Blockade of vascular endothelial growth factor receptor 2 inhibits intraplaque haemorrhage by normalization of plaque neovessels
Background Plaque angiogenesis is associated with atherosclerotic lesion growth, plaque instability and negative clinical outcome. Plaque angiogenesis is a natural occurring process to fulfil the increasing demand of oxygen and nourishment of the vessel wall. However, inadequate formed, immature pla...
Saved in:
Published in | Journal of internal medicine Vol. 285; no. 1; pp. 59 - 74 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.01.2019
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background
Plaque angiogenesis is associated with atherosclerotic lesion growth, plaque instability and negative clinical outcome. Plaque angiogenesis is a natural occurring process to fulfil the increasing demand of oxygen and nourishment of the vessel wall. However, inadequate formed, immature plaque neovessels are leaky and cause intraplaque haemorrhage.
Objective
Blockade of VEGFR2 normalizes the unbridled process of plaque neovessel formation and induces maturation of nascent vessels resulting in prevention of intraplaque haemorrhage and influx of inflammatory cells into the plaque and subsequently increases plaque stability.
Methods and Results
In human carotid and vein graft atherosclerotic lesions, leaky plaque neovessels and intraplaque haemorrhage co‐localize with VEGF/VEGFR2 and angiopoietins. Using hypercholesterolaemic ApoE3*Leiden mice that received a donor caval vein interposition in the carotid artery, we demonstrate that atherosclerotic vein graft lesions at t28 are associated with hypoxia, Hif1α and Sdf1 up‐regulation. Local VEGF administration results in increased plaque angiogenesis. VEGFR2 blockade in this model results in a significant 44% decrease in intraplaque haemorrhage and 80% less extravasated erythrocytes compared to controls. VEGFR2 blockade in vivo results in a 32% of reduction in vein graft size and more stable lesions with significantly reduced macrophage content (30%), and increased collagen (54%) and smooth muscle cell content (123%). Significant decreased VEGF, angiopoietin‐2 and increased Connexin 40 expression levels demonstrate increased plaque neovessel maturation in the vein grafts. VEGFR2 blockade in an aortic ring assay showed increased pericyte coverage of the capillary sprouts.
Conclusion
Inhibition of intraplaque haemorrhage by controlling neovessels maturation holds promise to improve plaque stability. |
---|---|
AbstractList | BackgroundPlaque angiogenesis is associated with atherosclerotic lesion growth, plaque instability and negative clinical outcome. Plaque angiogenesis is a natural occurring process to fulfil the increasing demand of oxygen and nourishment of the vessel wall. However, inadequate formed, immature plaque neovessels are leaky and cause intraplaque haemorrhage.ObjectiveBlockade of VEGFR2 normalizes the unbridled process of plaque neovessel formation and induces maturation of nascent vessels resulting in prevention of intraplaque haemorrhage and influx of inflammatory cells into the plaque and subsequently increases plaque stability.Methods and ResultsIn human carotid and vein graft atherosclerotic lesions, leaky plaque neovessels and intraplaque haemorrhage co‐localize with VEGF/VEGFR2 and angiopoietins. Using hypercholesterolaemic ApoE3*Leiden mice that received a donor caval vein interposition in the carotid artery, we demonstrate that atherosclerotic vein graft lesions at t28 are associated with hypoxia, Hif1α and Sdf1 up‐regulation. Local VEGF administration results in increased plaque angiogenesis. VEGFR2 blockade in this model results in a significant 44% decrease in intraplaque haemorrhage and 80% less extravasated erythrocytes compared to controls. VEGFR2 blockade in vivo results in a 32% of reduction in vein graft size and more stable lesions with significantly reduced macrophage content (30%), and increased collagen (54%) and smooth muscle cell content (123%). Significant decreased VEGF, angiopoietin‐2 and increased Connexin 40 expression levels demonstrate increased plaque neovessel maturation in the vein grafts. VEGFR2 blockade in an aortic ring assay showed increased pericyte coverage of the capillary sprouts.ConclusionInhibition of intraplaque haemorrhage by controlling neovessels maturation holds promise to improve plaque stability. Plaque angiogenesis is associated with atherosclerotic lesion growth, plaque instability and negative clinical outcome. Plaque angiogenesis is a natural occurring process to fulfil the increasing demand of oxygen and nourishment of the vessel wall. However, inadequate formed, immature plaque neovessels are leaky and cause intraplaque haemorrhage. Blockade of VEGFR2 normalizes the unbridled process of plaque neovessel formation and induces maturation of nascent vessels resulting in prevention of intraplaque haemorrhage and influx of inflammatory cells into the plaque and subsequently increases plaque stability. In human carotid and vein graft atherosclerotic lesions, leaky plaque neovessels and intraplaque haemorrhage co-localize with VEGF/VEGFR2 and angiopoietins. Using hypercholesterolaemic ApoE3*Leiden mice that received a donor caval vein interposition in the carotid artery, we demonstrate that atherosclerotic vein graft lesions at t28 are associated with hypoxia, Hif1α and Sdf1 up-regulation. Local VEGF administration results in increased plaque angiogenesis. VEGFR2 blockade in this model results in a significant 44% decrease in intraplaque haemorrhage and 80% less extravasated erythrocytes compared to controls. VEGFR2 blockade in vivo results in a 32% of reduction in vein graft size and more stable lesions with significantly reduced macrophage content (30%), and increased collagen (54%) and smooth muscle cell content (123%). Significant decreased VEGF, angiopoietin-2 and increased Connexin 40 expression levels demonstrate increased plaque neovessel maturation in the vein grafts. VEGFR2 blockade in an aortic ring assay showed increased pericyte coverage of the capillary sprouts. Inhibition of intraplaque haemorrhage by controlling neovessels maturation holds promise to improve plaque stability. Background Plaque angiogenesis is associated with atherosclerotic lesion growth, plaque instability and negative clinical outcome. Plaque angiogenesis is a natural occurring process to fulfil the increasing demand of oxygen and nourishment of the vessel wall. However, inadequate formed, immature plaque neovessels are leaky and cause intraplaque haemorrhage. Objective Blockade of VEGFR2 normalizes the unbridled process of plaque neovessel formation and induces maturation of nascent vessels resulting in prevention of intraplaque haemorrhage and influx of inflammatory cells into the plaque and subsequently increases plaque stability. Methods and Results In human carotid and vein graft atherosclerotic lesions, leaky plaque neovessels and intraplaque haemorrhage co‐localize with VEGF/VEGFR2 and angiopoietins. Using hypercholesterolaemic ApoE3*Leiden mice that received a donor caval vein interposition in the carotid artery, we demonstrate that atherosclerotic vein graft lesions at t28 are associated with hypoxia, Hif1α and Sdf1 up‐regulation. Local VEGF administration results in increased plaque angiogenesis. VEGFR2 blockade in this model results in a significant 44% decrease in intraplaque haemorrhage and 80% less extravasated erythrocytes compared to controls. VEGFR2 blockade in vivo results in a 32% of reduction in vein graft size and more stable lesions with significantly reduced macrophage content (30%), and increased collagen (54%) and smooth muscle cell content (123%). Significant decreased VEGF, angiopoietin‐2 and increased Connexin 40 expression levels demonstrate increased plaque neovessel maturation in the vein grafts. VEGFR2 blockade in an aortic ring assay showed increased pericyte coverage of the capillary sprouts. Conclusion Inhibition of intraplaque haemorrhage by controlling neovessels maturation holds promise to improve plaque stability. |
Author | Finn, A. V. Peters, H. A. B. Virmani, R. Guo, L. Quax, P. H. A. Hamming, J. F. de Vries, M. R. Ozaki, C. K. Parma, L. Jukema, J. W. Schepers, A. Goumans, M. J. T. H. |
AuthorAffiliation | 3 Department of Cardiology Leiden University Medical Center Leiden The Netherlands 5 CVPath Institute Inc. Gaithersburg MD USA 1 Department of Surgery Leiden University Medical Center Leiden The Netherlands 2 Einthoven Laboratory for Experimental Vascular Medicine Leiden University Medical Center Leiden The Netherlands 4 Department of Cell and Chemical Biology Leiden University Medical Center Leiden The Netherlands 6 Department of Surgery Division of Vascular and Endovascular Surgery Brigham and Women's Hospital Harvard Medical School Boston MA USA |
AuthorAffiliation_xml | – name: 3 Department of Cardiology Leiden University Medical Center Leiden The Netherlands – name: 2 Einthoven Laboratory for Experimental Vascular Medicine Leiden University Medical Center Leiden The Netherlands – name: 6 Department of Surgery Division of Vascular and Endovascular Surgery Brigham and Women's Hospital Harvard Medical School Boston MA USA – name: 4 Department of Cell and Chemical Biology Leiden University Medical Center Leiden The Netherlands – name: 1 Department of Surgery Leiden University Medical Center Leiden The Netherlands – name: 5 CVPath Institute Inc. Gaithersburg MD USA |
Author_xml | – sequence: 1 givenname: M. R. orcidid: 0000-0002-3648-9130 surname: de Vries fullname: de Vries, M. R. email: m.r.de_vries@lumc.nl organization: Leiden University Medical Center – sequence: 2 givenname: L. surname: Parma fullname: Parma, L. organization: Leiden University Medical Center – sequence: 3 givenname: H. A. B. surname: Peters fullname: Peters, H. A. B. organization: Leiden University Medical Center – sequence: 4 givenname: A. surname: Schepers fullname: Schepers, A. organization: Leiden University Medical Center – sequence: 5 givenname: J. F. surname: Hamming fullname: Hamming, J. F. organization: Leiden University Medical Center – sequence: 6 givenname: J. W. surname: Jukema fullname: Jukema, J. W. organization: Leiden University Medical Center – sequence: 7 givenname: M. J. T. H. surname: Goumans fullname: Goumans, M. J. T. H. organization: Leiden University Medical Center – sequence: 8 givenname: L. surname: Guo fullname: Guo, L. organization: CVPath Institute Inc – sequence: 9 givenname: A. V. surname: Finn fullname: Finn, A. V. organization: CVPath Institute Inc – sequence: 10 givenname: R. surname: Virmani fullname: Virmani, R. organization: CVPath Institute Inc – sequence: 11 givenname: C. K. surname: Ozaki fullname: Ozaki, C. K. organization: Harvard Medical School – sequence: 12 givenname: P. H. A. surname: Quax fullname: Quax, P. H. A. organization: Leiden University Medical Center |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30102798$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9v1DAQxS1URLeFCx8AWeKCkFJsJ3GcC1Kp-FNU1AucrYkz2Xhx4sVOtlpOfHQcdqmAA3PxSP7pzXt6Z-Rk9CMS8pSzC57m1cbb4YILJfgDsuK5LDNR1fKErFhdFplUgp2Ssxg3jPGcSfaInOaMs8SoFfnxxnnzFVqkvqM7iGZ2ECiOrZ96dBYcXQd_N_W0AzP5QAMa3C6LoHbsbWOnmJYpwNbBtxlpDzj4EHpYI232dPRhAGe_w2T9uJw4YiP6HcaILj4mDztwEZ8c33Py5d3bz1cfspvb99dXlzeZKQrFM1Wp1hSNaHOeN7XkkqscuqqDssPGAEvxK44FQwCspSyxbKqON7moBSqu6vycvD7obudmwNbgYtrpbbADhL32YPXfP6Pt9drvtMzzohQyCbw4CgSfIsRJDzYadA5SmDlqwZQSNSuLKqHP_0E3fg5jiqcFL1XBRC1Fol4eKBN8jAG7ezOc6aVYvRSrfxWb4Gd_2r9HfzeZAH4A7qzD_X-k9Mfb608H0Z9bQLNQ |
CitedBy_id | crossref_primary_10_1016_j_pharmthera_2022_108152 crossref_primary_10_1007_s10456_021_09816_3 crossref_primary_10_1039_D1BM00343G crossref_primary_10_1161_HYPERTENSIONAHA_121_18128 crossref_primary_10_1016_j_cpcardiol_2023_101779 crossref_primary_10_1161_JAHA_123_033109 crossref_primary_10_1007_s12265_020_10001_y crossref_primary_10_3389_fcvm_2022_818585 crossref_primary_10_1111_jcmm_14247 crossref_primary_10_3390_ijms241411786 crossref_primary_10_1126_sciadv_abl6364 crossref_primary_10_3390_ijms21134643 crossref_primary_10_1016_j_ajpath_2019_10_021 crossref_primary_10_3390_ijms21239244 crossref_primary_10_3390_cimb44100332 crossref_primary_10_3390_ijms22094804 crossref_primary_10_3389_fcvm_2021_739549 crossref_primary_10_1038_s41598_020_72992_7 crossref_primary_10_1016_j_addr_2023_115051 crossref_primary_10_1111_bcp_14793 crossref_primary_10_1002_advs_202100850 crossref_primary_10_3390_biom13060882 crossref_primary_10_3390_ijms232113662 crossref_primary_10_3390_biomedicines10020452 crossref_primary_10_1016_j_biopha_2024_116870 crossref_primary_10_3389_fneur_2022_896428 crossref_primary_10_3390_molecules28031271 crossref_primary_10_1016_j_cellsig_2022_110419 crossref_primary_10_3390_ijms231911663 crossref_primary_10_1016_j_ejphar_2023_175869 crossref_primary_10_1007_s10456_021_09767_9 crossref_primary_10_1111_jcmm_14850 crossref_primary_10_1038_s42255_024_01015_w crossref_primary_10_3390_ijms21155256 crossref_primary_10_1161_CIRCRESAHA_124_324795 crossref_primary_10_3389_fcvm_2019_00113 crossref_primary_10_3389_fcvm_2020_619612 crossref_primary_10_3389_fcvm_2021_784980 crossref_primary_10_3390_biomedicines9040328 crossref_primary_10_1016_j_heliyon_2024_e32692 crossref_primary_10_3390_cells9020336 crossref_primary_10_1007_s10456_022_09851_8 |
Cites_doi | 10.1016/j.ccr.2004.10.011 10.1161/CIRCIMAGING.114.002113 10.1371/journal.pone.0047134 10.1016/S0741-5214(98)70304-0 10.1161/01.ATV.0000057807.28754.7F 10.1073/pnas.1215397109 10.1038/nm0603-685 10.1158/0008-5472.CAN-12-4354 10.1093/cvr/cvq105 10.1097/MOL.0000000000000339 10.1161/01.CIR.91.11.2793 10.5551/jat.26906 10.1038/nrcardio.2016.76 10.1016/j.pharmthera.2016.06.001 10.1006/jsre.2000.5891 10.1172/JCI93025 10.1093/eurheartj/ehr054 10.1161/01.CIR.99.13.1726 10.1007/s10456-014-9456-z 10.1016/j.ejphar.2017.04.028 10.1023/A:1006094117427 10.1016/j.jacc.2008.12.056 10.3389/fcvm.2018.00003 10.1161/ATVBAHA.111.223271 10.1161/01.RES.0000036901.58329.D7 10.1038/nrcardio.2015.164 10.1016/j.vph.2017.10.004 10.1182/blood-2006-07-031773 10.1159/000112939 10.1016/S0741-5214(97)70150-2 10.1038/srep24248 10.1073/pnas.1617451114 10.1161/01.ATV.0000178991.71605.18 10.1111/j.0906-6705.2004.00240.x 10.1016/j.atherosclerosis.2011.07.104 10.1016/j.avsg.2013.10.007 10.1161/ATVBAHA.108.179739 10.1038/nature10144 10.1074/jbc.M009705200 10.1016/j.jacc.2007.12.025 10.1016/j.ccell.2014.10.006 10.1016/j.jvs.2009.03.027 |
ContentType | Journal Article |
Copyright | 2018 The Authors. published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine. 2018 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine. Copyright © 2019 The Association for the Publication of the Journal of Internal Medicine |
Copyright_xml | – notice: 2018 The Authors. published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine. – notice: 2018 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine. – notice: Copyright © 2019 The Association for the Publication of the Journal of Internal Medicine |
DBID | 24P WIN CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL C1K K9. 7X8 5PM |
DOI | 10.1111/joim.12821 |
DatabaseName | Wiley Open Access Journals Wiley Online Library Free Content Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef ProQuest Health & Medical Complete (Alumni) Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | M. R. de Vries et al |
EISSN | 1365-2796 |
EndPage | 74 |
ExternalDocumentID | 10_1111_joim_12821 30102798 JOIM12821 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Health funderid: 1R01HL133500 – fundername: American Heart Association funderid: 16GRNT27090006 – fundername: European Union, MSCA joint doctoral project funderid: 675527 – fundername: NHLBI NIH HHS grantid: R01 HL133500 – fundername: National Institutes of Health grantid: 1R01HL133500 – fundername: European Union, MSCA joint doctoral project grantid: 675527 – fundername: American Heart Association grantid: 16GRNT27090006 |
GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 24P 29K 2WC 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAWTL AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F D-I DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 DUUFO E3Z EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FIJ FUBAC G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IPNFZ IX1 J0M KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N4W N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SJN SUPJJ TEORI TR2 UB1 V8K V9Y VH1 VVN W8V W99 WBKPD WH7 WHWMO WIH WIJ WIK WIN WOHZO WOW WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 YFH YOC YUY ZCG ZGI ZXP ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAMNL AAYXX ACRPL ACYXJ CITATION 7QL C1K K9. 7X8 5PM |
ID | FETCH-LOGICAL-c4481-878dc4b2d313b9616183af7fa5febca012871e40eaae9665e5b7f1b3292e81893 |
IEDL.DBID | 24P |
ISSN | 0954-6820 |
IngestDate | Tue Sep 17 21:07:52 EDT 2024 Wed Dec 04 00:00:09 EST 2024 Thu Oct 10 22:22:00 EDT 2024 Fri Dec 06 02:17:31 EST 2024 Sat Nov 02 12:29:01 EDT 2024 Sat Aug 24 00:55:56 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | atherosclerosis intraplaque haemorrhage angiogenesis vascular endothelial growth factor vein graft |
Language | English |
License | Attribution 2018 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4481-878dc4b2d313b9616183af7fa5febca012871e40eaae9665e5b7f1b3292e81893 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3648-9130 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjoim.12821 |
PMID | 30102798 |
PQID | 2158402962 |
PQPubID | 30713 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6334526 proquest_miscellaneous_2088290547 proquest_journals_2158402962 crossref_primary_10_1111_joim_12821 pubmed_primary_30102798 wiley_primary_10_1111_joim_12821_JOIM12821 |
PublicationCentury | 2000 |
PublicationDate | January 2019 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford – name: Hoboken |
PublicationTitle | Journal of internal medicine |
PublicationTitleAlternate | J Intern Med |
PublicationYear | 2019 |
Publisher | Blackwell Publishing Ltd John Wiley and Sons Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley and Sons Inc |
References | 2017; 5 1998; 27 2018; 100 2011; 218 1995; 91 2015; 18 2018; 128 1997; 26 2011; 31 2014; 26 2004; 6 2011; 32 2000; 91 2014; 28 2008; 51 2007; 109 2017; 114 2016; 164 2016; 13 2011; 473 2012; 109 2005; 25 2001; 276 2016; 6 2010; 87 1998; 17 2018; 5 2009; 53 2009; 50 2013; 73 2015; 22 2003; 9 2004; 13 1999; 99 2008; 45 2002; 91 2012; 7 2016; 27 2014; 7 2010; 30 2003; 23 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 5 start-page: 107 year: 2017 end-page: 15 article-title: Plaque angiogenesis and intraplaque hemorrhage in atherosclerosis publication-title: Eur J Pharmacol – volume: 164 start-page: 204 year: 2016 end-page: 25 article-title: Antagonist antibodies to vascular endothelial growth factor receptor 2 (VEGFR‐2) as anti‐angiogenic agents publication-title: Pharmacol Ther – volume: 51 start-page: 1258 year: 2008 end-page: 65 article-title: Hypoxia, hypoxia‐inducible transcription factor, and macrophages in human atherosclerotic plaques are correlated with intraplaque angiogenesis publication-title: J Am Coll Cardiol – volume: 6 start-page: 24248 year: 2016 article-title: Deficiency of the TLR4 analogue RP105 aggravates vein graft disease by inducing a pro‐inflammatory response publication-title: Sci Rep – volume: 7 start-page: e47134 year: 2012 article-title: Plaque rupture complications in murine atherosclerotic vein grafts can be prevented by TIMP‐1 overexpression publication-title: PLoS ONE – volume: 91 start-page: 577 year: 2002 end-page: 84 article-title: Accelerated atherosclerosis and calcification in vein grafts: a study in APOE*3 Leiden transgenic mice publication-title: Circ Res – volume: 30 start-page: 1282 year: 2010 end-page: 92 article-title: Concept of vulnerable/unstable plaque publication-title: Arterioscler Thromb Vasc Biol – volume: 109 start-page: 122 year: 2007 end-page: 9 article-title: Vascular endothelial growth factor‐A induces plaque expansion in ApoE knock‐out mice by promoting de novo leukocyte recruitment publication-title: Blood – volume: 9 start-page: 685 year: 2003 end-page: 93 article-title: Molecular regulation of vessel maturation publication-title: Nat Med – volume: 27 start-page: 499 year: 2016 end-page: 506 article-title: Plaque angiogenesis and its relation to inflammation and atherosclerotic plaque destabilization publication-title: Curr Opin Lipidol – volume: 45 start-page: 244 year: 2008 end-page: 50 article-title: Balance between angiopoietin‐1 and angiopoietin‐2 is in favor of angiopoietin‐2 in atherosclerotic plaques with high microvessel density publication-title: J Vasc Res – volume: 26 start-page: 79 year: 1997 end-page: 86 article-title: Vascular endothelial growth factor expression in canine peripheral vein bypass grafts publication-title: J Vasc Surg – volume: 87 start-page: 262 year: 2010 end-page: 71 article-title: Vascular endothelial growth factors and vascular permeability publication-title: Cardiovasc Res – volume: 18 start-page: 191 year: 2015 end-page: 200 article-title: Role of M2‐like macrophage recruitment during angiogenic growth factor therapy publication-title: Angiogenesis – volume: 218 start-page: 369 year: 2011 end-page: 77 article-title: Different stages of intraplaque hemorrhage are associated with different plaque phenotypes: a large histopathological study in 794 carotid and 276 femoral endarterectomy specimens publication-title: Atherosclerosis – volume: 114 start-page: E3022–E3031 year: 2017 article-title: High‐throughput identification of small molecules that affect human embryonic vascular development publication-title: Proc Natl Acad Sci USA – volume: 17 start-page: 155 year: 1998 end-page: 61 article-title: Monoclonal antibodies targeting the VEGF receptor‐2 (Flk1/KDR) as an anti‐angiogenic therapeutic strategy publication-title: Cancer Metastasis Rev – volume: 6 start-page: 553 year: 2004 end-page: 63 article-title: Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin‐1, and matrix metalloproteinases publication-title: Cancer Cell – volume: 91 start-page: 2793 year: 1995 end-page: 801 article-title: Local delivery of vascular endothelial growth factor accelerates reendothelialization and attenuates intimal hyperplasia in balloon‐injured rat carotid artery publication-title: Circulation – volume: 128 start-page: 1106 year: 2018 end-page: 24 article-title: CD163+ macrophages promote angiogenesis and vascular permeability accompanied by inflammation in atherosclerosis publication-title: J Clin Invest – volume: 31 start-page: 1033 year: 2011 end-page: 40 article-title: Toll‐like receptor 4 is involved in human and mouse vein graft remodeling, and local gene silencing reduces vein graft disease in hypercholesterolemic APOE*3Leiden mice publication-title: Arterioscler Thromb Vasc Biol – volume: 276 start-page: 7614 year: 2001 end-page: 20 article-title: Vascular endothelial growth factor expression of intercellular adhesion molecule 1 (ICAM‐1), vascular cell adhesion molecule 1 (VCAM‐1), and E‐selectin through nuclear factor‐kappa B activation in endothelial cells publication-title: J Biol Chem – volume: 26 start-page: 605 year: 2014 end-page: 22 article-title: Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia publication-title: Cancer Cell – volume: 50 start-page: 152 year: 2009 end-page: 60 article-title: Local lentiviral short hairpin RNA silencing of CCR2 inhibits vein graft thickening in hypercholesterolemic apolipoprotein E3‐Leiden mice publication-title: J Vasc Surg – volume: 25 start-page: 2054 year: 2005 end-page: 61 article-title: Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage publication-title: Arterioscler Thromb Vasc Biol – volume: 27 start-page: 167 year: 1998 end-page: 73 article-title: Reduction of vein graft intimal hyperplasia and preservation of endothelium‐dependent relaxation by topical vascular endothelial growth factor publication-title: J Vasc Surg – volume: 473 start-page: 298 year: 2011 end-page: 307 article-title: Molecular mechanisms and clinical applications of angiogenesis publication-title: Nature – volume: 7 start-page: 920 year: 2014 end-page: 9 article-title: Increased microvascularization and vessel permeability associate with active inflammation in human atheromata publication-title: Circ Cardiovasc Imaging – volume: 73 start-page: 2943 year: 2013 end-page: 8 article-title: Vascular normalization as an emerging strategy to enhance cancer immunotherapy publication-title: Can Res – volume: 100 start-page: 34 year: 2018 end-page: 40 article-title: Axitinib attenuates intraplaque angiogenesis, haemorrhages and plaque destabilization in mice publication-title: Vascul Pharmacol – volume: 13 start-page: 451 year: 2016 end-page: 70 article-title: Vein graft failure: from pathophysiology to clinical outcomes publication-title: Nat Rev Cardiol – volume: 22 start-page: 1100 year: 2015 end-page: 12 article-title: Angiogenesis inhibitor, endostar, prevents vasa vasorum neovascularization in a swine atherosclerosis model publication-title: J Atheroscler Thromb – volume: 53 start-page: 1517 year: 2009 end-page: 27 article-title: Thin‐walled microvessels in human coronary atherosclerotic plaques show incomplete endothelial junctions relevance of compromised structural integrity for intraplaque microvascular leakage publication-title: J Am Coll Cardiol – volume: 109 start-page: 17561 year: 2012 end-page: 6 article-title: Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy publication-title: Proc Natl Acad Sci USA – volume: 23 start-page: 440 year: 2003 end-page: 6 article-title: Phagocytosis and macrophage activation associated with hemorrhagic microvessels in human atherosclerosis publication-title: Arterioscler Thromb Vasc Biol – volume: 13 start-page: 671 year: 2004 end-page: 81 article-title: Anti‐vascular endothelial growth factor receptor‐2 (Flk‐1/KDR) antibody suppresses contact hypersensitivity publication-title: Exp Dermatol – volume: 5 start-page: 3 year: 2018 article-title: Inflammation in vein graft disease publication-title: Front Cardiovasc Med – volume: 91 start-page: 32 year: 2000 end-page: 7 article-title: Association of artery wall hypoxia and cellular proliferation at a vascular anastomosis publication-title: J Surg Res – volume: 28 start-page: 725 year: 2014 end-page: 36 article-title: Supplemental oxygen reverses hypoxia‐induced smooth muscle cell proliferation by modulating HIF‐alpha and VEGF levels in a rabbit arteriovenous fistula model publication-title: Ann Vasc Surg – volume: 32 start-page: 1977 year: 2011 end-page: 85 article-title: Intraplaque haemorrhages as the trigger of plaque vulnerability publication-title: Eur Heart J – volume: 13 start-page: 79 year: 2016 end-page: 98 article-title: Pathophysiology of native coronary, vein graft, and in‐stent atherosclerosis publication-title: Nat Rev Cardiol – volume: 99 start-page: 1726 year: 1999 end-page: 32 article-title: Angiogenesis inhibitors endostatin or TNP‐470 reduce intimal neovascularization and plaque growth in apolipoprotein E‐deficient mice publication-title: Circulation – ident: e_1_2_8_30_1 doi: 10.1016/j.ccr.2004.10.011 – ident: e_1_2_8_4_1 doi: 10.1161/CIRCIMAGING.114.002113 – ident: e_1_2_8_24_1 doi: 10.1371/journal.pone.0047134 – ident: e_1_2_8_35_1 doi: 10.1016/S0741-5214(98)70304-0 – ident: e_1_2_8_39_1 doi: 10.1161/01.ATV.0000057807.28754.7F – ident: e_1_2_8_33_1 doi: 10.1073/pnas.1215397109 – ident: e_1_2_8_19_1 doi: 10.1038/nm0603-685 – ident: e_1_2_8_18_1 doi: 10.1158/0008-5472.CAN-12-4354 – ident: e_1_2_8_38_1 doi: 10.1093/cvr/cvq105 – ident: e_1_2_8_2_1 doi: 10.1097/MOL.0000000000000339 – ident: e_1_2_8_34_1 doi: 10.1161/01.CIR.91.11.2793 – ident: e_1_2_8_23_1 doi: 10.5551/jat.26906 – ident: e_1_2_8_6_1 doi: 10.1038/nrcardio.2016.76 – ident: e_1_2_8_29_1 doi: 10.1016/j.pharmthera.2016.06.001 – ident: e_1_2_8_8_1 doi: 10.1006/jsre.2000.5891 – ident: e_1_2_8_16_1 doi: 10.1172/JCI93025 – ident: e_1_2_8_14_1 doi: 10.1093/eurheartj/ehr054 – ident: e_1_2_8_21_1 doi: 10.1161/01.CIR.99.13.1726 – ident: e_1_2_8_42_1 doi: 10.1007/s10456-014-9456-z – ident: e_1_2_8_7_1 doi: 10.1016/j.ejphar.2017.04.028 – ident: e_1_2_8_26_1 doi: 10.1023/A:1006094117427 – ident: e_1_2_8_12_1 doi: 10.1016/j.jacc.2008.12.056 – ident: e_1_2_8_37_1 doi: 10.3389/fcvm.2018.00003 – ident: e_1_2_8_43_1 doi: 10.1161/ATVBAHA.111.223271 – ident: e_1_2_8_36_1 doi: 10.1161/01.RES.0000036901.58329.D7 – ident: e_1_2_8_5_1 doi: 10.1038/nrcardio.2015.164 – ident: e_1_2_8_32_1 doi: 10.1016/j.vph.2017.10.004 – ident: e_1_2_8_22_1 doi: 10.1182/blood-2006-07-031773 – ident: e_1_2_8_31_1 doi: 10.1159/000112939 – ident: e_1_2_8_28_1 doi: 10.1016/S0741-5214(97)70150-2 – ident: e_1_2_8_25_1 doi: 10.1038/srep24248 – ident: e_1_2_8_11_1 doi: 10.1073/pnas.1617451114 – ident: e_1_2_8_13_1 doi: 10.1161/01.ATV.0000178991.71605.18 – ident: e_1_2_8_41_1 doi: 10.1111/j.0906-6705.2004.00240.x – ident: e_1_2_8_3_1 doi: 10.1016/j.atherosclerosis.2011.07.104 – ident: e_1_2_8_9_1 doi: 10.1016/j.avsg.2013.10.007 – ident: e_1_2_8_15_1 doi: 10.1161/ATVBAHA.108.179739 – ident: e_1_2_8_17_1 doi: 10.1038/nature10144 – ident: e_1_2_8_40_1 doi: 10.1074/jbc.M009705200 – ident: e_1_2_8_10_1 doi: 10.1016/j.jacc.2007.12.025 – ident: e_1_2_8_20_1 doi: 10.1016/j.ccell.2014.10.006 – ident: e_1_2_8_27_1 doi: 10.1016/j.jvs.2009.03.027 |
SSID | ssj0013060 |
Score | 2.5000606 |
Snippet | Background
Plaque angiogenesis is associated with atherosclerotic lesion growth, plaque instability and negative clinical outcome. Plaque angiogenesis is a... Plaque angiogenesis is associated with atherosclerotic lesion growth, plaque instability and negative clinical outcome. Plaque angiogenesis is a natural... BackgroundPlaque angiogenesis is associated with atherosclerotic lesion growth, plaque instability and negative clinical outcome. Plaque angiogenesis is a... BACKGROUNDPlaque angiogenesis is associated with atherosclerotic lesion growth, plaque instability and negative clinical outcome. Plaque angiogenesis is a... |
SourceID | pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 59 |
SubjectTerms | Angiogenesis Angiopoietin Angiopoietin-2 - blood Animals Aorta Arteriosclerosis Atherosclerosis Biomarkers - blood Blood vessels Carotid artery Collagen Connexins - blood Control stability Disease Models, Animal Erythrocytes Gap Junction alpha-5 Protein Grafting Grafts Growth factors Hemorrhage Hemorrhage - prevention & control Humans Hypoxia Inflammation intraplaque haemorrhage Lesions Macrophages Maturation Mice Muscles Neovascularization, Pathologic - prevention & control Original Plaque, Atherosclerotic - drug therapy SDF-1 protein Smooth muscle Stability Vascular endothelial growth factor Vascular Endothelial Growth Factor A - blood Vascular Endothelial Growth Factor A - pharmacology Vascular endothelial growth factor receptor 2 Vascular Endothelial Growth Factor Receptor-2 - antagonists & inhibitors vein graft Veins & arteries |
Title | Blockade of vascular endothelial growth factor receptor 2 inhibits intraplaque haemorrhage by normalization of plaque neovessels |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjoim.12821 https://www.ncbi.nlm.nih.gov/pubmed/30102798 https://www.proquest.com/docview/2158402962 https://search.proquest.com/docview/2088290547 https://pubmed.ncbi.nlm.nih.gov/PMC6334526 |
Volume | 285 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-QwEB9E4fBF7sOPnnrkOJ-EyjbpV-Be1FP2FvYUUdi3kmwTW26vu-yugm_-6c6k3d4uguBLCSQlaacz85tm5heAI5ELGeWh9W2eGj8MDOpcZAJfd2wyjNNhZB07f_9P3L0Le4NosAY_F7UwNT9E-8ONNMPZa1JwpWfLSj4u_52gdaUq8g3ENTGdX8DD6_97CB1XI4wYIvRjdHQNOanL42nvXXVHrzDm61TJZQjrfNDlR9hqwCM7raX9CdZM9Rk-9Jvt8S_wfIau6a_KDRtbtsgxZabKqcxqhF8au8eoe16w-pQdhtbOTKjBWVkVpS7nM2zgCiYjhStkhaI83GmBNofpJ1YRvh01hZs0RTOsMuNHoiAfzbbh7vLi9rzrN0cs-EOMywK0hWk-DDXPRSC0jIk9XyibWBVZypIi75UEJuwYpQwGRpGJdGIDLbjkBl29FDuwXo0rswdMaqnQYBjFNUIGqVSKoXeqk05gMYiLlAc_Fm86m9RMGlkbgaA8MicPDw4WQsgabZplCEswDuUy5h58b7tRD2hzQ-FDPuAYihUkAtDEg91aZu00gojzEpl6kKxIsx1AHNurPVVZOK7tWAg6hN2DYyf3N1ae9a5-913r63sG78MmYjBZ_9U5gPX59MEcIs6Z62_uc8brrxv-As0L_SI |
link.rule.ids | 230,314,780,784,885,1375,11562,27924,27925,46052,46294,46476,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9wwEB5KAk1fmjTp4RyNSvpU8LK2fOkxR8Pm2BRCAnkzki3VJhvvkvUW2qf-9MzIXifbQKF9E1jGljTHN9LMJ4DPPOcizAPjmjzRbuBp1LlQe67qmziLkiw0lp1_eBENroPTm_Cmzc2hWpiGH6LbcCPNsPaaFJw2pJ9q-bi866F5pTLyZdR3jzK6ji79x0OEvi0SRhARuBF6upad1CbydO8u-qNnIPN5ruRTDGud0PFqc9Pq1HIXUu7JbW9Wq1726w9mx_8e3xq8buEp22_k6Q280NU6vBy2B_Ab8PsAnd-tzDUbGzbPYmW6yqmQa4SyzL5jXF8XrLnHh6E91RNq-KysilKV9RQbOMTJSOIUsEJSpu99gVaNqZ-sIgQ9aktD6RNtt0qPfxDJ-Wj6Fq6Pv14dDtz2Egc3w8jPQ2ub5Fmg_Jx7XImI-Pm5NLGRoaE8LPKPsaeDvpZSY-gV6lDFxlPcF75GMCH4O1iqxpX-AEwoIdEkaekrBCVCygSD-0TFfc9gmBhKB_bmS5lOGq6OtItxcDJTO5kObM9XOW31dZoi8MFI1xeR78Cn7jFqGh2fSBzkDPtQNCIQ4sYOvG-EovsMJ2q-WCQOxAvi0nUgFu_FJ1VZWDbviHO65t2BL1Ya_vLn6em3k6Ftbf5L511YGVwNz9Pzk4uzLXiFiE80e0jbsFTfz_QOoqpafbS68wCpwiDf |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRaq48IYGChjBCSmrjZ2XJS6FsmoLWxCiUi8oshObRF2yq24WiZ760zvjPOhSCQluluzIsTOPb-KZzwCvRCFkVITWt0Vq_DAwqHORCXw9tkkep3lkHTv_9CjePw4PT6KTDXjT18K0_BDDDzfSDGevScEXhb2q5PPqxwitK1WR3whjLok5f-8L_32GMHY1woghQj9GR9eRk7o8nuHZdXd0DWNeT5W8CmGdD5rchm_927epJ6ejVaNH-fkfxI7_u7w7cKsDp2y3laa7sGHqe7A17Y7f78PFW3R9p6owbG5Zn8PKTF1QGdcMJZl9x6i-KVl7iw9Da2oW1OCsqstKV80SG7jCxUzhDrBSUZ7vWYk2jelfrCb8POsKQ2mKblht5j-J4ny2fADHk_df3-373RUOfo5xX4C2Ni3yUPNCBELLmNj5hbKJVZGlLCzyjklgwrFRymDgFZlIJzbQgktuEEpI8RA263lttoFJLRUaJKO4RkgilUoxtE91Mg4sBomR8uBl_yWzRcvUkQ0RDm5m5jbTg53-I2edti4zhD0Y53IZcw9eDN2oZ3R4onCRKxxDsYhEgJt48KiViWEaQcR8iUw9SNakZRhAHN7rPXVVOi7vWAi65N2D104Y_vLm2eGng6lrPf6Xwc9h6_PeJPt4cPThCdxEuCfbH0g7sNmcrcxThFSNfuY05xI-Tx-O |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Blockade+of+vascular+endothelial+growth+factor+receptor+2+inhibits+intraplaque+haemorrhage+by+normalization+of+plaque+neovessels&rft.jtitle=Journal+of+internal+medicine&rft.au=de+Vries%2C+M.+R.&rft.au=Parma%2C+L.&rft.au=Peters%2C+H.+A.+B.&rft.au=Schepers%2C+A.&rft.date=2019-01-01&rft.issn=0954-6820&rft.eissn=1365-2796&rft.volume=285&rft.issue=1&rft.spage=59&rft.epage=74&rft_id=info:doi/10.1111%2Fjoim.12821&rft.externalDBID=10.1111%252Fjoim.12821&rft.externalDocID=JOIM12821 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0954-6820&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0954-6820&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0954-6820&client=summon |