295 year: 2013 end-page: 316 article-title: A single compartment model of pacemaking in disassociated substantia nigra neurons: stability and energy analysis publication-title: J. Comput. Neurosci. – volume: 54 start-page: 855 year: 2016 end-page: 868 article-title: A review of presented mathematical models in Parkinson's disease: black‐ and gray‐box models publication-title: Med. Biol. Eng. Comput. – volume: 2013 start-page: 1 year: 2013 end-page: 53 article-title: Biochemical systems theory: a review publication-title: ISRN Biomath. – volume: 73 start-page: 1823 year: 2016 end-page: 1849 article-title: Uncertainty quantification in flux balance analysis of spatially lumped and distributed models of neuron–astrocyte metabolism publication-title: J. Math. Biol. – volume: 91 start-page: 042111 year: 2015 article-title: Noise‐induced multistability in chemical systems: discrete vs continuum modeling publication-title: Phys. Rev. E Stat Nonlin. Soft Matter. Phys. – volume: 7 start-page: 6 year: 2016 article-title: A humanized clinically calibrated quantitative systems pharmacology model for hypokinetic motor symptoms in Parkinson's disease publication-title: Front. Pharmacol. – volume: 9 start-page: 12 year: 2018 article-title: Network connectivity determines cortical thinning in early Parkinson's disease progression publication-title: Nat. Commun. – volume: 8 start-page: 1 year: 2013 end-page: 9 article-title: Metabolomics and in‐silico analysis reveal critical energy deregulations in animal models of Parkinson's disease publication-title: PLoS One – volume: 18 start-page: 469 year: 2017 article-title: Potential modes of intercellular α‐synuclein transmission publication-title: Int. J. Mol. Sci. – volume: 6 start-page: 86 year: 2012 article-title: Feedback motif for the pathogenesis of Parkinson's disease publication-title: IET Syst. Biol. – volume: 6 start-page: 1 year: 2009 end-page: 20 article-title: Homeostatic mechanisms in dopamine synthesis and release: a mathematical model publication-title: Theor. Biol. Med. Model. – volume: 22 start-page: 325 year: 1986 end-page: 331 article-title: A computer model of neuronal pathways in the basal ganglia publication-title: Comput. Methods Programs Biomed. – volume: 11 start-page: 1 year: 2015 end-page: 29 article-title: Computational models describing possible mechanisms for generation of excessive beta oscillations in Parkinson's disease publication-title: PLoS Comput. Biol. – volume: 3 start-page: 351 year: 2013 end-page: 362 article-title: Continuous real‐time in vivo measurement of cerebral nitric oxide supports theoretical predictions of an irreversible switching in cerebral ROS after sufficient exposure to external toxins publication-title: J. Parkinsons Dis. – volume: 63 start-page: 1133 year: 2009 end-page: 1142 article-title: Computational analysis of determinants of dopamine dysfunction in dopamine nerve terminals publication-title: Synapse – volume: 121 start-page: 5302 year: 2017 end-page: 5312 article-title: Sigmoidal nucleation and growth curves across nature fit by the Finke–Watzky model of slow continuous nucleation and autocatalytic growth: explicit formulas for the lag and growth times plus other key insights publication-title: J. Phys. Chem. C Nanomater. Interfaces – volume: 135 start-page: 1 year: 2011 end-page: 44 article-title: Nucleated polymerization with secondary pathways. I. Time evolution of the principal moments publication-title: J. Chem. Phys. – volume: 175 start-page: 3080 year: 2018 end-page: 3089 article-title: Emerging disease‐modifying strategies targeting α‐synuclein for the treatment of Parkinson's disease publication-title: Br. J. Pharmacol. – volume: 5 start-page: 2011 year: 2017 end-page: 2018 article-title: Crosstalk between lysosomes and mitochondria in Parkinson's disease publication-title: Front. Cell Dev. Biol. – volume: 37 start-page: 9799 year: 2017 end-page: 9807 article-title: Parkinson's disease is not simply a prion disorder publication-title: J. Neurosci. – volume: 45 start-page: 188 year: 2012 end-page: 195 article-title: Post mortem cerebrospinal fluid α‐synuclein levels are raised in multiple system atrophy and distinguish this from the other α‐synucleinopathies, Parkinson's disease and dementia with Lewy bodies publication-title: Neurobiol. Dis. – volume: 58 start-page: 1611 year: 2001 end-page: 1615 article-title: Functional decline in Parkinson disease publication-title: Arch. Neurol. – volume: 8 start-page: e76595 year: 2013 article-title: The nature of progression in Parkinson's disease: an application of non‐linear, multivariate, longitudinal random effects modelling publication-title: PLoS One – volume: 49 start-page: 88 year: 2014 end-page: 102 article-title: Integrating pathways of Parkinson's disease in a molecular interaction map publication-title: Mol. Neurobiol. – volume: 34 start-page: 2109 year: 2017 end-page: 2118 article-title: Item response theory as an efficient tool to describe a heterogeneous clinical rating scale in de novo idiopathic Parkinson's disease patients publication-title: Pharm. Res. – volume: 27 start-page: 391 year: 2009 end-page: 414 article-title: An integrative dynamic model of brain energy metabolism using in vivo neurochemical measurements publication-title: J. Comput. Neurosci. – volume: 1 start-page: 1 year: 2007 end-page: 18 article-title: An in silico model of the ubiquitin‐proteasome system that incorporates normal homeostasis and age‐related decline publication-title: BMC Syst. Biol. – volume: 1794 start-page: 375 year: 2009 end-page: 397 article-title: Protein aggregation kinetics, mechanism, and curve‐fitting: a review of the literature publication-title: Biochim. Biophys. Acta Proteins Proteom. – volume: 14 start-page: 136 year: 2013 article-title: Parkinson's disease: dopaminergic nerve cell model is consistent with experimental finding of increased extracellular transport of α‐synuclein publication-title: BMC Neurosci. – volume: 3 start-page: 1 year: 2011 end-page: 6 article-title: An energy systems approach to Parkinson's disease publication-title: Wiley Interdiscip. Rev. Syst. Biol. Med. – volume: 31 start-page: 161 year: 2016 end-page: 168 article-title: Alpha‐synuclein propagation: new insights from animal models publication-title: Mov. Disord. – volume: 38 start-page: 1084 year: 2008 end-page: 1093 article-title: Mathematical approach to understand the kinetics of α‐synuclein aggregation: relevance to Parkinson's disease publication-title: Comput. Biol. Med. – volume: 5 start-page: e13175 year: 2010 article-title: Modelling the role of UCH‐L1 on protein aggregation in age‐related neurodegeneration publication-title: PLoS One – volume: 1 start-page: 3 year: 1998 end-page: 15 article-title: Prion infection dynamics publication-title: Integr. Biol. Issues News Rev. – volume: 21 start-page: 2042 year: 2006 end-page: 2051 article-title: Stanley Fahn lecture 2005: the staging procedure for the inclusion body pathology associated with sporadic Parkinson's disease reconsidered publication-title: Mov. Disord. – volume: 19 start-page: 515 year: 2016 end-page: 526 article-title: Mathematical models of alpha‐synuclein transport in axons publication-title: Comput. Methods Biomech. Biomed. Eng. – volume: 19 start-page: 837 year: 2017 end-page: 845 article-title: Modeling a composite score in Parkinson's disease using item response theory publication-title: AAPS J. – volume: 73 start-page: 1204 year: 2012 end-page: 1215 article-title: A network diffusion model of disease progression in dementia publication-title: Neuron – volume: 33 start-page: 660 year: 2018 end-page: 677 article-title: Disease modification in Parkinson's disease: current approaches, challenges, and future considerations publication-title: Mov. Disord. – volume: 144 start-page: 691 year: 2018 end-page: 709 article-title: Mitochondrial function and autophagy: integrating proteotoxic, redox, and metabolic stress in Parkinson's disease publication-title: J. Neurochem. – volume: 140 start-page: 9 year: 2009 end-page: 15 article-title: α‐Synuclein aggregation variable temperature and variable pH kinetic data: a re‐analysis using the Finke–Watzky 2‐step model of nucleation and autocatalytic growth publication-title: Biophys. Chem. – volume: 9 start-page: 250 year: 2018 article-title: Brain mitochondria, aging, and Parkinson's disease publication-title: Genes (Basel). – volume: 10 start-page: 1 year: 2015 end-page: 16 article-title: Alpha‐synuclein levels in blood plasma decline with healthy aging publication-title: PLoS One – volume: 6 start-page: 036005 year: 2009 article-title: Modeling proteasome dynamics in Parkinson's disease publication-title: Phys. Biol. – volume: 117 start-page: 500 year: 1952 end-page: 544 article-title: A quantitative description of membrane current and its application to conduction and excitation in nerve publication-title: J. Physiol. – volume: 31 start-page: 947 year: 2016 end-page: 956 article-title: A review of disease progression models of Parkinson's disease and applications in clinical trials publication-title: Mov. Disord. – volume: 135 start-page: 1 year: 2011 ident: e_1_2_7_22_1 article-title: Nucleated polymerization with secondary pathways. II. Determination of self‐consistent solutions to growth processes described by non‐linear master equations publication-title: J. Chem. Phys. – ident: e_1_2_7_5_1 doi: 10.1155/2018/4784268 – ident: e_1_2_7_57_1 doi: 10.1002/mds.21065 – ident: e_1_2_7_46_1 doi: 10.1016/j.tox.2013.11.003 – ident: e_1_2_7_74_1 doi: 10.1093/brain/awp209 – ident: e_1_2_7_42_1 doi: 10.1371/journal.pone.0013175 – ident: e_1_2_7_65_1 doi: 10.1016/j.celrep.2014.12.034 – ident: e_1_2_7_2_1 doi: 10.1038/nm.4269 – volume: 135 start-page: 1 year: 2011 ident: e_1_2_7_21_1 article-title: Nucleated polymerization with secondary pathways. I. Time evolution of the principal moments publication-title: J. Chem. Phys. – ident: e_1_2_7_31_1 doi: 10.1007/s10827-009-0152-8 – ident: e_1_2_7_11_1 doi: 10.1016/j.bbapap.2008.10.016 – ident: e_1_2_7_83_1 doi: 10.1155/2013/897658 – ident: e_1_2_7_72_1 doi: 10.1002/mds.26644 – ident: e_1_2_7_34_1 doi: 10.1016/j.jtbi.2015.03.037 – ident: e_1_2_7_60_1 doi: 10.1080/10255842.2015.1043628 – ident: e_1_2_7_75_1 doi: 10.1371/journal.pone.0076595 – ident: e_1_2_7_48_1 doi: 10.1016/j.jneumeth.2008.12.014 – ident: e_1_2_7_80_1 doi: 10.1111/bph.14345 – ident: e_1_2_7_52_1 doi: 10.1007/s10827-013-0453-9 – ident: e_1_2_7_1_1 doi: 10.1007/s12035-013-8489-4 – ident: e_1_2_7_12_1 doi: 10.1021/bi701899y – ident: e_1_2_7_68_1 doi: 10.1371/journal.pone.0192518 – ident: e_1_2_7_79_1 doi: 10.1016/S1474-4422(17)30328-9 – ident: e_1_2_7_54_1 doi: 10.1371/journal.pcbi.1002124 – ident: e_1_2_7_63_1 doi: 10.1523/JNEUROSCI.1788-16.2017 – ident: e_1_2_7_7_1 doi: 10.1002/psp4.12155 – ident: e_1_2_7_47_1 doi: 10.1186/1471-2202-14-136 – ident: e_1_2_7_53_1 doi: 10.1073/pnas.1107748108 – ident: e_1_2_7_59_1 doi: 10.3390/ijms18020469 – ident: e_1_2_7_76_1 doi: 10.1001/archneur.58.10.1611 – ident: e_1_2_7_62_1 doi: 10.1007/s10571-018-0589-2 – ident: e_1_2_7_67_1 doi: 10.1002/(SICI)1520-6602(1998)1:1<3::AID-INBI2>3.0.CO;2-9 – ident: e_1_2_7_55_1 doi: 10.1371/journal.pcbi.1004609 – ident: e_1_2_7_26_1 doi: 10.1016/j.nbd.2011.08.003 – ident: e_1_2_7_14_1 doi: 10.1016/j.cell.2012.03.037 – ident: e_1_2_7_29_1 doi: 10.1016/j.neuroscience.2006.06.052 – ident: e_1_2_7_32_1 doi: 10.1002/wsbm.107 – ident: e_1_2_7_16_1 doi: 10.1103/PhysRevE.89.032712 – ident: e_1_2_7_82_1 doi: 10.1007/s11095-011-0467-9 – ident: e_1_2_7_78_1 doi: 10.1007/s11095-017-2216-1 – volume: 3 start-page: 351 year: 2013 ident: e_1_2_7_38_1 article-title: Continuous real‐time in vivo measurement of cerebral nitric oxide supports theoretical predictions of an irreversible switching in cerebral ROS after sufficient exposure to external toxins publication-title: J. Parkinsons Dis. doi: 10.3233/JPD-130198 – ident: e_1_2_7_33_1 doi: 10.1371/journal.pone.0069146 – ident: e_1_2_7_8_1 doi: 10.1007/s11517-015-1401-9 – ident: e_1_2_7_39_1 doi: 10.1088/1478-3975/6/3/036005 – ident: e_1_2_7_4_1 doi: 10.3389/fcell.2017.00110 – ident: e_1_2_7_69_1 doi: 10.1038/s41467-017-02416-0 – ident: e_1_2_7_61_1 doi: 10.1016/j.mbs.2016.05.002 – ident: e_1_2_7_6_1 doi: 10.1038/nrn983 – ident: e_1_2_7_28_1 doi: 10.1111/jnc.14308 – ident: e_1_2_7_25_1 doi: 10.1093/brain/awn349 – ident: e_1_2_7_35_1 doi: 10.1007/s00285-016-1011-7 – ident: e_1_2_7_18_1 doi: 10.1073/pnas.1524128113 – ident: e_1_2_7_37_1 doi: 10.1049/iet-syb.2011.0076 – ident: e_1_2_7_45_1 doi: 10.1186/1742-4682-6-21 – ident: e_1_2_7_27_1 doi: 10.1371/journal.pone.0123444 – ident: e_1_2_7_66_1 doi: 10.1016/j.neuron.2012.03.004 – ident: e_1_2_7_19_1 doi: 10.1016/j.compbiomed.2008.08.008 – ident: e_1_2_7_24_1 doi: 10.1038/nprot.2016.010 – ident: e_1_2_7_17_1 doi: 10.1038/nchembio.1750 – ident: e_1_2_7_64_1 doi: 10.1016/j.neuron.2011.12.040 – ident: e_1_2_7_70_1 doi: 10.1523/JNEUROSCI.1787-16.2017 – ident: e_1_2_7_81_1 doi: 10.1002/mds.27360 – ident: e_1_2_7_40_1 doi: 10.1186/1752-0509-8-54 – ident: e_1_2_7_15_1 doi: 10.1021/ja411577t – ident: e_1_2_7_36_1 doi: 10.1049/iet-syb.2011.0075 – ident: e_1_2_7_41_1 doi: 10.1186/1752-0509-1-17 – volume-title: Thermodynamics of the Polymerization of Proteins year: 1975 ident: e_1_2_7_10_1 – ident: e_1_2_7_50_1 doi: 10.1113/jphysiol.1952.sp004764 – ident: e_1_2_7_30_1 doi: 10.1016/j.neuroscience.2007.08.028 – ident: e_1_2_7_51_1 doi: 10.1016/0169-2607(86)90008-8 – ident: e_1_2_7_20_1 doi: 10.1073/pnas.1604645113 – ident: e_1_2_7_56_1 doi: 10.3389/fphar.2016.00006 – ident: e_1_2_7_58_1 doi: 10.1002/mds.26370 – ident: e_1_2_7_73_1 doi: 10.1016/S1353-8020(13)70025-7 – ident: e_1_2_7_43_1 doi: 10.1371/journal.pone.0002444 – ident: e_1_2_7_77_1 doi: 10.1208/s12248-017-0058-8 – ident: e_1_2_7_3_1 doi: 10.3390/genes9050250 – ident: e_1_2_7_23_1 doi: 10.1021/acs.jpcc.6b12021 – ident: e_1_2_7_44_1 doi: 10.1002/syn.20686 – ident: e_1_2_7_13_1 doi: 10.1016/j.bpc.2008.11.003 – ident: e_1_2_7_49_1 doi: 10.1016/j.compbiolchem.2015.04.003 – ident: e_1_2_7_9_1 doi: 10.1016/S0022-2836(62)80112-0 – ident: e_1_2_7_71_1 doi: 10.1103/PhysRevE.91.042111 |
SSID | ssj0000740190 |
Score | 2.2790704 |
SecondaryResourceType | review_article |
Snippet | Parkinsons disease (PD) is a progressive neurodegenerative disease with substantial and growing socio‐economic burden. In this multifactorial disease, aging,... Parkinsons disease ( PD ) is a progressive neurodegenerative disease with substantial and growing socio‐economic burden. In this multifactorial disease, aging,... Parkinsons disease (PD) is a progressive neurodegenerative disease with substantial and growing socio-economic burden. In this multifactorial disease, aging,... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 77 |
SubjectTerms | Alzheimer's disease Brain Clinical trials Dopamine Feedback Metabolism Nitrogen NMR Nuclear magnetic resonance Ordinary differential equations Oxidative stress Parkinson's disease Pathogenesis Polymerization Review Reviews System theory |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60XryIb6NVVpSKYmyzze5mTyI-EKFSUKG3kMcGhZJWo4f-e2c2aWpRvAV28pqZ3fn2Md8AHBuFvVmKrstNHOAExeduLDNBFKIpxlNjIpv13nuU9y_-w0AMqgW3ojpWOR0T7UCdjhJaI28jTJBc6UB6l-N3l6pG0e5qVUJjEZaIuoy8Wg1UvcbSoXJzulOzkvL2uBj7F0Q4wufj0C9w-fuM5E_saoPP3SqsVKiRXZVmXoMFk69Dq1_STk_O2fMsi6o4Zy3WnxFSTzaA92puVnxIWX1ywqgK2rBgo4xR5rNNAjsp2E25YbMJL3e3z9f3blUrwU1wgsVdjzLaBU4W0pRHPNZGKKLiMzKRsQxQ4QgFMlSGNlJlCCFUxAMZp9xLNDdBkna3oJGPcrMDLPWzKPOUSoynfaE1SiUKgUVEt6ei68DpVHNhUhGJUz2LYVhSIPOQtBxaLTtwVMuOS_qMP6WaUwOEVRcqwpnBHTism9H5aUcjys3oC2XQnbjGQQk_aru0V_0ajM0i8IRyQM1ZshYgYu35lvzt1RJsWxTnBw6cWZv_8-Vh_6nv26vd__9hD5YRaunyvHcTGp8fX2Yf4cxnfGB99huKDfNn priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED9EX3wRv61fRJSJsjqbNUkDvog6hjApuMHeSj9SFEY37HzYf-8l6TqHIvhWyKUtd7ncLx_3O4ALJdCbOWu7VCUBLlB86iY8Z5pCNMN4qlRsst57L7w78J-HbLgCd_NcGMsPUW-4ac8w87V28DgpWwvS0Ek58W80dwhOwGs6t1Zf6KN-WO-w3Opic2aThSLocAMExzU_KW0tui9HpB8w8-dtye8o1oShziZsVPiR3FuDb8GKKrahEVoC6lmT9Bf5VGWTNEi4oKae7QDt1Syt-BJbh3JGdD20UUnGOdE50CYd7LIkj_boZhcGnaf-Q9etqia4KS61qOvp3HaGy4YsozFNpGJCk_IpnvKEB6h6BAU5KkYqLnIEEyKmAU8y6qWSqiDN2nuwWowLdQAk8_M494RIlSd9JiVKpQIhRqy7Z6ztwNVcc1FaUYrryhajyJIh00hrOTJaduC8lp1YIo1fpY7nBogqZyojRIicChlwz4GzuhndQJ9txIUaf6IMDiwqcXrCn9q39qo_g1GaBR4TDoglS9YCmmJ7uaV4fzNU2wbP-YED18bmf_x5FL6Gvnk6_I_wEawjBJP2HvgxrE4_PtUJwpxpcmpG8xcJg_YI priority: 102 providerName: Wiley-Blackwell |
Title | Mathematical Biology Models of Parkinson's Disease |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpsp4.12362 https://www.ncbi.nlm.nih.gov/pubmed/30358157 https://www.proquest.com/docview/2266279861 https://www.proquest.com/docview/2125298323 https://pubmed.ncbi.nlm.nih.gov/PMC6389348 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED_mfPFF_LZ-jIiiKHbSrEmaBxG_RZgUdbC30o8UhdHNVcH9917SrnMo4kso5Nqmd0nud23vdwB7SuBq5qxlUxV5GKC41I54yjSFaIL-VKnQZL23H_hdx73vsm4NxvU7SwXmv4Z2up5UZ9hrfr6NznDBn5YEoieDfOA2NYsIbsWz6JGErmTQLmG-2ZF12TnzuoUi_LA9hMkVU-n306d90w_A-fO_ye941jikmwWYL5EkOS9Mvwg1lS3Bvl9QUY-OyfMksyo_JvvEn5BUj5aBtiu-VrxIUZFyRHRltF5O-inR2dAmMewgJ1fFR5wV6NxcP1_e2WX9BDvGoIvajs5yZxhAJAkNaSQVE5qeT_GYR9xDIyA8SFExUnGRIqwQIfV4lFAnllR5cdJahXrWz9Q6kMRNw9QRIlaOdJmUKBULBBuhPj1hLQsOx5oL4pJcXNe46AUFLTINtJYDo2ULdivZQUGp8avU1tgAwXhWBIgVORXS444FO1U3Lgj9lSPMVP8DZXCKUYkbFQ5qrbBXdRv018xzmLBATFmyEtBk29M92euLId02yM71LDgyNv9j5IH_5LvmaONfT7oJc4jCZPEr-BbU34cfahuRznvUgBnq-tiKrmjA7MX1g__YMG8NsL3tOg0zzb8AuOL-qw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RemgvFeXRpqXFCAoqImXjje34UFWIh5bCopW6SHtL83AEEsouBIT2T_U3dsbeZLui4sYtkieO4xl7Pj_mG4BNo3A0S9H2uUkjXKCE3E9lIYhCNEd_akxio96757JzEf4ciMEc_KljYehaZT0n2ok6H2a0R76HMEFypSMZ_Bjd-JQ1ik5X6xQazixOzfgBl2zV95ND1O8Xzo-P-gcdf5JVwM9wKcL9gGK_BcLqPOcJT7URikjrjMxkKiNsGjrNAoGPNlIV6GxVwiOZ5jzINDdRlrex3hfwEh1vixZ7aqCaPZ0WpbfTrYYFle-NqlH4jQhO-KzfewRmH9_J_BcrW2d3vABvJiiV7TuzegtzplyErZ6juR7vsv40aqvaZVusNyXAHi8B7zZcsFiJy3Y5ZpR17bpiw4JRpLUNOtuu2KE7IFqGi2fpxRWYL4eleQ8sD4ukCJTKTKBDoTVKZQqBTEKv56Ltwde65-JsQlxO-TOuY0e5zGPq5dj2sgcbjezI0XX8V2q1VkA8GbJVPDUwD9abYhxsdIKSlGZ4jzJovlzjJIiNeuf01XwGsYCIAqE8UDOabASIyHu2pLy6tITeFjWGkQc7VudPtDzu_eqF9unD0_-wBq86_e5ZfHZyfvoRXiPM0-6u-SrM393em08Ipe7Sz9Z-Gfx-7gHzF_2gLeE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkK8THyTMcAIGAIta-PGdvyAENBVG2NVBJu0t5APR0Oq0kI2of5r_HXc2UlKNbS3vUXKJXF8d76fP-53AC-NQm-WYuhzk0U4QQm5n8lSEIVogfHUmNRmvR9N5P5J-PlUnK7BnzYXho5VtmOiHaiLWU5r5H2ECZIrHcmgXzbHIuLR-P38p08VpGintS2n4Uzk0Cx-4_StfncwQl2_4ny8d_xp328qDPg5Tku4H1AeuECIXRQ85Zk2QhGBnZG5zGSEzcQAWiII0kaqEgOvSnkks4IHueYmyoshvvcGrCuaFfVg_ePeJP7arfAMqNidHnScqLw_r-fhLtGd8NUoeAnaXj6h-S9ytqFvfBs2GszKPjgjuwNrproL27EjvV7ssONlDle9w7ZZvKTDXtwDftQxw-JLXO3LBaMabNOazUpGedc2Be11zUZuu-g-nFxLPz6AXjWrzCNgRVimZaBUbgIdCq1RKlcIa1J6vBBDD960PZfkDY05VdOYJo6AmSfUy4ntZQ9edLJzR97xX6mtVgFJ48B1sjQ3D553t9H1aD8lrczsAmXQmLnGIREb9dDpq_sMIgMRBUJ5oFY02QkQrffqnerHmaX3thgyjDx4a3V-RcuT-Fsc2qvNq__hGdxEZ0m-HEwOH8MtxHzaHTzfgt75rwvzBHHVefa0MWAG36_bZ_4CTgwzfA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mathematical+Biology+Models+of+Parkinson%27s+Disease&rft.jtitle=CPT%3A+pharmacometrics+and+systems+pharmacology&rft.au=Bakshi%2C+Suruchi&rft.au=Chelliah%2C+Vijayalakshmi&rft.au=Chen%2C+Chao&rft.au=van+der+Graaf%2C+Piet+H.&rft.date=2019-02-01&rft.issn=2163-8306&rft.eissn=2163-8306&rft.volume=8&rft.issue=2&rft.spage=77&rft.epage=86&rft_id=info:doi/10.1002%2Fpsp4.12362&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_psp4_12362 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2163-8306&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2163-8306&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2163-8306&client=summon |